151
|
Schnable JC. Genes and gene models, an important distinction. THE NEW PHYTOLOGIST 2020; 228:50-55. [PMID: 31241760 DOI: 10.1111/nph.16011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/07/2019] [Indexed: 05/22/2023]
Abstract
Genome sequencing has fundamentally changed how plant biologists think about genes. All or nearly all genes can ultimately be associated with a gene model. However, many gene models appear to play little or no role in the traits of an organism. A range of structural, molecular, population and evolutionary features all show a separation between genes with known phenotypes and the overall set of annotated gene models. These different features could be combined to develop models to distinguish the genes that determine the traits of plants from the subset gene other annotated gene models which are unlikely to play a role in doing so. Efforts to identify the subset of annotated gene models likely involved in specifying the characteristics of plants would help aid a wide range of researchers.
Collapse
Affiliation(s)
- James C Schnable
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
152
|
Greenham K, Sartor RC, Zorich S, Lou P, Mockler TC, McClung CR. Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns. eLife 2020; 9:e58993. [PMID: 32996462 PMCID: PMC7655105 DOI: 10.7554/elife.58993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023] Open
Abstract
An important challenge of crop improvement strategies is assigning function to paralogs in polyploid crops. Here we describe the circadian transcriptome in the polyploid crop Brassica rapa. Strikingly, almost three-quarters of the expressed genes exhibited circadian rhythmicity. Genetic redundancy resulting from whole genome duplication is thought to facilitate evolutionary change through sub- and neo-functionalization among paralogous gene pairs. We observed genome-wide expansion of the circadian expression phase among retained paralogous pairs. Using gene regulatory network models, we compared transcription factor targets between B. rapa and Arabidopsis circadian networks to reveal evidence for divergence between B. rapa paralogs that may be driven in part by variation in conserved non-coding sequences (CNS). Additionally, differential drought response among retained paralogous pairs suggests further functional diversification. These findings support the rapid expansion and divergence of the transcriptional network in a polyploid crop and offer a new approach for assessing paralog activity at the transcript level.
Collapse
Affiliation(s)
- Kathleen Greenham
- Department of Plant and Microbial Biology, University of MinnesotaSaint PaulUnited States
| | - Ryan C Sartor
- Crop and Soil Sciences, North Carolina State UniversityRaleighUnited States
| | - Stevan Zorich
- Department of Plant and Microbial Biology, University of MinnesotaSaint PaulUnited States
| | - Ping Lou
- Department of Biological Sciences, Dartmouth CollegeHanoverUnited States
| | - Todd C Mockler
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | | |
Collapse
|
153
|
Abrouk M, Ahmed HI, Cubry P, Šimoníková D, Cauet S, Pailles Y, Bettgenhaeuser J, Gapa L, Scarcelli N, Couderc M, Zekraoui L, Kathiresan N, Čížková J, Hřibová E, Doležel J, Arribat S, Bergès H, Wieringa JJ, Gueye M, Kane NA, Leclerc C, Causse S, Vancoppenolle S, Billot C, Wicker T, Vigouroux Y, Barnaud A, Krattinger SG. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat Commun 2020; 11:4488. [PMID: 32901040 DOI: 10.1101/2020.04.11.037671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/16/2020] [Indexed: 05/28/2023] Open
Abstract
Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.
Collapse
Affiliation(s)
- Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Yveline Pailles
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jan Bettgenhaeuser
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liubov Gapa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | | | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Hélène Bergès
- CNRGV Plant Genomics Center, INRAE, Toulouse, France
- Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA, 02139, USA
| | | | - Mathieu Gueye
- Laboratoire de Botanique, Département de Botanique et Géologie, IFAN Ch. A. Diop/UCAD, Dakar, Senegal
| | - Ndjido A Kane
- Senegalese Agricultural Research Institute, Dakar, Senegal
- Laboratoire Mixte International LAPSE, Dakar, Senegal
| | - Christian Leclerc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sandrine Causse
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sylvie Vancoppenolle
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Claire Billot
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | | | - Adeline Barnaud
- DIADE, Univ Montpellier, IRD, Montpellier, France.
- Laboratoire Mixte International LAPSE, Dakar, Senegal.
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
154
|
Abrouk M, Ahmed HI, Cubry P, Šimoníková D, Cauet S, Pailles Y, Bettgenhaeuser J, Gapa L, Scarcelli N, Couderc M, Zekraoui L, Kathiresan N, Čížková J, Hřibová E, Doležel J, Arribat S, Bergès H, Wieringa JJ, Gueye M, Kane NA, Leclerc C, Causse S, Vancoppenolle S, Billot C, Wicker T, Vigouroux Y, Barnaud A, Krattinger SG. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat Commun 2020; 11:4488. [PMID: 32901040 PMCID: PMC7479619 DOI: 10.1038/s41467-020-18329-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/16/2020] [Indexed: 01/24/2023] Open
Abstract
Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.
Collapse
Affiliation(s)
- Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Yveline Pailles
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jan Bettgenhaeuser
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liubov Gapa
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | | | - Nagarajan Kathiresan
- Supercomputing Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Hélène Bergès
- CNRGV Plant Genomics Center, INRAE, Toulouse, France
- Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA, 02139, USA
| | | | - Mathieu Gueye
- Laboratoire de Botanique, Département de Botanique et Géologie, IFAN Ch. A. Diop/UCAD, Dakar, Senegal
| | - Ndjido A Kane
- Senegalese Agricultural Research Institute, Dakar, Senegal
- Laboratoire Mixte International LAPSE, Dakar, Senegal
| | - Christian Leclerc
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sandrine Causse
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Sylvie Vancoppenolle
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Claire Billot
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Cirad, INRAE, Institut Agro, Montpellier, France
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | | | - Adeline Barnaud
- DIADE, Univ Montpellier, IRD, Montpellier, France.
- Laboratoire Mixte International LAPSE, Dakar, Senegal.
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
155
|
Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proc Natl Acad Sci U S A 2020; 117:23991-24000. [PMID: 32879011 DOI: 10.1073/pnas.2010250117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genomic sequences of crops continue to be produced at a frenetic pace. It remains challenging to develop complete annotations of functional genes and regulatory elements in these genomes. Chromatin accessibility assays enable discovery of functional elements; however, to uncover the full portfolio of cis-elements would require profiling of many combinations of cell types, tissues, developmental stages, and environments. Here, we explore the potential to use DNA methylation profiles to develop more complete annotations. Using leaf tissue in maize, we define ∼100,000 unmethylated regions (UMRs) that account for 5.8% of the genome; 33,375 UMRs are found greater than 2 kb from genes. UMRs are highly stable in multiple vegetative tissues, and they capture the vast majority of accessible chromatin regions from leaf tissue. However, many UMRs are not accessible in leaf, and these represent regions with potential to become accessible in specific cell types or developmental stages. These UMRs often occur near genes that are expressed in other tissues and are enriched for binding sites of transcription factors. The leaf-inaccessible UMRs exhibit unique chromatin modification patterns and are enriched for chromatin interactions with nearby genes. The total UMR space in four additional monocots ranges from 80 to 120 megabases, which is remarkably similar considering the range in genome size of 271 megabases to 4.8 gigabases. In summary, based on the profile from a single tissue, DNA methylation signatures provide powerful filters to distill large genomes down to the small fraction of putative functional genes and regulatory elements.
Collapse
|
156
|
Shan S, Boatwright JL, Liu X, Chanderbali AS, Fu C, Soltis PS, Soltis DE. Transcriptome Dynamics of the Inflorescence in Reciprocally Formed Allopolyploid Tragopogon miscellus (Asteraceae). Front Genet 2020; 11:888. [PMID: 32849847 PMCID: PMC7423994 DOI: 10.3389/fgene.2020.00888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Polyploidy is an important evolutionary mechanism and is prevalent among land plants. Most polyploid species examined have multiple origins, which provide genetic diversity and may enhance the success of polyploids. In some polyploids, recurrent origins can result from reciprocal crosses between the same diploid progenitors. Although great progress has been made in understanding the genetic consequences of polyploidy, the genetic implications of reciprocal polyploidization remain poorly understood, especially in natural polyploids. Tragopogon (Asteraceae) has become an evolutionary model system for studies of recent and recurrent polyploidy. Allotetraploid T. miscellus has formed reciprocally in nature with resultant distinctive floral and inflorescence morphologies (i.e., short- vs. long-liguled forms). In this study, we performed comparative inflorescence transcriptome analyses of reciprocally formed T. miscellus and its diploid parents, T. dubius and T. pratensis. In both forms of T. miscellus, homeolog expression of ∼70% of the loci showed vertical transmission of the parental expression patterns (i.e., parental legacy), and ∼20% of the loci showed biased homeolog expression, which was unbalanced toward T. pratensis. However, 17.9% of orthologous pairs showed different homeolog expression patterns between the two forms of T. miscellus. No clear effect of cytonuclear interaction on biased expression of the maternal homeolog was found. In terms of the total expression level of the homeologs studied, 22.6% and 16.2% of the loci displayed non-additive expression in short- and long-liguled T. miscellus, respectively. Unbalanced expression level dominance toward T. pratensis was observed in both forms of T. miscellus. Significantly, genes annotated as being involved in pectin catabolic processes were highly expressed in long-liguled T. miscellus relative to the short-liguled form, and the majority of these differentially expressed genes were transgressively down-regulated in short-liguled T. miscellus. Given the known role of these genes in cell expansion, they may play a role in the differing floral and inflorescence morphologies of the two forms. In summary, the overall inflorescence transcriptome profiles are highly similar between reciprocal origins of T. miscellus. However, the dynamic homeolog-specific expression and non-additive expression patterns observed in T. miscellus emphasize the importance of reciprocal origins in promoting the genetic diversity of polyploids.
Collapse
Affiliation(s)
- Shengchen Shan
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, United States
| | - Xiaoxian Liu
- Department of Biology, University of Florida, Gainesville, FL, United States.,Environmental Genomics and Systems Biology (EGSB), Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andre S Chanderbali
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Chaonan Fu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Pamela S Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States.,Biodiversity Institute, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Douglas E Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States.,Department of Biology, University of Florida, Gainesville, FL, United States.,Biodiversity Institute, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
157
|
Gordon SP, Contreras-Moreira B, Levy JJ, Djamei A, Czedik-Eysenberg A, Tartaglio VS, Session A, Martin J, Cartwright A, Katz A, Singan VR, Goltsman E, Barry K, Dinh-Thi VH, Chalhoub B, Diaz-Perez A, Sancho R, Lusinska J, Wolny E, Nibau C, Doonan JH, Mur LAJ, Plott C, Jenkins J, Hazen SP, Lee SJ, Shu S, Goodstein D, Rokhsar D, Schmutz J, Hasterok R, Catalan P, Vogel JP. Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nat Commun 2020; 11:3670. [PMID: 32728126 PMCID: PMC7391716 DOI: 10.1038/s41467-020-17302-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/19/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.
Collapse
Affiliation(s)
- Sean P Gordon
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Joshua J Levy
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Armin Djamei
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben. Stadt Seeland, Seeland, Germany
| | | | - Virginia S Tartaglio
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam Session
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Joel Martin
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | - Andrew Katz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | | | | | - Kerrie Barry
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Vinh Ha Dinh-Thi
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
| | - Boulos Chalhoub
- Organization and evolution of complex genomes (OECG) Institut national de la Recherche agronomique (INRA), Université d'Evry Val d'Essonne (UEVE), Evry, France
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, 310058, Hangzhou, China
| | - Antonio Diaz-Perez
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
- Instituto de Genética, Facultad de Agronomía, Universidad Central de Venezuela, 2102, Maracay, Venezuela
| | - Ruben Sancho
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain
| | - Joanna Lusinska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Elzbieta Wolny
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Candida Nibau
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - John H Doonan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, UK
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Scott J Lee
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | | | - Daniel Rokhsar
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- University California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Pilar Catalan
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.
- Universidad de Zaragoza-Escuela Politécnica Superior de Huesca, 22071, Huesca, Spain.
- Institute of Biology, Tomsk State University, Tomsk, 634050, Russia.
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA, 94720, USA.
- University California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
158
|
Khedikar Y, Clarke WE, Chen L, Higgins EE, Kagale S, Koh CS, Bennett R, Parkin IAP. Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, Brassica carinata A. Braun. Sci Rep 2020; 10:12629. [PMID: 32724070 PMCID: PMC7387349 DOI: 10.1038/s41598-020-69255-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
Ethiopian mustard (Brassica carinata A. Braun) is an emerging sustainable source of vegetable oil, in particular for the biofuel industry. The present study exploited genome assemblies of the Brassica diploids, Brassica nigra and Brassica oleracea, to discover over 10,000 genome-wide SNPs using genotype by sequencing of 620 B. carinata lines. The analyses revealed a SNP frequency of one every 91.7 kb, a heterozygosity level of 0.30, nucleotide diversity levels of 1.31 × 10-05, and the first five principal components captured only 13% molecular variation, indicating low levels of genetic diversity among the B. carinata collection. Genome bias was observed, with greater SNP density found on the B subgenome. The 620 lines clustered into two distinct sub-populations (SP1 and SP2) with the majority of accessions (88%) clustered in SP1 with those from Ethiopia, the presumed centre of origin. SP2 was distinguished by a collection of breeding lines, implicating targeted selection in creating population structure. Two selective sweep regions on B3 and B8 were detected, which harbour genes involved in fatty acid and aliphatic glucosinolate biosynthesis, respectively. The assessment of genetic diversity, population structure, and LD in the global B. carinata collection provides critical information to assist future crop improvement.
Collapse
Affiliation(s)
- Yogendra Khedikar
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Lifeng Chen
- Agrisoma Biosciences Inc., 110 Gymnasium Place, Saskatoon, SK, Canada
| | - Erin E Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Sateesh Kagale
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, Canada
| | - Chu Shin Koh
- Global Institute of Food Security, Saskatoon, SK, Canada
| | - Rick Bennett
- Agrisoma Biosciences Inc., 110 Gymnasium Place, Saskatoon, SK, Canada
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada.
| |
Collapse
|
159
|
Toups HS, Cochetel N, Gray D, Cramer GR. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development. BMC Genomics 2020; 21:472. [PMID: 32646368 PMCID: PMC7350745 DOI: 10.1186/s12864-020-06811-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background VviERF6Ls are an uncharacterized gene clade in Vitis with only distant Arabidopsis orthologs. Preliminary data indicated these transcription factors may play a role in berry development and extreme abiotic stress responses. To better understand this highly duplicated, conserved clade, additional members of the clade were identified in four Vitis genotypes. A meta-data analysis was performed on publicly available microarray and RNA-Seq data (confirmed and expanded with RT-qPCR), and Vitis VviERF6L1 overexpression lines were established and characterized with phenotyping and RNA-Seq. Results A total of 18 PN40024 VviERF6Ls were identified; additional VviERF6Ls were identified in Cabernet Sauvignon, Chardonnay, and Carménère. The amino acid sequences of VviERF6Ls were found to be highly conserved. VviERF6L transcripts were detected in numerous plant organs and were differentially expressed in response to numerous abiotic stresses including water deficit, salinity, and cold as well as biotic stresses such as red blotch virus, N. parvum, and E. necator. VviERF6Ls were differentially expressed across stages of berry development, peaking in the pre-veraison/veraison stage and retaining conserved expression patterns across different vineyards, years, and Vitis cultivars. Co-expression network analysis identified a scarecrow-like transcription factor and a calmodulin-like gene with highly similar expression profiles to the VviERF6L clade. Overexpression of VviERF6L1 in a Seyval Blanc background did not result in detectable morphological phenotypes. Genes differentially expressed in response to VviERF6L1 overexpression were associated with abiotic and biotic stress responses. Conclusions VviERF6Ls represent a large and distinct clade of ERF transcription factors in grapevine. The high conservation of protein sequence between these 18 transcription factors may indicate these genes originate from a duplication event in Vitis. Despite high sequence similarity and similar expression patterns, VviERF6Ls demonstrate unique levels of expression supported by similar but heterogeneous promoter sequences. VviERF6L gene expression differed between Vitis species, cultivars and organs including roots, leaves and berries. These genes respond to berry development and abiotic and biotic stresses. VviERF6L1 overexpression in Vitis vinifera results in differential expression of genes related to phytohormone and immune system signaling. Further investigation of this interesting gene family is warranted.
Collapse
Affiliation(s)
- Haley S Toups
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Gray
- Precision Bred LLC, 16676 Sparrow Hawk Lane, Sonora, CA, 95370, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
160
|
Lai X, Bendix C, Yan L, Zhang Y, Schnable JC, Harmon FG. Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. BMC Genomics 2020; 21:428. [PMID: 32586356 PMCID: PMC7315539 DOI: 10.1186/s12864-020-06824-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background The circadian clock drives endogenous 24-h rhythms that allow organisms to adapt and prepare for predictable and repeated changes in their environment throughout the day-night (diurnal) cycle. Many components of the circadian clock in Arabidopsis thaliana have been functionally characterized, but comparatively little is known about circadian clocks in grass species including major crops like maize and sorghum. Results Comparative research based on protein homology and diurnal gene expression patterns suggests the function of some predicted clock components in grasses is conserved with their Arabidopsis counterparts, while others have diverged in function. Our analysis of diurnal gene expression in three panicoid grasses sorghum, maize, and foxtail millet revealed conserved and divergent evolution of expression for core circadian clock genes and for the overall transcriptome. We find that several classes of core circadian clock genes in these grasses differ in copy number compared to Arabidopsis, but mostly exhibit conservation of both protein sequence and diurnal expression pattern with the notable exception of maize paralogous genes. We predict conserved cis-regulatory motifs shared between maize, sorghum, and foxtail millet through identification of diurnal co-expression clusters for a subset of 27,196 orthologous syntenic genes. In this analysis, a Cochran–Mantel–Haenszel based method to control for background variation identified significant enrichment for both expected and novel 6–8 nucleotide motifs in the promoter regions of genes with shared diurnal regulation predicted to function in common physiological activities. Conclusions This study illustrates the divergence and conservation of circadian clocks and diurnal regulatory networks across syntenic orthologous genes in panacoid grass species. Further, conserved local regulatory sequences contribute to the architecture of these diurnal regulatory networks that produce conserved patterns of diurnal gene expression.
Collapse
Affiliation(s)
- Xianjun Lai
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.,College of Agricultural Sciences, Xichang University, Liangshan, Xichang, 615000, China
| | - Claire Bendix
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| | - Lang Yan
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.,College of Agricultural Sciences, Xichang University, Liangshan, Xichang, 615000, China
| | - Yang Zhang
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.
| | - Frank G Harmon
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .,Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA.
| |
Collapse
|
161
|
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. THE NEW PHYTOLOGIST 2020; 226:1506-1516. [PMID: 31967665 DOI: 10.1111/nph.16445] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the α WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
162
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
163
|
Song MJ, Potter BI, Doyle JJ, Coate JE. Gene Balance Predicts Transcriptional Responses Immediately Following Ploidy Change in Arabidopsis thaliana. THE PLANT CELL 2020; 32:1434-1448. [PMID: 32184347 PMCID: PMC7203931 DOI: 10.1105/tpc.19.00832] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/14/2020] [Indexed: 05/22/2023]
Abstract
The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.
Collapse
Affiliation(s)
- Michael J Song
- University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, California 94720
| | - Barney I Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jeff J Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202
| |
Collapse
|
164
|
Conant GC. The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 2020; 15:e0231356. [PMID: 32298330 PMCID: PMC7161988 DOI: 10.1371/journal.pone.0231356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
The ancestor of most teleost fishes underwent a whole-genome duplication event three hundred million years ago. Despite its antiquity, the effects of this event are evident both in the structure of teleost genomes and in how the surviving duplicated genes still operate to drive form and function. I inferred a set of shared syntenic regions that survive from the teleost genome duplication (TGD) using eight teleost genomes and the outgroup gar genome (which lacks the TGD). I then phylogenetically modeled the TGD's resolution via shared and independent gene losses and applied a new simulation-based statistical test for the presence of bias toward the preservation of genes from one parental subgenome. On the basis of that test, I argue that the TGD was likely an allopolyploidy. I find that duplicate genes surviving from this duplication in zebrafish are less likely to function in early embryo development than are genes that have returned to single copy at some point in this species' history. The tissues these ohnologs are expressed in, as well as their biological functions, lend support to recent suggestions that the TGD was the source of a morphological innovation in the structure of the teleost retina. Surviving duplicates also appear less likely to be essential than singletons, despite the fact that their single-copy orthologs in mouse are no less essential than other genes.
Collapse
Affiliation(s)
- Gavin C. Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
- Program in Genetics, North Carolina State University, Raleigh, NC, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
165
|
Alger EI, Edger PP. One subgenome to rule them all: underlying mechanisms of subgenome dominance. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:108-113. [PMID: 32344327 DOI: 10.1016/j.pbi.2020.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/05/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Allopolyploids, which are formed from the hybridization of two or more diploid progenitor species, often experience subgenome dominance, where one of the parental genomes (subgenomes) has higher levels of gene expression and ultimately greater gene retention compared to the other subgenomes. Low transposable element (TE) abundance near genes has been associated with the dominant subgenome in several allopolyploids, but TEs are unlikely to be the only causal factor responsible for subgenome expression dominance. In this review, we will examine the role of TEs in subgenome dominance as well as discuss how genetic incompatibilities among subgenomes likely contributes to the rapid emergence of subgenome dominance. Lastly, we highlight several burning questions about subgenome dominance that remain largely unanswered.
Collapse
Affiliation(s)
- Elizabeth I Alger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
166
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
167
|
Xu W, Zhang Q, Yuan W, Xu F, Muhammad Aslam M, Miao R, Li Y, Wang Q, Li X, Zhang X, Zhang K, Xia T, Cheng F. The genome evolution and low-phosphorus adaptation in white lupin. Nat Commun 2020; 11:1069. [PMID: 32103018 PMCID: PMC7044338 DOI: 10.1038/s41467-020-14891-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/09/2020] [Indexed: 11/23/2022] Open
Abstract
White lupin (Lupinus albus) is a legume crop that develops cluster roots and has high phosphorus (P)-use efficiency (PUE) in low-P soils. Here, we assemble the genome of white lupin and find that it has evolved from a whole-genome triplication (WGT) event. We then decipher its diploid ancestral genome and reconstruct the three sub-genomes. Based on the results, we further reveal the sub-genome dominance and the genic expression of the different sub-genomes varying in relation to their transposable element (TE) density. The PUE genes in white lupin have been expanded through WGT as well as tandem and dispersed duplications. Furthermore, we characterize four main pathways for high PUE, which include carbon fixation, cluster root formation, soil-P remobilization, and cellular-P reuse. Among these, auxin modulation may be important for cluster root formation through involvement of potential genes LaABCG36s and LaABCG37s. These findings provide insights into the genome evolution and low-P adaptation of white lupin.
Collapse
Affiliation(s)
- Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Wei Yuan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Mehtab Muhammad Aslam
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rui Miao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ying Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Qianwen Wang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Xing Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Xin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China
| | - Tianyu Xia
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing, China.
| |
Collapse
|
168
|
Glombik M, Bačovský V, Hobza R, Kopecký D. Competition of Parental Genomes in Plant Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:200. [PMID: 32158461 PMCID: PMC7052263 DOI: 10.3389/fpls.2020.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/11/2020] [Indexed: 05/17/2023]
Abstract
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Collapse
Affiliation(s)
- Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Roman Hobza
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
169
|
Du H, Ning L, He B, Wang Y, Ge M, Xu J, Zhao H. Cross-Species Root Transcriptional Network Analysis Highlights Conserved Modules in Response to Nitrate between Maize and Sorghum. Int J Mol Sci 2020; 21:ijms21041445. [PMID: 32093344 PMCID: PMC7073038 DOI: 10.3390/ijms21041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
Plants have evolved complex mechanisms to respond to the fluctuation of available nitrogen (N) in soil, but the genetic mechanisms underlying the N response in crops are not well-documented. In this study, we generated a time series of NO3−-mediated transcriptional profiles in roots of maize and sorghum, respectively. Using weighted gene co-expression network analysis, we identified modules of co-expressed genes that related to NO3− treatments. A cross-species comparison revealed 22 conserved modules, of which four were related to hormone signaling, suggesting that hormones participate in the early nitrate response. Three other modules are composed of genes that are mainly upregulated by NO3− and involved in nitrogen and carbohydrate metabolism, including NRT, NIR, NIA, FNR, and G6PD2. Two G2-like transcription factors (ZmNIGT1 and SbNIGT1), induced by NO3− stimulation, were identified as hub transcription factors (TFs) in the modules. Transient assays demonstrated that ZmNIGT1 and SbNIGT1 are transcriptional repressors. We identified the target genes of ZmNIGT1 by DNA affinity-purification sequencing (DAP-Seq) and found that they were significantly enriched in catalytic activity, including carbon, nitrogen, and other nutrient metabolism. A set of ZmNIGT1 targets encode transcription factors (ERF, ARF, and AGL) that are involved in hormone signaling and root development. We propose that ZmNIGT1 and SbNIGT1 are negative regulators of nitrate responses that play an important role in optimizing nutrition metabolism and root morphogenesis. Together with conserved N responsive modules, our study indicated that, to encounter N variation in soil, maize and sorghum have evolved an NO3−-regulatory network containing a set of conserved modules and transcription factors.
Collapse
|
170
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
171
|
VanBuren R, Man Wai C, Wang X, Pardo J, Yocca AE, Wang H, Chaluvadi SR, Han G, Bryant D, Edger PP, Messing J, Sorrells ME, Mockler TC, Bennetzen JL, Michael TP. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat Commun 2020; 11:884. [PMID: 32060277 PMCID: PMC7021729 DOI: 10.1038/s41467-020-14724-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution.
Collapse
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy Pardo
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Alan E Yocca
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Hao Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | | - Guomin Han
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Douglas Bryant
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Joachim Messing
- Waksman Institute of Microbiology, Rutgers University, Springfield, USA
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | | |
Collapse
|
172
|
Xu Y, Zhang T, Li Y, Miao Z. Integrated Analysis of Large-Scale Omics Data Revealed Relationship Between Tissue Specificity and Evolutionary Dynamics of Small RNAs in Maize ( Zea mays). Front Genet 2020; 11:51. [PMID: 32117460 PMCID: PMC7026458 DOI: 10.3389/fgene.2020.00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
The evolutionary dynamics and tissue specificity of protein-coding genes are well documented in plants. However, the evolutionary consequences of small RNAs (sRNAs) on tissue-specific functions remain poorly understood. Here, we performed integrated analysis of 195 deeply sequenced sRNA libraries of maize B73, representing more than 10 tissues, and identified a comprehensive list of 419 maize microRNA (miRNA) genes, 271 of which were newly discovered in this study. We further characterized the evolutionary dynamics and tissue specificity of miRNA genes and corresponding miRNA isoforms (isomiRs). Our analysis revealed that tissue specificity of isomiR events tends to be associated with miRNA gene abundance and suggested that the frequencies of isomiR types are affected by the local genomic regions. Moreover, genome duplication (GD) events have dramatic effect on evolutionary dynamics of maize miRNA genes, and the abundance divergence for tissue-specific miRNA genes is associated with GD events. Further study indicated that duplicate miRNA genes with tissue-specific expression patterns, such as miR2275a, a phased siRNA (phasiRNA) trigger, contribute to phenotypic traits in maize. Additionally, our study revealed the expression preference of 21- and 24-nt phasiRNAs in relation to tissue specificity. This large-scale sRNAomic study depicted evolutionary implications of tissue-specific maize sRNAs, which coordinate genome duplication, isomiR modification, phenotypic traits and phasiRNAs differentiation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuchen Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
173
|
Hardigan MA, Feldmann MJ, Lorant A, Bird KA, Famula R, Acharya C, Cole G, Edger PP, Knapp SJ. Genome Synteny Has Been Conserved Among the Octoploid Progenitors of Cultivated Strawberry Over Millions of Years of Evolution. FRONTIERS IN PLANT SCIENCE 2020; 10:1789. [PMID: 32158449 PMCID: PMC7020885 DOI: 10.3389/fpls.2019.01789] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/20/2019] [Indexed: 05/18/2023]
Abstract
Allo-octoploid cultivated strawberry (Fragaria × ananassa) originated through a combination of polyploid and homoploid hybridization, domestication of an interspecific hybrid lineage, and continued admixture of wild species over the last 300 years. While genes appear to flow freely between the octoploid progenitors, the genome structures and diversity of the octoploid species remain poorly understood. The complexity and absence of an octoploid genome frustrated early efforts to study chromosome evolution, resolve subgenomic structure, and develop a single coherent linkage group nomenclature. Here, we show that octoploid Fragaria species harbor millions of subgenome-specific DNA variants. Their diversity was sufficient to distinguish duplicated (homoeologous and paralogous) DNA sequences and develop 50K and 850K SNP genotyping arrays populated with co-dominant, disomic SNP markers distributed throughout the octoploid genome. Whole-genome shotgun genotyping of an interspecific segregating population yielded 1.9M genetically mapped subgenome variants in 5,521 haploblocks spanning 3,394 cM in F. chiloensis subsp. lucida, and 1.6M genetically mapped subgenome variants in 3,179 haploblocks spanning 2,017 cM in F. × ananassa. These studies provide a dense genomic framework of subgenome-specific DNA markers for seamlessly cross-referencing genetic and physical mapping information and unifying existing chromosome nomenclatures. Using comparative genomics, we show that geographically diverse wild octoploids are effectively diploidized, nearly completely collinear, and retain strong macro-synteny with diploid progenitor species. The preservation of genome structure among allo-octoploid taxa is a critical factor in the unique history of garden strawberry, where unimpeded gene flow supported its origin and domestication through repeated cycles of interspecific hybridization.
Collapse
Affiliation(s)
- Michael A. Hardigan
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mitchell J. Feldmann
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Kevin A. Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Randi Famula
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Charlotte Acharya
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Glenn Cole
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Steven J. Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
174
|
Guo C, Wang Y, Yang A, He J, Xiao C, Lv S, Han F, Yuan Y, Yuan Y, Dong X, Guo J, Yang Y, Liu H, Zuo N, Hu Y, Zhao K, Jiang Z, Wang X, Jiang T, Shen Y, Cao M, Wang Y, Long Z, Rong T, Huang L, Zhou S. The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication. MOLECULAR PLANT 2020; 13:309-320. [PMID: 31778843 DOI: 10.1016/j.molp.2019.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/24/2019] [Accepted: 11/13/2019] [Indexed: 05/20/2023]
Abstract
Coix is a grass crop domesticated as early as the Neolithic era. It is still widely cultivated for both highly nutritional food and medicinal use. However, the genetic study and breeding of this crop are hindered by the lack of a sequenced genome. Here, we report de novo sequencing and assembly of the 1619-Mb genome of Coix, and annotation of 75.39% repeats and 39 629 protein-coding genes. Comparative genomics analysis showed that Coix is more closely related to sorghum than maize, but intriguingly only Coix and maize had a recent genome duplication event, which was not detected in sorghum. We further constructed a genetic map and mapped several important traits, especially the strength of hull. Selection of papery hull (thin: easy dehulling) from the stony hull (thick: difficult dehulling) in wild progenitors was a key step in Coix domestication. The papery hull makes seed easier to process and germinate. Anatomic and global transcriptome analysis revealed that the papery hull is a result of inhibition of cell division and wall biogenesis. We also successfully demonstrated that seed hull pressure resistance is controlled by two major quantitative trait loci (QTLs), which are associated with hull thickness and color, respectively. The two QTLs were further fine mapped within intervals of 250 kb and 146 kb, respectively. These resources provide a platform for evolutionary studies and will facilitate molecular breeding of this important crop.
Collapse
Affiliation(s)
- Chao Guo
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yanan Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Aiguo Yang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jun He
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shanhua Lv
- College of Agronomy, Liaocheng University, Liaocheng 252000, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Yibing Yuan
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Xiaolong Dong
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China
| | - Yawen Yang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Hailan Liu
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Ningzhi Zuo
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxi Hu
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Kangxu Zhao
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengbo Jiang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Wang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Jiang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yaou Shen
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Moju Cao
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Wang
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaobo Long
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Tingzhao Rong
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, China.
| | - Shufeng Zhou
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
175
|
Liu H, Shi J, Cai Z, Huang Y, Lv M, Du H, Gao Q, Zuo Y, Dong Z, Huang W, Qin R, Liang C, Lai J, Jin W. Evolution and Domestication Footprints Uncovered from the Genomes of Coix. MOLECULAR PLANT 2020; 13:295-308. [PMID: 31778842 DOI: 10.1016/j.molp.2019.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 05/21/2023]
Abstract
Coix lacryma-jobi, a plant species closely related to Zea and Sorghum, is an important food and medicinal crop in Asia. However, no reference genome of this species has been reported, and its exact phylogeny within the Andropogoneae remains unresolved. Here, we generated a high-quality genome assembly of coix comprising ∼1.73 Gb with 44 485 predicted protein-coding genes. We found coix to be a typical diploid plant with an overall 1-to-1 syntenic relationship with the Sorghum genome, despite its drastic genome expansion (∼2.3-fold) due mainly to the activity of transposable elements. Phylogenetic analysis revealed that coix diverged with sorghum ∼10.41 million years ago, which was ∼1.49 million years later than the divergence between sorghum and maize. Resequencing of 27 additional coix accessions revealed that they could be unambiguously separated into wild relatives and cultivars, and suggested that coix experienced a strong genetic bottleneck, resulting in the loss of about half of the genetic diversity during domestication, even though many traits have remained undomesticated. Our data not only provide novel comparative genomic and evolutionary insights into the Andropogoneae lineage, but also an important resource that will greatly benefit molecular breeding of this important crop.
Collapse
Affiliation(s)
- Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Junpeng Shi
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Zexi Cai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Menglu Lv
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, P. R. China
| | - Qiang Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, P. R. China
| | - Yi Zuo
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Rui Qin
- Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of Hubei Province, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, 1 Beichen West Road No. 2, Beijing 100101, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China; State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, P. R. China.
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
176
|
Zheng Z, Hey S, Jubery T, Liu H, Yang Y, Coffey L, Miao C, Sigmon B, Schnable JC, Hochholdinger F, Ganapathysubramanian B, Schnable PS. Shared Genetic Control of Root System Architecture between Zea mays and Sorghum bicolor. PLANT PHYSIOLOGY 2020; 182:977-991. [PMID: 31740504 PMCID: PMC6997706 DOI: 10.1104/pp.19.00752] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/03/2019] [Indexed: 05/08/2023]
Abstract
Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize (Zea mays) and sorghum (Sorghum bicolor), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images collected from >3,300 maize roots and >1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87 TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown to affect RSA and 51 (37% of RSA-associated genes) are themselves transe-quantitative trait locus for another RSA-associated gene. Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the conservation of regulation of morphology across taxa.
Collapse
Affiliation(s)
- Zihao Zheng
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
| | - Stefan Hey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Talukder Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011
| | - Huyu Liu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yu Yang
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Lisa Coffey
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Chenyong Miao
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | | | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011
- Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
177
|
Gomez-Cano L, Gomez-Cano F, Dillon FM, Alers-Velazquez R, Doseff AI, Grotewold E, Gray J. Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110364. [PMID: 31928683 DOI: 10.1016/j.plantsci.2019.110364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionalization, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments. Co-expression of biosynthesis genes with transcription factors discovered connections that provided candidate components for regulatory modules governing this pathway. Our study provides a comprehensive analysis of maize phenylpropanoid related genes, identifies major pathway contributors, and novel candidate enzymatic and regulatory modules of the metabolic network.
Collapse
Affiliation(s)
- Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Francisco M Dillon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Andrea I Doseff
- Department of Physiology, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
178
|
Wang J, Yu J, Li Y, Wei C, Guo H, Liu Y, Zhang J, Li X, Wang X. Sequential Paleotetraploidization shaped the carrot genome. BMC PLANT BIOLOGY 2020; 20:52. [PMID: 32005164 PMCID: PMC6995200 DOI: 10.1186/s12870-020-2235-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/31/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND Carrot (Daucus carota subsp. carota L.) is an important root crop with an available high-quality genome. The carrot genome is thought to have undergone recursive paleo-polyploidization, but the extent, occurrences, and nature of these events are not clearly defined. RESULTS Using a previously published comparative genomics pipeline, we reanalysed the carrot genome and characterized genomic fractionation, as well as gene loss and retention, after each of the two tetraploidization events and inferred a dominant and sensitive subgenome for each event. In particular, we found strong evidence of two sequential tetraploidization events, with one (Dc-α) approximately 46-52 million years ago (Mya) and the other (Dc-β) approximately 77-87 Mya, both likely allotetraploidization in nature. The Dc-β event was likely common to all Apiales plants, occurring around the divergence of Apiales-Bruniales and after the divergence of Apiales-Asterales, likely playing an important role in the derivation and divergence of Apiales species. Furthermore, we found that rounds of polyploidy events contributed to the expansion of gene families responsible for plastidial methylerythritol phosphate (MEP), the precursor of carotenoid accumulation, and shaped underlying regulatory pathways. The alignment of orthologous and paralogous genes related to different events of polyploidization and speciation constitutes a comparative genomics platform for studying Apiales, Asterales, and many other related species. CONCLUSIONS Hierarchical inference of homology revealed two tetraploidization events that shaped the carrot genome, which likely contributed to the successful establishment of Apiales plants and the expansion of MEP, upstream of the carotenoid accumulation pathway.
Collapse
Affiliation(s)
- Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- College of Mathematics and Science, Handan University, Handan, 056005 Hebei China
| | - Jigao Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - He Guo
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Ying Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Jin Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
| | - Xiuqing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Frederiction, New Brunswick E3B 4Z7 Canada
| | - Xiyin Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, 063200 Hebei China
- School of Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 China
| |
Collapse
|
179
|
Baldauf JA, Vedder L, Schoof H, Hochholdinger F. Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:865-876. [PMID: 31638701 DOI: 10.1093/jxb/erz452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Distantly related maize (Zea mays L.) inbred lines exhibit an exceptional degree of structural genomic diversity, which is probably unique among plants. This study systematically investigated the developmental and genotype-dependent regulation of the primary root transcriptomes of a genetically diverse panel of maize F1-hybrids and their parental inbred lines. While we observed substantial transcriptomic changes during primary root development, we demonstrated that hybrid-associated gene expression patterns, including differential, non-additive, and allele-specific transcriptome profiles, are particularly robust to these developmental fluctuations. For instance, differentially expressed genes with preferential expression in hybrids were highly conserved during development in comparison to their parental counterparts. Similarly, in hybrids a major proportion of non-additively expressed genes with expression levels between the parental values were particularly conserved during development. Importantly, in these expression patterns non-syntenic genes that evolved after the separation of the maize and sorghum lineages were systemically enriched. Furthermore, non-syntenic genes were substantially linked to the conservation of all surveyed gene expression patterns during primary root development. Among all F1-hybrids, between ~40% of the non-syntenic genes with unexpected allelic expression ratios and ~60% of the non-syntenic differentially and non-additively expressed genes were conserved and therefore robust to developmental changes. Hence, the enrichment of non-syntenic genes during primary root development might be involved in the developmental adaptation of maize roots and thus the superior performance of hybrids.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Lucia Vedder
- Institute for Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Institute for Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
180
|
Wu S, Han B, Jiao Y. Genetic Contribution of Paleopolyploidy to Adaptive Evolution in Angiosperms. MOLECULAR PLANT 2020; 13:59-71. [PMID: 31678615 DOI: 10.1016/j.molp.2019.10.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Ancient whole-genome duplications (WGDs or polyploidy) are prevalent in plants, and some WGDs occurred during the timing of severe global environmental changes. It has been suggested that WGDs may have contributed to plant adaptation. However, this still lacks empirical evidence at the genetic level to support the hypothesis. Here, we investigated the survivors of gene duplicates from multiple ancient WGD events on the major branches of angiosperm phylogeny, and aimed to explore genetic evidence supporting the significance of polyploidy. Duplicated genes co-retained from three waves of independent WGDs (∼120 million years ago [Ma], ∼66, and <20 Ma) were investigated in 25 selected species. Gene families functioning in low temperature and darkness were commonly retained gene duplicates after the eight independently occurring WGDs in many lineages around the Cretaceous-Paleocene boundary, when the global cooling and darkness were the two main stresses. Moreover, the commonly retained duplicates could be key factors which may have contributed to the robustness of the critical stress-related pathways. In addition, genome-wide transcription factors (TFs) functioning in stresses tend to retain duplicates after waves of WGDs, and the coselected gene duplicates in many lineages may play critical roles during severe environmental stresses. Collectively, these results shed new light on the significant contribution of paleopolyploidy to plant adaptation during global environmental changes in the evolutionary history of angiosperms.
Collapse
Affiliation(s)
- Shengdan Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
181
|
Walsh JR, Woodhouse MR, Andorf CM, Sen TZ. Tissue-specific gene expression and protein abundance patterns are associated with fractionation bias in maize. BMC PLANT BIOLOGY 2020; 20:4. [PMID: 31900107 PMCID: PMC6942271 DOI: 10.1186/s12870-019-2218-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Maize experienced a whole-genome duplication event approximately 5 to 12 million years ago. Because this event occurred after speciation from sorghum, the pre-duplication subgenomes can be partially reconstructed by mapping syntenic regions to the sorghum chromosomes. During evolution, maize has had uneven gene loss between each ancient subgenome. Fractionation and divergence between these genomes continue today, constantly changing genetic make-up and phenotypes and influencing agronomic traits. RESULTS Here we regenerate the subgenome reconstructions for the most recent maize reference genome assembly. Based on both expression and abundance data for homeologous gene pairs across multiple tissues, we observed functional divergence of genes across subgenomes. Although the genes in the larger maize subgenome are often expressing more highly than their homeologs in the smaller subgenome, we observed cases where homeolog expression dominance switches in different tissues. We demonstrate for the first time that protein abundances are higher in the larger subgenome, but they also show tissue-specific dominance, a pattern similar to RNA expression dominance. We also find that pollen expression is uniquely decoupled from protein abundance. CONCLUSION Our study shows that the larger subgenome has a greater range of functional assignments and that there is a relative lack of overlap between the subgenomes in terms of gene functions than would be suggested by similar patterns of gene expression and protein abundance. Our study also revealed that some reactions are catalyzed uniquely by the larger and smaller subgenomes. The tissue-specific, nonequivalent expression-level dominance pattern observed here implies a change in regulatory control which favors differentiated selective pressure on the retained duplicates leading to eventual change in gene functions.
Collapse
Affiliation(s)
- Jesse R Walsh
- U.S. Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Margaret R Woodhouse
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA
| | - Carson M Andorf
- U.S. Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Taner Z Sen
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA, 94710, USA.
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
182
|
Moisseyev G, Park K, Cui A, Freitas D, Rajagopal D, Konda AR, Martin-Olenski M, Mcham M, Liu K, Du Q, Schnable JC, Moriyama EN, Cahoon EB, Zhang C. RGPDB: database of root-associated genes and promoters in maize, soybean, and sorghum. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5851117. [PMID: 32500918 PMCID: PMC7273057 DOI: 10.1093/database/baaa038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/02/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Root-associated genes play an important role in plants. Despite the fact that there have been studies on root biology, information on genes that are specifically expressed or upregulated in roots is poorly collected. There exist very few databases dedicated to genes and promoters associated with root biology, preventing effective root-related studies. Therefore, we analyzed multiple types of omics data to identify root-associated genes in maize, soybean, and sorghum and constructed a comprehensive online database of these genes and their promoter sequences. This database creates a pivotal platform capable of stimulating and facilitating further studies on manipulating root growth and development.
Collapse
Affiliation(s)
- Gleb Moisseyev
- Young Nebraska Scientists Program, University of Nebraska (EPSCoR), Lincoln, NE 68588, USA
| | - Kiyoul Park
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Alix Cui
- Young Nebraska Scientists Program, University of Nebraska (EPSCoR), Lincoln, NE 68588, USA
| | - Daniel Freitas
- Young Nebraska Scientists Program, University of Nebraska (EPSCoR), Lincoln, NE 68588, USA
| | - Divith Rajagopal
- Young Nebraska Scientists Program, University of Nebraska (EPSCoR), Lincoln, NE 68588, USA
| | - Anji Reddy Konda
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | | | - Mackenzie Mcham
- Young Nebraska Scientists Program, University of Nebraska (EPSCoR), Lincoln, NE 68588, USA
| | - Kan Liu
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Qian Du
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
183
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 PMCID: PMC7202327 DOI: 10.3389/fpls.2020.00496] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Rod Snowdon,
| |
Collapse
|
184
|
Miao Z, Zhang T, Qi Y, Song J, Han Z, Ma C. Evolution of the RNA N 6-Methyladenosine Methylome Mediated by Genomic Duplication. PLANT PHYSIOLOGY 2020; 182:345-360. [PMID: 31409695 PMCID: PMC6945827 DOI: 10.1104/pp.19.00323] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/03/2019] [Indexed: 05/19/2023]
Abstract
RNA N 6-methyladenosine (m6A) modification is the most abundant form of RNA epigenetic modification in eukaryotes. Given that m6A evolution is associated with the selective constraints of nucleotide sequences in mammalian genomes, we hypothesize that m6A evolution can be linked, at least in part, to genomic duplication events in complex polyploid plant genomes. To test this hypothesis, we presented the maize (Zea mays) m6A modification landscape in a transcriptome-wide manner and identified 11,968 m6A peaks carried by 5,893 and 3,811 genes from two subgenomes (maize1 and maize2, respectively). Each of these subgenomes covered over 2,200 duplicate genes. Within these duplicate genes, those carrying m6A peaks exhibited significant differences in retention rate. This biased subgenome fractionation of m6A-methylated genes is associated with multiple sequence features and is influenced by asymmetric evolutionary rates. We also characterized the coevolutionary patterns of m6A-methylated genes and transposable elements, which can be mediated by whole genome duplication and tandem duplication. We revealed the evolutionary conservation and divergence of duplicated m6A functional factors and the potential role of m6A modification in maize responses to drought stress. This study highlights complex interplays between m6A modification and gene duplication, providing a reference for understanding the mechanisms underlying m6A evolution mediated by genome duplication events.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Jie Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| |
Collapse
|
185
|
Welgemoed T, Pierneef R, Sterck L, Van de Peer Y, Swart V, Scheepers KD, Berger DK. De novo Assembly of Transcriptomes From a B73 Maize Line Introgressed With a QTL for Resistance to Gray Leaf Spot Disease Reveals a Candidate Allele of a Lectin Receptor-Like Kinase. FRONTIERS IN PLANT SCIENCE 2020; 11:191. [PMID: 32231673 PMCID: PMC7083176 DOI: 10.3389/fpls.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/07/2020] [Indexed: 05/03/2023]
Abstract
Gray leaf spot (GLS) disease in maize, caused by the fungus Cercospora zeina, is a threat to maize production globally. Understanding the molecular basis for quantitative resistance to GLS is therefore important for food security. We developed a de novo assembly pipeline to identify candidate maize resistance genes. Near-isogenic maize lines with and without a QTL for GLS resistance on chromosome 10 from inbred CML444 were produced in the inbred B73 background. The B73-QTL line showed a 20% reduction in GLS disease symptoms compared to B73 in the field (p = 0.01). B73-QTL leaf samples from this field experiment conducted under GLS disease pressure were RNA sequenced. The reads that did not map to the B73 or C. zeina genomes were expected to contain novel defense genes and were de novo assembled. A total of 141 protein-coding sequences with B73-like or plant annotations were identified from the B73-QTL plants exposed to C. zeina. To determine whether candidate gene expression was induced by C. zeina, the RNAseq reads from C. zeina-challenged and control leaves were mapped to a master assembly of all of the B73-QTL reads, and differential gene expression analysis was conducted. Combining results from both bioinformatics approaches led to the identification of a likely candidate gene, which was a novel allele of a lectin receptor-like kinase named L-RLK-CML that (i) was induced by C. zeina, (ii) was positioned in the QTL region, and (iii) had functional domains for pathogen perception and defense signal transduction. The 817AA L-RLK-CML protein had 53 amino acid differences from its 818AA counterpart in B73. A second "B73-like" allele of L-RLK was expressed at a low level in B73-QTL. Gene copy-specific RT-qPCR confirmed that the l-rlk-cml transcript was the major product induced four-fold by C. zeina. Several other expressed defense-related candidates were identified, including a wall-associated kinase, two glutathione s-transferases, a chitinase, a glucan beta-glucosidase, a plasmodesmata callose-binding protein, several other receptor-like kinases, and components of calcium signaling, vesicular trafficking, and ethylene biosynthesis. This work presents a bioinformatics protocol for gene discovery from de novo assembled transcriptomes and identifies candidate quantitative resistance genes.
Collapse
Affiliation(s)
- Tanya Welgemoed
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Kevin Daniel Scheepers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Dave K. Berger,
| |
Collapse
|
186
|
Crisp PA, Hammond R, Zhou P, Vaillancourt B, Lipzen A, Daum C, Barry K, de Leon N, Buell CR, Kaeppler SM, Meyers BC, Hirsch CN, Springer NM. Variation and Inheritance of Small RNAs in Maize Inbreds and F1 Hybrids. PLANT PHYSIOLOGY 2020; 182:318-331. [PMID: 31575624 PMCID: PMC6945832 DOI: 10.1104/pp.19.00817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/23/2019] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) regulate gene expression, play important roles in epigenetic pathways, and are hypothesized to contribute to hybrid vigor in plants. Prior investigations have provided valuable insights into associations between sRNAs and heterosis, often using a single hybrid genotype or tissue, but our understanding of the role of sRNAs and their potential value to plant breeding are limited by an incomplete picture of sRNA variation between diverse genotypes and development stages. Here, we provide a deep exploration of sRNA variation and inheritance among a panel of 108 maize (Zea mays) samples spanning five tissues from eight inbred parents and 12 hybrid genotypes, covering a spectrum of heterotic groups, genetic variation, and levels of heterosis for various traits. We document substantial developmental and genotypic influences on sRNA expression, with varying patterns for 21-nucleotide (nt), 22-nt, and 24-nt sRNAs. We provide a detailed view of the distribution of sRNAs in the maize genome, revealing a complex makeup that also shows developmental plasticity, particularly for 22-nt sRNAs. sRNAs exhibited substantially more variation between inbreds as compared with observed variation for gene expression. In hybrids, we identify locus-specific examples of nonadditive inheritance, mostly characterized as partial or complete dominance, but rarely outside the parental range. However, the global abundance of 21-nt, 22-nt, and 24-nt sRNAs varies very little between inbreds and hybrids, suggesting that hybridization affects sRNA expression principally at specific loci rather than on a global scale. This study provides a valuable resource for understanding the potential role of sRNAs in hybrid vigor.
Collapse
Affiliation(s)
- Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Reza Hammond
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Chris Daum
- United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
187
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 DOI: 10.3389/fpls.2020.00496/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
188
|
Anderson SN, Stitzer MC, Brohammer AB, Zhou P, Noshay JM, O'Connor CH, Hirsch CD, Ross-Ibarra J, Hirsch CN, Springer NM. Transposable elements contribute to dynamic genome content in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1052-1065. [PMID: 31381222 DOI: 10.1111/tpj.14489] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 05/05/2023]
Abstract
Transposable elements (TEs) are ubiquitous components of eukaryotic genomes and can create variation in genome organization and content. Most maize genomes are composed of TEs. We developed an approach to define shared and variable TE insertions across genome assemblies and applied this method to four maize genomes (B73, W22, Mo17 and PH207) with uniform structural annotations of TEs. Among these genomes we identified approximately 400 000 TEs that are polymorphic, encompassing 1.6 Gb of variable TE sequence. These polymorphic TEs include a combination of recent transposition events as well as deletions of older TEs. There are examples of polymorphic TEs within each of the superfamilies of TEs and they are found distributed across the genome, including in regions of recent shared ancestry among individuals. There are many examples of polymorphic TEs within or near maize genes. In addition, there are 2380 gene annotations in the B73 genome that are located within variable TEs, providing evidence for the role of TEs in contributing to the substantial differences in annotated gene content among these genotypes. TEs are highly variable in our survey of four temperate maize genomes, highlighting the major contribution of TEs in driving variation in genome organization and gene content. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://github.com/SNAnderson/maizeTE_variation; https://mcstitzer.github.io/maize_TEs.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michelle C Stitzer
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
| | - Alex B Brohammer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
189
|
Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ. The prevalence, evolution and chromatin signatures of plant regulatory elements. NATURE PLANTS 2019; 5:1250-1259. [PMID: 31740772 DOI: 10.1038/s41477-019-0548-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/09/2019] [Indexed: 05/03/2023]
Abstract
Chromatin accessibility and modification is a hallmark of regulatory DNA, the study of which led to the discovery of cis-regulatory elements (CREs). Here, we characterize chromatin accessibility, histone modifications and sequence conservation in 13 plant species. We identified thousands of putative CREs and revealed that distal CREs are prevalent in plants, especially in species with large and complex genomes. The majority of distal CREs have been moved away from their target genes by transposable-element (TE) proliferation, but a substantial number of distal CREs also seem to be created by TEs. Finally, plant distal CREs are associated with three major types of chromatin signatures that are distinct from metazoans. Taken together, these results suggest that CREs are prevalent in plants, highly dynamic during evolution and function through distinct chromatin pathways to regulate gene expression.
Collapse
Affiliation(s)
- Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
190
|
Aköz G, Nordborg M. The Aquilegia genome reveals a hybrid origin of core eudicots. Genome Biol 2019; 20:256. [PMID: 31779695 PMCID: PMC6883705 DOI: 10.1186/s13059-019-1888-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022] Open
Abstract
Background Whole-genome duplications (WGDs) have dominated the evolutionary history of plants. One consequence of WGD is a dramatic restructuring of the genome as it undergoes diploidization, a process under which deletions and rearrangements of various sizes scramble the genetic material, leading to a repacking of the genome and eventual return to diploidy. Here, we investigate the history of WGD in the columbine genus Aquilegia, a basal eudicot, and use it to illuminate the origins of the core eudicots. Results Within-genome synteny confirms that columbines are ancient tetraploids, and comparison with the grape genome reveals that this tetraploidy appears to be shared with the core eudicots. Thus, the ancient gamma hexaploidy found in all core eudicots must have involved a two-step process: first, tetraploidy in the ancestry of all eudicots, then hexaploidy in the ancestry of core eudicots. Furthermore, the precise pattern of synteny sharing suggests that the latter involved allopolyploidization and that core eudicots thus have a hybrid origin. Conclusions Novel analyses of synteny sharing together with the well-preserved structure of the columbine genome reveal that the gamma hexaploidy at the root of core eudicots is likely a result of hybridization between a tetraploid and a diploid species.
Collapse
Affiliation(s)
- Gökçe Aköz
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
191
|
Leiboff S, Hake S. Reconstructing the Transcriptional Ontogeny of Maize and Sorghum Supports an Inverse Hourglass Model of Inflorescence Development. Curr Biol 2019; 29:3410-3419.e3. [PMID: 31587998 DOI: 10.1016/j.cub.2019.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Assembling meaningful comparisons between species is a major limitation in studying the evolution of organismal form. To understand development in maize and sorghum, closely related species with architecturally distinct inflorescences, we collected RNA-seq profiles encompassing inflorescence body-plan specification in both species. We reconstructed molecular ontogenies from 40 B73 maize tassels and 47 BTx623 sorghum panicles and separated them into transcriptional stages. To discover new markers of inflorescence development, we used random forest machine learning to determine stage by RNA-seq. We used two descriptions of transcriptional conservation to identify hourglass-like stages during inflorescence development. Despite a relatively short 12 million years since their last common ancestor, we found maize and sorghum inflorescences are most different during their hourglass-like stages of development, following an inverse-hourglass model of development. We discuss whether agricultural selection may account for the rapid divergence signatures in these species and the observed separation of evolutionary pressure and developmental reprogramming.
Collapse
Affiliation(s)
- Samuel Leiboff
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California, Berkeley, Albany, CA 94710, USA.
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California, Berkeley, Albany, CA 94710, USA
| |
Collapse
|
192
|
Ding Y, Murphy KM, Poretsky E, Mafu S, Yang B, Char SN, Christensen SA, Saldivar E, Wu M, Wang Q, Ji L, Schmitz RJ, Kremling KA, Buckler ES, Shen Z, Briggs SP, Bohlmann J, Sher A, Castro-Falcon G, Hughes CC, Huffaker A, Zerbe P, Schmelz EA. Multiple genes recruited from hormone pathways partition maize diterpenoid defences. NATURE PLANTS 2019; 5:1043-1056. [PMID: 31527844 DOI: 10.1038/s41477-019-0509-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Duplication and divergence of primary pathway genes underlie the evolution of plant specialized metabolism; however, mechanisms partitioning parallel hormone and defence pathways are often speculative. For example, the primary pathway intermediate ent-kaurene is essential for gibberellin biosynthesis and is also a proposed precursor for maize antibiotics. By integrating transcriptional coregulation patterns, genome-wide association studies, combinatorial enzyme assays, proteomics and targeted mutant analyses, we show that maize kauralexin biosynthesis proceeds via the positional isomer ent-isokaurene formed by a diterpene synthase pair recruited from gibberellin metabolism. The oxygenation and subsequent desaturation of ent-isokaurene by three promiscuous cytochrome P450s and a new steroid 5α reductase indirectly yields predominant ent-kaurene-associated antibiotics required for Fusarium stalk rot resistance. The divergence and differential expression of pathway branches derived from multiple duplicated hormone-metabolic genes minimizes dysregulation of primary metabolism via the circuitous biosynthesis of ent-kaurene-related antibiotics without the production of growth hormone precursors during defence.
Collapse
Affiliation(s)
- Yezhang Ding
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Katherine M Murphy
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Elly Poretsky
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Sibongile Mafu
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Bing Yang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Si Nian Char
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, US Department of Agriculture-Agricultural Research Service, Gainesville, FL, USA
| | - Evan Saldivar
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Mengxi Wu
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Karl A Kremling
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Sher
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Castro-Falcon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
193
|
Wang J, Qin J, Sun P, Ma X, Yu J, Li Y, Sun S, Lei T, Meng F, Wei C, Li X, Guo H, Liu X, Xia R, Wang L, Ge W, Song X, Zhang L, Guo D, Wang J, Bao S, Jiang S, Feng Y, Li X, Paterson AH, Wang X. Polyploidy Index and Its Implications for the Evolution of Polyploids. Front Genet 2019; 10:807. [PMID: 31552101 PMCID: PMC6746930 DOI: 10.3389/fgene.2019.00807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Polyploidy has contributed to the divergence and domestication of plants; however, estimation of the relative roles that different types of polyploidy have played during evolution has been difficult. Unbalanced and balanced gene removal was previously related to allopolyploidies and autopolyploidies, respectively. Here, to infer the types of polyploidies and evaluate their evolutionary effects, we devised a statistic, the Polyploidy-index or P-index, to characterize the degree of divergence between subgenomes of a polyploidy, to find whether there has been a balanced or unbalanced gene removal from the homoeologous regions. Based on a P-index threshold of 0.3 that distinguishes between known or previously inferred allo- or autopolyploidies, we found that 87.5% of 24 angiosperm paleo-polyploidies were likely produced by allopolyploidizations, responsible for establishment of major tribes such as Poaceae and Fabaceae, and large groups such as monocots and eudicots. These findings suggest that >99.7% of plant genomes likely derived directly from allopolyploidies, with autopolyploidies responsible for the establishment of only a few small genera, including Glycine, Malus, and Populus, each containing tens of species. Overall, these findings show that polyploids with high divergence between subgenomes (presumably allopolyploids) established the major plant groups, possibly through secondary contact between previously isolated populations and hybrid vigor associated with their re-joining.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Qin
- Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Pengchuan Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xuelian Ma
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jigao Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Yuxian Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Sangrong Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Tianyu Lei
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Fanbo Meng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Chendan Wei
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xinyu Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - He Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaojian Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Ruiyan Xia
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Li Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Weina Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Di Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Jinyu Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shoutong Bao
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shan Jiang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Yishan Feng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xueping Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, United States
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
194
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
195
|
Dong Z, Yu J, Li H, Huang W, Xu L, Zhao Y, Zhang T, Xu W, Jiang J, Su Z, Jin W. Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Res 2019; 46:5012-5028. [PMID: 29579310 PMCID: PMC6007749 DOI: 10.1093/nar/gky209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 01/16/2023] Open
Abstract
By putting heterologous genomic regulatory systems into contact, chromosome addition lines derived from interspecific or intergeneric crosses allow the investigation of transcriptional regulation in new genomic environments. Here, we report the transcriptional and epigenetic adaptation of stably inherited alien maize chromosomes in two oat–maize addition (OMA) lines. We found that the majority of maize genes displayed maize-specific transcription in the oat genomic environment. Nevertheless, a quarter of the expressed genes encoded by the two maize chromosomes were differentially expressed genes (DEGs). Notably, highly conserved orthologs were more severely differentially expressed in OMAs than less conserved orthologs. Additionally, syntenic genes and highly abundant genes were over-represented among DEGs. Gene suppression was more common than activation among the DEGs; however, the genes in the former maize pericentromere, which expanded to become the new centromere in OMAs, were activated. Histone modifications (H3K4me3, H3K9ac and H3K27me3) were consistent with these transcriptome results. We expect that cis regulation is responsible for unchanged expression in OMA versus maize; and trans regulation is the predominant mechanism behind DEGs. The genome interaction identified here reveals the important consequences of interspecific/intergeneric crosses and potential mechanisms of plant evolution when genomic environments interact.
Collapse
Affiliation(s)
- Zhaobin Dong
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China.,Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, CA 94710, USA
| | - Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 10093, P. R. China
| | - Hui Li
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| | - Wei Huang
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| | - Ling Xu
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China.,Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, CA 94710, USA
| | - Yue Zhao
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 10093, P. R. China
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 10093, P. R. China
| | - Weiwei Jin
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| |
Collapse
|
196
|
Xie T, Zhang FG, Zhang HY, Wang XT, Hu JH, Wu XM. Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. NATURE PLANTS 2019; 5:822-832. [PMID: 31383969 DOI: 10.1038/s41477-019-0479-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/19/2019] [Indexed: 05/07/2023]
Abstract
The non-random three-dimensional (3D) organization of the genome in the nucleus is critical to gene regulation and genome function. Using high-throughput chromatin conformation capture, we generated chromatin interaction maps for Brassica rapa and Brassica oleracea at a high resolution and characterized the conservation and divergence of chromatin organization in these two species. Large-scale chromatin structures, including A/B compartments and topologically associating domains, are notably conserved between B. rapa and B. oleracea, yet their KNOT structures are highly divergent. We found that genes retained in less fractionated subgenomes exhibited stronger interaction strengths, and diploidization-resistant duplicates retained in pairs or triplets are more likely to be colocalized in both B. rapa and B. oleracea. These observations suggest that spatial constraint in duplicated genes is correlated to their biased retention in the diploidization process. In addition, we found strong similarities in the epigenetic modification and Gene Ontology terms of colocalized paralogues, which were largely conserved across B. rapa and B. oleracea, indicating functional constraints on their 3D positioning in the nucleus. This study presents an investigation of the spatial organization of genomes in Brassica and provides insights on the role of 3D organization in the genome evolution of this genus.
Collapse
Affiliation(s)
- Ting Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Fu-Gui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Tao Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Ji-Hong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao-Ming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
197
|
Sriswasdi S, Takashima M, Manabe RI, Ohkuma M, Iwasaki W. Genome and transcriptome evolve separately in recently hybridized Trichosporon fungi. Commun Biol 2019; 2:263. [PMID: 31341962 PMCID: PMC6642101 DOI: 10.1038/s42003-019-0515-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022] Open
Abstract
Genome hybridization is an important evolutionary event that gives rise to species with novel capabilities. However, the merging of distinct genomes also brings together incompatible regulatory networks that must be resolved during the course of evolution. Understanding of the early stages of post-hybridization evolution is particularly important because changes in these stages have long-term evolutionary consequences. Here, via comparative transcriptomic analyses of two closely related, recently hybridized Trichosporon fungi, T. coremiiforme and T. ovoides, and three extant relatives, we show that early post-hybridization evolutionary processes occur separately at the gene sequence and gene expression levels but together contribute to the stabilization of hybrid genome and transcriptome. Our findings also highlight lineage-specific consequences of genome hybridization, revealing that the transcriptional regulatory dynamics in these hybrids responded completely differently to gene loss events: one involving both subgenomes and another that is strictly subgenome-specific.
Collapse
Affiliation(s)
- Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathum Wan, Bangkok 10330 Thailand
- Computational Molecular Biology Group, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathum Wan, Bangkok 10330 Thailand
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074 Japan
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 Japan
| | - Ri-ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074 Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568 Japan
- Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan
| |
Collapse
|
198
|
Hughes TE, Sedelnikova OV, Wu H, Becraft PW, Langdale JA. Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize. Development 2019; 146:dev.177543. [PMID: 31235633 PMCID: PMC6679360 DOI: 10.1242/dev.177543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023]
Abstract
The highly efficient C4 photosynthetic pathway is facilitated by ‘Kranz’ leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C4 monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h. ZmSCR1 and ZmSCR1h transcripts accumulate in ground meristem cells of developing leaf primordia and in Zmscr1;Zmscr1h mutant leaves, most veins are separated by one rather than two mesophyll cells; many veins have sclerenchyma above and/or below instead of mesophyll cells; and supernumerary bundle sheath cells develop. The mutant defects are unified by compromised mesophyll cell development. In addition to Kranz defects, Zmscr1;Zmscr1h mutants fail to form an organized endodermal layer in the root. Collectively, these data indicate that ZmSCR1 and ZmSCR1h redundantly regulate cell-type patterning in both the leaves and roots of maize. Leaf and root pathways are distinguished, however, by the cell layer in which they operate – mesophyll at a two-cell distance from leaf veins versus endodermis immediately adjacent to root vasculature. Summary: Two duplicated maize SCARECROW genes control the development of the endodermis in roots and the mesophyll in leaves.
Collapse
Affiliation(s)
- Thomas E Hughes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Olga V Sedelnikova
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Hao Wu
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Philip W Becraft
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
199
|
Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey MK, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique KHM, Liu ZJ, Paterson AH, Varshney RK, Liang X. Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. MOLECULAR PLANT 2019; 12:920-934. [PMID: 30902685 DOI: 10.1016/j.molp.2019.03.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 05/21/2023]
Abstract
Cultivated peanut (Arachis hypogaea) is an allotetraploid crop planted in Asia, Africa, and America for edible oil and protein. To explore the origins and consequences of tetraploidy, we sequenced the allotetraploid A. hypogaea genome and compared it with the related diploid Arachis duranensis and Arachis ipaensis genomes. We annotated 39 888 A-subgenome genes and 41 526 B-subgenome genes in allotetraploid peanut. The A. hypogaea subgenomes have evolved asymmetrically, with the B subgenome resembling the ancestral state and the A subgenome undergoing more gene disruption, loss, conversion, and transposable element proliferation, and having reduced gene expression during seed development despite lacking genome-wide expression dominance. Genomic and transcriptomic analyses identified more than 2 500 oil metabolism-related genes and revealed that most of them show altered expression early in seed development while their expression ceases during desiccation, presenting a comprehensive map of peanut lipid biosynthesis. The availability of these genomic resources will facilitate a better understanding of the complex genome architecture, agronomically and economically important genes, and genetic improvement of peanut.
Collapse
Affiliation(s)
- Xiaoping Chen
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China.
| | - Qing Lu
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Hao Liu
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Jianan Zhang
- National Foxtail Millet Improvement Center, Minor Cereal Crops Laboratory of Hebei Province, Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yanbin Hong
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Haofa Lan
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, China
| | - Haifen Li
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Jinpeng Wang
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Haiyan Liu
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Shaoxiong Li
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Zhikang Zhang
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Guiyuan Zhou
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Jigao Yu
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Guoqiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Jiaqing Yuan
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xingyu Li
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Shijie Wen
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China
| | - Fanbo Meng
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Xiyin Wang
- School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Kadambot H M Siddique
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Australia
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, USA.
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Xuanqiang Liang
- South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou, China.
| |
Collapse
|
200
|
Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, Ashby R, Nagy I, Khan A, Larking A, Anderson C, Franzmayr B, Hancock K, Scott A, Ellison NW, Cox MP, Asp T, Mailund T, Schierup MH, Andersen SU. Breaking Free: The Genomics of Allopolyploidy-Facilitated Niche Expansion in White Clover. THE PLANT CELL 2019; 31:1466-1487. [PMID: 31023841 PMCID: PMC6635854 DOI: 10.1105/tpc.18.00606] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/15/2019] [Accepted: 04/22/2019] [Indexed: 05/18/2023]
Abstract
The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Roger Moraga
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Marni Tausen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Timothy P Bilton
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Matthew A Campbell
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Rachael Ashby
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Anar Khan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Anna Larking
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Craig Anderson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Benjamin Franzmayr
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Kerry Hancock
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Alicia Scott
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nick W Ellison
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Murray P Cox
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel H Schierup
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|