151
|
Yang CS. Influences of Dietary and Other Factors on Xenobiotic Metabolism and Carcinogenesis—A Review Article in Memory of Dr. Allan H. Conney (1930–2013). Nutr Cancer 2015; 67:1207-13. [DOI: 10.1080/01635581.2015.1081010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
152
|
Stage TB, Damkier P, Christensen MMH, Nielsen LBK, Højlund K, Brøsen K. Impaired Glucose Tolerance in Healthy Men Treated with St. John's Wort. Basic Clin Pharmacol Toxicol 2015; 118:219-24. [DOI: 10.1111/bcpt.12486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Tore Bjerregaard Stage
- Clinical Pharmacology; Department of Public Health; University of Southern Denmark; Odense Denmark
| | - Per Damkier
- Clinical Pharmacology; Department of Public Health; University of Southern Denmark; Odense Denmark
- Department of Clinical Chemistry and Pharmacology; Odense University Hospital; Odense Denmark
| | - Mette Marie Hougaard Christensen
- Clinical Pharmacology; Department of Public Health; University of Southern Denmark; Odense Denmark
- Department of Clinical Chemistry and Pharmacology; Odense University Hospital; Odense Denmark
| | | | - Kurt Højlund
- Department of Endocrinology; Odense University Hospital; Odense Denmark
| | - Kim Brøsen
- Clinical Pharmacology; Department of Public Health; University of Southern Denmark; Odense Denmark
| |
Collapse
|
153
|
Affiliation(s)
- Chi P. Ting
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
154
|
Lau AJ, Chang TKH. 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor: Implication for inflammatory bowel disease. Pharmacol Res 2015; 100:64-72. [PMID: 26238175 DOI: 10.1016/j.phrs.2015.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
Pregnane X receptor (PXR; NR1I2) is a member of the superfamily of nuclear receptors that regulates the expression of genes involved in various biological processes, including drug transport and biotransformation. In the present study, we investigated the effect of 3-hydroxyflavone and its structurally-related analogues on PXR activity. 3-Hydroxyflavone, galangin, kaempferol, querceetin, isorhamnetin, and tamarixetin, but not but not datiscetin, morin, myricetin, or syringetin, activated mouse PXR, as assessed in a cell-based reporter gene assay. By comparison, 3-hydroxyflavone activated rat PXR, whereas 3-hydroxyflavone, galangin, quercetin, isorhamnetin, and tamarixetin activated human PXR (hPXR). A time-resolved fluorescence resonance energy transfer competitive ligand-binding assay showed binding to the ligand-binding domain of hPXR by 3-hydroxyflavone, galangin, quercetin, isorhamnetin, and tamarixetin. 3-Hydroxyflavone and galangin, but not quercetin, isorhamnetin, or tamarixetin, recruited steroid receptor coactivator (SRC)-1, SRC-2, and SRC-3 to hPXR. In LS180 human colon adenocarcinoma cells, 3-hydroxyflavone, quercetin, and tamarixetin increased CYP3A4, CYP3A5, and ABCB1 mRNA expression, whereas galangin and isorhamnetin increased CYP3A4 and ABCB1 but not CYP3A5 mRNA expression. Datiscetin, kaempferol, morin, myricetin, and syringetin did not attenuate the extent of hPXR activation by rifampicin, suggesting they are not hPXR antagonists. Overall, flavonols activate PXR in an analogue-specific and species-dependent manner. Substitution at the C2' or C5' position of 3-hydroxyflavone with a hydroxyl or methoxy group rendered it incapable of activating hPXR. Understanding the structure-activity relationship of flavonols in hPXR activation may facilitate nutraceutical development efforts in the treatment of PXR-associated intestinal diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Aik Jiang Lau
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
155
|
Sparling BA, Tucker JK, Moebius DC, Shair MD. Total Synthesis of (-)-Nemorosone and (+)-Secohyperforin. Org Lett 2015; 17:3398-401. [PMID: 26125288 DOI: 10.1021/acs.orglett.5b01121] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A general strategy for the synthesis of polycyclic polyprenylated acylphloroglucinols is described in which a scalable, Lewis acid catalyzed epoxide-opening cascade cyclization is used to furnish common intermediate 4. The utility of this approach is exemplified by the total syntheses of both ent-nemorosone and (+)-secohyperforin, which were each accomplished in four steps from this intermediate.
Collapse
Affiliation(s)
- Brian A Sparling
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02139, United States
| | - James K Tucker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02139, United States
| | - David C Moebius
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02139, United States
| | - Matthew D Shair
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
156
|
Mo L, He J. Nuclear hormone receptors PXR and CAR and metabolic diseases. Horm Mol Biol Clin Investig 2015; 19:129-40. [PMID: 25390021 DOI: 10.1515/hmbci-2014-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NRs) belong to a superfamily of evolutionarily related DNA-binding transcription factors that can be activated by steroid and thyroid hormones, and other lipid metabolites. Ligand activated NRs can regulate target gene expression by binding to DNA response elements present in the target gene promoters. Through this regulation, NRs are broadly implicated in physiology and metabolism. In this chapter, we will focus on the xenobiotic receptors and their recently discovered functions in metabolic diseases.
Collapse
|
157
|
Manna SK, Golla S, Golla JP, Tanaka N, Cai Y, Takahashi S, Krausz KW, Matsubara T, Korboukh I, Gonzalez FJ. St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling. Cancer Prev Res (Phila) 2015; 8:786-95. [PMID: 26069204 DOI: 10.1158/1940-6207.capr-14-0113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/28/2015] [Indexed: 12/13/2022]
Abstract
Despite widespread use as well as epidemiologic indications, there have been no investigations into the effect of St. John's wort (SJW) extract on colorectal carcinogenesis in vivo. This study reports a systematic evaluation of the impact of dietary supplementation of SJW extract on azoxymethane-induced colorectal carcinogenesis in mice. Mice were fed with either AIN-93G (control) diet or SJW extract-supplemented diet (SJW diet) prior to azoxymethane treatment. SJW diet was found to significantly improve the overall survival of azoxymethane-treated mice. Pretreatment with the SJW diet significantly reduced body weight loss as well as decrease of serum albumin and cholesterol levels associated with azoxymethane-induced colorectal tumorigenesis. SJW diet-fed mice showed a significant decrease in tumor multiplicity along with a decrease in incidence of large tumors and a trend toward decreased total tumor volume in a dose-dependent manner. A short-term study, which examined the effect of SJW prior to rectal bleeding, also showed decrease in colorectal polyps in SJW diet-fed mice. Nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase (ERK1/2) pathways were attenuated by SJW administration. SJW extract resulted in early and continuous attenuation of these pathways in the colon epithelium of SJW diet-fed mice under both short-term and long-term treatment regimens. In conclusion, this study demonstrated the chemopreventive potential of SJW extract against colorectal cancer through attenuation of proinflammatory processes.
Collapse
Affiliation(s)
- Soumen K Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Srujana Golla
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jaya Prakash Golla
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yan Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
158
|
White HD, Brown LAJ, Gyurik RJ, Manganiello PD, Robinson TD, Hallock LS, Lewis LD, Yeo KTJ. Treatment of pain in fibromyalgia patients with testosterone gel: Pharmacokinetics and clinical response. Int Immunopharmacol 2015; 27:249-56. [PMID: 26004317 DOI: 10.1016/j.intimp.2015.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
To test our hypothesis that testosterone deficiency plays an important role in chronic pain, a Phase I/II pilot study was initiated with 12 fibromyalgia patients to verify that a daily dose for 28days with transdermal testosterone gel would 1) significantly and safely increase mean serum testosterone concentrations from low baseline levels to mid/high-normal levels, and 2) effectively treat the pain and fatigue symptoms of fibromyalgia. Pharmacokinetic data confirmed that serum free testosterone concentrations were raised significantly above baseline levels, by assessment of maximum hormone concentration (Cmax) and area under the curve (AUC) parameters: free testosterone Cmax was significantly raised from a mean of 2.64pg/mL to 3.91pg/mL (p<0.05), and 24hour free testosterone AUC was significantly raised from a mean of 35.0pg-hr/mL to 53.89pg-hr/mL. Assessment of the typical symptoms of fibromyalgia by patient questionnaire and tender point exam demonstrated significant change in: decreased muscle pain, stiffness, and fatigue, and increased libido during study treatment. These results are consistent with the hypothesized ability of testosterone to relieve the symptoms of fibromyalgia. Symptoms not tightly related to fibromyalgia were not improved.
Collapse
Affiliation(s)
- Hillary D White
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA; White Mountain Pharma, 21 East 90th St, 8A, New York, NY 10128, USA.
| | - Lin A J Brown
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Robert J Gyurik
- CPEX Pharmaceuticals, Inc., 1105 North Market St., Suite 1300, Wilmington, DE 19801, USA.
| | - Paul D Manganiello
- Department of Obstetrics & Gynecology, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Thomas D Robinson
- White Mountain Pharma, 21 East 90th St, 8A, New York, NY 10128, USA.
| | - Linda S Hallock
- Department of Obstetrics & Gynecology, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Lionel D Lewis
- Department of Medicine, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756, USA.
| | - Kiang-Teck J Yeo
- Department of Pathology, Dartmouth Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
159
|
Ge LELE, Kan LDI, Zhuge ZB, Ma KE, Chen SQ. Ophiopogon japonicus strains from different cultivation regions exhibit markedly different properties on cytotoxicity, pregnane X receptor activation and cytochrome P450 3A4 induction. Biomed Rep 2015; 3:430-434. [PMID: 26137250 DOI: 10.3892/br.2015.443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/06/2015] [Indexed: 11/06/2022] Open
Abstract
Maidong, known as Ophiopogon japonicus, is one of the two basic ingredients of Shenmai injection, which is a widely used herbal preparation in traditional Chinese medicine (TCM) for the treatment of atherosclerotic coronary heart disease and viral myocarditis. Previously, the ethanol extract of Maidong activated the pregnane X receptor (PXR) signaling pathway and induced the cytochrome P450 3A4 (CYP3A4) reporter gene and raised the concern of herb-drug interactions (HDIs) when Maidong was used in combination with prescribed drugs metabolized by CYP3A4. Therefore, the present study further investigated and compared the differences of the ethanol and aqueous extracts (ee- and ae-, respectively) of two Maidong strains, known as Zhe Maidong (ZM) and Chuan Maidong (CM). Cytotoxicity, PXR activation and CYP3A4 induction by the 3-(4,5)-dimethylthiahiazo-(-z-y1)-3,5-diphenytetrazoliumromide assay, reporter gene assay and reverse transcription-quantitative polymerase chain reaction analysis were examined. The observations showed that ee-ZM demonstrated a significantly higher cytotoxicity, a relatively weaker PXR activation capability and a markedly stronger CYP3A4-inducing capacity than ee-CM. Compared to ae-CM, ae-ZM exhibited only a slight or no difference on cytotoxicity and CYP3A4 induction, while a significant lower level of PXR activation was apparent. Collectively, Maidong from different producing areas possess different properties upon cytotoxicity and the drug-metabolizing enzyme inducing effect, and attention should be paid to the selection of Maidong strains from different planting regions into TCM preparations for reducing potential adverse reactions and HDIs.
Collapse
Affiliation(s)
- LE-LE Ge
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lian-DI Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zheng-Bing Zhuge
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - K E Ma
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shu-Qing Chen
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
160
|
Sun M, Cui W, Woody SK, Staudinger JL. Pregnane X receptor modulates the inflammatory response in primary cultures of hepatocytes. Drug Metab Dispos 2015; 43:335-43. [PMID: 25527709 PMCID: PMC4352581 DOI: 10.1124/dmd.114.062307] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial sepsis is characterized by a rapid increase in the expression of inflammatory mediators to initiate the acute phase response in liver. Inflammatory mediator release is counterbalanced by the coordinated expression of anti-inflammatory molecules such as interleukin 1 receptor antagonist (IL1-Ra) through time. This study determined whether activation of pregnane X receptor (PXR, NR1I2) alters the lipopolysaccharide (LPS)-inducible gene expression program in primary cultures of hepatocytes (PCHs). Preactivation of PXR for 24 hours in PCHs isolated from wild-type mice suppressed the subsequent LPS-inducible expression of the key inflammatory mediators interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNFα) but not in PCHs isolated from Pxr-null (PXR-knockout [KO]) mice. Basal expression of key inflammatory cytokines was elevated in PCHs from PXR-KO mice. Stimulation of PCHs from PXR-KO mice with LPS alone produced enhanced levels of IL-1β when compared with wild-type mice. Experiments performed using PCHs from both humanized-PXR transgenic mice as well as human donors indicate that prolonged activation of PXR produces an increased secretion of IL1-Ra from cells through time. Our data reveal a working model that describes a pivotal role for PXR in both inhibiting as well as in resolving the inflammatory response in hepatocytes. Understanding the molecular details of how PXR is converted from a positive regulator of drug-metabolizing enzymes into a transcriptional suppressor of inflammation in liver will provide new pharmacologic strategies for modulating inflammatory-related diseases in the liver and intestine.
Collapse
Affiliation(s)
- Mengxi Sun
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Wenqi Cui
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Jeff L Staudinger
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| |
Collapse
|
161
|
Li L, Bonneton F, Chen XY, Laudet V. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine. Mol Cell Endocrinol 2015; 401:221-37. [PMID: 25449417 DOI: 10.1016/j.mce.2014.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network.
Collapse
Affiliation(s)
- Ling Li
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France.; School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - François Bonneton
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France
| | - Xiao Yong Chen
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS UMR 5242; Ecole Normale Supérieure de Lyon, France..
| |
Collapse
|
162
|
Shuker N, van Gelder T, Hesselink DA. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev (Orlando) 2015; 29:78-84. [PMID: 25687818 DOI: 10.1016/j.trre.2015.01.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/22/2014] [Accepted: 01/11/2015] [Indexed: 12/18/2022]
Abstract
Tacrolimus (Tac) is widely used for the prevention of rejection after solid organ transplantation. Finding the optimal balance between effective Tac concentrations and toxicity is a challenge and requires therapeutic drug monitoring. In addition to the well-known inter-patient variability, the clinical use of Tac is also complicated by considerable intra-patient variability (IPV) in Tac exposure. Tac IPV is defined as the amount of fluctuation of whole-blood concentrations over a certain period of time during which the Tac dose remains unchanged. A high IPV in Tac exposure has recently been recognized as a strong risk factor for acute rejection and poor long-term kidney transplantation outcome. In addition to non-adherence, several other factors determine the magnitude of the IPV in Tac exposure. Quantification of IPV is easy and can be easily incorporated into everyday clinical practice as a tool for optimizing transplantation outcomes.
Collapse
Affiliation(s)
- Nauras Shuker
- Department of Internal Medicine, Division of Nephrology and Renal Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Hospital Pharmacy, Clinical Pharmacology Unit, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Renal Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; Hospital Pharmacy, Clinical Pharmacology Unit, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Renal Transplantation, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
163
|
Friedland K, Harteneck C. Hyperforin: To Be or Not to Be an Activator of TRPC(6). Rev Physiol Biochem Pharmacol 2015; 169:1-24. [DOI: 10.1007/112_2015_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
164
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
165
|
Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 2015; 6:1399-417. [DOI: 10.1039/c4fo01178c] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The physiological functions and mechanisms of action of quercetin and its related polyphenols are highlighted, including their effects on brain, blood vessels, muscle, and intestinal microflora.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Department of Bioscience
- Fukui Prefectural University
- Eiheiji-cho, Yoshida-gun, Fukui 910-1195
- Japan
| | - Rie Mukai
- Department of Food Science
- Institute of Health Biosciences
- The University of Tokushima Graduate School
- Tokushima 770-8503
- Japan
| | - Akari Ishisaka
- School of Human Science and Environment
- University of Hyogo
- Himeji 670-0092
- Japan
| |
Collapse
|
166
|
Weiss J, Haefeli WE. Comment on: Pharmacokinetics of the co-administration of boceprevir and St John's wort to male and female healthy volunteers. J Antimicrob Chemother 2015; 70:322-3. [DOI: 10.1093/jac/dku353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
167
|
Shi H, Tian S, Li Y, Li D, Yu H, Zhen X, Hou T. Absorption, Distribution, Metabolism, Excretion, and Toxicity Evaluation in Drug Discovery. 14. Prediction of Human Pregnane X Receptor Activators by Using Naive Bayesian Classification Technique. Chem Res Toxicol 2014; 28:116-25. [DOI: 10.1021/tx500389q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huali Shi
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Sheng Tian
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Youyong Li
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Dan Li
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Huidong Yu
- Crystal Pharmatech Inc., 707
Alexander Road, Building 2, Suite 208, Princeton, New Jersey 08540, United States
| | - Xuechu Zhen
- College
of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Tingjun Hou
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
- College
of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
168
|
Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett 2014; 232:580-9. [PMID: 25542144 DOI: 10.1016/j.toxlet.2014.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022]
Abstract
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3'-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States.
| | - Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, United States
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, AL, United States
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
169
|
Protonophore properties of hyperforin are essential for its pharmacological activity. Sci Rep 2014; 4:7500. [PMID: 25511254 PMCID: PMC4266863 DOI: 10.1038/srep07500] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
Hyperforin is a pharmacologically active component of the medicinal plant Hypericum perforatum (St. John's wort), recommended as a treatment for a range of ailments including mild to moderate depression. Part of its action has been attributed to TRPC6 channel activation. We found that hyperforin induces TRPC6-independent H+ currents in HEK-293 cells, cortical microglia, chromaffin cells and lipid bilayers. The latter demonstrates that hyperforin itself acts as a protonophore. The protonophore activity of hyperforin causes cytosolic acidification, which strongly depends on the holding potential, and which fuels the plasma membrane sodium-proton exchanger. Thereby the free intracellular sodium concentration increases and the neurotransmitter uptake by Na+ cotransport is inhibited. Additionally, hyperforin depletes and reduces loading of large dense core vesicles in chromaffin cells, which requires a pH gradient in order to accumulate monoamines. In summary the pharmacological actions of the “herbal Prozac” hyperforin are essentially determined by its protonophore properties shown here.
Collapse
|
170
|
Interactions between herbs and antidiabetics: an overview of the mechanisms, evidence, importance, and management. Arch Pharm Res 2014; 38:1281-98. [PMID: 25475096 DOI: 10.1007/s12272-014-0517-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023]
Abstract
Complementary and alternative therapies are quickly gaining importance because they are perceived to be free of side effects due to their natural origin. However, herbal remedies are complex mixtures of bioactive entities, which may interact with prescription drugs through pharmacokinetic or pharmacodynamic mechanisms and sometimes result in life-threatening consequences. In particular, diabetes patients are often treated with multiple medications due to different comorbidities, and such patients use antidiabetic medications for their entire lives; thus, it is important to make the public aware of herb interactions with antidiabetic drugs. In this paper, we summarize the reports available on the interaction of herbal remedies with oral hypoglycemic agents and describe mechanisms, preclinical or clinical evidence, importance, and management strategies.
Collapse
|
171
|
Kuang X, Li W, Kanno Y, Mochizuki M, Inouye Y, Koike K. Cycloartane-type triterpenes from Euphorbia fischeriana stimulate human CYP3A4 promoter activity. Bioorg Med Chem Lett 2014; 24:5423-7. [DOI: 10.1016/j.bmcl.2014.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
|
172
|
Review of the regulations for clinical research in herbal medicines in USA. Chin J Integr Med 2014; 20:883-93. [PMID: 25428336 DOI: 10.1007/s11655-014-2024-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Indexed: 01/17/2023]
Abstract
In 2012, USA Food and Drug Administration (FDA) approved 39 new drugs, however, there are only two botanical drugs (one topical and one oral) approved by FDA since the publication of the FDA's industry guidelines for the botanical drug product in June 2004. The approval shows the Western guideline can be used for herbal medicines, authors investigate current regulation on herbal medicine clinical research, identify challenges conducting clinical trials, and seek to produce some guidance for potential investigators and sponsors considering a clinical trial in this area. Key words were formulated for searching on Medline and FDA website to locate relevant regulations for clinical research in herbal medicines to understand current environment for herbal medicine usage and examine the barriers affecting herbal medicine in clinical trials. Authors critically explore case study of the 1st FDA approved botanical drugs, Veregen (sinecatechins), green tea leaves extract, a topical cream for perianal and genital condyloma. In consideration of current regulation environment in USA, based on the findings and analysis through the literature review and Veregen case study, authors produce and propose a Checklist for New Drug Application of Herbal Medicines for potential investigators and sponsors considering in a herbal medicine clinical trial.
Collapse
|
173
|
Selvaraj S, Ramanathan R, Vasudevaraja V, Rajan KS, Krishnaswamy S, Pemiah B, Sethuraman S, Ramakrishnan V, Krishnan UM. Transcriptional regulation of the pregnane-X receptor by the Ayurvedic formulation Chandraprabha Vati. RSC Adv 2014. [DOI: 10.1039/c4ra13553a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
174
|
Banerjee M, Chen T. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1. Biochem Pharmacol 2014; 92:389-402. [PMID: 25181459 PMCID: PMC4252478 DOI: 10.1016/j.bcp.2014.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)-approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of hPXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in hPXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates hPXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates hPXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Mail Stop 1000, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Mail Stop 1000, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA.
| |
Collapse
|
175
|
Chiang TS, Yang KC, Wu YM, Lai HS, Jiang CC, Chiou LL, Lee KL, Huang GT, Lee HS. Higher expression of cytochrome P450 3A4 in human mesenchymal and adipose-derived stem cells than in dermal fibroblasts: With emphasis on the correlation with basal pregnane X receptor expression. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
176
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
The influence of standardized Valeriana officinalis extract on the CYP3A1 gene expression by nuclear receptors in in vivo model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:819093. [PMID: 25302309 PMCID: PMC4180645 DOI: 10.1155/2014/819093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022]
Abstract
Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme.
Collapse
|
178
|
Prestin K, Wolf S, Feldtmann R, Hussner J, Geissler I, Rimmbach C, Kroemer HK, Zimmermann U, Meyer zu Schwabedissen HE. Transcriptional regulation of urate transportosome member SLC2A9 by nuclear receptor HNF4α. Am J Physiol Renal Physiol 2014; 307:F1041-51. [PMID: 25209865 DOI: 10.1152/ajprenal.00640.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal tubular handling of urate is realized by a network of uptake and efflux transporters, including members of drug transporter families such as solute carrier proteins and ATP-binding cassette transporters. Solute carrier family 2, member 9 (SLC2A9), is one key factor of this so called "urate transportosome." The aim of the present study was to understand the transcriptional regulation of SLC2A9 and to test whether identified factors might contribute to a coordinated transcriptional regulation of the transporters involved in urate handling. In silico analysis and cell-based reporter gene assays identified a hepatocyte nuclear factor (HNF)4α-binding site in the promoter of SLC2A9 isoform 1, whose activity was enhanced by transient HNF4α overexpression, whereas mutation of the binding site diminished activation. HNF4α overexpression induced endogenous SLC2A9 expression in vitro. The in vivo role of HNF4α in the modulation of renal SLC2A9 gene expression was supported by findings of quantitative real-time RT-PCR analyses and chromatin immunoprecipitation assays. Indeed, mRNA expression of SLC2A9 and HNF4α in human kidney samples was significantly correlated. We also showed that in renal clear cell carcinoma, downregulation of HNF4α mRNA and protein expression was associated with a significant decline in expression of the transporter. Taken together, our data suggest that nuclear receptor family member HNF4α contributes to the transcriptional regulation of SLC2A9 isoform 1. Since HNF4α has previously been assumed to be a modulator of several urate transporters, our findings support the notion that there could be a transcriptional network providing synchronized regulation of the functional network of the urate transportosome.
Collapse
Affiliation(s)
- Katharina Prestin
- University of Basel, Department of Pharmaceutical Sciences, Biopharmacy, Basel, Switzerland
| | - Stephanie Wolf
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Rico Feldtmann
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Janine Hussner
- University of Basel, Department of Pharmaceutical Sciences, Biopharmacy, Basel, Switzerland
| | - Ingrid Geissler
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Christian Rimmbach
- University Medicine, Ernst Moritz Arndt University Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacology, Greifswald, Germany
| | - Heyo K Kroemer
- University of Goettingen, Medical Faculty, Goettingen, Germany; and
| | - Uwe Zimmermann
- University Medicine, Ernst Moritz Arndt University Greifswald, Department of Urology, Greifswald, Germany
| | | |
Collapse
|
179
|
Abstract
BACKGROUND AND OBJECTIVE St John's wort (SJW), a herbal antidepressant, is commonly used by cancer patients, and its component hyperforin is a known inducer of the cytochrome P450 (CYP) isoenzyme 3A4. Here, the potential pharmacokinetic interaction between SJW and the sensitive CYP3A4 substrate docetaxel was investigated. METHODS In ten evaluable cancer patients, the pharmacokinetics of docetaxel (135 mg administered intravenously over 60 min) were compared before and after 14 days of supplementation with SJW (300 mg extract [Hyperiplant(®)] three times daily). RESULTS SJW supplementation resulted in a statistically significant decrease in the mean area under the docetaxel plasma concentration-time curve extrapolated to infinity (AUC∞) from 3,035 ± 756 to 2,682 ± 717 ng · h/mL (P = 0.045). Furthermore, docetaxel clearance significantly increased from 47.2 to 53.7 L/h (P = 0.045) after SJW intake. The maximum plasma concentration and elimination half-life of docetaxel were (non-significantly) decreased after SJW supplementation. In addition, the incidence of docetaxel-related toxicities was lower after SJW supplementation. CONCLUSION These results suggest that concomitant use of docetaxel and the applied SJW product should be avoided to prevent potential undertreatment of cancer patients.
Collapse
|
180
|
Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014; 8:73-80. [PMID: 25125878 PMCID: PMC4127824 DOI: 10.4103/0973-7847.134229] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/21/2013] [Accepted: 06/10/2014] [Indexed: 11/04/2022] Open
Abstract
Ayurveda is one of the traditional medicinal systems of Indian. The philosophy behind Ayurveda is preventing unnecessary suffering and living a long healthy life. Ayurveda involves the use of natural elements to eliminate the root cause of the disease by restoring balance, at the same time create a healthy life-style to prevent the recurrence of imbalance. Herbal medicines have existed world-wide with long recorded history and they were used in ancient Chinese, Greek, Egyptian and Indian medicine for various therapies purposes. World Health Organization estimated that 80% of the word's inhabitants still rely mainly on traditional medicines for their health care. The subcontinent of India is well-known to be one of the major biodiversity centers with about 45,000 plant species. In India, about 15,000 medicinal plants have been recorded, in which the communities used 7,000-7,500 plants for curing different diseases. In Ayurveda, single or multiple herbs (polyherbal) are used for the treatment. The Ayurvedic literature Sarangdhar Samhita' highlighted the concept of polyherbalism to achieve greater therapeutic efficacy. The active phytochemical constituents of individual plants are insufficient to achieve the desirable therapeutic effects. When combining the multiple herbs in a particular ratio, it will give a better therapeutic effect and reduce the toxicity. This review mainly focuses on important of the polyherbalism and its clinical significance.
Collapse
Affiliation(s)
- Subramani Parasuraman
- Units of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Gan Siaw Thing
- Units of Pharmacology, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | | |
Collapse
|
181
|
Takada H, Furuya K, Sokabe M. Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes. J Cell Sci 2014; 127:4159-71. [PMID: 25097230 DOI: 10.1242/jcs.147314] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing is accelerated by exogenous mechanical forces and is impaired in TRPC6-knockout mice. Therefore, we designed experiments to determine how mechanical force and TRPC6 channels contribute to wound healing using HaCaT keratinocytes. HaCaT cells were pretreated with hyperforin, a major component of a traditional herbal medicine for wound healing and also a TRPC6 activator, and cultured in an elastic chamber. At 3 h after scratching the confluent cell layer, the ATP release and intracellular Ca(2+) increases in response to stretching (20%) were live-imaged. ATP release was observed only in cells at the frontier facing the scar. The diffusion of released ATP caused intercellular Ca(2+) waves that propagated towards the rear cells in a P2Y-receptor-dependent manner. The Ca(2+) response and wound healing were inhibited by ATP diphosphohydrolase apyrase, the P2Y antagonist suramin, the hemichannel blocker CBX and the TRPC6 inhibitor diC8-PIP2. Finally, the hemichannel-permeable dye calcein was taken up only by ATP-releasing cells. These results suggest that stretch-accelerated wound closure is due to the ATP release through mechanosensitive hemichannels from the foremost cells and the subsequent Ca(2+) waves mediated by P2Y and TRPC6 activation.
Collapse
Affiliation(s)
- Hiroya Takada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Kishio Furuya
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, 466-8550, Japan
| |
Collapse
|
182
|
Mooiman KD, Maas-Bakker RF, Hendrikx JJMA, Bank PCD, Rosing H, Beijnen JH, Schellens JHM, Meijerman I. The effect of complementary and alternative medicines on CYP3A4-mediated metabolism of three different substrates: 7-benzyloxy-4-trifluoromethyl-coumarin, midazolam and docetaxel. J Pharm Pharmacol 2014; 66:865-74. [PMID: 24392691 DOI: 10.1111/jphp.12208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/16/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Concomitant use of complementary and alternative medicine (CAM) and anticancer drugs can affect the pharmacokinetics of anticancer drugs by inhibiting the metabolizing enzyme cytochrome P450 3A4 (CYP3A4) (EC 1.14.13.157). Several in vitro studies determined whether CAM can inhibit CYP3A4, but these studies revealed contradictory results. A plausible explanation for these conflicting results is the use only of a single model CYP3A4 substrate in each study. Therefore, the objective was to determine the potential of selected CAM (β-carotene, Echinacea, garlic, Ginkgo biloba, ginseng, grape seed extract, green tea extract, milk thistle, saw palmetto, valerian, vitamin B6, B12 and C) to inhibit CYP3A4-mediated metabolism of different substrates: 7-benzyloxy-4-trifluoromethyl-coumarin (BFC), midazolam and docetaxel. The effect of CAM on CYP3A4-mediated metabolism of an anticancer drug has never been determined before in vitro, which makes this study unique. The oncolytic CYP3A4 substrate docetaxel was used to establish the predictive value of the model substrates for pharmacokinetic interactions between CAM and anticancer drugs in vitro, and to more closely predict these interactions in vivo. METHODS The inhibition of CYP3A4-mediated metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin (BFC) by CAM was assessed in Supersomes, using the fluorometric CYP3A4 inhibition assay. In human liver microsomes (HLM) the inhibition of CYP3A4-mediated metabolism of midazolam and docetaxel was determined, using liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). KEY FINDINGS The results confirmed grape seed and green tea as potent inhibitors and milk thistle as moderate inhibitor of CYP3A4-mediated metabolism of BFC, midazolam and docetaxel. CONCLUSION Clinical studies are required to determine the clinical relevance of the determined CYP3A4 inhibition by grape seed, green tea and milk thistle.
Collapse
Affiliation(s)
- Kim D Mooiman
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Hyperforin attenuates microglia activation and inhibits p65-Ser276 NFκB phosphorylation in the rat piriform cortex following status epilepticus. Neurosci Res 2014; 85:39-50. [PMID: 24881563 DOI: 10.1016/j.neures.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 01/23/2023]
Abstract
Hyperforin, a lipophilic constituent of medicinal herb St. John's Wort, has neurobiological effects including antidepressant activity, antibiotic potency, anti-inflammatory activity and anti-tumoral properties. Furthermore, hyperforin activates transient receptor potential conical channel-6 (TRPC6), a nonselective cation channel. To elucidate the roles of hyperforin and TRPC6 in neuroinflammation in vivo, we investigated the effect of hyperforin on neuroinflammatory responses and its related events in the rat piriform cortex (PC) following status epilepticus (SE). Hyperforin attenuated microglial activation, p65-serine 276 NFκB phosphorylation, and suppressed TNF-α expression in the PC following SE. Hyperforin also effectively alleviated SE-induced vasogenic edema formation, neuronal damage, microglial TRPC6 induction and blood-derived monocyte infiltration. Our findings suggest that hyperforin may effectively attenuate microglia-mediated neuroinflammation in the TRPC6-independent manner.
Collapse
|
184
|
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR), 2 closely related and liver-enriched members of the nuclear receptor superfamily, and aryl hydrocarbon receptor (AhR), a nonnuclear receptor transcription factor (TF), are major receptors/TFs regulating the expression of genes for the clearance and detoxification of xenobiotics. They are hence defined as "xenobiotic receptors". Recent studies have demonstrated that PXR, CAR and AhR also regulate the expression of key proteins involved in endobiotic responses such as the metabolic homeostasis of lipids, glucose, and bile acid, and inflammatory processes. It is suggested that the functions of PXR, CAR and AhR may be closely implicated in the pathogeneses of metabolic vascular diseases, such as hyperlipidemia, atherogenesis, and hypertension. Therefore, manipulation of the activities of these receptors may provide novel strategies for the treatment of vascular diseases. Here, we review the pathophysiological roles of PXR, CAR and AhR in the vascular system.
Collapse
Affiliation(s)
- Lei Xiao
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University
| | | | | |
Collapse
|
185
|
St. John's Wort Has Metabolically Favorable Effects on Adipocytes In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:862575. [PMID: 25136373 PMCID: PMC4054923 DOI: 10.1155/2014/862575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
In addition to serving as a storage site for reserve energy, adipocytes play a critical role in whole-body insulin sensitivity and glucose metabolism. St. John's Wort (SJW) is a botanical supplement widely used as an over-the-counter treatment of depression and a variety of other conditions associated with anxiety and nerve pain. Previous studies in our laboratory demonstrated that SJW inhibits insulin-stimulated glucose uptake and adipocyte differentiation in cultured murine and mature human adipocytes. To investigate the effects of SJW on adipocyte function in vivo, we utilized C57BL/6J mice. In our studies, mice were administered SJW extract (200 mg/kg) once daily by gavage for two weeks. In contrast to our in vitro studies, mice treated with SJW extract showed increased levels of adiponectin in white adipose tissue in a depot specific manner (P < 0.01). SJW also exerted an insulin-sensitizing effect as indicated by a significant increase in insulin-stimulated Akt serine phosphorylation in epididymal white adipose tissue (P < 0.01). Food intake, body weight, fasting blood glucose, and fasting insulin did not differ between the two groups. These results are important as they indicate that SJW does not promote metabolic dysfunction in adipose tissue in vivo.
Collapse
|
186
|
Yu T, Chen X, Wang Y, Zhao R, Mao S. Modulatory effects of extracts of vinegar-baked Radix Bupleuri and saikosaponins on the activity of cytochrome P450 enzymesin vitro. Xenobiotica 2014; 44:861-7. [DOI: 10.3109/00498254.2014.914600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
187
|
Chiang TS, Yang KC, Chiou LL, Huang GT, Lee HS. Enhancement of CYP3A4 activity in Hep G2 cells by lentiviral transfection of hepatocyte nuclear factor-1 alpha. PLoS One 2014; 9:e94885. [PMID: 24733486 PMCID: PMC3986372 DOI: 10.1371/journal.pone.0094885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/20/2014] [Indexed: 01/06/2023] Open
Abstract
Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro.
Collapse
Affiliation(s)
- Tsai-Shin Chiang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Kai-Chiang Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Chiou
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Guan-Tarn Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (GTH); (HSL)
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (GTH); (HSL)
| |
Collapse
|
188
|
Wanwimolruk S, Prachayasittikul V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1). EXCLI JOURNAL 2014; 13:347-91. [PMID: 26417265 PMCID: PMC4463967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/20/2014] [Indexed: 10/29/2022]
Abstract
It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John's wort, may have critical clinical consequences. St. John's wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good knowledge of the mechanisms of herbal drug interactions is necessary for assessing and minimizing clinical risks. These processes help prediction of interactions between herbal supplements and prescription drugs. Healthcare professionals should remain vigilant for potential interactions between herbal supplements/medicines and prescription drugs, especially for drugs with a narrow therapeutic index are used.
Collapse
Affiliation(s)
- Sompon Wanwimolruk
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand,*To whom correspondence should be addressed: Sompon Wanwimolruk, Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand, Tel.: +66 2 441 4370, Fax: +66 2 441 4380, E-mail:
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
189
|
Ong SS, Goktug AN, Elias A, Wu J, Saunders D, Chen T. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2. Biochem J 2014; 459:193-203. [PMID: 24438055 PMCID: PMC3959618 DOI: 10.1042/bj20130558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin-proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin-proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Asli N. Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Ayesha Elias
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Darren Saunders
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst NSW 2010, Australia
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
190
|
Jackson A, D'Avolio A, Moyle G, Bonora S, Di Perri G, Else L, Simiele M, Singh GJ, Back D, Boffito M. Pharmacokinetics of the co-administration of boceprevir and St John's wort to male and female healthy volunteers. J Antimicrob Chemother 2014; 69:1911-5. [PMID: 24610312 DOI: 10.1093/jac/dku060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND St John's wort (SJW; Hypericum perforatum) induces CYP3A4 that is involved in the metabolism of the hepatitis C virus (HCV) protease inhibitor boceprevir. Reduced boceprevir exposure and efficacy would contribute to therapeutic failure and increase the risk for resistance development. Boceprevir is co-administered with interferon/ribavirin, and depression has been described frequently in patients undergoing HCV treatment. Patients may purchase over-the-counter herbals to manage depression, and knowing the interaction between SJW and boceprevir is desirable. METHODS This Phase I, open-label, three-period, cross-over pharmacokinetic study enrolled healthy males and females who, following consent and screening procedures, were randomized to receive SJW on days 1-14, SJW plus boceprevir (SJW on days 22-35 and together on days 31-35) and boceprevir on days 52-56, separated by 7 day washout periods, or the same treatment in the opposite order. Pharmacokinetic sampling was performed at the end of each phase. RESULTS Seventeen (11 female) subjects completed the study and no serious adverse events were reported. Geometric mean ratios (GMRs) and 90% CIs for boceprevir (with SJW versus alone) AUC(0-8), C(max) and C8 were 0.91 (0.87-0.96), 0.94 (0.82-1.07) and 1.00 (0.79-1.27), respectively. GMRs and 90% CIs for hypericin, the active component of SJW, (with boceprevir versus alone) AUC(0-8), C(max) and C(8) were 1.23 (1.10-1.38), 1.32 (1.16-1.52) and 1.37 (1.19-1.58), respectively. CONCLUSIONS SJW did not have a clinically significant effect on boceprevir plasma concentrations (or those of its metabolite), suggesting that SJW and boceprevir can be safely co-administered.
Collapse
Affiliation(s)
- Akil Jackson
- St Stephen's Centre, Chelsea and Westminster Hospital, London, UK
| | - Antonio D'Avolio
- Department of Infectious Diseases, University of Turin, Turin, Italy
| | - Graeme Moyle
- St Stephen's Centre, Chelsea and Westminster Hospital, London, UK
| | - Stefano Bonora
- Department of Infectious Diseases, University of Turin, Turin, Italy
| | - Giovanni Di Perri
- Department of Infectious Diseases, University of Turin, Turin, Italy
| | - Laura Else
- Liverpool Bioanalytical Facility, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Marco Simiele
- Department of Infectious Diseases, University of Turin, Turin, Italy
| | | | - David Back
- Liverpool Bioanalytical Facility, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Marta Boffito
- St Stephen's Centre, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
191
|
Kandel BA, Ekins S, Leuner K, Thasler WE, Harteneck C, Zanger UM. No activation of human pregnane X receptor by hyperforin-related phloroglucinols. J Pharmacol Exp Ther 2014; 348:393-400. [PMID: 24259679 DOI: 10.1124/jpet.113.209916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The acylated phloroglucinol, hyperforin, the main active ingredient of St. John's Wort, exerts antidepressant properties via indirect inhibition of serotonin reuptake by selectively activating the canonical transient receptor potential channel 6 (TRPC6). Hyperforin treatment can lead to drug-drug interactions due to potent activation of the nuclear receptor PXR (NR1I2), a key transcriptional regulator of genes involved in drug metabolism and transport. It was previously shown that synthetic acylated phloroglucinol derivatives activate TRPC6 with similar potency as hyperforin. However, their interaction potential with PXR remained unknown. Here we investigated five synthetic TRPC6-activating phloroglucinol derivatives and four TRPC6-nonactivating compounds compared with hyperforin and rifampicin for their potential to activate PXR in silico and in vitro. Computational PXR pharmacophore modeling did not indicate potent agonist or antagonist interactions for the TRPC6-activating derivatives, whereas one of them was suggested by docking studies to show both agonist and antagonist interactions. Hyperforin and rifampicin treatment of HepG2 cells cotransfected with human PXR expression vector and a CYP3A4 promoter-reporter construct resulted in potent PXR-dependent induction, whereas all TRPC6-activating compounds failed to show any PXR activation or to antagonize rifampicin-mediated CYP3A4 promoter induction. Hyperforin and rifampicin treatment of primary human hepatocytes resulted in highly correlated induction of PXR target genes, whereas treatment with the phloroglucinol derivatives elicited moderate gene expression changes that were only weakly correlated with those of rifampicin and hyperforin treatment. These results show that TRPC6-activating phloroglucinols do not activate PXR and should therefore be promising new candidates for further drug development.
Collapse
Affiliation(s)
- Benjamin A Kandel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (B.A.K., U.M.Z.); University of Tübingen, Tübingen, Germany (B.A.K., U.M.Z.); Collaborations in Chemistry, Fuquay-Varina, North Carolina (S.E.); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (S.E.); Department of Pharmacology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey (S.E.); Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (S.E.); Molecular and Clinical Pharmacy, Friedrich-Alexander University, Erlangen-Nuremberg, Germany (K.L.); Department of Surgery, Grosshadern Hospital, Ludwig-Maximilians University, Munich, Germany (W.E.T.); and Institute of Pharmacology and Toxicology, Interfaculty Centre for Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany (C.H.)
| | | | | | | | | | | |
Collapse
|
192
|
St. John's Wort enhances the synaptic activity of the nucleus of the solitary tract. Nutrition 2014; 30:S37-42. [PMID: 24985104 DOI: 10.1016/j.nut.2014.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE St. John's Wort (SJW) extract, which is commonly used to treat depression, inhibits the reuptake of several neurotransmitters, including glutamate, serotonin, norepinephrine, and dopamine. Glutamatergic visceral vagal afferents synapse upon neurons of the solitary tract (NST); thus, the aim of this study was to evaluate whether SJW extract modulates glutamatergic neurotransmission within the NST. METHODS We used live cell calcium imaging to evaluate whether SJW and its isolated components hypericin and hyperforin increase the excitability of prelabeled vagal afferent terminals synapsing upon the NST. We used voltage-clamp recordings of spontaneous miniature excitatory postsynaptic currents (mEPSCs) to evaluate whether SJW alters glutamate release from vagal afferents onto NST neurons. RESULTS Our imaging data show that SJW (50 μg/mL) increased the intracellular calcium levels of stimulated vagal afferent terminals compared with the bath control. This increase in presynaptic vagal afferent calcium by the extract coincides with an increase in neurotransmitter release within the nucleus of the solitary tract, as the frequency of mEPSCs is significantly higher in the presence of the extract compared with the control. Finally, our imaging data show that hyperforin, a known component of SJW extract, also significantly increases terminal calcium levels. CONCLUSION These data suggest that SJW extract can significantly increase the probability of glutamate release from vagal afferents onto the NST by increasing presynaptic calcium. The in vitro vagal afferent synapse with NST neurons is an ideal model system to examine the mechanism of action of botanical agents on glutamatergic neurotransmission.
Collapse
|
193
|
Lampri ES, Ioachim E, Harissis H, Balasi E, Mitselou A, Malamou-Mitsi V. Pleomorphic hepatocellular carcinoma following consumption of hypericum perforatum in alcoholic cirrhosis. World J Gastroenterol 2014; 20:2113-2116. [PMID: 24587684 PMCID: PMC3934483 DOI: 10.3748/wjg.v20.i8.2113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/06/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) often develops in patients with underlying liver disease, yet HCC with syncytial giant cells (SGCs) is extremely rare. Herein, we report a 55-year-old man with a 6-year history of alcoholic cirrhosis who during his regular checkup presented with marked elevation of alpha-fetoprotein. Clinical examination and imaging analyses revealed a tumor-like lesion in segment 4 of the liver, which was removed by limited wedge resection. Histological analysis by hematoxylin and eosin staining indicated pleomorphic and atypical nodules, with some SGCs, embedded within the boundaries of the neoplastic lesion. The adjacent liver parenchyma showed microvesicular steatosis, pericellular fibrosis, and moderate hemosiderin accumulation (grade 2, as determined by Prussian blue iron stain) in hepatocytes and Kupffer cells but no copper accumulation (as determined by orcein stain). Immunohistochemical analysis showed hepatocyte antigen-positive staining for the neoplastic cells and SGCs. The diagnosis was made for cirrhosis-related HCC with SGCs. The previous reports of pleomorphic HCC have featured osteoclast-like (i.e., mesenchymal type) giant cells, making this case of epithelial type giant cells very rare. The patient’s 6-month history of hypericum perforatum/St John’s wort self-medication may have prompted the cirrhosis or HCC progression or the unusual SGC manifestation.
Collapse
|
194
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53:956-87. [PMID: 24353244 PMCID: PMC3945720 DOI: 10.1002/anie.201302268] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| |
Collapse
|
195
|
Hukkanen J. Induction of cytochrome P450 enzymes: a view on humanin vivofindings. Expert Rev Clin Pharmacol 2014; 5:569-85. [PMID: 23121279 DOI: 10.1586/ecp.12.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Janne Hukkanen
- Department of Internal Medicine, Institute of Clinical Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
196
|
Hu M, Fan L, Zhou HH, Tomlinson B. Theranostics meets traditional Chinese medicine: rational prediction of drug–herb interactions. Expert Rev Mol Diagn 2014; 12:815-30. [DOI: 10.1586/erm.12.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
197
|
Tripathi A, Singh SP, Raju KSR, Wahajuddin, Gayen JR. Effect of Red Clover on CYP Expression: An Investigation of Herb-Drug Interaction at Molecular Level. Indian J Pharm Sci 2014; 76:261-6. [PMID: 25035541 PMCID: PMC4090837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022] Open
Abstract
Hormone replacement therapy and selective estrogen receptor modulator are the most common therapy for women going through menopause. These therapies though popular fail to relieve withdrawal symptoms such as hot flashes, fatigue, leg cramps and nausea. This scenario necessitates to herbal preparations as alternative which may lead to simultaneous intake of herbal preparations, containing flavonoids, as well as Selective estrogen receptor modulator hence creating a phenomenon of herb drug interaction. Here we investigate the effect of red clover on steady state mRNA levels of rat cytochrome P 450 enzymes. Further, red clover's effect on cytochrome P 450's expression has been investigated when co-administered with tamoxifen and raloxifene. Exposure to red clover resulted in significant down regulation of all the cytochrome P 450 isoform mRNA except cytochrome P 450 2C13 and cytochrome P 450 3A2. When red clover is given in combination with tamoxifen or raloxifene altered level of cytochrome P 450 enzyme mRNA is observed. Present results suggest that herbal medical preparations such red clover has potential for herb drug interaction.
Collapse
Affiliation(s)
- Anubhuti Tripathi
- Division of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow-226 031, India
| | - S. P. Singh
- Division of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow-226 031, India
| | - K. S. R. Raju
- Division of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow-226 031, India
| | - Wahajuddin
- Division of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow-226 031, India
| | - J. R Gayen
- Division of Pharmacokinetics and Metabolism, CSIR-Central Drug Research Institute, Lucknow-226 031, India,Address for correspondence E-mail:
| |
Collapse
|
198
|
Pregnane X receptor (PXR) – a contributor to the diabetes epidemic? ACTA ACUST UNITED AC 2014; 29:3-15. [DOI: 10.1515/dmdi-2013-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/25/2013] [Indexed: 01/30/2023]
|
199
|
Abstract
The intracellular nuclear receptor farnesoid X receptor and the transmembrane G protein-coupled receptor TGR5 respond to bile acids by activating transcriptional networks and/or signalling cascades. These cascades affect the expression of a great number of target genes relevant for bile acid, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. Pregnane X receptor, vitamin D receptor and constitutive androstane receptor are additional nuclear receptors that respond to bile acids, albeit to a more restricted set of species of bile acids. Recognition of dedicated bile acid receptors prompted the development of semi-synthetic bile acid analogues and nonsteroidal compounds that target these receptors. These agents hold promise to become a new class of drugs for the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This Review discusses the relevant bile acid receptors, the new drugs that target bile acid signalling and their possible applications.
Collapse
Affiliation(s)
- Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
200
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophe Naturstoffe - ihre Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|