151
|
Chaly Y, Blair HC, Smith SM, Bushnell DS, Marinov AD, Campfield BT, Hirsch R. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Ann Rheum Dis 2015; 74:1467-73. [PMID: 24641944 DOI: 10.1136/annrheumdis-2013-204822] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/01/2014] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Chondrocytes, the only cells in the articular cartilage, play a pivotal role in osteoarthritis (OA) because they are responsible for maintenance of the extracellular matrix (ECM). Follistatin-like protein 1 (FSTL1) is a secreted protein found in mesenchymal stem cells (MSCs) and cartilage but whose function is unclear. FSTL1 has been shown to modify cell growth and survival. In this work, we sought to determine whether FSTL1 could regulate chondrogenesis and chondrogenic differentiation of MSCs. METHODS To study the role of FSTL1 in chondrogenesis, we used FSTL1 knockout (KO) mice generated in our laboratory. Proliferative capacity of MSCs, obtained from skulls of E18.5 embryos, was analysed by flow cytometry. Chondrogenic differentiation of MSCs was carried out in a pellet culture system. Gene expression differences were assessed by microarray analysis and real-time PCR. Phosphorylation of Smad3, p38 MAPK and Akt was analysed by western blotting. RESULTS The homozygous FSTL1 KO embryos showed extensive skeletal defects and decreased cellularity in the vertebral cartilage. Cell proliferation of FSTL1-deficient MSCs was reduced. Gene expression analysis in FSTL1 KO MSCs revealed dysregulation of multiple genes important for chondrogenesis. Production of ECM proteoglycans and collagen II expression were decreased in FSTL1-deficient MSCs differentiated into chondrocytes. Transforming growth factor β signalling in FSTL1 KO cells was significantly suppressed. CONCLUSIONS FSTL1 is a potent regulator of chondrocyte proliferation, differentiation and expression of ECM molecules. Our findings may lead to the development of novel strategies for cartilage repair and provide new disease-modifying treatments for OA.
Collapse
Affiliation(s)
- Yury Chaly
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Harry C Blair
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sonja M Smith
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Daniel S Bushnell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony D Marinov
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian T Campfield
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Raphael Hirsch
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
152
|
Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. VITAMINS AND HORMONES 2015; 99:249-72. [PMID: 26279379 DOI: 10.1016/bs.vh.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone structure and function is shaped by gravity. Prolonged exposure to microgravity leads to 1-2% bone loss per month in crew members compared to 1% bone loss per year in postmenopausal women. Exercise countermeasures developed to date are ineffective in combating bone loss in microgravity. The search is on for alternate therapies to prevent bone loss in space. Microgravity is an ideal stimulus to understand bone interactions at different levels of organizations. Spaceflight experiments are limited by high costs and lack of opportunity. Ground-based microgravity analogs have proven to simulate biological responses in space. Mice experiments have given important signaling clues in microgravity-associated bone loss, but are restricted by numbers and human application. Cell-based systems provide initial clues to signaling changes; however, the information is simplistic and limited to the cell type. There is a need to integrate information at different levels and provide a complete picture which will help develop a unique strategy to prevent bone weakening. Limited exposure to simulated microgravity using random positioning machine induces proliferation and differentiation of bipotential murine oval liver stem cells. Bone morphogenetic proteins (BMPs) are the prototypal osteogenic signaling molecule with multitude of bone protective functions. In this chapter, we discuss the basic BMP structure, its significance in bone repair, and stem cell differentiation in microgravity. Based on the current information, we propose a model for BMP signaling in space. Development of new technologies may help osteoporosis patients, bedridden people, spinal injuries, or paralytic patients.
Collapse
|
153
|
Chaly Y, Hostager B, Smith S, Hirsch R. Follistatin-like protein 1 and its role in inflammation and inflammatory diseases. Immunol Res 2015; 59:266-72. [PMID: 24838142 DOI: 10.1007/s12026-014-8526-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein produced mainly by cells of mesenchymal origin. FSTL1 has been shown to play an important role during embryogenesis; FSTL1-deficient mice die at birth from multiple developmental abnormalities. In the last decade, FSTL1 has been identified as a novel inflammatory protein, enhancing synthesis of proinflammatory cytokines and chemokines by immune cells in vitro and in vivo. FSTL1 mediates proinflammatory events in animal models of inflammatory diseases, particularly in collagen-induced arthritis in mice. FSTL1 is elevated in various inflammatory conditions and decreased during the course of treatment. FSTL1 may therefore be a valuable biomarker for such diseases. Moreover, a variety of experiments suggest that targeting of FSTL1 may be useful in the treatment of diseases in which inflammation plays a central role.
Collapse
Affiliation(s)
- Yury Chaly
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, 2191 ML, 500 Newton Road, Iowa City, IA, 52242, USA,
| | | | | | | |
Collapse
|
154
|
Zhang L, Jia R, Palange NJ, Satheka AC, Togo J, An Y, Humphrey M, Ban L, Ji Y, Jin H, Feng X, Zheng Y. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One 2015; 10:e0120396. [PMID: 25803037 PMCID: PMC4372442 DOI: 10.1371/journal.pone.0120396] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
ZFN, TALENs and CRISPR/Cas9 system have been used to generate point mutations and large fragment deletions and insertions in genomic modifications. CRISPR/Cas9 system is the most flexible and fast developing technology that has been extensively used to make mutations in all kinds of organisms. However, the most mutations reported up to date are small insertions and deletions. In this report, CRISPR/Cas9 system was used to make large DNA fragment deletions and insertions, including entire Dip2a gene deletion, about 65kb in size, and β-galactosidase (lacZ) reporter gene insertion of larger than 5kb in mouse. About 11.8% (11/93) are positive for 65kb deletion from transfected and diluted ES clones. High targeting efficiencies in ES cells were also achieved with G418 selection, 46.2% (12/26) and 73.1% (19/26) for left and right arms respectively. Targeted large fragment deletion efficiency is about 21.4% of live pups or 6.0% of injected embryos. Targeted insertion of lacZ reporter with NEO cassette showed 27.1% (13/48) of targeting rate by ES cell transfection and 11.1% (2/18) by direct zygote injection. The procedures have bypassed in vitro transcription by directly co-injection of zygotes or co-transfection of embryonic stem cells with circular plasmid DNA. The methods are technically easy, time saving, and cost effective in generating mouse models and will certainly facilitate gene function studies.
Collapse
Affiliation(s)
- Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ruirui Jia
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Norberto J. Palange
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | | | - Jacques Togo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yao An
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Mabwi Humphrey
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Luying Ban
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yan Ji
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Honghong Jin
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xuechao Feng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (XCF); (YWZ)
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
- * E-mail: (XCF); (YWZ)
| |
Collapse
|
155
|
In vitro reconstruction of branched tubular structures from lung epithelial cells in high cell concentration gradient environment. Sci Rep 2015; 5:8054. [PMID: 25623780 PMCID: PMC4306969 DOI: 10.1038/srep08054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.
Collapse
|
156
|
Dong Y, Geng Y, Li L, Li X, Yan X, Fang Y, Li X, Dong S, Liu X, Li X, Yang X, Zheng X, Xie T, Liang J, Dai H, Liu X, Yin Z, Noble PW, Jiang D, Ning W. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. ACTA ACUST UNITED AC 2015; 212:235-52. [PMID: 25584011 PMCID: PMC4322044 DOI: 10.1084/jem.20121878] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Follistatin-like 1 (Fstl1) is induced in response to lung injury and promotes the accumulation of myofibroblasts and subsequent fibrosis via regulation of TGF-β and BMP. Reducing Fstl1 in mice reduces bleomycin-induced fibrosis in vivo, offering a potential therapeutic target for progressive lung fibrosis. Progressive tissue fibrosis is a cause of major morbidity and mortality. Pulmonary fibrosis is an epithelial-mesenchymal disorder in which TGF-β1 plays a central role in pathogenesis. Here we show that follistatin-like 1 (FSTL1) differentially regulates TGF-β and bone morphogenetic protein signaling, leading to epithelial injury and fibroblast activation. Haplodeletion of Fstl1 in mice or blockage of FSTL1 with a neutralizing antibody in mice reduced bleomycin-induced fibrosis in vivo. Fstl1 is induced in response to lung injury and promotes the accumulation of myofibroblasts and subsequent fibrosis. These data suggest that Fstl1 may serve as a novel therapeutic target for treatment of progressive lung fibrosis.
Collapse
Affiliation(s)
- Yingying Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yan Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Lian Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China Respiratory Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaohua Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinshan Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinxin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuhong Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaohong Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Xie
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jiurong Liang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Huaping Dai
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Dianhua Jiang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
157
|
Ureter growth and differentiation. Semin Cell Dev Biol 2014; 36:21-30. [DOI: 10.1016/j.semcdb.2014.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
|
158
|
Emmerton-Coughlin HMA, Martin KK, Chiu JSS, Zhao L, Scott LA, Regnault TRH, Bütter A. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia. Front Surg 2014; 1:44. [PMID: 25593968 PMCID: PMC4286986 DOI: 10.3389/fsurg.2014.00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 12/05/2022] Open
Abstract
Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH) remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP) 4 and other factors such as late gestation lung protein 1 (LGL1), are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in seven experimental animals. Lungs were harvested at 136 days (term = 145 days). Lung weight (LW) and mean terminal bronchiole density (MTBD) were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4, and LGL1 mRNA expression. Results: Total LW was decreased while MTBD was increased in the CDH group (p < 0.05), confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p < 0.05). Wnt2 mRNA was decreased, although not significantly (p < 0.06). Conclusion: For the first time, down regulation of BMP4 and LGL1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis.
Collapse
Affiliation(s)
| | - K Kathryn Martin
- Division of General Surgery, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada
| | - Jacky S S Chiu
- Department of Obstetrics and Gynaecology, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada
| | - Lin Zhao
- Department of Obstetrics and Gynaecology, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada
| | - Leslie A Scott
- Division of Pediatric Surgery, Children's Hospital, The University of Western Ontario , London, ON , Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynaecology, London Health Sciences Centre, The University of Western Ontario , London, ON , Canada ; Children's Health Research Institute, The University of Western Ontario , London, ON , Canada ; Lawson Health Research Institute, The University of Western Ontario , London, ON , Canada
| | - Andreana Bütter
- Division of Pediatric Surgery, Children's Hospital, The University of Western Ontario , London, ON , Canada ; Lawson Health Research Institute, The University of Western Ontario , London, ON , Canada
| |
Collapse
|
159
|
Boucherat O, Nadeau V, Bérubé-Simard FA, Charron J, Jeannotte L. Crucial requirement of ERK/MAPK signaling in respiratory tract development. Development 2014; 141:3197-211. [DOI: 10.1242/dev.110254] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase genes, Mek1 and Mek2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In order to define the function of the ERK/MAPK pathway in the lung development in mice, we performed tissue-specific deletions of Mek1 function on a Mek2 null background. Inactivation of both Mek genes in mesenchyme resulted in several phenotypes, including giant omphalocele, kyphosis, pulmonary hypoplasia, defective tracheal cartilage and death at birth. The absence of tracheal cartilage rings establishes the crucial role of intracellular signaling molecules in tracheal chondrogenesis and provides a putative mouse model for tracheomalacia. In vitro, the loss of Mek function in lung mesenchyme did not interfere with lung growth and branching, suggesting that both the reduced intrathoracic space due to the dysmorphic rib cage and the omphalocele impaired lung development in vivo. Conversely, Mek mutation in the respiratory epithelium caused lung agenesis, a phenotype resulting from the direct impact of the ERK/MAPK pathway on cell proliferation and survival. No tracheal epithelial cell differentiation occurred and no SOX2-positive progenitor cells were detected in mutants, implying a role for the ERK/MAPK pathway in trachea progenitor cell maintenance and differentiation. Moreover, these anomalies were phenocopied when the Erk1 and Erk2 genes were mutated in airway epithelium. Thus, the ERK/MAPK pathway is required for the integration of mesenchymal and epithelial signals essential for the development of the entire respiratory tract.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Valérie Nadeau
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
| | - Jean Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, CanadaG1R 2J6
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
160
|
Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci U S A 2014; 111:E1990-8. [PMID: 24778262 DOI: 10.1073/pnas.1323112111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca(2+) transient is crucial in initiating the differentiation of mesenchymal cells into chondrocytes, but whether voltage-gated Ca(2+) channels are involved remains uncertain. Here, we show that the T-type voltage-gated Ca(2+) channel Cav3.2 is essential for tracheal chondrogenesis. Mice lacking this channel (Cav3.2(-/-)) show congenital tracheal stenosis because of incomplete formation of cartilaginous tracheal support. Conversely, Cav3.2 overexpression in ATDC5 cells enhances chondrogenesis, which could be blunted by both blocking T-type Ca(2+) channels and inhibiting calcineurin and suggests that Cav3.2 is responsible for Ca(2+) influx during chondrogenesis. Finally, the expression of sex determination region of Y chromosome (SRY)-related high-mobility group-Box gene 9 (Sox9), one of the earliest markers of committed chondrogenic cells, is reduced in Cav3.2(-/-) tracheas. Mechanistically, Ca(2+) influx via Cav3.2 activates the calcineurin/nuclear factor of the activated T-cell (NFAT) signaling pathway, and a previously unidentified NFAT binding site is identified within the mouse Sox9 promoter using a luciferase reporter assay and gel shift and ChIP studies. Our findings define a previously unidentified mechanism that Ca(2+) influx via the Cav3.2 T-type Ca(2+) channel regulates Sox9 expression through the calcineurin/NFAT signaling pathway during tracheal chondrogenesis.
Collapse
|
161
|
Campfield BT, Nolder CL, Marinov A, Bushnell D, Davis A, Spychala C, Hirsch R, Nowalk AJ. Follistatin-like protein 1 is a critical mediator of experimental Lyme arthritis and the humoral response to Borrelia burgdorferi infection. Microb Pathog 2014; 73:70-9. [PMID: 24768929 DOI: 10.1016/j.micpath.2014.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/19/2022]
Abstract
Follistatin-like protein 1 (FSTL-1) has recently been described as a critical mediator of CIA and a marker of disease activity. Lyme arthritis, caused by Borrelia burgdorferi, shares similarities with autoimmune arthritis and the experimental murine model collagen-induced arthritis (CIA). Because FSTL-1 is important in CIA and autoimmune arthritides, and Lyme arthritis shares similarities with CIA, we hypothesized that FSTL-1 may be an important mediator of Lyme arthritis. We demonstrate for the first time that FSTL-1 is induced by B. burgdorferi infection and is required for the development of Lyme arthritis in a murine model, utilizing a gene insertion to generate FSTL-1 hypomorphic mice. Using qPCR and qRT-PCR, we found that despite similar early infectious burden, FSTL-1 hypomorphic mice have improved spirochetal clearance in the face of attenuated arthritis and inflammatory cytokine production. Further, FSTL-1 mediates pathogen-specific antibody production and antigen recognition when assessed by ELISA and one- and two-dimensional immunoblotting. This study is the first to describe a role for FSTL-1 in the development of Lyme arthritis and anti-Borrelia response, and the first to demonstrate a role for FSTL-1 in response to infection, highlighting the potential for FSTL-1 as a target in the treatment of B. burgdorferi infection.
Collapse
Affiliation(s)
- Brian T Campfield
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Christi L Nolder
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Anthony Marinov
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Daniel Bushnell
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Amy Davis
- Department of Pathology, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Caressa Spychala
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Raphael Hirsch
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Andrew J Nowalk
- Department of Pediatrics, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
162
|
Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014; 111:E1723-30. [PMID: 24706852 DOI: 10.1073/pnas.1403470111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite therapeutic advancement, pulmonary disease still remains a major cause of morbidity and mortality around the world. Opportunities to study human lung disease either in vivo or in vitro are currently limited. Using induced pluripotent stem cells (iPSCs), we generated mature multiciliated cells in a functional airway epithelium. Robust multiciliogenesis occurred when notch signaling was inhibited and was confirmed by (i) the assembly of multiple pericentrin-stained centrioles at the apical surface, (ii) expression of transcription factor forkhead box protein J1, and (iii) presence of multiple acetylated tubulin-labeled cilia projections in individual cells. Clara, goblet, and basal cells were all present, confirming the generation of a complete polarized epithelial-cell layer. Additionally, cAMP-activated and cystic fibrosis transmembrane regulator inhibitor 172-sensitive cystic fibrosis transmembrane regulator currents were recorded in isolated epithelial cells. Our report demonstrating the generation of mature multiciliated cells in respiratory epithelium from iPSCs is a significant advance toward modeling a number of human respiratory diseases in vitro.
Collapse
|
163
|
Chaly Y, Fu Y, Marinov A, Hostager B, Yan W, Campfield B, Kellum JA, Bushnell D, Wang Y, Vockley J, Hirsch R. Follistatin-like protein 1 enhances NLRP3 inflammasome-mediated IL-1β secretion from monocytes and macrophages. Eur J Immunol 2014; 44:1467-79. [PMID: 24470197 DOI: 10.1002/eji.201344063] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/27/2013] [Accepted: 01/23/2014] [Indexed: 12/19/2022]
Abstract
Follistatin-like protein 1 (FSTL-1) is overexpressed in a number of inflammatory conditions characterized by elevated IL-1β. Here, we found that FSTL-1 serum concentration was increased threefold in patients with bacterial sepsis and fourfold following administration of LPS to mice. To test the contribution of FSTL-1 to IL-1β secretion, WT and FSTL-1-deficient mice were injected with LPS. While LPS induced IL-1β in the sera of WT mice, it was low or undetectable in FSTL-1-deficient mice. Monocytes/macrophages, a key source of IL-1β, do not normally express FSTL-1. However, FSTL-1 was found in tissue macrophages after injection of LPS into mouse footpads, demonstrating that macrophages are capable of taking up FSTL-1 at sites of inflammation. In vitro, intracellular FSTL-1 localized to the mitochondria. FSTL-1 activated the mitochondrial electron transport chain, increased the production of ATP (a key activator of the nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome) and IL-1β secretion. FSTL-1 also enhanced transcription of the NLRP3 and procaspase 1 genes, two components of the NLRP3 inflammasome. Adenovirus-mediated overexpression of FSTL-1 in mouse paws led to activation of the inflammasome complex and local secretion of IL-1β and IL-1β-related proinflammatory cytokines. These results suggest that FSTL-1 may act on the NLRP3 inflammasome to promote IL-1β secretion from monocytes/macrophages.
Collapse
Affiliation(s)
- Yury Chaly
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Meng L, Jia RX, Sun YY, Wang ZY, Wan YJ, Zhang YL, Zhong BS, Wang F. Growth regulation, imprinting, and epigenetic transcription-related gene expression differs in lung of deceased transgenic cloned and normal goats. Theriogenology 2014; 81:459-66. [DOI: 10.1016/j.theriogenology.2013.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
|
165
|
Sylva M, Moorman AFM, van den Hoff MJB. Follistatin-like 1 in vertebrate development. ACTA ACUST UNITED AC 2014; 99:61-9. [PMID: 23723173 DOI: 10.1002/bdrc.21030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/08/2013] [Indexed: 11/11/2022]
Abstract
Follistatin-like 1 (Fstl1) is a member of the secreted protein acidic rich in cysteins (SPARC) family and has been implicated in many different signaling pathways, including bone morphogenetic protein (BMP) signaling. In many different developmental processes like, dorso-ventral axis establishment, skeletal, lung and ureter development, loss of function experiments have unveiled an important role for Fstl1. Fstl1 largely functions through inhibiting interactions with the BMP signaling pathway, although, in various disease models, different signaling pathways, like activation of pAKT, pAMPK, Na/K-ATPase, or innate immune responses, are linked to Fstl1. How Fstl1 inhibits BMP signaling remains unclear, although it is known that Fstl1 does not function through a scavenging mechanism, like the other known extracellular BMP inhibitors such as noggin. It has been proposed that Fstl1 interferes with BMP receptor complex formation and as such inhibits propagation of the BMP signal into the cell. Future challenges will encompass the identification of the factors that determine the mechanisms that underlie the fact that Fstl1 acts by interfering with BMP signaling during development, but through other signaling pathways during disease.
Collapse
Affiliation(s)
- M Sylva
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Meibergdreef 15 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|
166
|
Geng Y, Li L, Dong Y, Liu X, Li XH, Ning W. Impaired elastin deposition in Fstl1-/- lung allograft under the renal capsule. PLoS One 2013; 8:e81368. [PMID: 24282586 PMCID: PMC3839892 DOI: 10.1371/journal.pone.0081368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
Lung alveolar development in late gestation is a process important to postnatal survival. Follistatin-like 1 (Fstl1) is a matricellular protein of the Bmp antagonist class, which is involved in the differentiation/maturation of alveolar epithelial cells during saccular stage of lung development. This study investigates the role of Fstl1 on elastin deposition in mesenchyme and subsequent secondary septation in the late gestation stage of terminal saccular formation. To this aim, we modified the renal capsule allograft model for lung organ culture by grafting diced E15.5 distal lung underneath the renal capsule of syngeneic host and cultured up to 7 days. The saccular development of the diced lung allografts, as indicated by the morphology, epithelial and vascular developments, occurred in a manner similar to that in utero. Fstl1 deficiency caused atelectatic phenotype companied by impaired epithelial differentiation in D3 Fstl1−/− lung allografts, which is similar to that of E18.5 Fstl1−/− lungs, supporting the role of Fstl1 during saccular stage. Inhibition of Bmp signaling by intraperitoneal injection of dorsomorphin in the host mice rescued the pulmonary atelectasis of D3 Fstl1−/− allografts. Furthermore, a marked reduction in elastin expression and deposition was observed in walls of air sacs of E18.5 Fstl1−/− lungs and at the tips of the developing alveolar septae of D7 Fstl1−/− allografts. Thus, in addition to its role on alveolar epithelium, Fstl1 is crucial for elastin expression and deposition in mesenchyme during lung alveologenesis. Our data demonstrates that the modified renal capsule allograft model for lung organ culture is a robust and efficient technique to increase our understanding of saccular stage of lung development.
Collapse
Affiliation(s)
- Yan Geng
- College of Life Sciences, Nankai University, Tianjin, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Lian Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Dong
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao-He Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
167
|
Follistatin-like 1: a potential mediator of inflammation in obesity. Mediators Inflamm 2013; 2013:752519. [PMID: 24347831 PMCID: PMC3857907 DOI: 10.1155/2013/752519] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/28/2013] [Accepted: 10/11/2013] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with a state of chronic low-grade inflammation, which contributes to insulin resistance and type 2 diabetes. However, the molecular mechanisms that link obesity to inflammation are not fully understood. Follistatin-like 1 (FSTL1) is a novel proinflammatory cytokine that is expressed in adipose tissue and secreted by preadipocytes/adipocytes. We aimed to test whether FSTL1 could have a role in obesity-induced inflammation and insulin resistance. It was found that FSTL1 expression was markedly decreased during differentiation of 3T3-L1 preadipocytes but reinduced by TNF-α. Furthermore, a significant increase in FSTL1 levels was observed in adipose tissue of obese ob/ob mice, as well as in serum of overweight/obese subjects. Mechanistic studies revealed that FSTL1 induced inflammatory responses in both 3T3-L1 adipocytes and RAW264.7 macrophages. The expression of proinflammatory mediators including IL-6, TNF-α, and MCP-1 was upregulated by recombinant FSTL1 in a dose-dependent manner, paralleled with activation of the IKKβ-NFκB and JNK signaling pathways in the two cell lines. Moreover, FSTL1 impaired insulin signaling in 3T3-L1 adipocytes, as revealed by attenuated phosphorylation of both Akt and IRS-1 in response to insulin stimulation. Together, our results suggest that FSTL1 is a potential mediator of inflammation and insulin resistance in obesity.
Collapse
|
168
|
Boucherat O, Montaron S, Bérubé-Simard FA, Aubin J, Philippidou P, Wellik DM, Dasen JS, Jeannotte L. Partial functional redundancy between Hoxa5 and Hoxb5 paralog genes during lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 2013; 304:L817-30. [PMID: 23585229 DOI: 10.1152/ajplung.00006.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hox genes encode transcription factors governing complex developmental processes in several organs. A subset of Hox genes are expressed in the developing lung. Except for Hoxa5, the lack of overt lung phenotype in single mutants suggests that Hox genes may not play a predominant role in lung ontogeny or that functional redundancy may mask anomalies. In the Hox5 paralog group, both Hoxa5 and Hoxb5 genes are expressed in the lung mesenchyme whereas Hoxa5 is also expressed in the tracheal mesenchyme. Herein, we generated Hoxa5;Hoxb5 compound mutant mice to evaluate the relative contribution of each gene to lung development. Hoxa5;Hoxb5 mutants carrying the four mutated alleles displayed an aggravated lung phenotype, resulting in the death of the mutant pups at birth. Characterization of the phenotype highlighted the role of Hoxb5 in lung formation, the latter being involved in branching morphogenesis, goblet cell specification, and postnatal air space structure, revealing partial functional redundancy with Hoxa5. However, the Hoxb5 lung phenotypes were less severe than those seen in Hoxa5 mutants, likely because of Hoxa5 compensation. New specific roles for Hoxa5 were also unveiled, demonstrating the extensive contribution of Hoxa5 to the developing respiratory system. The exclusive expression of Hoxa5 in the trachea and the phrenic motor column likely underlies the Hoxa5-specific trachea and diaphragm phenotypes. Altogether, our observations establish that the Hoxa5 and Hoxb5 paralog genes shared some functions during lung morphogenesis, Hoxa5 playing a predominant role.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Im SK, Jeong H, Jeong HW, Kim KT, Hwang D, Ikegami M, Kong YY. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice. PLoS One 2013; 8:e58511. [PMID: 23526992 PMCID: PMC3602295 DOI: 10.1371/journal.pone.0058511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/16/2023] Open
Abstract
Sorting nexin 5 (Snx5) has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5-/- mice) resulted in partial perinatal lethality; 40% of Snx5-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5-/- mice were comparable to those of Snx5+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.
Collapse
Affiliation(s)
- Sun-Kyoung Im
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - HyoBin Jeong
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Hyun-Woo Jeong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Young-Yun Kong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
170
|
Yu H, He K, Li L, Sun L, Tang F, Li R, Ning W, Jin Y. Deletion of STK40 protein in mice causes respiratory failure and death at birth. J Biol Chem 2013; 288:5342-52. [PMID: 23293024 DOI: 10.1074/jbc.m112.409433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STK40 is a putative serine/threonine kinase and was shown to induce extraembryonic endoderm differentiation from mouse embryonic stem cells. However, little is known about its physiological function in vivo. Here, we generate Stk40 knock-out mice and demonstrate that loss of the Stk40 gene causes neonatal lethality at birth. Further examination reveals that the respiratory distress and atelectasis occur in the homozygous mutants. The maturation of lung and alveolar epithelium is delayed in the mutant, as indicated by narrowed air spaces, thickened interstitial septa, and increased glycogen content in the lungs of Stk40(-/-) mice. The reduction in levels of T1-α, SP-B, and SP-C indicates delayed maturation of both type I and type II respiratory epithelial cells in Stk40(-/-) lungs. Moreover, Stk40 is found to be most highly expressed in lungs of both fetal and adult mice among all organs tested. Mechanistically, a genome-wide RNA microarray analysis reveals significantly altered expression of multiple genes known to participate in lung development. The expression of some genes involved in lipid metabolism, immune response, and glycogen metabolism is also disrupted in the lung of Stk40(-/-) mice. Protein affinity purification identifies RCN2, an activator of ERK/MAPK signaling, as an STK40-associated protein. Consistently, Stk40 deficiency attenuates the ERK/MAPK activation, and inhibition of ERK/MAPK activities reduces surfactant protein gene expression in lung epithelial cells. Collectively, this study uncovers an important role of STK40 for lung maturation and neonatal survival. STK40 may associate with RCN2 to activate ERK/MAPK signaling and control the expression of multiple key regulators of lung development.
Collapse
Affiliation(s)
- Hongyao Yu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
In contrast to lower vertebrates, the mammalian heart has a very limited regenerative capacity. Cardiomyocytes, lost after ischemia, are replaced by fibroblasts. Although the human heart is able to form new cardiomyocytes throughout its lifespan, the efficiency of this phenomenon is not enough to substitute sufficient myocardial mass after an infarction. In contrast, zebrafish hearts regenerate through epicardial activation and initiation of myocardial proliferation. With this study we obtain insights into the activation and cellular contribution of the mammalian epicardium in response to ischemia. In a mouse myocardial infarction model we analyzed the spatio-temporal changes in expression of embryonic epicardial, EMT, and stem cell markers and the contribution of cells of the Wt1-lineage to the infarcted area. Though the integrity of the epicardial layer overlaying the infarct is lost immediately after the induction of the ischemia, it was found to be regenerated at three days post infarction. In this regenerated epicardium, the embryonic gene program is transiently re-expressed as well as proliferation. Concomitant with this activation, Wt1-lineage positive subepicardial mesenchyme is formed until two weeks post-infarction. These mesenchymal cells replace the cardiomyocytes lost due to the ischemia and contribute to the fibroblast population, myofibroblasts and coronary endothelium in the infarct, and later also to the cardiomyocyte population. We show that in mice, as in lower vertebrates, an endogenous, epicardium-dependent regenerative response to injury is induced. Although this regenerative response leads to the formation of new cardiomyocytes, their number is insufficient in mice but sufficient in lower vertebrates to replace lost cardiomyocytes. These molecular and cellular analyses provide basic knowledge essential for investigations on the regeneration of the mammalian heart aiming at epicardium-derived cells.
Collapse
|
172
|
Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, Enomoto T, Uemura Y, Miyabe M, Ishii M, Yamamoto T, Shimizu Y, Walsh K, Murohara T. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 2012; 126:1728-38. [PMID: 22929303 DOI: 10.1161/circulationaha.112.115089] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Acute coronary syndrome is a leading cause of death in developed countries. Follistatin-like 1 (FSTL1) is a myocyte-derived secreted protein that is upregulated in the heart in response to ischemic insult. Here, we investigated the therapeutic impact of FSTL1 on acute cardiac injury in small and large preclinical animal models of ischemia/reperfusion and dissected its molecular mechanism. METHODS AND RESULTS Administration of human FSTL1 protein significantly attenuated myocardial infarct size in a mouse or pig model of ischemia/reperfusion, which was associated with a reduction of apoptosis and inflammatory responses in the ischemic heart. Administration of FSTL1 enhanced the phosphorylation of AMP-activated protein kinase in the ischemia/reperfusion-injured heart. In cultured cardiac myocytes, FSTL1 suppressed apoptosis in response to hypoxia/reoxygenation and lipopolysaccharide-stimulated expression of proinflammatory genes through its ability to activate AMP-activated protein kinase. Ischemia/reperfusion led to enhancement of bone morphogenetic protein-4 expression and Smad1/5/8 phosphorylation in the heart, and FSTL1 suppressed the increased phosphorylation of Smad1/5/8 in ischemic myocardium. Treating cardiac myocytes with FSTL1 abolished the bone morphogenetic protein-4-stimulated increase in apoptosis, Smad1/5/8 phosphorylation, and proinflammatory gene expression. In cultured macrophages, FSTL1 diminished lipopolysaccharide-stimulated expression of proinflammatory genes via activation of AMP-activated protein kinase and abolished bone morphogenetic protein-4-dependent induction of proinflammatory mediators. CONCLUSIONS Our data indicate that FSTL1 can prevent myocardial ischemia/reperfusion injury by inhibiting apoptosis and inflammatory response through modulation of AMP-activated protein kinase- and bone morphogenetic protein-4-dependent mechanisms, suggesting that FSTL1 could represent a novel therapeutic target for post-myocardial infarction, acute coronary syndrome.
Collapse
Affiliation(s)
- Yasuhiro Ogura
- Department of Molecular Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Fstl1 antagonizes BMP signaling and regulates ureter development. PLoS One 2012; 7:e32554. [PMID: 22485132 PMCID: PMC3317656 DOI: 10.1371/journal.pone.0032554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/01/2012] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1(-/-) ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling.
Collapse
|
174
|
Bradshaw AD. Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 2012; 44:480-8. [PMID: 22249026 DOI: 10.1016/j.biocel.2011.12.021] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/09/2011] [Accepted: 12/27/2011] [Indexed: 12/14/2022]
Abstract
The SPARC family of proteins represents a diverse group of proteins that modulate cell interaction with the extracellular milieu. The eight members of the SPARC protein family are modular in nature. Each shares a follistatin-like domain and an extracellular calcium binding E-F hand motif. In addition, each family member is secreted into the extracellular space. Some of the shared activities of this family include, regulation of extracellular matrix assembly and deposition, counter-adhesion, effects on extracellular protease activity, and modulation of growth factor/cytokine signaling pathways. Recently, several SPARC family members have been implicated in human disease pathogenesis. This review discusses recent advances in the understanding of the functional roles of the SPARC family of proteins in development and disease.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veteran's Administration, Charleston, SC, United States.
| |
Collapse
|
175
|
Sountoulidis A, Stavropoulos A, Giaglis S, Apostolou E, Monteiro R, Chuva de Sousa Lopes SM, Chen H, Stripp BR, Mummery C, Andreakos E, Sideras P. Activation of the canonical bone morphogenetic protein (BMP) pathway during lung morphogenesis and adult lung tissue repair. PLoS One 2012; 7:e41460. [PMID: 22916109 PMCID: PMC3423416 DOI: 10.1371/journal.pone.0041460] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/22/2012] [Indexed: 02/05/2023] Open
Abstract
Signaling by Bone Morphogenetic Proteins (BMP) has been implicated in early lung development, adult lung homeostasis and tissue-injury repair. However, the precise mechanism of action and the spatio-temporal pattern of BMP-signaling during these processes remains inadequately described. To address this, we have utilized a transgenic line harboring a BMP-responsive eGFP-reporter allele (BRE-eGFP) to construct the first detailed spatiotemporal map of canonical BMP-pathway activation during lung development, homeostasis and adult-lung injury repair. We demonstrate that during the pseudoglandular stage, when branching morphogenesis progresses in the developing lung, canonical BMP-pathway is active mainly in the vascular network and the sub-epithelial smooth muscle layer of the proximal airways. Activation of the BMP-pathway becomes evident in epithelial compartments only after embryonic day (E) 14.5 primarily in cells negative for epithelial-lineage markers, located in the proximal portion of the airway-tree, clusters adjacent to neuro-epithelial-bodies (NEBs) and in a substantial portion of alveolar epithelial cells. The pathway becomes activated in isolated E12.5 mesenchyme-free distal epithelial buds cultured in Matrigel suggesting that absence of reporter activity in these regions stems from a dynamic cross-talk between endoderm and mesenchyme. Epithelial cells with activated BMP-pathway are enriched in progenitors capable of forming colonies in three-dimensional Matrigel cultures.As lung morphogenesis approaches completion, eGFP-expression declines and in adult lung its expression is barely detectable. However, upon tissue-injury, either with naphthalene or bleomycin, the canonical BMP-pathways is re-activated, in bronchial or alveolar epithelial cells respectively, in a manner reminiscent to early lung development and in tissue areas where reparatory progenitor cells reside. Our studies illustrate the dynamic activation of canonical BMP-pathway during lung development and adult lung tissue-repair and highlight its involvement in two important processes, namely, the early development of the pulmonary vasculature and the management of epithelial progenitor pools both during lung development and repair of adult lung tissue-injury.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Athanasios Stavropoulos
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Stavros Giaglis
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Eirini Apostolou
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Rui Monteiro
- Dept Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Huaiyong Chen
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Barry R. Stripp
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Christine Mummery
- Dept Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Evangelos Andreakos
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Paschalis Sideras
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
- * E-mail:
| |
Collapse
|
176
|
Takahata T, Shukla R, Yamamori T, Kaas JH. Differential expression patterns of striate cortex-enriched genes among Old World, New World, and prosimian primates. Cereb Cortex 2011; 22:2313-21. [PMID: 22065864 PMCID: PMC3432237 DOI: 10.1093/cercor/bhr308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A group of 5 genes, OCC1, testican-1, testican-2, 5-HT1B, and 5-HT2A, are selectively expressed in layer 4 (4C of Brodmann) of striate cortex (visual area V1) of both Old World macaques and New World marmoset monkeys. The expression of these genes is activity dependent, as expression is reduced after blocking retinal activity. Surprisingly, the pronounced expression pattern has not been found in rodents or carnivores. Thus, these genes may be highly expressed in V1 of some but perhaps not all primates. Here, we compared the gene expression in members of 3 major branches of primate evolution: prosimians, New World monkeys, and Old World monkeys. Although the expression pattern of 5-HT1B was well conserved, those of the other genes varied from the least distinct in prosimian galagos to successively more in New World owl monkeys, marmosets, squirrel monkeys, and Old World macaque monkeys. In owl monkeys, the expression of 5-HT2A was significantly reduced by monocular tetrodotoxin injection, while those of OCC1 and 5-HT1B were not. Thus, we propose that early primates had low levels of expression and higher levels emerged with anthropoid primates and became further enhanced in the Old World catarrhine monkeys that are more closely related to humans.
Collapse
Affiliation(s)
- Toru Takahata
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | | | | | | |
Collapse
|
177
|
Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci U S A 2011; 108:E899-906. [PMID: 21987816 DOI: 10.1073/pnas.1108559108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial hypertrophy and heart failure. The aim of this study was to investigate the role of cardiac Fstl1 in the remodeling response to pressure overload. Cardiac myocyte-specific Fstl1-KO mice were constructed and subjected to pressure overload induced by transverse aortic constriction (TAC). Although Fstl1-KO mice displayed no detectable baseline phenotype, TAC led to enhanced cardiac hypertrophic growth and a pronounced loss in ventricular performance by 4 wk compared with control mice. Conversely, mice that acutely or chronically overexpressed Fstl1 were resistant to pressure overload-induced hypertrophy and cardiac failure. Fstl1-deficient mice displayed a reduction in TAC-induced AMP-activated protein kinase (AMPK) activation in heart, whereas Fstl1 overexpression led to increased myocardial AMPK activation under these conditions. In cultured neonatal cardiomyocytes, administration of Fstl1 promoted AMPK activation and antagonized phenylephrine-induced hypertrophy. Inhibition of AMPK attenuated the antihypertrophic effect of Fstl1 treatment. These results document that cardiac Fstl1 functions as an autocrine/paracrine regulatory factor that antagonizes myocyte hypertrophic growth and the loss of ventricular performance in response to pressure overload, possibly through a mechanism involving the activation of the AMPK signaling axis.
Collapse
|
178
|
Sylva M, Li VSW, Buffing AAA, van Es JH, van den Born M, van der Velden S, Gunst Q, Koolstra JH, Moorman AFM, Clevers H, van den Hoff MJB. The BMP antagonist follistatin-like 1 is required for skeletal and lung organogenesis. PLoS One 2011; 6:e22616. [PMID: 21826198 PMCID: PMC3149603 DOI: 10.1371/journal.pone.0022616] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/26/2011] [Indexed: 11/19/2022] Open
Abstract
Follistatin-like 1 (Fstl1) is a secreted protein of the BMP inhibitor class. During development, expression of Fstl1 is already found in cleavage stage embryos and becomes gradually restricted to mesenchymal elements of most organs during subsequent development. Knock down experiments in chicken and zebrafish demonstrated a role as a BMP antagonist in early development. To investigate the role of Fstl1 during mouse development, a conditional Fstl1 KO allele as well as a Fstl1-GFP reporter mouse were created. KO mice die at birth from respiratory distress and show multiple defects in lung development. Also, skeletal development is affected. Endochondral bone development, limb patterning as well as patterning of the axial skeleton are perturbed in the absence of Fstl1. Taken together, these observations show that Fstl1 is a crucial regulator in BMP signalling during mouse development.
Collapse
Affiliation(s)
- Marc Sylva
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Vivian S. W. Li
- Hubrecht Institute, KNAW and University Medical Center, Utrecht, The Netherlands
| | - Anita A. A. Buffing
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute, KNAW and University Medical Center, Utrecht, The Netherlands
| | - Maaike van den Born
- Hubrecht Institute, KNAW and University Medical Center, Utrecht, The Netherlands
| | | | - Quinn Gunst
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Harm Koolstra
- Academic Centre of Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Antoon F. M. Moorman
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|