151
|
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | |
Collapse
|
152
|
Stuhlmeier KM, Kao JJ, Wallbrandt P, Lindberg M, Hammarström B, Broell H, Paigen B. Antioxidant protein 2 prevents methemoglobin formation in erythrocyte hemolysates. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:334-41. [PMID: 12605684 DOI: 10.1046/j.1432-1033.2003.03393.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antioxidant protein 2 (AOP2) is a member of a family of thiol-specific antioxidants, recently renamed peroxiredoxins, that evolved as part of an elaborate system to counteract and control detrimental effects of oxygen radicals. AOP2 is found in endothelial cells, erythrocytes, monocytes, T and B cells, but not in granulocytes. AOP2 was found solely in the cytoplasm and was not associated with the nuclear or membrane fractions; neither was it detectable in plasma. Further experiments focused on the function of AOP2 in erythrocytes where it is closely associated with the hemoglobin complex, particularly with the heme. An investigation of the mechanism of this interaction demonstrated that the conserved cysteine-47 in AOP2 seems to play a role in AOP2-heme interactions. Recombinant AOP2 prevented induced as well as noninduced methemoglobin formation in erythrocyte hemolysates, indicating its antioxidant properties. We conclude that AOP2 is part of a sophisticated system developed to protect and support erythrocytes in their many physiological functions.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
153
|
Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem 2002; 277:38029-36. [PMID: 12161445 DOI: 10.1074/jbc.m206626200] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
By following peroxiredoxin I (Prx I)-dependent NADPH oxidation spectrophotometrically, we observed that Prx I activity decreased gradually with time. The decay in activity was coincident with the conversion of Prx I to a more acidic species as assessed by two-dimensional gel electrophoresis. Mass spectral analysis and studies with Cys mutants determined that this shift in pI was due to selective oxidation of the catalytic site Cys(51)-SH to Cys(51)-SO(2)H. Thus, Cys(51)-SOH generated as an intermediate during catalysis appeared to undergo occasional further oxidation to Cys(51)-SO(2)H, which cannot be reversed by thioredoxin. The presence of H(2)O(2) alone was not sufficient to cause oxidation of Cys(51) to Cys(51)-SO(2)H. Rather, the presence of complete catalytic components (H(2)O(2), thioredoxin, thioredoxin reductase, and NADPH) was necessary, indicating that such hyperoxidation occurs only when Prx I is engaged in the catalytic cycle. Likewise, hyperoxidation of Cys(172)/Ser(172) mutant Prx I required not only H(2)O(2), but also a catalysis-supporting thiol (dithiothreitol). Kinetic analysis of Prx I inactivation in the presence of a low steady-state level (<1 microm) of H(2)O(2) indicated that Prx I was hyperoxidized at a rate of 0.072% per turnover at 30 degrees C. Hyperoxidation of Prx I was also detected in HeLa cells treated with H(2)O(2).
Collapse
Affiliation(s)
- Kap-Seok Yang
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Hahn JS, Oh SY, Roe JH. Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J Bacteriol 2002; 184:5214-22. [PMID: 12218006 PMCID: PMC137946 DOI: 10.1128/jb.184.19.5214-5222.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes encoding a homolog of Escherichia coli OxyR (oxyR) and an alkyl hydroperoxide reductase system (ahpC and ahpD) have been isolated from Streptomyces coelicolor A3(2). The ahpC and ahpD genes constitute an operon transcribed divergently from the oxyR gene. Expression of both ahpCD and oxyR genes was maximal at early exponential phase and decreased rapidly as cells entered mid-exponential phase. Overproduction of OxyR in Streptomyces lividans conferred resistance against cumene hydroperoxide and H2O2. The oxyR mutant produced fewer ahpCD and oxyR transcripts than the wild type, suggesting that OxyR acts as a positive regulator for their expression. Both oxyR and ahpCD transcripts increased more than fivefold within 10 min of H2O2 treatment and decreased to the normal level in 50 min, with kinetics similar to those of the CatR-mediated induction of the catalase A gene (catA) by H2O2. The oxyR mutant failed to induce oxyR and ahpCD genes in response to H2O2, indicating that OxyR is the modulator for the H2O2-dependent induction of these genes. Purified OxyR protein bound specifically to the intergenic region between ahpC and oxyR, suggesting its direct role in regulating these genes. These results demonstrate that in S. coelicolor OxyR mediates H2O2 induction of its own gene and genes for alkyl hydroperoxide reductase system, but not the catalase gene (catA), unlike in Escherichia coli and Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Ji-Sook Hahn
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
155
|
Hamza A. Homology modeling and docking mechanism of the mercaptosuccinate and methotrexate to P. falciparum 1-Cys peroxiredoxin: a preliminary molecular study. J Biomol Struct Dyn 2002; 20:7-20. [PMID: 12144348 DOI: 10.1080/07391102.2002.10506818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A three-dimensional (3-D) model of 1-Cys peroxiredoxin from P. falciparum (Pf-Prx) has been constructed by homology modeling. The model building was based on a structural alignment with the human 1-Cys peroxiredoxin ray structure. First, mercaptosuccinate was docked by Molecular and Quantum Mechanics at the active site in both isozymes, evidencing the role of different residues in the ligand-protein interaction. Stable conformation of the inhibitor in the active site was obtained from the conformational analysis by molecular dynamics. Next, The complex was reoptimized by semiempirical molecular orbital AM1 method. Conformational and frontier orbitals analyses of the ligand-protein complex were carried out in an attempt to obtain structural insight into the inhibition mechanism. Finally, the docking study of the methotrexate (MTX), an anticancer drug also used as an antimalarial inhibitor, into the modes binding site was performed. From the resulting stable complex structure, it was found that the glutamate ring of MTX fits the active site with high complementarity. The glutamate ring formed two hydrogen bonds to the imidazol group of His41 and the amino groups of Arg129. The side-chain of glutamate was in close proximity to the sulfur atom of the catalytic residue, Cys47. This binding mode suggests a possible inhibition mechanism, whereby the cysteine residue is covered with the glutamate ring of the MTX inhibitor, forming an enzyme-ligand adduct. In addition, the higher interaction energies and the molecular orbitals localization between the Pf-Prx active site and the inhibitors alluded to the probable binding sites of the ligand nucleophilic ring.
Collapse
Affiliation(s)
- A Hamza
- Unité Modélisation Moculaire, Institut Pasteur de Tunis 13, Place Pasteur 1002 Tunis-Belvédère, Tunisia.
| |
Collapse
|
156
|
Nunn CM, Djordjevic S, Hillas PJ, Nishida CR, Ortiz de Montellano PR. The crystal structure of Mycobacterium tuberculosis alkylhydroperoxidase AhpD, a potential target for antitubercular drug design. J Biol Chem 2002; 277:20033-40. [PMID: 11914371 DOI: 10.1074/jbc.m200864200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The resistance of Mycobacterium tuberculosis to isoniazid is commonly linked to inactivation of a catalase-peroxidase, KatG, that converts isoniazid to its biologically active form. Loss of KatG is associated with elevated expression of the alkylhydroperoxidases AhpC and AhpD. AhpD has no sequence identity with AhpC or other proteins but has alkylhydroperoxidase activity and possibly additional physiological activities. The alkylhydroperoxidase activity, in the absence of KatG, provides an important antioxidant defense. We have determined the M. tuberculosis AhpD structure to a resolution of 1.9 A. The protein is a trimer in a symmetrical cloverleaf arrangement. Each subunit exhibits a new all-helical protein fold in which the two catalytic sulfhydryl groups, Cys-130 and Cys-133, are located near a central cavity in the trimer. The structure supports a mechanism for the alkylhydroperoxidase activity in which Cys-133 is deprotonated by a distant glutamic acid via the relay action of His-137 and a water molecule. The cysteine then reacts with the peroxide to give a sulfenic acid that subsequently forms a disulfide bond with Cys-130. The crystal structure of AhpD identifies a new protein fold relevant to members of this protein family in other organisms. The structural details constitute a potential platform for the design of inhibitors of potential utility as antitubercular agents and suggest that AhpD may have disulfide exchange properties of importance in other areas of M. tuberculosis biology.
Collapse
Affiliation(s)
- Christine M Nunn
- Department of Biochemistry and Molecular Biology, University College, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
157
|
Rouhier N, Gelhaye E, Jacquot JP. Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism. J Biol Chem 2002; 277:13609-14. [PMID: 11832487 DOI: 10.1074/jbc.m111489200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, a poplar phloem peroxiredoxin (Prx) was found to accept both glutaredoxin (Grx) and thioredoxin (Trx) as proton donors. To investigate the catalytic mechanism of the Grx-dependent reduction of hydroperoxides catalyzed by Prx, a series of cysteinic mutants was constructed. Mutation of the most N-terminal conserved cysteine of Prx (Cys-51) demonstrates that it is the catalytic one. The second cysteine (Cys-76) is not essential for peroxiredoxin activity because the C76A mutant retained approximately 25% of the wild type Prx activity. Only one cysteine of the Grx active site (Cys-27) is essential for peroxiredoxin catalysis, indicating that Grx can act in this reaction either via a dithiol or a monothiol pathway. The creation of covalent heterodimers between Prx and Grx mutants confirms that Prx Cys-51 and Grx Cys-27 are the two residues involved in the catalytic mechanism. The integration of a third cysteine in position 152 of the Prx, making it similar in sequence to the Trx-dependent human Prx V, resulted in a protein that had no detectable activity with Grx but kept activity with Trx. Based on these experimental results, a catalytic mechanism is proposed to explain the Grx- and Trx-dependent activities of poplar Prx.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité mixte de recherche IaM INRA-UHP Nancy I, Biochimie et Biologie Moléculaire Végétales, Université Henri Poincaré, 54506 Vandoeuvre Cedex, France
| | | | | |
Collapse
|
158
|
Abstract
Present knowledge on peroxiredoxins is reviewed with special emphasis on catalytic principles, specificities and biological function. Peroxiredoxins are low efficiency peroxidases using thiols as reductants. They appear to be fairly promiscuous with respect to the hydroperoxide substrate; the specificities for the donor substrate vary considerably between the subfamilies, comprising GSH, thioredoxin, tryparedoxin and the analogous CXXC motifs in bacterial AhpF proteins. Peroxiredoxins are definitely responsible for antioxidant defense in bacteria (AhpC), yeast (thioredoxin peroxidase) and trypanosomatids (tryparedoxin peroxidase). They are considered to determine virulence of mycobacteria and trypanosomatids. In higher plants they are involved in balancing hydroperoxide production during photosynthesis. In higher animals peroxiredoxins appear to be involved in the redox-regulation of cellular signaling and differentiation, displaying in part opposite effects.
Collapse
Affiliation(s)
- Birgit Hofmann
- Department of Biochemistry, Technical University of Braunschweig, Germany
| | | | | |
Collapse
|
159
|
Zhou Y, Zhang W, Easton R, Ray JW, Lampe P, Jiang Z, Brunkan AL, Goate A, Johnson EM, Wu JY. Presenilin-1 protects against neuronal apoptosis caused by its interacting protein PAG. Neurobiol Dis 2002; 9:126-38. [PMID: 11895366 DOI: 10.1006/nbdi.2001.0472] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the presenilin-1 (PS-1) gene account for a significant fraction of familial Alzheimer's disease. The biological function of PS-1 is not well understood. We report here that the proliferation-associated gene (PAG) product, a protein of the thioredoxin peroxidase family, interacts with PS-1. Microinjection of a plasmid expressing PAG into superior cervical ganglion (SCG) sympathetic neurons in primary cultures led to apoptosis. Microinjection of plasmids expressing wild-type PS-1 or a PS-1 mutant with a deletion of exon 10 (PS1dE10) by themselves had no effect on the survival of primary SCG neurons. However, co-injection of wild-type PS-1 with PAG prevented neuronal death, whereas co-injection with the mutant PS-1 did not affect PAG-induced apoptosis. Furthermore, overexpression of PAG accelerated SCG neuronal death induced by nerve growth factor deprivation. This sensitizing effect was also blocked by wild-type PS-1, but not by PS1dE10. These results establish an assay for studying the function of PS-1 in primary neurons, reveal the neurotoxicity of a thioredoxin peroxidase, demonstrate a neuroprotective activity of the wild-type PS-1, and suggest possible involvement of defective neuroprotection by PS-1 mutants in neurodegeneration.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Spatafora G, Van Hoeven N, Wagner K, Fives-Taylor P. Evidence that ORF3 at the Streptococcus parasanguis fimA locus encodes a thiol-specific antioxidant. MICROBIOLOGY (READING, ENGLAND) 2002; 148:755-762. [PMID: 11882710 DOI: 10.1099/00221287-148-3-755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus parasanguis is a primary colonizer of dental plaque and a major player in subacute bacterial endocarditis. In the present study, the authors report that an ORF (ORF3) located 77 bp downstream of the fimA operon on the S. parasanguis FW213 chromosome complements an Escherichia coli thiol peroxidase (tpx) mutation in glutamine synthetase (GS) protection assays and that GS is protected by the ORF3 gene product in S. parasanguis cell extracts. In addition, the putative streptococcal peroxidase (Tpx(Sp)) protects S. parasanguis from stress caused by H2O2 and is induced by oxygen, as revealed by Northern blot analysis. Taken collectively, these findings support a thiol-dependent antioxidant activity for Tpx in S. parasanguis.
Collapse
Affiliation(s)
- Grace Spatafora
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Neal Van Hoeven
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Katherine Wagner
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA1
| | - Paula Fives-Taylor
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA2
| |
Collapse
|
161
|
Goyer A, Haslekås C, Miginiac-Maslow M, Klein U, Le Marechal P, Jacquot JP, Decottignies P. Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:272-82. [PMID: 11784321 DOI: 10.1046/j.0014-2956.2001.02648.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All living organisms contain redox systems involving thioredoxins (Trx), proteins featuring an extremely conserved and reactive active site that perform thiol-disulfide interchanges with disulfide bridges of target proteins. In photosynthetic organisms, numerous isoforms of Trx coexist, as revealed by sequencing of Arabidopsis genome. The specific functions of many of them are still unknown. In an attempt to find new molecular targets of Trx in Chlamydomonas reinhardtii, an affinity column carrying a cytosolic Trx h mutated at the less reactive cysteine of its active site was used to trap Chlamydomonas proteins that form mixed disulfides with Trx. The major protein bound to the column was identified by amino-acid sequencing and mass spectrometry as a thioredoxin-dependent 2Cys peroxidase. Isolation and sequencing of its gene revealed that this peroxidase is most likely a chloroplast protein with a high homology to plant 2Cys peroxiredoxins. It is shown that the Chlamydomonas peroxiredoxin (Ch-Prx1) is active with various thioredoxin isoforms, functions as an antioxidant toward reactive oxygen species (ROS), and protects DNA against ROS-induced degradation. Expression of the peroxidase gene in Chlamydomonas was found to be regulated by light, oxygen concentration, and redox state. The data suggest a role for the Chlamydomonas Prx in ROS detoxification in the chloroplast.
Collapse
Affiliation(s)
- Aymeric Goyer
- Institut de Biotechnologie des Plantes, Université Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
162
|
Rouhier N, Jacquot JP. Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. PHOTOSYNTHESIS RESEARCH 2002; 74:259-68. [PMID: 16245137 DOI: 10.1023/a:1021218932260] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The role of plant peroxiredoxins in the detoxification systems is discussed in relation with the existence of many isoforms of this protein in distinct plant compartments. Phylogenetic analyses indicate that plant peroxiredoxins can be divided into four classes. Two of these classes correspond to chloroplastic enzymes. All isoforms contain at least one conserved catalytic cysteine. The enzymes belonging to the 1-Cys Prx class seem to be seed restricted and to play a role of detoxification during the germination process. At least one putative cytosolic isoform can use both thioredoxin and glutaredoxin as an electron donor, but the chloroplastic isoforms characterized depend on reduced thioredoxin. Mutagenesis and plant transformation studies support the proposal that the chloroplastic peroxiredoxins play an important role in combating the ROS species generated at the level of the chloroplastic electron transfer chain.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), Université Henri Poincaré, BP 239, 54506, Vandoeuvre Cedex, France,
| | | |
Collapse
|
163
|
Demasi AP, Pereira GA, Netto LE. Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria. FEBS Lett 2001; 509:430-4. [PMID: 11749968 DOI: 10.1016/s0014-5793(01)03215-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The specific role of cytosolic thioredoxin peroxidase I (cTPx I), encoded by TSA1 (thiol-specific antioxidant), was investigated in the oxidative stress response of Saccharomyces cerevisiae. In most cases, deletion of TSA1 has showed only a slight effect on hydrogen peroxide sensitivity. However, when the functional state of the mitochondria was compromised, the necessity of TSA1 in cell protection against this oxidant was much more evident. All the procedures used to disrupt the mitochondrial respiratory chain promoted increases in the generation of H(2)O(2) in cells, which could be related to their elevated sensitivity to oxidative stress. In fact, TSA1 is highly expressed when cells with respiratory deficiency are exposed to H(2)O(2). In conclusion, our results indicate that cTPx I is a key component of the antioxidant defense in respiratory-deficient cells.
Collapse
Affiliation(s)
- A P Demasi
- Departamento de Bioquímica, IB, UNICAMP, SP, Brazil
| | | | | |
Collapse
|
164
|
Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. PLANT PHYSIOLOGY 2001; 127:1299-1309. [PMID: 11706208 DOI: 10.1104/pp.010586] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A sequence coding for a peroxiredoxin (Prx) was isolated from a xylem/phloem cDNA library from Populus trichocarpa and subsequently inserted into an expression plasmid yielding the construction pET-Prx. The recombinant protein was produced in Escherichia coli cells and purified to homogeneity with a high yield. The poplar Prx is composed of 162 residues, a property that makes it the shortest plant Prx sequence isolated so far. It was shown that the protein is monomeric and possesses two conserved cysteines (Cys). The Prx degrades hydrogen peroxide and alkyl hydroperoxides in the presence of an exogenous proton donor that can be either thioredoxin or glutaredoxin (Grx). Based on this finding, we propose that the poplar protein represents a new type of Prx that differs from the so-called 2-Cys and 1-Cys Prx, a suggestion supported by the existence of natural fusion sequences constituted of a Prx motif coupled to a Grx motif. The protein was shown to be highly expressed in sieve tubes where thioredoxin h and Grx are also major proteins.
Collapse
Affiliation(s)
- N Rouhier
- Unité Mixte de Recherche Interaction Arbres Microorganisms, Institut National de la Recherche Agronomique-Université Henri Poincaré Nancy I. Biochimie et Biologie Moléculaire Végétales, Université Henri Poincaré, 54506 Vandoeuvre cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Faÿ E, Meyer Y, Jacquot JP. Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. PLANT PHYSIOLOGY 2001. [PMID: 11706208 DOI: 10.1104/pp.127.3.1299] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A sequence coding for a peroxiredoxin (Prx) was isolated from a xylem/phloem cDNA library from Populus trichocarpa and subsequently inserted into an expression plasmid yielding the construction pET-Prx. The recombinant protein was produced in Escherichia coli cells and purified to homogeneity with a high yield. The poplar Prx is composed of 162 residues, a property that makes it the shortest plant Prx sequence isolated so far. It was shown that the protein is monomeric and possesses two conserved cysteines (Cys). The Prx degrades hydrogen peroxide and alkyl hydroperoxides in the presence of an exogenous proton donor that can be either thioredoxin or glutaredoxin (Grx). Based on this finding, we propose that the poplar protein represents a new type of Prx that differs from the so-called 2-Cys and 1-Cys Prx, a suggestion supported by the existence of natural fusion sequences constituted of a Prx motif coupled to a Grx motif. The protein was shown to be highly expressed in sieve tubes where thioredoxin h and Grx are also major proteins.
Collapse
Affiliation(s)
- N Rouhier
- Unité Mixte de Recherche Interaction Arbres Microorganisms, Institut National de la Recherche Agronomique-Université Henri Poincaré Nancy I. Biochimie et Biologie Moléculaire Végétales, Université Henri Poincaré, 54506 Vandoeuvre cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, Chae HZ. Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 2001; 276:29826-32. [PMID: 11390385 DOI: 10.1074/jbc.m101822200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six distinct peroxiredoxin (Prx) proteins (Prx I-VI) from distinct genes have been identified in mammalian tissues. Prxs are members of a group of peroxidases that have conserved reactive cysteine residue(s) in the active site(s). An immediate physiological electron donor for the peroxidase catalysis for five Prx proteins (Prx I-V) has been identified as thioredoxin (Trx), but that for Prx VI (1-Cys Prx) is still unclear. To identify an immediate electron donor and a binding protein for Prx VI, we performed a Prx VI protein overlay assay. A 20-kDa binding protein was identified by the Prx VI protein overlay assay with flow-through fractions from a High-Q column with rat lung crude extracts. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and MS-Fit, we identified the 20-kDa Prx VI-binding protein as a cyclophilin A (CyP-A). The binding of recombinant human CyP-A (hCyP-A) to Prx VI was confirmed by using the hCyP-A protein overlay assay and Western immunoblot analysis with hCyP-A-specific antibodies. hCyP-A enhanced the antioxidant activity of Prx VI, as well as the other known mammalian Prx isotypes. hCyP-A supported antioxidant activity of Prx II and Prx VI both against thiol (dithiothreitol)-containing metal-catalyzed oxidation (MCO) systems and ascorbate-containing MCO systems. Prx II was reduced by hCyP-A without help from any other reductant, and the reduction was cyclosporin A-independent. These results strongly suggest that CyP-A not only binds to Prx proteins but also supports its peroxidase activity as an immediate electron donor. In addition, Cys(115) and Cys(161) of hCyP-A were found to be involved in the activation and the reduction of Prx.
Collapse
Affiliation(s)
- S P Lee
- Department of Biological Science, Chonnam National University, Gwangju, Korea 500-757, the Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea 135-270
| | | | | | | | | | | | | |
Collapse
|
167
|
Kawazu S, Komaki K, Tsuji N, Kawai S, Ikenoue N, Hatabu T, Ishikawa H, Matsumoto Y, Himeno K, Kano S. Molecular characterization of a 2-Cys peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2001; 116:73-9. [PMID: 11463468 DOI: 10.1016/s0166-6851(01)00308-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have identified the 2-Cys peroxiredoxin (PfPrx-1) from the human malaria parasite Plasmodium falciparum. The PfPrx-1 showed the highest identity at amino acid level to the type II Prx among the currently known six subfamilies of mammalian Prx. The sequence identity between the PfPrx-1 and the previously reported 1-Cys Prx of P. falciparum (PfPrx-2), which corresponded to mammalian type VI Prx, was 25%. This suggests that the parasite possesses two Prx subfamilies. The PfPrx-1 showed significant sequence similarities with those of 2-Cys peroxiredoxins of plants in the BLASTX search. This may reflect the consequences of a genetic transfer from an algal endosymbiont to the parasite nucleus during evolution. The recombinant PfPrx-1 protein (rPfPrx-1) was expressed as a histidine fusion protein in Escherichia coli and purified with Ni chromatography. The rPfPrx-1 existed as dimers under non-reducing conditions and dissociated into monomers in the presence of dithiothreitol. The PfPrx-1 protein also exists as a dimer in the parasites themselves. The reduction of the oxidized enzyme by the donation of electrons from E. coli thioredoxin (Trx)/Trx reductase system was demonstrated in its reaction with H(2)O(2), using the rPfPrx-1 protein. These results suggested that the PfPrx-1 can act as a terminal peroxidase of the parasite Trx system. An elevated expression of the PfPrx-1 protein seen in the trophozoite, the stage with active metabolism, suggests an association of the parasite Trx system with its intracellular redox control.
Collapse
Affiliation(s)
- S Kawazu
- Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Peshenko IV, Shichi H. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med 2001; 31:292-303. [PMID: 11461766 DOI: 10.1016/s0891-5849(01)00579-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxiredoxins are antioxidant enzymes whose peroxidase activity depends on a redox-sensitive cysteine residue at the active center. In this study we investigated properties of the active center cysteine of bovine 1-Cys peroxiredoxin using a recombinant protein (BRPrx). The only cysteine residue of the BRPrx molecule was oxidized rapidly by an equimolar peroxide or peroxynitrite to the cysteine sulfenic acid. Approximate rates of oxidation of BRPrx by different peroxides were estimated using selenium glutathione peroxidase as a competitor. Oxidation of the active center cysteine of BRPrx by H2O2 proceeded only several times slowly than that of the selenocysteine of glutathione peroxidase. The rate of oxidation varied depending on peroxides tested, with H2O2 being about 7 and 80 times faster than tert-butyl hydroperoxide and cumene hydroperoxide, respectively. Peroxynitrite oxidized BRPrx slower than H2O2 but faster than tert-butyl hydroperoxide. Further oxidation of the cysteine sulfenic acid of BRPrx to higher oxidation states proceeded slowly. Oxidized BRPrx was reduced by dithiothreitol, dihydrolipoic acid, and hydrogen sulfide, and demonstrated peroxidase activity (about 30 nmol/mg/min) with these reductants as electron donors. beta-Mercaptoethanol formed a mixed disulfide and did not support peroxidase activity. Oxidized BRPrx did not react with glutathione, cysteine, homocysteine, N-acetyl-cysteine, and mercaptosuccinic acid.
Collapse
Affiliation(s)
- I V Peshenko
- Department of Ophthalmology, Wayne State University, School of Medicine, 4717 St. Antoine, Detroit, MI, USA
| | | |
Collapse
|
169
|
Atichartpongkul S, Loprasert S, Vattanaviboon P, Whangsuk W, Helmann JD, Mongkolsuk S. Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1775-1782. [PMID: 11429455 DOI: 10.1099/00221287-147-7-1775] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xanthomonas campestris Ohr (a protein involved in organic peroxide protection) and Escherichia coli OsmC (an osmotically inducible protein of unknown function) are related proteins. Database searches and phylogenetic analyses reveal that Ohr and OsmC homologues cluster into two related subfamilies of proteins widely distributed in both Gram-negative and Gram-positive bacteria. To determine if these two subfamilies are functionally distinct, ohr and osmC in Pseudomonas aeruginosa (a bacterium with one representative from each subfamily) were analysed. Only ohr mutants are hypersensitive to organic peroxide, and this phenotype can be restored by complementation with ohr but not osmC. In addition, expression of ohr was highly induced only by organic peroxides, and not by other oxidants or stresses. In contrast, osmC was induced by ethanol and osmotic stress. A similar pattern of regulation was observed for Ohr and OsmC homologues in the Gram-positive bacterium Deinococcus radiodurans, though uninduced expression was much higher and induction lower in this species. These data clearly support the conclusion that Ohr and OsmC define two functionally distinct subfamilies with distinct patterns of regulation.
Collapse
Affiliation(s)
- Sopapan Atichartpongkul
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| | - Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| | - Wirongrong Whangsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| | - John D Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA3
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand2
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand1
| |
Collapse
|
170
|
Son ES, Song KJ, Shin JC, Nam HW. Molecular cloning and characterization of peroxiredoxin from Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2001; 39:133-41. [PMID: 11441500 PMCID: PMC2721090 DOI: 10.3347/kjp.2001.39.2.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cDNA of 1.1 kb comprising the gene encoding the peroxiredoxin of Toxoplasma gondii (TgPrx) has been cloned. The open reading frame of 591 bp was translated into a protein of 196 amino acids with a molecular mass of 25 kDa. Conserved 2 cysteine domains of Phe-Val-Cys-Pro and Glu-Val-Cys-Pro indicated TgPrx belonged to 2-Cys Prx families. TgPrx showed the highest homology with that of Arabidopsis thaliana by 53.9% followed by Entamoeba histolytica with 39.5% by the amino acid sequence alignment. Polyclonal antibody against recombinant TgPrx detected 25 kDa band in T. gondii without binding to host cell proteins. TgPrx was located in the cytoplasm of T. gondii extracellularly or intracellularly by immunofluorescence assay. The expression of TgPrx was increased as early as 30 min after the treatment with artemisinin in the intracellular stage, while no changes in those of host Prx I and TgSOD. This result implies that TgPrx may function as an antioxidant protecting the cell from the attack of reactive oxygen intermediates. It is also suggested that TgPrx is a possible target of chemotherapy.
Collapse
Affiliation(s)
- E S Son
- Department of Parasitology and Catholic Institute of Parasitic Diseases, Catholic University of Korea, College of Medicine, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
171
|
Jung H, Kim T, Chae HZ, Kim KT, Ha H. Regulation of macrophage migration inhibitory factor and thiol-specific antioxidant protein PAG by direct interaction. J Biol Chem 2001; 276:15504-10. [PMID: 11297517 DOI: 10.1074/jbc.m009620200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an important mediator that plays a central role in the control of the host immune and inflammatory response. To investigate the molecular mechanism of MIF action, we have used the yeast two-hybrid system and identified PAG, a thiol-specific antioxidant protein, as an interacting partner of MIF. Association of MIF with PAG was found in 293T cells transiently expressing MIF and PAG. The use of PAG mutants (C52S, C71S, and C173S) revealed that this association was significantly affected by C173S, but not C52S and C71S, indicating that a disulfide involving Cys(173) of PAG is responsible for the formation of MIF-PAG complex. In addition, the interaction was highly dependent on the reducing conditions such as dithiothreitol or beta-mercaptoethanol but not in the presence of H2O2. Analysis of the activities of the interacting proteins showed that the D-dopachrome tautomerase activity of MIF was decreased in a dose-dependent manner by coexpression of wild-type PAG, C52S, and C71S, whereas C173S was almost ineffective, suggesting that the direct interaction may be involved in the control of D-dopachrome tautomerase activity of MIF. Moreover, MIF has been shown to bind to PAG and it also inhibits the antioxidant activity of PAG.
Collapse
Affiliation(s)
- H Jung
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
172
|
Horiguchi H, Yurimoto H, Kato N, Sakai Y. Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem 2001; 276:14279-88. [PMID: 11278957 DOI: 10.1074/jbc.m011661200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida boidinii Pmp20 (CbPmp20), a protein associated with the inner side of peroxisomal membrane, belongs to a recently identified protein family of antioxidant enzymes, the peroxiredoxins, which contain one cysteine residue. Pmp20 homologs containing the putative peroxisome targeting signal type 1 have also been identified in mammals and lower eukaryotes. However, the physiological function of these Pmp20 family proteins has been unclear. In this study, we investigated the biochemical and physiological functions of recombinant CbPmp20 protein in methanol-induced peroxisomes of C. boidinii using the PMP20-deleted strain of C. boidinii (pmp20Delta strain). The His(6)-tagged CbPmp20 fusion protein was found to have glutathione peroxidase activity in vitro toward alkyl hydroperoxides and H(2)O(2). Catalytic activity and dimerization of His(6)-CbPmp20 depended on the only cysteine residue corresponding to Cys(53). The pmp20Delta strain was found to have lost growth ability on methanol as a carbon and energy source. The pmp20Delta growth defect was rescued by CbPmp20, but neither CbPmp20 lacking the peroxisome targeting signal type 1 sequence nor CbPmp20 haboring the C53S mutation retrieved the growth defect. Interestingly, the pmp20Delta strain had a more severe growth defect than the cta1Delta strain, which lacks catalase, another antioxidant enzyme within the peroxisome. During incubation of these strains in methanol medium, the cta1Delta strain accumulated H(2)O(2), whereas the pmp20Delta strain did not. Therefore, it is speculated to be the main function of CbPmp20 is to decompose reactive oxygen species generated at peroxisomal membrane surface, e.g. lipid hydroperoxides, rather than to decompose H(2)O(2). In addition, we detected a physiological level of reduced glutathione in peroxisomal fraction of C. boidinii. These results may indicate a physiological role for CbPmp20 as an antioxidant enzyme within peroxisomes rich in reactive oxygen species.
Collapse
Affiliation(s)
- H Horiguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
173
|
Tsuji N, Kamio T, Isobe T, Fujisaki K. Molecular characterization of a peroxiredoxin from the hard tick Haemaphysalis longicornis. INSECT MOLECULAR BIOLOGY 2001; 10:121-129. [PMID: 11422507 DOI: 10.1046/j.1365-2583.2001.00246.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Antioxidant enzymes in eukaryotes play an important role in protection against the oxygen radicals generated during aerobic metabolism. Here we report the cloning and characterization of a cDNA encoding the antioxidant enzyme peroxiredoxin from the hard tick Haemaphysalis longicornis (HlPrx). HlPrx is 939 bp long and contains a 101 bp non-translated sequence at the 5' end and a polyadenylation singnal followed by a poly(A) tail at the 3' end. HlPrx encodes a full-length protein with a predicted molecular mass of 26 kDa that possesses one cysteine residue at amino acid 49 that is conserved among Prx proteins of various species. GenBanktrade mark analysis showed that the deduced amino acid sequence had significant similarity to mammalian and plant Prxs at the amino acid level. A DNA-nicking assay revealed that Escherichia coli-expressed recombinant HlPrx (rHlPrx) inhibited oxidative-nicking of supercoiled plasmid DNA. Two-dimensional immunoblot analysis with mouse antirHlPrx serum showed reaction with a major constituent protein spot in extracts of adult ticks. In addition, immunoblot analysis showed that rHlPrx was immunoreacted with serum from rabbits repeatedly infested with H. longicornis. Localization analysis using mouse antirHlPrx serum revealed that native HlPrx was highly expressed in the salivary gland of the tick. Moreover, Northern blot analysis showed that the level of HlPrx transcripts was increased during blood sucking. The present results indicate that HlPrx may be an important detoxifying enzyme during the normal life span as well as during blood sucking in ticks.
Collapse
Affiliation(s)
- N Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, Ministry of Agriculture, Forestry and Fisheries, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-0856 Japan.
| | | | | | | |
Collapse
|
174
|
Mitsumoto A, Takanezawa Y, Okawa K, Iwamatsu A, Nakagawa Y. Variants of peroxiredoxins expression in response to hydroperoxide stress. Free Radic Biol Med 2001; 30:625-35. [PMID: 11295360 DOI: 10.1016/s0891-5849(00)00503-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined patterns of the proteins that were expressed in human umbilical vein endothelial cells (HUVEC) in response to oxidative stress by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). When HUVEC were exposed to H2O2 at 100 microM for 60 min, the intensities of eight spots increased and those of eight spots decreased on 2D gels, as compared with control gels, after staining with silver. These changes were also observed after exposure of cells to hydroperoxides such as cumene hydroperoxide and tert-butyl hydroperoxide, but not after exposure to other reagents that induce oxidative stress such as S-alkylating compounds, nitric oxide, and salts of heavy metals. Therefore, these proteins were designated hydroperoxide responsive proteins (HPRPs). Microsequencing analysis revealed that these HPRPs corresponded to at least six pairs of proteins. Of these, four pairs of HPRPs were thioredoxin peroxidase I (TPx I), TPx II, TPx III, and the product of human ORF06, all of which belong to the peroxiredoxin (Prx) family and all of which are involved in the elimination of hydroperoxides. The other two pairs corresponded to heat shock protein 27 (HSP27) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH), respectively. The variants that appeared in response to hydroperoxides had molecular masses similar to the respective native forms, but their pI values were lower by 0.2-0.3 pH units than those of the corresponding native proteins. These variants were detected on 2D gels after cells had been exposed to hydroperoxides in the presence of an inhibitor of protein synthesis. All variants were generated within 30 min of exposure to 100 microM H2O2. The variants of TPx I and TPx II appeared within 2 min of the addition of H2O2 to the culture medium. The HPRPs returned to their respective native forms after the removal of stress. Our results indicated that at least six proteins were structurally modified in response to hydroperoxides. Analysis by 2D-PAGE of 32P-labeled proteins revealed that the variant of HSP27 was its phosphorylated form while the other HPRPs were not modified by phosphorylation. Taken together, the results suggest that 2D-PAGE can reveal initial responses to hydroperoxide stress at the level of protein modification. Moreover, it is possible that the variants of four types of Prx might reflect intermediate states in the process of hydroperoxide elimination.
Collapse
Affiliation(s)
- A Mitsumoto
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
175
|
Lundström AM, Sundaeus V, Bölin I. The 26-kilodalton, AhpC homologue, of Helicobacter pylori is also produced by other Helicobacter species. Helicobacter 2001; 6:44-54. [PMID: 11328365 DOI: 10.1046/j.1523-5378.2001.00006.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The 26 kDa protein, which is an alkyl hydroperoxide reductase (AhpC) homologue, has earlier been described as specific for Helicobacter pylori. The aims of this study were to analyse whether this protein, or the corresponding gene, could be identified in other Helicobacter species. MATERIALS AND METHODS Two different monoclonal antibodies (Mabs), which recognise the 26 kDa protein in H. pylori, were used in immunoblots to determine the presence of the protein in 10 Helicobacter species. PCR was performed in order to analyse whether the gene was detectable and the PCR products were sequenced. Southern and Northern blot analyses were done on chromosomal DNA and total RNA, respectively, isolated from some selected Helicobacter species in order to compare the genes and mRNA transcripts to H. pylori. RESULTS The 26 kDa protein was identified in H. nemestrinae (primate), H. acinonychis (cheetah), H. bilis (mouse), H. felis (cat) and H. salomonis (dog) but not in H. mustelae (ferret), H. cinaedi (human), H. canis (dog), H. fennelliae (human) or H. pullorum (poultry). By PCR the gene was also recognised in H. mustelae, H. cinaedi and H. pullorum. The PCR products showed high sequence homology (66-98%) compared to H. pylori. The gene was also highly conserved in four H. pylori strains (94-99% homology). Southern blot showed that the H. nemestrinae and H. acinonychis chromosomal DNA contained a single copy of the gene and the Northern blot analyses indicated mono-cistronic transcription of the gene in these two species, as has been found in H. pylori. CONCLUSIONS A gene similar to ahpC was found in eight out of 10 Helicobacter species analysed.
Collapse
Affiliation(s)
- A M Lundström
- Department of Medical Microbiology and Immunology, Göteborg University, PO Box 435, SE-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
176
|
Lee KO, Jang HH, Jung BG, Chi YH, Lee JY, Choi YO, Lee JR, Lim CO, Cho MJ, Lee SY. Rice 1Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett 2000; 486:103-6. [PMID: 11113447 DOI: 10.1016/s0014-5793(00)02230-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Possible functions that have been proposed for the plant 1Cys-peroxiredoxin, include activity as a dormancy regulator and as an antioxidant. The transcript level of rice 1Cys-peroxiredoxin (R1C-Prx) rapidly decreased after imbibition of rice seeds, but the protein was detected for 15 days after imbibition. To investigate the function of this protein, we generated transgenic tobacco plants constitutively expressing the R1C-Prx gene. The transgenic R1C-Prx plants showed a germination frequency similar to control plants. However, the transgenic lines exhibited higher resistance against oxidative stress, suggesting that antioxidant activity may be its primary function.
Collapse
Affiliation(s)
- K O Lee
- School of Applied Life Sciences, Gyeongsang National University, 660-701, Chinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Lundström AM, Bölin I. A 26 kDa protein of helicobacter pylori shows alkyl hydroperoxide reductase (AhpC) activity and the mono-cistronic transcription of the gene is affected by pH. Microb Pathog 2000; 29:257-66. [PMID: 11031120 DOI: 10.1006/mpat.2000.0388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 26 kDa protein of Helicobacter pylori, with 67% amino acid identity to alkyl hydroperoxide reductase (AhpC) of Campylobacter jejuni, was studied. We wanted to evaluate it the protein has AhpC activity. Therefore, an Escherichia coli mutant defective for alkyl hydroperoxide reductase and a plasmid expressing the 26 kDa protein from H. pylori were used in complementation studies. The complemented E. coli mutant showed a decreased sensitivity to cumene hydroperoxide indicating that the 26 kDa protein of H. pylori has AhpC activity and could be of importance in the defence against oxidative stress. Furthermore, Northern blot analysis detected one mRNA transcript of approximately 700 bp which is in agreement with the gene being transcribed as a single gene with its own promoter. This promoter region was further characterized by primer extension experiments. Additional studies on how environmental factors, such as long term growth and pH, can affect the transcription of the gene were performed on two H. pylori strains. We found that low pH and long term growth repressed transcription of the gene. Attempts to construct a mutant deficient for the gene in H. pylori were unsuccessful.
Collapse
Affiliation(s)
- A M Lundström
- Department of Medical Microbiology and Immunology, Göteborg University, Sweden
| | | |
Collapse
|
178
|
Kwatia MA, Botkin DJ, Williams DL. Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. J Parasitol 2000; 86:908-15. [PMID: 11128509 DOI: 10.1645/0022-3395(2000)086[0908:maecos]2.0.co;2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ability of Schistosoma mansoni to escape oxidative damage from immune system-generated reactive oxygen intermediates has been extensively documented. The limiting step in the parasite's detoxification process appears to be at the level of hydrogen peroxide neutralization. In the present study, the possible role of a novel class of antioxidant enzymes, thioredoxin peroxidase (TPx), in hydrogen peroxide neutralization by schistosomes was investigated. An expressed sequence tag was characterized from the Schistosoma Genome Initiative with high similarity to TPx from other organisms. The gene encodes a polypeptide containing 2 conserved active-site cysteines and flanking amino acids, and 60-70% identity with previously characterized TPx proteins. Recombinant schistosome TPx was enzymatically active and found to have thioredoxin-dependent hydrogen peroxide reducing activity of 4500 nmol hydrogen peroxide/min/mg protein. Native TPx activity was determined to be 48.1 nmol hydrogen peroxide/min/mg protein in adult worm homogenates compared with 46.9 for glutathione peroxidase. TPx activity was precipitated from adult worm homogenates with antibodies prepared against the recombinant protein. Western blotting with antibodies made against recombinant protein showed that TPx was expressed in both male and female adult worms. This is the first demonstration of a TPx activity in schistosomes and our results suggest that TPx plays a significant role in schistosome-host interactions.
Collapse
Affiliation(s)
- M A Kwatia
- Department of Biological Sciences, Illinois State University, Normal 61790-4120, USA
| | | | | |
Collapse
|
179
|
Kong W, Shiota S, Shi Y, Nakayama H, Nakayama K. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp). Biochem J 2000; 351:107-14. [PMID: 10998352 PMCID: PMC1221340 DOI: 10.1042/0264-6021:3510107] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We cloned a gene encoding a 17-kDa protein from a cDNA library of the plant Sedum lineare and found that its deduced amino acid sequence showed similarities to those of Escherichia coli bacterioferritin co-migratory protein (Bcp) and its homologues, which comprise a discrete group associated with the peroxiredoxin (Prx) family. Studies of the recombinant 17-kDa protein produced in E. coli cells revealed that it actually had a thioredoxin-dependent peroxidase activity, the hallmark of the Prx family. PrxQ, as we now designate the 17-kDa protein, had two cysteine residues (Cys-44 and Cys-49) well conserved among proteins of the Bcp group. These two cysteines were demonstrated to be essential for the thioredoxin-dependent peroxidase activity by analysis of mutant proteins, suggesting that these residues are involved in the formation of an intramolecular disulphide bond as an intermediate in the reaction cycle. Expression of PrxQ suppressed the hypersensitivity of an E. coli bcp mutant to peroxides, indicating that it might exert an antioxidant activity in vivo.
Collapse
Affiliation(s)
- W Kong
- Department of Microbiology, Faculty of Dentistry, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
180
|
Alphey MS, Bond CS, Tetaud E, Fairlamb AH, Hunter WN. The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. J Mol Biol 2000; 300:903-16. [PMID: 10891277 DOI: 10.1006/jmbi.2000.3881] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tryparedoxin peroxidase (TryP) is a recently discovered 2Cys-peroxiredoxin involved in defence against oxidative stress in parasitic trypanosomatids. The crystal structure of recombinant Crithidia fasciculata TryP, in the reduced state, has been determined using multi-wavelength anomalous dispersion methods applied to a selenomethionyl derivative. The model comprises a decamer with 52 symmetry, ten chloride ions with 23 water molecules and has been refined, using data to 3.2 A resolution (1 A=0.1 nm), to an R-factor and R(free) of 27.3 and 28.6 %, respectively. Secondary structure topology places TryP along with tryparedoxin and glutathione peroxidase in a distinct subgroup of the thioredoxin super-family. The molecular details at the active site support ideas about the enzyme mechanism and comparisons with an oxidised 2Cys-peroxiredoxin reveal structural alterations induced by the change in oxidation state. These include a difference in quaternary structure from dimer (oxidised form) to decamer (reduced form). The 2Cys-peroxiredoxin assembly may prevent indiscriminate oligomerisation, localise ten peroxidase active sites and contribute to both the specificity of reduction by the redox partner tryparedoxin and attraction of peroxides into the active site.
Collapse
Affiliation(s)
- M S Alphey
- Department of Biochemistry, The Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
181
|
Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 2000; 275:20346-54. [PMID: 10751410 DOI: 10.1074/jbc.m001943200] [Citation(s) in RCA: 353] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxidases of the peroxiredoxin (Prx) family contain a Cys residue that is preceded by a conserved sequence in the NH(2)-terminal region. A new type of mammalian Prx, designated PrxV, has now been identified as the result of a data base search with this conserved Cys-containing sequence. The 162-amino acid PrxV shares only approximately 10% sequence identity with previously identified mammalian Prx enzymes and contains Cys residues at positions 73 and 152 in addition to that (Cys(48)) corresponding to the conserved Cys. Analysis of mutant human PrxV proteins in which each of these three Cys residues was individually replaced with serine suggested that the sulfhydryl group of Cys(48) is the site of oxidation by peroxides and that oxidized Cys(48) reacts with the sulfhydryl group of Cys(152) to form an intramolecular disulfide linkage. The oxidized intermediate of PrxV is thus distinct from those of other Prx enzymes, which form either an intermolecular disulfide or a sulfenic acid intermediate. The disulfide formed by PrxV is reduced by thioredoxin but not by glutaredoxin or glutathione. Thus, PrxV mutants lacking Cys(48) or Cys(152) showed no detectable thioredoxin-dependent peroxidase activity, whereas mutation of Cys(73) had no effect on activity. Immunoblot analysis revealed that PrxV is widely expressed in rat tissues and cultured mammalian cells and is localized intracellularly to cytosol, mitochondria, and peroxisomes. The peroxidase function of PrxV in vivo was demonstrated by the observations that transient expression of the wild-type protein, but not that of the Cys(48) mutant, in NIH 3T3 cells inhibited H(2)O(2) accumulation and activation of c-Jun NH(2)-terminal kinase induced by tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- M S Seo
- Laboratory of Cell Signaling and Department of Extramural Affairs, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
182
|
Kawazu S, Tsuji N, Hatabu T, Kawai S, Matsumoto Y, Kano S. Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2000; 109:165-9. [PMID: 10960175 DOI: 10.1016/s0166-6851(00)00243-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Kawazu
- Research Institute, International Medical Center of Japan, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
183
|
Research Note: Wheat Gluten Contains a Thioredoxin-Dependent Peroxide Reductase. J Cereal Sci 2000. [DOI: 10.1006/jcrs.2000.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
184
|
Cha MK, Yun CH, Kim IH. Interaction of human thiol-specific antioxidant protein 1 with erythrocyte plasma membrane. Biochemistry 2000; 39:6944-50. [PMID: 10841776 DOI: 10.1021/bi000034j] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the purification from human erythrocytes, human thiol-specific antioxidant protein 1 (hTSA1), one human member of the TSA/alkyl hydroperoxide reductase subunit C (AhpC) family, was fragmented to a molecular mass of 20 323.9300. The fragmented form, in contrast to the intact form, did not bind to the C-terminal peptide (Gln-185-Gln-197) antibody. On the basis of the molecular mass of the fragmented form, the cleavage site was calculated to be between Val-186 and Asp-187. The C-terminal region of hTSA1 appeared to be unnecessary for the antioxidant reaction. In addition to hTSA1, two isoenzymes (hORF06 and hTSA2) were detected in the soluble fraction, whereas only hTSA1 was detected in the membrane fraction. A membrane binding study shows that the intact form binds to erythrocyte plasma membrane but the fragment does not, which suggests that the deleted C-terminal legion (Asp-187-Gln-197) is required for the membrane binding. A model membrane study using phospholipid vesicle showed a strong association of hTSA1 with the phospholipid. Human TSA1 exhibited high catalytic activity for the reduction of the fatty acid hydroperoxide as indicated by K(m) and V(max) (89.9 microM for linoleic acid hydroperoxide, 28.64 micromol(-1) min(-1) mg(-1), respectively). In this paper, we are making the first report of the involvement of the C-terminal region of hTSA1 in membrane binding as evidence supporting the existence of the membrane-associated forms in the erythrocyte. On the basis of our observations, we suggest that hTSA1 can act as a very effective antioxidant to remove oxidative stresses not only in matrix as a free form but also in the membrane surface of red blood cells (RBC) as a membrane-associated form.
Collapse
Affiliation(s)
- M K Cha
- National Creative Research Initiatives Center for Antioxidant Proteins, Department of Biochemistry, Paichai University, Taejon 302-735, Korea
| | | | | |
Collapse
|
185
|
Salazar-Calderón M, Martín-Alonso JM, Ruiz de Eguino AD, Casais R, Marín MS, Parra F. Fasciola hepatica: heterologous expression and functional characterization of a thioredoxin peroxidase. Exp Parasitol 2000; 95:63-70. [PMID: 10864519 DOI: 10.1006/expr.2000.4495] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Fasciola hepatica cDNA clone of 779 bp was isolated from an adult worm cDNA expression library by immunological screening using a rabbit serum against the excretory-secretory antigens. The nucleotide sequence of the cDNA revealed the presence of an open reading frame of 582 bp which encoded a 194-amino-acid-residue polypeptide (M(r) 21,723 Da) showing a high degree of homology to thioredoxin peroxidases. This putative antioxidant protein gene was expressed in Escherichia coli as a GST fusion protein. The recombinant fusion protein showed in vitro antioxidant properties and protected rabbit muscle enolase and E. coli glutamine synthetase from inactivation by nonenzymatic Fe(3+)/O(2)/DTT or Fe(3+)/O(2)/ascorbate metal-catalyzed oxidation systems.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antioxidants/chemistry
- Antioxidants/isolation & purification
- Antioxidants/metabolism
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cattle
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Helminth/chemistry
- Electrophoresis, Polyacrylamide Gel
- Fasciola hepatica/enzymology
- Fasciola hepatica/genetics
- Gene Expression
- Molecular Sequence Data
- Neoplasm Proteins
- Open Reading Frames
- Peroxidases/chemistry
- Peroxidases/genetics
- Peroxidases/metabolism
- Peroxiredoxins
- RNA, Messenger/analysis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Salazar-Calderón
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias (CSIC), Universidad de Oviedo, Oviedo, 33006, Spain
| | | | | | | | | | | |
Collapse
|
186
|
Lewis ML, Miki K, Ueda T. FePer 1, a gene encoding an evolutionarily conserved 1-Cys peroxiredoxin in buckwheat (Fagopyrum esculentum Moench), is expressed in a seed-specific manner and induced during seed germination. Gene 2000; 246:81-91. [PMID: 10767529 DOI: 10.1016/s0378-1119(00)00045-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cDNA corresponding to 1-Cys peroxiredoxin, an evolutionarily conserved thiol-specific antioxidant enzyme, was isolated from buckwheat (Fagopyrum esculentum Moench), a dicotyledonous plant species belonging to the Polygonaceae family. The cDNA, which we have designated as FePer1, contains a major open reading frame capable of encoding a polypeptide of 219 residues with a predicted molecular mass of 24.3kDa. The deduced primary structure of FePer1 polypeptide shows a high level (about 70%) of sequence homology to other recently identified plant 1-Cys peroxiredoxins. FePer1 also exhibits a significant level of sequence similarity to non-plant 1-Cys peroxiredoxins, sharing 52 and 42% identities with mammalian and fungal 1-Cys peroxiredoxins, respectively. As for all 1-Cys peroxiredoxins identified from various organisms, the amino acid sequence proposed to constitute the active site of the enzyme is highly conserved in FePer1 polypeptide. The gene corresponding to FePer1 cDNA is a single-copy gene in the buckwheat genome. Its expression is regulated in a seed-specific and temporal manner during seed development. FePer1 gene is induced transiently for a short period immediately after seed imbibition.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Fagopyrum/enzymology
- Fagopyrum/genetics
- Fagopyrum/growth & development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Germination/genetics
- Molecular Sequence Data
- Peroxidases/genetics
- Peroxiredoxins
- Phylogeny
- Plant Proteins/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Seeds/enzymology
- Seeds/genetics
- Seeds/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M L Lewis
- Department of Bioscience, Program in Molecular Biology and Biotechnology, Salem-Teikyo University, 223 W. Main Street, Salem, WV 26426-0500, USA
| | | | | |
Collapse
|
187
|
Wilkinson SR, Temperton NJ, Mondragon A, Kelly JM. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J Biol Chem 2000; 275:8220-5. [PMID: 10713147 DOI: 10.1074/jbc.275.11.8220] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The American trypanosome Trypanosoma cruzi is exposed to toxic oxygen metabolites that are generated by drug metabolism and immune responses in addition to those produced by endogenous processes. However, much remains to be resolved about the parasite oxidative defense system, including the mechanism(s) of peroxide reduction. Here we show that reduction of peroxides in T. cruzi is catalyzed by two distinct trypanothione-dependent enzymes. These were localized to the cytosol and mitochondrion. Both are members of the peroxiredoxin family of antioxidant proteins and are characterized by the presence of two conserved domains containing redox active cysteines. The role of these proteins in protecting T. cruzi from peroxide-mediated damage was demonstrated following overexpression of enzyme activity. The parasite-specific features of T. cruzi cytoplasmic peroxiredoxin and T. cruzi mitochondrial peroxiredoxin may be exploitable in terms of drug development.
Collapse
Affiliation(s)
- S R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT United Kingdom.
| | | | | | | |
Collapse
|
188
|
Montemartini M, Nogoceke E, Gommel DU, Singh M, Kalisz HM, Steinert P, Flohé L. Tryparedoxin and tryparedoxin peroxidase. Biofactors 2000; 11:71-2. [PMID: 10705965 DOI: 10.1002/biof.5520110120] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Montemartini
- Department of Biochemistry, Technical University of Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
189
|
Santos AN, Körber S, Küllertz G, Fischer G, Fischer B. Oxygen stress increases prolyl cis/trans isomerase activity and expression of cyclophilin 18 in rabbit blastocysts. Biol Reprod 2000; 62:1-7. [PMID: 10611060 DOI: 10.1095/biolreprod62.1.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) activity and the expression of cyclophilins were studied in 6-day-old rabbit preimplantation embryos cultured under physiological and increased oxygen concentrations of 5% and 20% O(2), respectively. The PPIase activity was completely inhibited by cyclosporin A (CsA). The inhibitor of FK506-binding proteins, rapamycin, had no effect on the PPIase activity, indicating that the PPIase activity in rabbit blastocysts originates from cyclophilins. Using CsA affinity chromatography, only one cyclophilin with a molecular mass of about 17.8 kDa was separated. The cDNA of rabbit cyclophilin was cloned and sequenced. Analysis of the 682-base pair cDNA revealed an open reading frame coding for a polypeptide of 164 amino acid residues with a molecular weight of 17.83 kDa. Homologies of 90% and 96% for the cDNA and amino acid sequence, respectively, to the human CyP18 were found, suggesting that the novel rabbit cyclophilin is a member of the CyP18 family (rabCyP18). The transcription level of rabCyP18 mRNA was 8.3 +/- 0.6 pg in 100 ng total RNA in noncultured blastocysts. In vitro culture with moderate oxygen stress (20% O(2)) resulted in a 1.5-fold increase in rabCyP18 transcription and an increased PPIase activity compared to that of blastocysts cultured with 5% O(2). Increase in transcription rate and PPIase activity by oxygen stress suggests an involvement of CyP18 in oxygen defense in rabbit preimplantation embryos.
Collapse
Affiliation(s)
- A N Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, D-06097 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
190
|
Hirotsu S, Abe Y, Okada K, Nagahara N, Hori H, Nishino T, Hakoshima T. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc Natl Acad Sci U S A 1999; 96:12333-8. [PMID: 10535922 PMCID: PMC22917 DOI: 10.1073/pnas.96.22.12333] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme-binding protein 23 kDa (HBP23), a rat isoform of human proliferation-associated gene product (PAG), is a member of the peroxiredoxin family of peroxidases, having two conserved cysteine residues. Recent biochemical studies have shown that HBP23/PAG is an oxidative stress-induced and proliferation-coupled multifunctional protein that exhibits specific bindings to c-Abl protein tyrosine kinase and heme, as well as a peroxidase activity. A 2.6-A resolution crystal structure of rat HBP23 in oxidized form revealed an unusual dimer structure in which the active residue Cys-52 forms a disulfide bond with conserved Cys-173 from another subunit by C-terminal tail swapping. The active site is largely hydrophobic with partially exposed Cys-173, suggesting a reduction mechanism of oxidized HBP23 by thioredoxin. Thus, the unusual cysteine disulfide bond is involved in peroxidation catalysis by using thioredoxin as the source of reducing equivalents. The structure also provides a clue to possible interaction surfaces for c-Abl and heme. Several significant structural differences have been found from a 1-Cys peroxiredoxin, ORF6, which lacks the C-terminal conserved cysteine corresponding to Cys-173 of HBP23.
Collapse
Affiliation(s)
- S Hirotsu
- Department of Molecular Biology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
191
|
Knoops B, Clippe A, Bogard C, Arsalane K, Wattiez R, Hermans C, Duconseille E, Falmagne P, Bernard A. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem 1999; 274:30451-8. [PMID: 10521424 DOI: 10.1074/jbc.274.43.30451] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using two-dimensional electrophoresis, we have recently identified in human bronchoalveolar lavage fluid a novel protein, termed B166, with a molecular mass of 17 kDa. Here, we report the cloning of human and rat cDNAs encoding B166, which has been renamed AOEB166 for antioxidant enzyme B166. Indeed, the deduced amino acid sequence reveals that AOEB166 represents a new mammalian subfamily of AhpC/TSA peroxiredoxin antioxidant enzymes. Human AOEB166 shares 63% similarity with Escherichia coli AhpC22 alkyl hydroperoxide reductase and 66% similarity with a recently identified Saccharomyces cerevisiae alkyl hydroperoxide reductase/thioredoxin peroxidase. Moreover, recombinant AOEB166 expressed in E. coli exhibits a peroxidase activity, and an antioxidant activity comparable with that of catalase was demonstrated with the glutamine synthetase protection assay against dithiothreitol/Fe3+/O(2) oxidation. The analysis of AOEB166 mRNA distribution in 30 different human tissues and in 10 cell lines shows that the gene is widely expressed in the body. Of interest, the analysis of N- and C-terminal domains of both human and rat AOEB166 reveals amino acid sequences presenting features of mitochondrial and peroxisomal targeting sequences. Furthermore, human AOEB166 expressed as a fusion protein with GFP in HepG2 cell line is sorted to these organelles. Finally, acute inflammation induced in rat lung by lipopolysaccharide is associated with an increase of AOEB166 mRNA levels in lung, suggesting a protective role for AOEB166 in oxidative and inflammatory processes.
Collapse
Affiliation(s)
- B Knoops
- Laboratory of Cell Biology, Department of Biology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 1999; 45:101-12. [PMID: 10588361 DOI: 10.1016/s0168-8227(99)00037-6] [Citation(s) in RCA: 296] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A peroxidase from yeast that reduces H2O2 with the use of electrons provided by thioredoxin (Trx) together with homologs from a wide variety of species constitute the peroxiredoxin (Prx) family of proteins. Twelve mammalian Prx members have been previously identified in association with various cellular functions apparently unrelated to peroxidase activity. These mammalian proteins have now been divided into three distinct types, Prx I, II, and III, on the basis of their deduced amino acid sequences and immunological reactivity. With the use of recombinant proteins, Prx I, II, and III have now been shown to possess peroxidase activity and to rely on Trx as a source of reducing equivalents. None of the three proteins exhibited peroxidase activity in the presence of glutaredoxin. All three enzymes showed similar kinetic properties: the Vmax was 6-13 micromol/min per mg at 37 degrees C, the Km for Trx was 3-6 microM, and the Km for H2O2 was < 20 microM. Immunoblot analysis of various rat tissues and cultured cells indicated that most cell types contain the three Prx isoforms, the sum of which amounts to approximately 1-10 microg per milligram of soluble protein. Prx I and II are cytosolic proteins, whereas Prx IlI is localized in mitochondria. These results suggest that, together with glutathione peroxidase and catalase, Prx enzymes likely play an important role in eliminating peroxides generated during metabolism as well as during stimulation of cell surface receptors.
Collapse
Affiliation(s)
- H Z Chae
- Department of Biology, College of Sciences, Chonnam National University, Kwangju, South Korea
| | | | | | | |
Collapse
|
193
|
Montemartini M, Kalisz HM, Hecht HJ, Steinert P, Flohé L. Activation of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of Crithidia fasciculata. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:516-24. [PMID: 10491099 DOI: 10.1046/j.1432-1327.1999.00656.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tryparedoxin peroxidase (TXNPx), recently identified as the hydroperoxide-detoxifying enzyme of trypanosomatidae [Nogoceke, E., Gommel, D. U., Kiess, M., Kalisz, H. M. & Flohé, L. (1997) Biol. Chem. 378, 827-836], is a member of the peroxiredoxin family and is characterized by two VCP motifs. Based on a consensus sequence of TXNPx and peroxiredoxin-type peroxidases, eight TXNPx variants were designed, heterologously expressed in Escherichia coli, checked for alpha-helix content by CD and kinetically analysed. The variant Q164E was fully active, C52S, W87D and R128E were inactive and C173S, W87H, W177E and W177H showed reduced activity. Wild-type TXNPx and Q164E exhibit ping-pong kinetics with infinite maximum velocities, whereas saturation kinetics were observed with C173S and W177E. The data comply with a mechanism in which C52, primarily activated by R128 and possibly by W87, is first oxidized by hydroperoxide to a sulfenic acid derivative. C173, supported by W177, then forms an intersubunit disulfide bridge with C52. If C173 is exchanged with a redox-inactive residue (Ser) or is insufficiently activated, the redox shuttle remains restricted to C52. The shift in the kinetic pattern and decrease in specific activity of C173S and W177E may result from a limited accessibility of the oxidized C52 to tryparedoxin, which in the oxidized wild-type TXNPx presumably attacks the C173 sulfur of the disulfide bridge. The proposed mechanism of action of TXNPx is consistent with that deduced for the homologous thioredoxin peroxidase of yeast [Chae, H. Z., Uhm, T. B. & Rhee, S. G. (1994) Proc. Natl Acad. Sci. USA 91, 7022-7026] and is supported by molecular modelling based on the structure of the human peroxiredoxin 'hORF6' [Choi, H.-J., Kang, S. W. Yang, C.-H., Rhee, S. G. & Ryu, S.-E. (1998) Nat. Struct. Biol. 5, 400-406].
Collapse
Affiliation(s)
- M Montemartini
- Department of Biochemistry, Technical University of Braunschweig, Germany
| | | | | | | | | |
Collapse
|
194
|
Baillon ML, van Vliet AH, Ketley JM, Constantinidou C, Penn CW. An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 1999; 181:4798-804. [PMID: 10438747 PMCID: PMC93964 DOI: 10.1128/jb.181.16.4798-4804.1999] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/1999] [Accepted: 05/28/1999] [Indexed: 11/20/2022] Open
Abstract
Microaerophiles like Campylobacter jejuni must resist oxidative stresses during transmission or infection. Growth of C. jejuni 81116 under iron limitation greatly increased the expression of two polypeptides of 26 and 55 kDa. The identification of these proteins by N-terminal amino acid sequencing showed both to be involved in the defense against oxidative stress. The 55-kDa polypeptide was identical to C. jejuni catalase (KatA), whereas the N terminus of the 26-kDa polypeptide was homologous to a 26-kDa Helicobacter pylori protein. The gene encoding the C. jejuni 26-kDa protein was cloned, and the encoded protein showed significant homology to the small subunit of alkyl hydroperoxide reductase (AhpC). The upstream region of ahpC encoded a divergent ferredoxin (fdxA) homolog, whereas downstream sequences contained flhB and motB homologs, which are involved in flagellar motility. There was no evidence for an adjacent homolog of ahpF, encoding the large subunit of alkyl hydroperoxide reductase. Reporter gene studies showed that iron regulation of ahpC and katA is achieved at the transcriptional level. Insertional mutagenesis of the ahpC gene resulted in an increased sensitivity to oxidative stresses caused by cumene hydroperoxide and exposure to atmospheric oxygen, while resistance to hydrogen peroxide was not affected. The C. jejuni AhpC protein is an important determinant of the ability of this microaerophilic pathogen to survive oxidative and aerobic stress.
Collapse
Affiliation(s)
- M L Baillon
- School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
195
|
Vattanaviboon P, Varaluksit T, Mongkolsuk S. Modulation of peroxide stress response by thiol reagents and the role of a redox sensor-transcription regulator, OxyR in mediating the response inXanthomonas. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13699.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
196
|
Immenschuh S, Stritzke J, Iwahara S, Ramadori G. Up-regulation of heme-binding protein 23 (HBP23) gene expression by lipopolysaccharide is mediated via a nitric oxide-dependent signaling pathway in rat Kupffer cells. Hepatology 1999; 30:118-27. [PMID: 10385647 DOI: 10.1002/hep.510300142] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heme-binding protein 23 (HBP23) is a cytosolic protein that binds the prooxidant heme with high affinity and has been implicated in the cellular protection against reactive oxygen species (ROS). Because lipopolysaccharide (LPS) stimulates macrophages to produce large amounts of ROS the gene expression of HBP23 was analyzed during treatment with LPS in cultured rat Kupffer cells (KC). HBP23 was constitutively expressed in KC and up-regulated on the protein and messenger RNA (mRNA) level by LPS with a time response distinct from that of TNFalpha, but in coordination with that of heme oxygenase-1 (HO-1), which is the inducible isoform of the rate-limiting enzyme of heme degradation. A parallel up-regulation of HBP23 and HO-1 mRNA by LPS was also observed in cultured peritoneal macrophages and peripheral blood monocytes. HBP23 mRNA induction by LPS occurred on the transcriptional level as indicated by blocking with actinomycin D. The induction of HBP23 mRNA expression by LPS was preceded by that of the inducible nitric oxide synthase (iNOS) and the production of nitrite in KC. Treatment with the NOS inhibitor NG-monomethyl L-arginine prevented HBP23 mRNA induction by LPS, which was reversed by an excess of L-arginine. Both the nitric oxide (NO)-donor S-nitroso-N-acetylpenicillamine and the peroxynitrite donor SIN-1 increased HBP23 mRNA expression. HBP23 mRNA induction by LPS was down-regulated by interleukin 10 and transforming growth factor beta1 with a NO-independent mechanism. LPS-stimulated KC exhibited marked protection against the cytotoxicity mediated by H2O2. The data suggest that NO and peroxynitrite are major mediators of the LPS-dependent up-regulation of HBP23 in KC.
Collapse
Affiliation(s)
- S Immenschuh
- Zentrum Innere Medizin, Abteilung Gastroenterologie und Endokrinologie, Georg-August-Universität Göttingen, Göttingen, Germany.
| | | | | | | |
Collapse
|
197
|
Cheong NE, Choi YO, Lee KO, Kim WY, Jung BG, Chi YH, Jeong JS, Kim K, Cho MJ, Lee SY. Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in Chinese cabbage. PLANT MOLECULAR BIOLOGY 1999; 40:825-834. [PMID: 10487217 DOI: 10.1023/a:1006271823973] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA (C2C-Prx) corresponding to a 2Cys-peroxiredoxin (2Cys-Prx) was isolated from a leaf cDNA library of Chinese cabbage. The predicted amino acid sequence of C2C-Prx has 2 conserved cysteines and several peptide domains present in most of the 2Cys-Prx subfamily members. It shows the highest sequence homology to the 2Cys-Prx enzymes of spinach (88%) and Arabidopsis (86%). Southern analysis using the cDNA insert of C2C-Prx revealed that it consists of a small multigene family in Chinese cabbage genome. RNA blot analysis showed that the gene was predominantly expressed in the leaf tissue of Chinese cabbage seedlings, but the mRNA was generally expressed in most tissues of mature plant, except roots. The expression of C2C-Prx was slightly induced by treatment with H2O2 (100 microM) or Fe3+/O2/DTT oxidation system, but not by ABA (50 microM) or GA3 (10 microM). The C2C-Prx is encoded as a preprotein of 273 amino acids containing a putative chloroplast-targeting signal of 65 amino acids at its N-terminus. The N-terminally truncated recombinant protein (deltaC2C-Prx) migrates as a dimer in a non-reducing SDS-polyacrylamide gel and as a monomer in a reducing condition. The deltaC2C-Prx shows no immuno cross-reactivity to antiserum of the yeast thiol-specific antioxidant protein, and vice versa. The deltaC2C-Prx prevents the inactivation of glutamine synthetase and the DNA cleavage in the metal-catalyzed oxidation system. In the yeast thioredoxin system containing thioredoxin reductase, thioredoxin, and NADPH, the deltaC2C-Prx exhibits peroxidase activity on H2O2.
Collapse
Affiliation(s)
- N E Cheong
- Department of Biochemistry, College of Natural Sciences, Gyeongsang National University, Chinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Stacy RA, Nordeng TW, Culiáñez-Macià FA, Aalen RB. The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:1-8. [PMID: 10417721 DOI: 10.1046/j.1365-313x.1999.00488.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protection against desiccation-induced injury, including damage by reactive oxygen species (ROS), is a necessary component of the genetic programmes active during late seed development. Likewise, protection against ROS respiration by-products is required during seed imbibition and germination. Late embryogenesis abundant (LEA) proteins are proposed to protect seed tissues against desiccation-induced damage. Specifically, the atypical Lea gene Per1 in barley (Hordeum vulgare L.) has been proposed to play a protective role in embryo and aleurone cells against free-radical damage during late seed development and early imbibition. PER1 represents a subgroup of the peroxiredoxin family of thiol-requiring anti-oxidants with one conserved cysteine residue (1-Cys), and displays in vitro anti-oxidant activity. In this work, we use antiserum generated against PER1 to study protein accumulation patterns as well as localization at the tissue, cellular and subcellular level. While previous studies have shown the Per1 transcript to be dormancy-related, we show here that the protein level is maintained in imbibed dormant seeds, but not in non-dormant seeds. Our data identify the location of this seed-specific peroxiredoxin as the nucleus of immature embryos and aleurone layers. Highest levels of protein are detected in nucleoli. In contrast, in mature imbibed dormant seeds, cytosolic levels are comparable to that of the nucleus. A putative nuclear localization signal (NLS) of bipartite nature was identified in the C-terminal end of the PER1 sequence. Protective roles for PER1 in seeds are discussed.
Collapse
Affiliation(s)
- R A Stacy
- Division of General Genetics, University of Oslo, Norway
| | | | | | | |
Collapse
|
199
|
Hirotsu S, Abe Y, Nagahara N, Hori H, Nishino T, Okada K, Hakoshima T. Crystallographic characterization of a stress-induced multifunctional protein, rat HBP-23. J Struct Biol 1999; 126:80-3. [PMID: 10329492 DOI: 10.1006/jsbi.1999.4088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HBP-23 is a stress-induced multifunctional rat protein that belongs to a novel family of antioxidant proteins, referred to as peroxiredoxins, and exhibits heme-binding and inhibition of c-Abl protein tyrosine kinase. Recombinant HBP-23 was crystallized by a hanging-drop vapor-diffusion method. The crystals belong to space group P41212 or P43212 with unit-cell dimensions of a = b = 73.47 A, c = 210.37 A and contain two protein molecules in the asymmetric unit. A data set at 2.7-A resolution was collected with a cryo-crystallographic technique. Crystals of selenomethionyl HBP-23 were also obtained under the same conditions.
Collapse
Affiliation(s)
- S Hirotsu
- Department of Molecular Biology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Nara, Ikoma, 630-01, Japan
| | | | | | | | | | | | | |
Collapse
|
200
|
Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N, Yokota A. Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 1999; 447:269-73. [PMID: 10214959 DOI: 10.1016/s0014-5793(99)00309-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The amino acid sequence deduced from the open reading frame designated sll0755 in Synechocystis sp. PCC 6803 is similar to the amino acid sequences of thioredoxin peroxidases from other organisms. In the present study, we found that a recombinant SLL0755 protein that was expressed in Escherichia coli was able to reduce H2O2 and tertiary butyl hydroperoxide with thioredoxin from E. coli as the electron donor. Targeted disruption of open reading frame sll0755 in Synechocystis sp. PCC 6803 cells completely eliminated the H2O2-dependent and tertiary butyl hydroperoxide-dependent photosynthetic evolution of oxygen and the electron flow in photosystem II. These results indicate that the product of open reading frame sll0755 is a thioredoxin peroxidase whose activities are coupled to the photosynthetic electron transport system in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- H Yamamoto
- Plant Molecular Physiology Laboratory, Research Institute of Innovative Technology for the Earth, Kizu, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|