151
|
Crane JD, MacNeil LG, Lally JS, Ford RJ, Bujak AL, Brar IK, Kemp BE, Raha S, Steinberg GR, Tarnopolsky MA. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging. Aging Cell 2015; 14:625-34. [PMID: 25902870 PMCID: PMC4531076 DOI: 10.1111/acel.12341] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 12/28/2022] Open
Abstract
Aging is commonly associated with a structural deterioration of skin that compromises its barrier function, healing, and susceptibility to disease. Several lines of evidence show that these changes are driven largely by impaired tissue mitochondrial metabolism. While exercise is associated with numerous health benefits, there is no evidence that it affects skin tissue or that endocrine muscle-to-skin signaling occurs. We demonstrate that endurance exercise attenuates age-associated changes to skin in humans and mice and identify exercise-induced IL-15 as a novel regulator of mitochondrial function in aging skin. We show that exercise controls IL-15 expression in part through skeletal muscle AMP-activated protein kinase (AMPK), a central regulator of metabolism, and that the elimination of muscle AMPK causes a deterioration of skin structure. Finally, we establish that daily IL-15 therapy mimics some of the anti-aging effects of exercise on muscle and skin in mice. Thus, we elucidate a mechanism by which exercise confers health benefits to skin and suggest that low-dose IL-15 therapy may prove to be a beneficial strategy to attenuate skin aging.
Collapse
Affiliation(s)
- Justin D Crane
- Department of Kinesiology, McMaster UniversityHamilton, Ontario, Canada
- Department of Pediatrics, McMaster UniversityHamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| | - Lauren G MacNeil
- Department of Pediatrics, McMaster UniversityHamilton, Ontario, Canada
| | - James S Lally
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| | - Adam L Bujak
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
| | - Ikdip K Brar
- Department of Pediatrics, McMaster UniversityHamilton, Ontario, Canada
| | - Bruce E Kemp
- Department of Medicine, St. Vincent’s Institute of Medical Research, University of MelbourneFitzroy, Vic., Australia
| | - Sandeep Raha
- Department of Pediatrics, McMaster UniversityHamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster UniversityHamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, Ontario, Canada
| | | |
Collapse
|
152
|
Clark-Matott J, Saleem A, Dai Y, Shurubor Y, Ma X, Safdar A, Beal MF, Tarnopolsky M, Simon DK. Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain. Neurobiol Aging 2015; 36:2972-2983. [PMID: 26294258 DOI: 10.1016/j.neurobiolaging.2015.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023]
Abstract
Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type littermate controls at 9-10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate, and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD) depletion and evidence of increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer's disease and Parkinson's disease and provide insights into potential mechanisms of beneficial effects of exercise on brain function.
Collapse
Affiliation(s)
- Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Ying Dai
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yevgeniya Shurubor
- Brain and Mind Institute, Weill Medical College, Cornell University, New York, NY, USA
| | - Xiaoxing Ma
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Adeel Safdar
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Myron Flint Beal
- Brain and Mind Institute, Weill Medical College, Cornell University, New York, NY, USA
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
153
|
Exercise training normalizes mitochondrial respiratory capacity within the striatum of the R6/1 model of Huntington's disease. Neuroscience 2015; 303:515-23. [PMID: 26186895 DOI: 10.1016/j.neuroscience.2015.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive cell loss in the striatum and cerebral cortex, leading to a decline in motor control and eventually death. The mechanisms promoting motor dysfunction are not known, however loss of mitochondrial function and content has been observed, suggesting that mitochondrial dysfunction may contribute to HD phenotype. Recent work has demonstrated that voluntary wheel running reduces hindlimb clasping in the R6/1 mouse model of HD, which we hypothesized may be due to preservation of mitochondrial content with exercise. Therefore, we investigated the role of chronic exercise training on preventing symptom progression and the loss of mitochondrial content in HD. Exercising R6/1 mice began training at 7 wks of age and continued for 10 or 20 wks. At 17 wks of age, R6/1 mice displayed a clasping phenotype without showing changes in mitochondrial respiration or protein content in either the cortex or striatum, suggesting mitochondrial dysfunction is not necessary for the progression of symptoms. At 27 wks of age, R6/1 mice demonstrated no additional changes in mitochondrial content or respiration within the cortex, but displayed loss of protein in complexes I and III of the striatum, which was not present in exercise-trained R6/1 mice. Mitochondrial respiration was also elevated in the striatum of R6/1 mice at 27 wks, which was prevented with exercise training. Together, the present study provides evidence that mitochondrial dysfunction is not necessary for the progression of hindlimb clasping in R6/1 mice, and that exercise partially prevents changes in mitochondrial content and function that occur late in HD.
Collapse
|
154
|
High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proc Natl Acad Sci U S A 2015; 112:8714-9. [PMID: 26124126 DOI: 10.1073/pnas.1509930112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are highly adaptable organelles that can facilitate communication between tissues to meet the energetic demands of the organism. However, the mechanisms by which mitochondria can nonautonomously relay stress signals remain poorly understood. Here we report that mitochondrial mutations in the young, preprogeroid polymerase gamma mutator (POLG) mouse produce a metabolic state of starvation. As a result, these mice exhibit signs of metabolic imbalance including thermogenic defects in brown adipose tissue (BAT). An unexpected benefit of this adaptive response is the complete resistance to diet-induced obesity when POLG mice are placed on a high-fat diet (HFD). Paradoxically, HFD further increases oxygen consumption in part by inducing thermogenesis and mitochondrial biogenesis in BAT along with enhanced expression of fibroblast growth factor 21 (FGF21). Collectively, these findings identify a mechanistic link between FGF21, a long-known marker of mitochondrial disease, and systemic metabolic adaptation in response to mitochondrial stress.
Collapse
|
155
|
Payne BAI, Chinnery PF. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1347-53. [PMID: 26050973 PMCID: PMC4580208 DOI: 10.1016/j.bbabio.2015.05.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022]
Abstract
The free radical theory of aging is almost 60 years old. As mitochondria are the principle source of intracellular reactive oxygen species (ROS), this hypothesis suggested a central role for the mitochondrion in normal mammalian aging. In recent years, however, much work has questioned the importance of mitochondrial ROS in driving aging. Conversely new evidence points to other facets of mitochondrial dysfunction which may nevertheless suggest the mitochondrion retains a critical role at the center of a complex web of processes leading to cellular and organismal aging.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
156
|
Sturmberg JP, Bennett JM, Picard M, Seely AJE. The trajectory of life. Decreasing physiological network complexity through changing fractal patterns. Front Physiol 2015; 6:169. [PMID: 26082722 PMCID: PMC4451341 DOI: 10.3389/fphys.2015.00169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022] Open
Abstract
In this position paper, we submit a synthesis of theoretical models based on physiology, non-equilibrium thermodynamics, and non-linear time-series analysis. Based on an understanding of the human organism as a system of interconnected complex adaptive systems, we seek to examine the relationship between health, complexity, variability, and entropy production, as it might be useful to help understand aging, and improve care for patients. We observe the trajectory of life is characterized by the growth, plateauing and subsequent loss of adaptive function of organ systems, associated with loss of functioning and coordination of systems. Understanding development and aging requires the examination of interdependence among these organ systems. Increasing evidence suggests network interconnectedness and complexity can be captured/measured/associated with the degree and complexity of healthy biologic rhythm variability (e.g., heart and respiratory rate variability). We review physiological mechanisms linking the omics, arousal/stress systems, immune function, and mitochondrial bioenergetics; highlighting their interdependence in normal physiological function and aging. We argue that aging, known to be characterized by a loss of variability, is manifested at multiple scales, within functional units at the small scale, and reflected by diagnostic features at the larger scale. While still controversial and under investigation, it appears conceivable that the integrity of whole body complexity may be, at least partially, reflected in the degree and variability of intrinsic biologic rhythms, which we believe are related to overall system complexity that may be a defining feature of health and it's loss through aging. Harnessing this information for the development of therapeutic and preventative strategies may hold an opportunity to significantly improve the health of our patients across the trajectory of life.
Collapse
Affiliation(s)
- Joachim P Sturmberg
- Faculty of Health and Medicine, School of Medicine and Public Health, The University of Newcastle Wamberal, NSW, Australia
| | - Jeanette M Bennett
- Department of Psychology, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and the University of Pennsylvania Philadelphia, PA, USA
| | - Andrew J E Seely
- Thoracic Surgery and Critical Care Medicine, University of Ottawa and Associate Scientist, Ottawa Hospital Research Institute Ottawa, ON, Canada
| |
Collapse
|
157
|
Shabalina IG, Landreh L, Edgar D, Hou M, Gibanova N, Atanassova N, Petrovic N, Hultenby K, Söder O, Nedergaard J, Svechnikov K. Leydig cell steroidogenesis unexpectedly escapes mitochondrial dysfunction in prematurely aging mice. FASEB J 2015; 29:3274-86. [PMID: 25900807 DOI: 10.1096/fj.15-271825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in tissues during aging in animals and humans and are the basis for mitochondrial diseases. Testosterone synthesis occurs in the mitochondria of Leydig cells. Mitochondrial dysfunction (as induced here experimentally in mtDNA mutator mice that carry a proofreading-deficient form of mtDNA polymerase γ, leading to mitochondrial dysfunction in all cells types so far studied) would therefore be expected to lead to low testosterone levels. Although mtDNA mutator mice showed a dramatic reduction in testicle weight (only 15% remaining) and similar decreases in number of spermatozoa, testosterone levels in mtDNA mutator mice were unexpectedly fully unchanged. Leydig cell did not escape mitochondrial damage (only 20% of complex I and complex IV remaining) and did show high levels of reactive oxygen species (ROS) production (>5-fold increased), and permeabilized cells demonstrated absence of normal mitochondrial function. Nevertheless, within intact cells, mitochondrial membrane potential remained high, and testosterone production was maintained. This implies development of a compensatory mechanism. A rescuing mechanism involving electrons from the pentose phosphate pathway transferred via a 3-fold up-regulated cytochrome b5 to cytochrome c, allowing for mitochondrial energization, is suggested. Thus, the Leydig cells escape mitochondrial dysfunction via a unique rescue pathway. Such a pathway, bypassing respiratory chain dysfunction, may be of relevance with regard to mitochondrial disease therapy and to managing ageing in general.
Collapse
Affiliation(s)
- Irina G Shabalina
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Luise Landreh
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Daniel Edgar
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Mi Hou
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Natalia Gibanova
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Nina Atanassova
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Natasa Petrovic
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Kjell Hultenby
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Olle Söder
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Jan Nedergaard
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Konstantin Svechnikov
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| |
Collapse
|
158
|
Puterman E, Lin J, Krauss J, Blackburn EH, Epel ES. Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry 2015; 20:529-35. [PMID: 25070535 PMCID: PMC4310821 DOI: 10.1038/mp.2014.70] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/13/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022]
Abstract
Telomere length, a reliable predictor of disease pathogenesis, can be affected by genetics, chronic stress and health behaviors. Cross-sectionally, highly stressed postmenopausal women have shorter telomeres, but only if they are inactive. However, no studies have prospectively examined telomere length change over a short period, and if rate of attrition is affected by naturalistic factors such as stress and engagement in healthy behaviors, including diet, exercise, and sleep. Here we followed healthy women over 1 year to test if major stressors that occurred over the year predicted telomere shortening, and whether engaging in healthy behaviors during this period mitigates this effect. In 239 postmenopausal, non-smoking, disease-free women, accumulation of major life stressors across a 1-year period predicted telomere attrition over the same period-for every major life stressor that occurred during the year, there was a significantly greater decline in telomere length over the year of 35 bp (P<0.05). Yet, these effects were moderated by health behaviors (interaction B=0.19, P=0.04). Women who maintained relatively higher levels of health behaviors (1 s.d. above the mean) appeared to be protected when exposed to stress. This finding has implications for understanding malleability of telomere length, as well as expectations for possible intervention effects. This is the first study to identify predictors of telomere length change over the short period of a year.
Collapse
Affiliation(s)
- E Puterman
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - J Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - J Krauss
- Division of Physical Medicine and Rehabilitation, Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - E H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - E S Epel
- Department of Psychiatry, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
159
|
Samaan MC, Anand SS, Sharma AM, Samjoo IA, Tarnopolsky MA. Sex differences in skeletal muscle phosphatase and tensin homolog deleted on chromosome 10 (PTEN) levels: a cross-sectional study. Sci Rep 2015; 5:9154. [PMID: 25777795 PMCID: PMC4366049 DOI: 10.1038/srep09154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 02/08/2023] Open
Abstract
Women have higher adiposity but maintain insulin sensitivity when compared to men. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibits insulin signaling, but it is not known if PTEN regulate insulin resistance in a sex-specific manner. In this cross-sectional study, muscle biopsies from participants in the Molecular Study of Health and Risk in Ethnic Groups (Mol-SHARE) were used to test for sex differences in PTEN expression. Quantitative real-time PCR was performed to determine PTEN gene expression (n = 53), and western blotting detected total and phosphorylated PTEN protein (n = 36). Study participants were comparable in age and body mass index. Women had higher fat mass percentage compared to men (40.25 ± 9.9% in women versus 27.6 ± 8.8% in men; mean difference -0.18, 95%CI (-0.24, -0.11), p-value <0.0001), with similar HOMA-IR (2.46 ± 2.05 in men versus 2.34 ± 3.06 in women; mean difference 0.04; 95% CI (-0.12, 0.21), p-value 0.59). Women had significant downregulation of PTEN gene expression (p-value 0.01) and upregulation of PTEN protein phosphorylation (inactivation) (p-value 0.001) when compared to men after correction for age, ethnicity, HOMA-IR, fat mass and sex. We conclude that the downregulation of muscle PTEN may explain the retention of insulin sensitivity with higher adiposity in women compared to men.
Collapse
Affiliation(s)
- M Constantine Samaan
- 1] Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada [2] Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Sonia S Anand
- 1] Population Genomics Program, Chanchlani Research Centre, McMaster University, Hamilton, ON, Canada [2] Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada [3] Department of Medicine, McMaster University, Hamilton, Ontario, Canada [4] Department of Clinical Epidemiology/Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | | | - Imtiaz A Samjoo
- 1] Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada [2] Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- 1] Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada [2] Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
160
|
Wiggs MP. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 2015; 6:63. [PMID: 25814955 PMCID: PMC4356230 DOI: 10.3389/fphys.2015.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity -induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
161
|
Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:544-57. [PMID: 25766847 DOI: 10.1016/j.bbabio.2015.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 03/02/2015] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are an important group of genetic conditions characterized by impaired oxidative phosphorylation. Mitochondrial disorders come with an impressive variability of symptoms, organ involvement, and clinical course, which considerably impact the quality of life and quite often shorten the lifespan expectancy. Although the last 20 years have witnessed an exponential increase in understanding the genetic and biochemical mechanisms leading to disease, this has not resulted in the development of effective therapeutic approaches, amenable of improving clinical course and outcome of these conditions to any significant extent. Therapeutic options for mitochondrial diseases still remain focused on supportive interventions aimed at relieving complications. However, new therapeutic strategies have recently been emerging, some of which have shown potential efficacy at the pre-clinical level. This review will present the state of the art on experimental therapy for mitochondrial disorders.
Collapse
Affiliation(s)
- Carlo Viscomi
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | | | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
162
|
Saleem A, Safdar A, Kitaoka Y, Ma X, Marquez OS, Akhtar M, Nazli A, Suri R, Turnbull J, Tarnopolsky MA. Polymerase gamma mutator mice rely on increased glycolytic flux for energy production. Mitochondrion 2015; 21:19-26. [DOI: 10.1016/j.mito.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/25/2022]
|
163
|
Ogborn DI, McKay BR, Crane JD, Safdar A, Akhtar M, Parise G, Tarnopolsky MA. Effects of age and unaccustomed resistance exercise on mitochondrial transcript and protein abundance in skeletal muscle of men. Am J Physiol Regul Integr Comp Physiol 2015; 308:R734-41. [PMID: 25695287 DOI: 10.1152/ajpregu.00005.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/13/2015] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction may contribute to age-associated muscle atrophy. Previous data has shown that resistance exercise (RE) increases mitochondrial gene expression and enzyme activity in older adults; however, the acute response to RE has not been well characterized. To characterize the acute mitochondrial response to unaccustomed RE, healthy young (21 ± 3 yr) and older (70 ± 4 yr) men performed a unilateral RE bout for the knee extensors. Muscle biopsies were taken at rest and 3, 24, and 48 h following leg press and knee extension exercise. The expression of the mitochondrial transcriptional regulator proliferator-activated receptor γ coactivator 1-α (PGC-1α) mRNA was increased at 3 h postexercise; however, all other mitochondrial variables decreased over the postexercise period, irrespective of age. ND1, ND4, and citrate synthase (CS) mRNA were all lower at 48 h postexercise, along with specific protein subunits of complex II, III, IV, and ATP synthase. Mitochondrial DNA (mtDNA) copy number decreased by 48 h postexercise, and mtDNA deletions were higher in the older adults and remained unaffected by acute exercise. Elevated mitophagy could not explain the reduction in mitochondrial proteins and DNA, because there was no increase in ubiquitinated voltage-dependent anion channel (VDAC) or its association with PTEN-induced putative kinase 1 (Pink1) or Parkin, and elevated p62 content indicated an impairment or reduction in autophagocytic flux. In conclusion, age did not influence the response of specific mitochondrial transcripts, proteins, and DNA to a bout of RE.
Collapse
Affiliation(s)
| | | | | | - Adeel Safdar
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachussets
| | | | | | | |
Collapse
|
164
|
Valerio A, Nisoli E. Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging. Front Cell Dev Biol 2015; 3:6. [PMID: 25705617 PMCID: PMC4319459 DOI: 10.3389/fcell.2015.00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial lifecycle (mitochondrial biogenesis, dynamics, and removal by mitophagy) is carefully orchestrated to ensure the efficient generation of cellular energy and to maintain reactive oxygen species (ROS) production within an optimal range for cellular health. Based on latest research, these processes largely depend on mitochondrial interactions with other cell organelles, so that the ER- and peroxisome-mitochondrial connections might intervene in the control of cellular energy flow. Damaged organelles are cleared by autophagic mechanisms to assure the quality and proper function of the intracellular organelle pool. Nitric oxide (NO) generated through the endothelial nitric oxide synthase (eNOS) acts a gas signaling mediator to promote mitochondrial biogenesis and bioenergetics, with a favorable impact in diverse chronic diseases of the elderly. Obesity, diabetes and aging share common pathophysiological mechanisms, including mitochondrial impairment and dysfunctional eNOS. Here we review the evidences that eNOS-dependent mitochondrial biogenesis and quality control, and possibly the complex interplay among cellular organelles, may be affected by metabolic diseases and the aging processes, contributing to reduce healthspan and lifespan. Drugs or nutrients able to sustain the eNOS-NO generating system might contribute to maintain organelle homeostasis and represent novel preventive and/or therapeutic approaches to chronic age-related diseases.
Collapse
Affiliation(s)
- Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, University of Milan Milan, Italy
| |
Collapse
|
165
|
Peralta S, Torraco A, Iommarini L, Diaz F. Mitochondrial Diseases Part III: Therapeutic interventions in mouse models of OXPHOS deficiencies. Mitochondrion 2015; 23:71-80. [PMID: 25638392 DOI: 10.1016/j.mito.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/19/2022]
Abstract
Mitochondrial defects are the cause of numerous disorders affecting the oxidative phosphorylation system (OXPHOS) in humans leading predominantly to neurological and muscular degeneration. The molecular origin, manifestations, and progression of mitochondrial diseases have a broad spectrum, which makes very challenging to find a globally effective therapy. The study of the molecular mechanisms underlying the mitochondrial dysfunction indicates that there is a wide range of pathways, enzymes and molecules that can be potentially targeted for therapeutic purposes. Therefore, focusing on the pathology of the disease is essential to design new treatments. In this review, we will summarize and discuss the different therapeutic interventions tested in some mouse models of mitochondrial diseases emphasizing the molecular mechanisms of action and their potential applications.
Collapse
Affiliation(s)
- Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
166
|
Iommarini L, Peralta S, Torraco A, Diaz F. Mitochondrial Diseases Part II: Mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion 2015; 22:96-118. [PMID: 25640959 DOI: 10.1016/j.mito.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/21/2023]
Abstract
Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing to our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well as other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without being intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40128 Bologna, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15 - 00146, Rome, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
167
|
Melkonian SC, Wang X, Gu J, Matin SF, Tannir NM, Wood CG, Wu X. Mitochondrial DNA copy number in peripheral blood leukocytes and the risk of clear cell renal cell carcinoma. Carcinogenesis 2014; 36:249-55. [PMID: 25524925 DOI: 10.1093/carcin/bgu248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Variation of mitochondrial DNA copy number (mtDNAcn) in peripheral blood leukocytes has been associated with the risk of various cancers, including renal cell carcinoma (RCC). We assessed the association between mtDNAcn and clear cell RCC (ccRCC) risk in 608 cases and 629 controls frequency-matched on age and gender. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, body mass index, smoking status, history of hypertension, total energy intake and physical activity. Our results suggest an association between low mtDNAcn and ccRCC risk (OR = 1.28, 95% CI: 0.97-1.68, P = 0.09). Lower mtDNAcn was associated with increased ccRCC risk in younger individuals (age <60, OR = 1.68, 95% CI: 1.13-2.49, P = 0.01), women (OR = 1.66, 95% CI: 1.03-2.73, P = 0.04), individuals without history of hypertension (OR = 1.62, 95% CI: 1.09-2.41, P = 0.02) and individuals with low physical activity levels (OR = 1.55, 95% CI: 1.02-2.37, P = 0.05). We observed significant and marginally significant interactions between both age and history of hypertension and mtDNAcn in elevating ccRCC risk (P for interaction = 0.04 and 0.07, respectively). Additionally, low mtDNAcn was associated with ccRCC risk in younger individuals with low levels of physical activity [ORs and 95% CI for medium and low physical activity levels, respectively, 2.31 (1.18-4.52) and 2.09 (1.17-3.75), P interaction = 0.04]. To our knowledge, this is the first report to investigate the role of mtDNAcn in the ccRCC subtype and the first to suggest that this association may be modified by risk factors including age, gender, history of hypertension and physical activity.
Collapse
Affiliation(s)
- Stephanie C Melkonian
- Department of Epidemiology, Department of Urology and Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Wang
- Department of Epidemiology, Department of Urology and Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Gu
- Department of Epidemiology, Department of Urology and Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Xifeng Wu
- Department of Epidemiology, Department of Urology and Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
168
|
Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Anselm I, Cohen BH, Falk MJ, Greene C, Gropman AL, Haas R, Hirano M, Morgan P, Sims K, Tarnopolsky M, Van Hove JLK, Wolfe L, DiMauro S. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 2014; 17:689-701. [PMID: 25503498 DOI: 10.1038/gim.2014.177] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. METHODS The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. RESULTS Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease. CONCLUSION The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.
Collapse
Affiliation(s)
- Sumit Parikh
- Department of Neurology, Center for Child Neurology, Cleveland Clinic Children's Hospital, Cleveland, Ohio, USA
| | - Amy Goldstein
- Department of Pediatrics, Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Kay Koenig
- Department of Pediatrics, Division of Child and Adolescent Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Russell Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bruce H Cohen
- Department of Pediatrics, NeuroDevelopmental Science Center, Children's Hospital Medical Center of Akron, Akron, Ohio, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carol Greene
- Department of Pediatrics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Andrea L Gropman
- Department of Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, Washington, DC, USA
| | - Richard Haas
- Department of Neurosciences and Pediatrics, UCSD Medical Center and Rady Children's Hospital San Diego, La Jolla, California, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Phil Morgan
- Department of Anesthesiology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Katherine Sims
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Johan L K Van Hove
- Department of Pediatrics, Clinical Genetics and Metabolism, Children's Hospital Colorado, Denver, Colorado, USA
| | - Lynne Wolfe
- National Institutes of Health, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
169
|
Komen JC, Thorburn DR. Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol 2014; 171:1818-36. [PMID: 24102298 DOI: 10.1111/bph.12413] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023] Open
Abstract
The oxidative phosphorylation (OXPHOS) system in mitochondria is responsible for the generation of the majority of cellular energy in the form of ATP. Patients with genetic OXPHOS disorders form the largest group of inborn errors of metabolism. Unfortunately, there is still a lack of efficient therapies for these disorders other than management of symptoms. Developing therapies has been complicated because, although the total group of OXPHOS patients is relatively large, there is enormous clinical and genetic heterogeneity within this patient population. Thus there has been a lot of interest in generating relevant mouse models for the different kinds of OXPHOS disorders. The most common treatment strategies tested in these mouse models have aimed to up-regulate mitochondrial biogenesis, in order to increase the residual OXPHOS activity present in affected animals and thereby to ameliorate the energy deficiency. Drugs such as bezafibrate, resveratrol and AICAR target the master regulator of mitochondrial biogenesis PGC-1α either directly or indirectly to manipulate mitochondrial metabolism. This review will summarize the outcome of preclinical treatment trials with these drugs in mouse models of OXPHOS disorders and discuss similar treatments in a number of mouse models of common diseases in which pathology is closely linked to mitochondrial dysfunction. In the majority of these studies the pharmacological activation of the PGC-1α axis shows true potential as therapy; however, other effects besides mitochondrial biogenesis may be contributing to this as well.
Collapse
Affiliation(s)
- J C Komen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | | |
Collapse
|
170
|
Has Neo-Darwinism failed clinical medicine: does systems biology have to? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:107-12. [PMID: 25481704 DOI: 10.1016/j.pbiomolbio.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/09/2014] [Accepted: 09/30/2014] [Indexed: 12/20/2022]
Abstract
In this essay I argue that Neo-Darwinism ultimately led to an oversimplified genotype equals phenotype view of human disease. This view has been called into question by the unexpected results of the Human Genome Project which has painted a far more complex picture of the genetic features of human disease than was anticipated. Cell centric Systems Biology is now attempting to reconcile this complexity. However, it too is limited because most common chronic diseases have systemic components not predicted by their intracellular responses alone. In this context, congestive heart failure is a classic example of this general problem and I discuss it as a systemic disease vs. one solely related to dysfunctional cardiomyocytes. I close by arguing that a physiological perspective is essential to reconcile reductionism with what is required to understand and treat disease.
Collapse
|
171
|
Ron-Harel N, Sharpe AH, Haigis MC. Mitochondrial metabolism in T cell activation and senescence: a mini-review. Gerontology 2014; 61:131-8. [PMID: 25402204 DOI: 10.1159/000362502] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
The aging immune system is unable to optimally respond to pathogens and generate long-term immunological memory against encountered antigens. Amongst the immune components most affected by aging are T lymphocytes. T lymphocytes are cells of the cell-mediated immune system, which can recognize microbial antigens and either directly kill infected cells or support the maturation and activation of other immune cells. When activated, T cells undergo a metabolic switch to accommodate their changing needs at every stage of the immune response. Here we review the different aspects of metabolic regulation of T cell activation, focusing on the emerging role of mitochondrial metabolism, and discuss changes that may contribute to age-related decline in T cell potency. Better understanding of the role of mitochondrial metabolism in immune cell function could provide insights into mechanisms of immune senescence with the potential for developing novel therapeutic approaches to improve immune responses in aged individuals.
Collapse
Affiliation(s)
- Noga Ron-Harel
- Department of Cell Biology, Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
172
|
Lo Verso F, Carnio S, Vainshtein A, Sandri M. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Autophagy 2014; 10:1883-94. [PMID: 25483961 DOI: 10.4161/auto.32154] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Physical activity has been recently documented to play a fundamental physiological role in the regulation of autophagy in several tissues. It has also been reported that autophagy is required for exercise itself and for training-induced adaptations in glucose homeostasis. These autophagy-mediated metabolic improvements are thought to be largely dependent on the activation of the metabolic sensor PRKAA1/AMPK. However, it is unknown whether these important benefits stem from systemic adaptations or are due solely to alterations in skeletal muscle metabolism. To address this we utilized inducible, muscle-specific, atg7 knockout mice that we have recently generated. Our findings indicate that acute inhibition of autophagy in skeletal muscle just prior to exercise does not have an impact on physical performance, PRKAA1 activation, or glucose homeostasis. However, we reveal that autophagy is critical for the preservation of mitochondrial function during damaging muscle contraction. This effect appears to be gender specific affecting primarily females. We also establish that basal oxidative stress plays a crucial role in mitochondrial maintenance during normal physical activity. Therefore, autophagy is an adaptive response to exercise that ensures effective mitochondrial quality control during damaging physical activity.
Collapse
Key Words
- ACACA, acetyl-CoA carboxylase alpha
- AMPK
- ATG7, autophagy-related 7
- BNIP3, BCL2/adenovirus E1B 19 kDa interacting protein 3
- FDB, flexor digitorum brevis
- MAP1LC3A, microtubule-associated protein 1 light chain 3
- NAC, N-acetylcysteine
- PARK2, parkin RBR E3 ubiquitin protein ligase
- PRKAA1, protein kinase AMP-activated, alpha 1 catalytic subunit
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TA, tibialis anterior
- TMRM, tetramethylrhodamine, methyl ester
- autophagy
- exercise
- metabolism
- mitochondria
- skeletal muscle
Collapse
Affiliation(s)
- Francesca Lo Verso
- a Dulbecco Telethon Institute; Venetian Institute of Molecular Medicine ; Padova , Italy
| | | | | | | |
Collapse
|
173
|
Stumpf JD, Copeland WC. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants. PLoS Genet 2014; 10:e1004748. [PMID: 25340760 PMCID: PMC4207668 DOI: 10.1371/journal.pgen.1004748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but suppresses MMS-induced mutagenesis. These results suggest a novel mechanism wherein mutations that lead to hypermutation by DNA base-damaging agents and associate with mitochondrial disease may contribute to previously unexplained phenomena, such as the wide variation of age of disease onset and acquired mitochondrial toxicities. Thousands of mitochondrial DNA (mtDNA) per cell are necessary to maintain energy required for cellular survival in humans. Interfering with the mtDNA polymerase can result in mitochondrial diseases and mitochondrial toxicity. Therefore, it is important to explore new genetic and environmental mechanisms that alter the effectiveness and accuracy of mtDNA replication. This genetic study uses the budding yeast to demonstrate that heterozygous strains harboring disease-associated mutations in the mtDNA polymerase gene in the presence of a wild type copy of the mtDNA polymerase are associated with increased mtDNA point mutagenesis in the presence of methane methylsulfonate, a known base damaging agent. Further observations suggest that the inability of disease-associated variants to replicate mtDNA resulted in increased vulnerability to irreparable base damage that was likely to result in mutations when replicated. Also, this study showed that trace amounts of the environmental contaminant cadmium chloride impairs mtDNA replication but eliminates damage-induced mutagenesis in the remaining functional mitochondria. This interplay between disease-associated variant and wild type polymerase offers new insights on possible disease variation and implicates novel environmental consequences for compound heterozygous patients.
Collapse
Affiliation(s)
- Jeffrey D. Stumpf
- Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, United States of America
| | - William C. Copeland
- Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
174
|
Ross JM, Coppotelli G, Hoffer BJ, Olson L. Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci Rep 2014; 4:6569. [PMID: 25299268 PMCID: PMC4190956 DOI: 10.1038/srep06569] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/18/2014] [Indexed: 01/14/2023] Open
Abstract
We recently showed that germline transmission of mitochondrial DNA mutations via the oocyte cause aggravation of aging phenotypes in prematurely aging mtDNA mutator (PolgAmut/mut) mice. We discovered that 32% of these mice also exhibit stochastic disturbances of brain development, when maternal mtDNA mutations were combined with homozygosity for the PolgA mutation, leading to de novo somatic mtDNA mutations. Surprisingly, we also found that maternally transmitted mtDNA mutations can cause mild premature aging phenotypes also in mice with a wild-type nuclear DNA background. We now report that in addition to the early onset of aging phenotypes, these mice, burdened only by low levels of mtDNA mutations transmitted via the germline, also exhibit reduced longevity. Our data thus demonstrate that low levels of maternally inherited mtDNA mutations when present during development can affect both overall health and lifespan negatively.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Giuseppe Coppotelli
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals, Case Western Reserve Medical Center, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| |
Collapse
|
175
|
Kolesar JE, Safdar A, Abadi A, MacNeil LG, Crane JD, Tarnopolsky MA, Kaufman BA. Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice. Free Radic Biol Med 2014; 75:241-51. [PMID: 25106705 DOI: 10.1016/j.freeradbiomed.2014.07.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023]
Abstract
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse ("PolG" mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jill E Kolesar
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Arkan Abadi
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Lauren G MacNeil
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Justin D Crane
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| | - Brett A Kaufman
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
176
|
Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claaßen J, Feil K, Kalla R, Miyai I, Nachbauer W, Schöls L, Strupp M, Synofzik M, Teufel J, Timmann D. Consensus paper: management of degenerative cerebellar disorders. THE CEREBELLUM 2014; 13:248-68. [PMID: 24222635 DOI: 10.1007/s12311-013-0531-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment of motor symptoms of degenerative cerebellar ataxia remains difficult. Yet there are recent developments that are likely to lead to significant improvements in the future. Most desirable would be a causative treatment of the underlying cerebellar disease. This is currently available only for a very small subset of cerebellar ataxias with known metabolic dysfunction. However, increasing knowledge of the pathophysiology of hereditary ataxia should lead to an increasing number of medically sensible drug trials. In this paper, data from recent drug trials in patients with recessive and dominant cerebellar ataxias will be summarized. There is consensus that up to date, no medication has been proven effective. Aminopyridines and acetazolamide are the only exception, which are beneficial in patients with episodic ataxia type 2. Aminopyridines are also effective in a subset of patients presenting with downbeat nystagmus. As such, all authors agreed that the mainstays of treatment of degenerative cerebellar ataxia are currently physiotherapy, occupational therapy, and speech therapy. For many years, well-controlled rehabilitation studies in patients with cerebellar ataxia were lacking. Data of recently published studies show that coordinative training improves motor function in both adult and juvenile patients with cerebellar degeneration. Given the well-known contribution of the cerebellum to motor learning, possible mechanisms underlying improvement will be outlined. There is consensus that evidence-based guidelines for the physiotherapy of degenerative cerebellar ataxia need to be developed. Future developments in physiotherapeutical interventions will be discussed including application of non-invasive brain stimulation.
Collapse
Affiliation(s)
- W Ilg
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research and Centre for Integrative Neuroscience, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Patients with mitochondrial cytopathies often experience exercise intolerance and may have fixed muscle weakness, leading to impaired functional capacity and lower quality of life. Endurance exercise training increases Vo 2 max, respiratory chain enzyme activity, and improves quality of life. Resistance exercise training increases muscle strength and may lower mutational burden in patients with mitochondrial DNA deletions. Both modes of exercise appear to be well tolerated. Patients with mitochondrial cytopathy should consider alternating both types of exercise to derive the benefits from each (endurance = greater aerobic fitness; resistance = greater strength). Patients should start an exercise program at a low intensity and duration, gradually increasing duration and intensity. They should "listen to their body" and not exercise on days they have fever, superimposed illness, muscle pain, or cramps, and/or if they have fasted for more than 12 hours. Children often respond best to play-based exercise and tend to enjoy intermittent activity.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- From the Division of Neuromuscular and Neurometabolic Diseases, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
178
|
Joseph AM, Nguyen LMD, Welter AE, Dominguez JM, Behnke BJ, Adhihetty PJ. Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 2014; 15:517-534. [PMID: 25108553 DOI: 10.1007/s10522-014-9526-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction in various tissues has been associated with numerous conditions including aging. In testes, aging induces atrophy and a decline in male reproductive function but the involvement of mitochondria is not clear. The purpose of this study was to examine whether the mitochondrial profile differed with (1) aging, and (2) 10-weeks of treadmill exercise training, in the testes of young (6 month) and old (24 month) Fischer-344 (F344) animals. Old animals exhibited significant atrophy (30 % decline; P < 0.05) in testes compared to young animals. However, relative mitochondrial content was not reduced with age and this was consistent with the lack of change in the mitochondrial biogenesis regulator protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha and its downstream targets nuclear respiratory factor-1 and mitochondrial transcription factor A. No effect was observed in the pro- or anti-apoptotic proteins, Bax and Bcl-2, respectively, but age increased apoptosis inducing factor levels. Endurance training induced beneficial mitochondrial adaptations that were more prominent in old animals including greater increases in relative mtDNA content, biogenesis/remodeling (mitofusin 2), antioxidant capacity (mitochondrial superoxide dismutase) and lower levels of phosphorylated histone H2AX, an early marker of DNA damage (P < 0.05). Importantly, these exercise-induced changes were associated with an attenuation of testes atrophy in older sedentary animals (P < 0.05). Our results indicate that aging-induced atrophy in testes may not be associated with changes in relative mitochondrial content and key regulatory proteins and that exercise started in late-life elicits beneficial changes in mitochondria that may protect against age-induced testicular atrophy.
Collapse
Affiliation(s)
- A-M Joseph
- Institute on Aging, Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - L M-D Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - A E Welter
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - J M Dominguez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - B J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - P J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
179
|
Logan A, Shabalina IG, Prime TA, Rogatti S, Kalinovich AV, Hartley RC, Budd RC, Cannon B, Murphy MP. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. Aging Cell 2014; 13:765-8. [PMID: 24621297 PMCID: PMC4326952 DOI: 10.1111/acel.12212] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2014] [Indexed: 01/08/2023] Open
Abstract
In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.
Collapse
Affiliation(s)
- Angela Logan
- MRC Mitochondrial Biology Unit Wellcome Trust/MRC Building Cambridge CB2 0XY UK
| | - Irina G. Shabalina
- Department of Molecular Biosciences the Wenner‐Gren Institute the Arrhenius Laboratories F3 Stockholm University Stockholm SE‐106 91 Sweden
| | - Tracy A. Prime
- MRC Mitochondrial Biology Unit Wellcome Trust/MRC Building Cambridge CB2 0XY UK
| | - Sebastian Rogatti
- MRC Mitochondrial Biology Unit Wellcome Trust/MRC Building Cambridge CB2 0XY UK
| | - Anastasia V. Kalinovich
- Department of Molecular Biosciences the Wenner‐Gren Institute the Arrhenius Laboratories F3 Stockholm University Stockholm SE‐106 91 Sweden
| | - Richard C. Hartley
- Centre for the Chemical Research of Ageing WestCHEM School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Ralph C. Budd
- Vermont Center for Immunology & Infectious Diseases The University of Vermont College of Medicine D‐305 Given Building Burlington VT 05405‐0068 USA
| | - Barbara Cannon
- Department of Molecular Biosciences the Wenner‐Gren Institute the Arrhenius Laboratories F3 Stockholm University Stockholm SE‐106 91 Sweden
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit Wellcome Trust/MRC Building Cambridge CB2 0XY UK
| |
Collapse
|
180
|
Payne BAI, Gardner K, Chinnery PF. Mitochondrial DNA mutations in ageing and disease: implications for HIV? Antivir Ther 2014; 20:109-20. [PMID: 25032944 DOI: 10.3851/imp2824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations cause neurological and multisystem disease. Somatic (acquired) mtDNA mutations are also associated with degenerative diseases and with normal human ageing. It is well established that certain nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drugs cause inhibition of the mtDNA polymerase, pol γ, leading to a reduction in mtDNA content (depletion). Given this effect of NRTI therapy on mtDNA replication, it is plausible that NRTI treatment may also lead to increased mtDNA mutations. Here we review recent evidence for an effect of HIV infection or NRTI therapy on mtDNA mutations, as well as discussing the methodological challenges in addressing this question. Finally, we discuss the possible implications for HIV-infected persons, with particular reference to ageing.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | |
Collapse
|
181
|
Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 2014; 15:417-38. [PMID: 25015781 DOI: 10.1007/s10522-014-9515-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
Collapse
|
182
|
Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging 2014; 35:2574-2583. [PMID: 25002036 DOI: 10.1016/j.neurobiolaging.2014.05.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/01/2014] [Accepted: 05/08/2014] [Indexed: 01/14/2023]
Abstract
In aged mice, we assessed how intensive exercise affects brain bioenergetics, inflammation, and neurogenesis-relevant parameters. After 8 weeks of a supra-lactate threshold treadmill exercise intervention, 21-month-old C57BL/6 mice showed increased brain peroxisome proliferator-activated receptor gamma coactivator-1α protein, mammalian target of rapamycin and phospho-mammalian target of rapamycin protein, citrate synthase messenger RNA, and mitochondrial DNA copy number. Hippocampal vascular endothelial growth factor A (VEGF-A) gene expression trended higher, and a positive correlation between VEGF-A and PRC messenger RNA levels was observed. Brain doublecortin, brain-derived neurotrophic factor, tumor necrosis factor-α, and CCL11 gene expression, as well as plasma CCL11 protein levels, were unchanged. Despite these apparent negative findings, a negative correlation between plasma CCL11 protein levels and hippocampal doublecortin gene expression was observed; further analysis indicated exercise may mitigate this relationship. Overall, our data suggest supra-lactate threshold exercise activates a partial mitochondrial biogenesis in aged mice, and a gene (VEGF-A) known to support neurogenesis. Our data are consistent with another study that found systemic inflammation in general, and CCL11 protein specifically, suppresses hippocampal neurogenesis. Our study supports the view that intense exercise above the lactate threshold may benefit the aging brain; future studies to address the extent to which exercise-generated lactate mediates the observed effects are warranted.
Collapse
|
183
|
Joyner MJ, Prendergast FG. Chasing Mendel: five questions for personalized medicine. J Physiol 2014; 592:2381-8. [PMID: 24882820 PMCID: PMC4048096 DOI: 10.1113/jphysiol.2014.272336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/08/2014] [Indexed: 01/11/2023] Open
Abstract
Ideas about personalized medicine are underpinned in part by evolutionary biology's Modern Synthesis. In this essay we link personalized medicine to the efforts of the early statistical investigators who quantified the heritability of human phenotype and then attempted to reconcile their observations with Mendelian genetics. As information about the heritability of common diseases was obtained, similar efforts were directed at understanding the genetic basis of disease phenotypes. These ideas were part of the rationale driving the Human Genome Project and subsequently the personalized medicine movement. In this context, we discuss: (1) the current state of the genotype-phenotype relationship in humans, (2) the common-disease-common-variant hypothesis, (3) the current ability of 'omic' information to inform clinical decision making, (4) emerging ideas about the therapeutic insight available from rare genetic variants, and (5) the social and behavioural barriers to the wider potential success of personalized medicine. There are significant gaps in knowledge as well as conceptual, intellectual, and philosophical limitations in each of these five areas. We then provide specific recommendations to mitigate these limitations and close by asking if it is time for the biomedical research community to 'stop chasing Mendel?'
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anaesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Franklyn G Prendergast
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
184
|
Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, Estevez E, Chung J, Watson N, Gardner T, Lee-Young RS, Connor T, Watt MJ, Carpenter K, Hargreaves M, McGee SL, Hevener AL, Febbraio MA. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. Diabetes 2014; 63:1881-94. [PMID: 24430435 PMCID: PMC4030108 DOI: 10.2337/db13-0967] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Clinton R Bruce
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, AustraliaDepartment of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kálmán Tory
- N-Gene Research Laboratories, Inc., Budapest, Hungary
| | | | - Emma Estevez
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jason Chung
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Nadine Watson
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy Gardner
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Timothy Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kevin Carpenter
- Department of Biochemical Genetics, Children's Hospital at Westmead and Disciplines of Genetic Medicine and Paediatrics and Child Health, University of Sydney, New South Wales, Australia
| | - Mark Hargreaves
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, AustraliaN-Gene Research Laboratories, Inc., Budapest, Hungary
| |
Collapse
|
185
|
van Leeuwen N, Beekman M, Deelen J, van den Akker EB, de Craen AJM, Slagboom PE, ’t Hart LM. Low mitochondrial DNA content associates with familial longevity: the Leiden Longevity Study. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9629. [PMID: 24554339 PMCID: PMC4082602 DOI: 10.1007/s11357-014-9629-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/05/2014] [Indexed: 05/02/2023]
Abstract
Long-lived individuals delay aging and age-related diseases like diabetes, hypertension, and cardiovascular disease. The exact underlying mechanisms are largely unknown, but enhanced mitochondrial biogenesis and preservation of mitochondrial function have been suggested to explain healthy ageing. We investigated whether individuals belonging to long-lived families have altered mitochondrial DNA (mtDNA) content, as a biomarker of mitochondrial biogenesis and measured expression of genes regulating mitochondrial biogenesis. mtDNA and nuclear DNA (nDNA) levels were measured in blood samples from 2,734 participants from the Leiden Longevity Study: 704 nonagenarian siblings, 1,388 of their middle-aged offspring and 642 controls. We confirmed a negative correlation of mtDNA content in blood with age and a higher content in females. The middle-aged offspring had, on average, lower levels of mtDNA than controls and the nonagenarian siblings had an even lower mtDNA content (mtDNA/nDNA ratio = 0.744 ± 0.065, 0.767 ± 0.058 and 0.698 ± 0.074, respectively; p controls-offspring = 3.4 × 10(-12), p controls-nonagenarians = 6.5 × 10(-6)), which was independent of the confounding effects of age and gender. Subsequently, we examined in a subset of the study the expression in blood of two genes regulating mitochondrial biogenesis, YY1 and PGC-1α. We found a positive association of YY1 expression and mtDNA content in controls. The observed absence of such an association in the offspring suggests an altered regulation of mitochondrial biogenesis in the members of long-lived families. In conclusion, in this study, we show that mtDNA content decreases with age and that low mtDNA content is associated with familial longevity. Our data suggest that preservation of mitochondrial function rather than enhancing mitochondrial biogenesis is a characteristic of long-lived families.
Collapse
Affiliation(s)
- N. van Leeuwen
- />Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - M. Beekman
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Deelen
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - E. B. van den Akker
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - A. J. M. de Craen
- />Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - P. E. Slagboom
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- />Netherlands Consortium for Healthy Ageing, Leiden University Medical Center, Leiden, The Netherlands
| | - L. M. ’t Hart
- />Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- />Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
186
|
Kukreja L, Kujoth GC, Prolla TA, Van Leuven F, Vassar R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease. Mol Neurodegener 2014; 9:16. [PMID: 24885175 PMCID: PMC4028006 DOI: 10.1186/1750-1326-9-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/14/2022] Open
Abstract
Background The role of mitochondrial dysfunction has long been implicated in age-related brain pathology, including Alzheimer’s disease (AD). However, the mechanism by which mitochondrial dysfunction may cause neurodegeneration in AD is unclear. To model mitochondrial dysfunction in vivo, we utilized mice that harbor a knockin mutation that inactivates the proofreading function of mitochondrial DNA polymerase γ (PolgA D257A), so that these mice accumulate mitochondrial DNA mutations with age. PolgA D257A mice develop a myriad of mitochondrial bioenergetic defects and physical phenotypes that mimic premature ageing, with subsequent death around one year of age. Results We crossed the D257A mice with a well-established transgenic AD mouse model (APP/Ld) that develops amyloid plaques. We hypothesized that mitochondrial dysfunction would affect Aβ synthesis and/or clearance, thus contributing to amyloidogenesis and triggering neurodegeneration. Initially, we discovered that Aβ42 levels along with Aβ42 plaque density were increased in D257A; APP/Ld bigenic mice compared to APP/Ld monogenic mice. Elevated Aβ production was not responsible for increased amyloid pathology, as levels of BACE1, PS1, C99, and C83 were unchanged in D257A; APP/Ld compared to APP/Ld mice. However, the levels of a major Aβ clearance enzyme, insulin degrading enzyme (IDE), were reduced in mice with the D257A mutation, suggesting this as mechanism for increased amyloid load. In the presence of the APP transgene, D257A mice also exhibited significant brain atrophy with apparent cortical thinning but no frank neuron loss. D257A; APP/Ld mice had increased levels of 17 kDa cleaved caspase-3 and p25, both indicative of neurodegeneration. Moreover, D257A; APP/Ld neurons appeared morphologically disrupted, with swollen and vacuolated nuclei. Conclusions Overall, our results implicate synergism between the effects of the PolgA D257A mutation and Aβ in causing neurodegeneration. These findings provide insight into mechanisms of mitochondrial dysfunction that may contribute to the pathogenesis of AD via decreased clearance of Aβ.
Collapse
Affiliation(s)
| | | | | | | | - Robert Vassar
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
187
|
Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. LONGEVITY & HEALTHSPAN 2014; 3:6. [PMID: 24860647 DOI: 10.1201/b21905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 05/26/2023]
Abstract
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Hazel H Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Peter S Rabinovitch
- Department of Pathology, University of Washington, 1959 Pacific Ave NE, HSB-K081, Seattle, WA 98195, USA
| |
Collapse
|
188
|
Mitochondrial oxidative stress in aging and healthspan. LONGEVITY & HEALTHSPAN 2014; 3:6. [PMID: 24860647 PMCID: PMC4013820 DOI: 10.1186/2046-2395-3-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.
Collapse
|
189
|
Abstract
The link between chronic psychosocial and metabolic stress and the pathogenesis of disease has been extensively documented. Nevertheless, the cellular mechanisms by which stressful life experiences and their associated primary neuroendocrine mediators cause biological damage and increase disease risk remain poorly understood. The allostatic load model of chronic stress focuses on glucocorticoid dysregulation. In this Perspectives, we expand upon the metabolic aspects of this model-particularly glucose imbalance-and propose that mitochondrial dysfunction constitutes an early, modifiable target of chronic stress and stress-related health behaviours. Central to this process is mitochondrial regulation of energy metabolism and cellular signalling. Chronically elevated glucose levels damage both mitochondria and mitochondrial DNA, generating toxic products that can promote systemic inflammation, alter gene expression and hasten cell ageing. Consequently, the concept of 'mitochondrial allostatic load' defines the deleterious structural and functional changes that mitochondria undergo in response to elevated glucose levels and stress-related pathophysiology.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Robert-Paul Juster
- Integrated Program in Neuroscience, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
190
|
Abstract
Human mitochondria harbor an essential, high copy number, 16,569 base pair, circular DNA genome that encodes 13 gene products required for electron transport and oxidative phosphorylation. Mutation of this genome can compromise cellular respiration, ultimately resulting in a variety of progressive metabolic diseases collectively known as 'mitochondrial diseases'. Mutagenesis of mtDNA and the persistence of mtDNA mutations in cells and tissues is a complex topic, involving the interplay of DNA replication, DNA damage and repair, purifying selection, organelle dynamics, mitophagy, and aging. We briefly review these general elements that affect maintenance of mtDNA, and we focus on nuclear genes encoding the mtDNA replication machinery that can perturb the genetic integrity of the mitochondrial genome.
Collapse
Affiliation(s)
- William C Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA.
| | - Matthew J Longley
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
191
|
Affiliation(s)
- Glenn C Rowe
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
192
|
Liu Y, Long J, Liu J. Mitochondrial free radical theory of aging: who moved my premise? Geriatr Gerontol Int 2014; 14:740-9. [PMID: 24750368 DOI: 10.1111/ggi.12296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2014] [Indexed: 12/31/2022]
Abstract
First proposed by D Harman in the 1950s, the Mitochondrial Free Radical Theory of Aging (MFRTA) has become one of the most tested and well-known theories in aging research. Its core statement is that aging results from the accumulation of oxidative damage, which is closely linked with the release of reactive oxygen species (ROS) from mitochondria. Although MFRTA has been well acknowledged for more than half a century, conflicting evidence is piling up in recent years querying the causal effect of ROS in aging. A critical idea thus emerges that contrary to their conventional image only as toxic agents, ROS at a non-toxic level function as signaling molecules that induce protective defense in responses to age-dependent damage. Furthermore, the peroxisome, another organelle in eukaryotic cells, might have a say in longevity modulation. Peroxisomes and mitochondria are two organelles closely related to each other, and their interaction has major implications for the regulation of aging. The present review particularizes the questionable sequiturs of the MFRTA, and recommends peroxisome, similarly as mitochondrion, as a possible candidate for the regulation of aging.
Collapse
Affiliation(s)
- Ye Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | |
Collapse
|
193
|
Hauser DN, Dillman AA, Ding J, Li Y, Cookson MR. Post-translational decrease in respiratory chain proteins in the Polg mutator mouse brain. PLoS One 2014; 9:e94646. [PMID: 24722488 PMCID: PMC3983222 DOI: 10.1371/journal.pone.0094646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/19/2014] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial DNA damage is thought to be a causal contributor to aging as mice with inactivating mutations in polymerase gamma (Polg) develop a progeroid phenotype. To further understand the molecular mechanisms underlying this phenotype, we used iTRAQ and RNA-Seq to determine differences in protein and mRNA abundance respectively in the brains of one year old Polg mutator mice compared to control animals. We found that mitochondrial respiratory chain proteins are specifically decreased in abundance in the brains of the mutator mice, including several nuclear encoded mitochondrial components. However, we found no evidence that the changes we observed in protein levels were the result of decreases in mRNA expression. These results show that there are post-translational effects associated with mutations in Polg.
Collapse
Affiliation(s)
- David N. Hauser
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- Brown University/National Institutes of Health Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - Allissa A. Dillman
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jinhui Ding
- Computational Biology Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
194
|
Abstract
Skeletal muscle is the largest organ in the body and contributes to innumerable aspects of organismal biology. Muscle dysfunction engenders numerous diseases, including diabetes, cachexia, and sarcopenia. At the same time, skeletal muscle is also the main engine of exercise, one of the most efficacious interventions for prevention and treatment of a wide variety of diseases. The transcriptional coactivator PGC-1α has emerged as a key driver of metabolic programming in skeletal muscle, both in health and in disease. We review here the many aspects of PGC-1α function in skeletal muscle, with a focus on recent developments.
Collapse
Affiliation(s)
- Mun Chun Chan
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School.
| |
Collapse
|
195
|
Camargo CA, Budinger GRS, Escobar GJ, Hansel NN, Hanson CK, Huffnagle GB, Buist AS. Promotion of lung health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 2014; 11 Suppl 3:S125-38. [PMID: 24754821 PMCID: PMC4112505 DOI: 10.1513/annalsats.201312-451ld] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/04/2014] [Indexed: 12/17/2022] Open
Abstract
Lung-related research primarily focuses on the etiology and management of diseases. In recent years, interest in primary prevention has grown. However, primary prevention also includes "health promotion" (actions in a population that keep an individual healthy). We encourage more research on population-based (public health) strategies that could not only maximize lung health but also mitigate "normal" age-related declines-not only for spirometry but across multiple measures of lung health. In developing a successful strategy, a "life course" approach is important. Unfortunately, we are unable to achieve the full benefit of this approach until we have better measures of lung health and an improved understanding of the normal trajectory, both over an individual's life span and possibly across generations. We discuss key questions in lung health promotion, with an emphasis on the upper (healthier) end of the distribution of lung functioning and resiliency and briefly summarize the few interventions that have been studied to date. We conclude with suggestions regarding the most promising future research for this important, but largely neglected, area of lung research.
Collapse
Affiliation(s)
- Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | | | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Center, Baltimore, Maryland
| | - Corrine K. Hanson
- School of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - A. Sonia Buist
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
196
|
Abstract
Multiple sclerosis (MS) is the most frequent chronic inflammatory disease of the CNS, and imposes major burdens on young lives. Great progress has been made in understanding and moderating the acute inflammatory components of MS, but the pathophysiological mechanisms of the concomitant neurodegeneration--which causes irreversible disability--are still not understood. Chronic inflammatory processes that continuously disturb neuroaxonal homeostasis drive neurodegeneration, so the clinical outcome probably depends on the balance of stressor load (inflammation) and any remaining capacity for neuronal self-protection. Hence, suitable drugs that promote the latter state are sorely needed. With the aim of identifying potential novel therapeutic targets in MS, we review research on the pathological mechanisms of neuroaxonal dysfunction and injury, such as altered ion channel activity, and the endogenous neuroprotective pathways that counteract oxidative stress and mitochondrial dysfunction. We focus on mechanisms inherent to neurons and their axons, which are separable from those acting on inflammatory responses and might, therefore, represent bona fide neuroprotective drug targets with the capability to halt MS progression.
Collapse
|
197
|
GLTSCR2/PICT1 links mitochondrial stress and Myc signaling. Proc Natl Acad Sci U S A 2014; 111:3781-6. [PMID: 24556985 DOI: 10.1073/pnas.1400705111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial defects underlie a multitude of human diseases. Genetic manipulation of mitochondrial regulatory pathways represents a potential therapeutic approach. We have carried out a high-throughput overexpression screen for genes that affect mitochondrial abundance or activity using flow-cytometry-based enrichment of a cell population expressing a high-complexity, concentration-normalized pool of human ORFs. The screen identified 94 candidate mitochondrial regulators including the nuclear protein GLTSCR2, also known as PICT1. GLTSCR2 enhances mitochondrial function and is required for the maintenance of oxygen consumption, consistent with a pivotal role in the control of cellular respiration. RNAi inactivation of the Caenorhabditis elegans ortholog of GLTSCR2 reduces respiration in worms, indicating functional conservation across species. GLTSCR2 controls cellular proliferation and metabolism via the transcription factor Myc, and is induced by mitochondrial stress, suggesting it may constitute a significant component of the mitochondrial signaling pathway.
Collapse
|
198
|
Tam ZY, Gruber J, Ng LF, Halliwell B, Gunawan R. Effects of lithium on age-related decline in mitochondrial turnover and function in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2014; 69:810-20. [PMID: 24398558 DOI: 10.1093/gerona/glt210] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging has been associated with the accumulation of damages in molecules and organelles in cells, particularly mitochondria. The rate of damage accumulation is closely tied to the turnover of the affected cellular components. Perturbing mitochondrial turnover has been shown to significantly affect the rate of deterioration of mitochondrial function with age and to alter lifespan of model organisms. In this study, we investigated the effects of upregulating autophagy using lithium in Caenorhabditis elegans. We found that lithium treatment increased both the lifespan and healthspan of C. elegans without any significant change in the mortality rate and oxidative damages to proteins. The increase in healthspan was accompanied by improved mitochondrial energetic function. In contrast, mitochondrial DNA copy number decreased faster with age under lithium. To better understand the interactions among mitochondrial turnover, damage, and function, we created a mathematical model that described the dynamics of functional and dysfunctional mitochondria population. The combined analysis of model and experimental observations showed how preferential (selective) autophagy of dysfunctional mitochondria could lead to better mitochondrial functionality with age, despite a lower population size. However, the results of model analysis suggest that the benefit of increasing autophagy for mitochondrial function is expected to diminish at higher levels of upregulation due to a shrinking mitochondrial population.
Collapse
Affiliation(s)
- Zhi Yang Tam
- Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
| | - Jan Gruber
- Department of Biochemistry, Centre for Life Sciences and Yale-NUS College, Science Division, National University of Singapore, Singapore
| | - Li Fang Ng
- Department of Biochemistry, Centre for Life Sciences and
| | | | | |
Collapse
|
199
|
Mercer JR. Mitochondrial bioenergetics and therapeutic intervention in cardiovascular disease. Pharmacol Ther 2014; 141:13-20. [DOI: 10.1016/j.pharmthera.2013.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/15/2022]
|
200
|
Demontis F, Piccirillo R, Goldberg AL, Perrimon N. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 2013; 12:943-9. [PMID: 23802635 DOI: 10.1111/acel.12126] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 01/02/2023] Open
Abstract
Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle-derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age-related diseases and contribute to the intertissue communication that underlies systemic aging.
Collapse
Affiliation(s)
- Fabio Demontis
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Division of Developmental Biology; Department of Developmental Neurobiology; St. Jude Children's Research Hospital; Memphis TN 38105 USA
| | - Rosanna Piccirillo
- Department of Cell Biology; Harvard Medical School; Boston MA 02115 USA
- Department of Oncology; IRCCS - Mario Negri Institute for Pharmacological Research; Milano Italy
| | | | - Norbert Perrimon
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Howard Hughes Medical Institute; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|