151
|
Tsukamoto O, Minamino T, Okada KI, Shintani Y, Takashima S, Kato H, Liao Y, Okazaki H, Asai M, Hirata A, Fujita M, Asano Y, Yamazaki S, Asanuma H, Hori M, Kitakaze M. Depression of proteasome activities during the progression of cardiac dysfunction in pressure-overloaded heart of mice. Biochem Biophys Res Commun 2005; 340:1125-33. [PMID: 16403436 DOI: 10.1016/j.bbrc.2005.12.120] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/15/2005] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system contributes to regulation of apoptosis degrading apoptosis-regulatory proteins. Marked accumulation of ubiquitinated proteins in cardiomyocytes of human failing hearts suggested impaired ubiquitin-proteasome system in heart failure. Since cardiomyocyte apoptosis contributes to the progression of cardiac dysfunction in pressure-overloaded hearts, we investigated the role of ubiquitin-proteasome system in such conditions. We found that proteasome activities already depressed before the onset of cardiac dysfunction in pressure-overloaded hearts of mice. Cardiomyocyte apoptosis was observed along with depression of proteasome activities and elevation of proapoptotic/antiapoptotic protein ratio in failing hearts. In cultured cardiomyocytes, pharmacological inhibition of proteasome accumulated proapoptotic proteins such as p53 and Bax. Gene silencing of these proapoptotic proteins by RNA interference prevented the accumulation of respective proteins and attenuated cardiomyocyte apoptosis induced by proteasome inhibition. We conclude that depression of proteasome activities contributes to cardiac dysfunction resulting from cardiomyocyte apoptosis through accumulation of proapoptotic proteins by impaired degradation.
Collapse
Affiliation(s)
- Osamu Tsukamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: From bedside to bench. Prog Neurobiol 2005; 77:396-425. [PMID: 16376477 DOI: 10.1016/j.pneurobio.2005.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 01/07/2023]
Abstract
As much as brain stem death is currently the clinical definition of death in many countries and is a phenomenon of paramount medical importance, there is a dearth of information on its mechanistic underpinnings. A majority of the clinical studies are concerned only with methods to determine brain stem death. Whereas a vast amount of information is available on the cellular and molecular mechanisms of cell death, rarely are these studies directed specifically towards the understanding of brain stem death. This review presents a framework for translational research on brain stem death that is based on systematically coordinated clinical and laboratory efforts that center on this phenomenon. It begins with the identification of a novel clinical marker from patients that is related specifically to brain stem death. After realizing that this "life-and-death" signal is related to the functional integrity of the brain stem, its origin is traced to the rostral ventrolateral medulla (RVLM). Subsequent laboratory studies on this neural substrate in animal models of brain stem death provide credence to the notion that both "pro-life" and "pro-death" programs are at work during the progression towards death. Those programs (mitochondrial functions, nitric oxide, peroxynitrite, superoxide anion, coenzyme Q10, heat shock proteins and ubiquitin-proteasome system) hitherto identified from the RVLM are presented, along with their cellular and molecular mechanisms. It is proposed that outcome of the interplay between the "pro-life" and "pro-death" programs (dying) in this neural substrate determines the final fate of the individual (being dead). Thus, identification of additional programs in the RVLM and delineation of their regulatory mechanisms should shed new lights on future directions for clinical management of life-and-death.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, ROC
| | | | | |
Collapse
|
153
|
Horton TM, Gannavarapu A, Blaney SM, D'Argenio DZ, Plon SE, Berg SL. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2005; 58:13-23. [PMID: 16292537 DOI: 10.1007/s00280-005-0135-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 10/05/2005] [Indexed: 12/21/2022]
Abstract
Although there is effective chemotherapy for many patients with leukemia, 20% of children and up to 65% of adults relapse. Novel therapies are needed to treat these patients. Leukemia cells are very sensitive to the proteasome inhibitor bortezomib (VELCADE(R), PS-341), which enhances the in vitro cytotoxic effects of dexamethasone and doxorubicin in multiple myeloma. To determine if bortezomib enhances the cytotoxicity of agents used in leukemia, we employed an in vitro tetrazolium-based colorimetric assay (MTT) to evaluate the cytotoxic effects of bortezomib alone and in combination with dexamethasone, vincristine, doxorubicin, cytarabine, asparaginase, geldanamycin, trichostatin A, and the bcl-2 inhibitor HA14.1. We demonstrated that primary leukemia lymphoblasts and leukemia cell lines are sensitive to bortezomib, with an average IC(50) of 12 nM. Qualitative and quantitative bortezomib-drug interactions were evaluated using the universal response surface approach (URSA). Bortezomib was synergistic with dexamethasone in dexamethasone-sensitive leukemia cells, and additive with vincristine, asparaginase, cytarabine, and doxorubicin. The anti-leukemic activity of bortezomib was also additive with geldanamycin and HA14.1, and additive or synergistic with trichostatin A. These results were compared to analysis using the median-dose effect method, which generated complex drug interactions due to differences in dose-response curve sigmoidicities. These data suggest bortezomib could potentiate the cytotoxic effects of combination chemotherapy in patients with leukemia.
Collapse
Affiliation(s)
- Terzah M Horton
- Texas Children's Cancer Center/Baylor College of Medicine, 6621 Fannin, MC 3-3320, Houston, 77030, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Taylor RC, Adrain C, Martin SJ. Proteases, proteasomes and apoptosis: breaking Ub is hard to do. Cell Death Differ 2005; 12:1213-7. [PMID: 16094400 DOI: 10.1038/sj.cdd.4401703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
155
|
Abstract
The ubiquitin–proteasome pathway is a principle intracellular mechanism for controlled protein degradation and has recently emerged as an attractive target for anticancer therapies, because of the pleiotropic cell-cycle regulators and modulators of apoptosis that are controlled by proteasome function. In this chapter, we review the current state of the field of proteasome inhibitors and their prototypic member, bortezomib, which was recently approved by the U.S. Food and Drug Administration for the treatment of advanced multiple myeloma. Particular emphasis is placed on the pre-clinical research data that became the basis for eventual clinical applications of proteasome inhibitors, an overview of the clinical development of this exciting drug class in multiple myeloma, and a appraisal of possible uses in other haematological malignancies, such non-Hodgkin's lymphomas.
Collapse
|
156
|
Ghanevati M, Miller CA. Phospho-beta-catenin accumulation in Alzheimer's disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosci 2005; 25:79-94. [PMID: 15781969 DOI: 10.1385/jmn:25:1:079] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 04/24/2004] [Indexed: 11/11/2022]
Abstract
Accumulation of cytoplasmic inclusion bodies in many neurodegenerative diseases, including Alzheimer's disease (AD), might result from dysfunction of the ubiquitin-proteasome system. This system degrades many cellular proteins, including beta-catenin, a member of the Wnt signaling pathway, and a presenilin-1-interacting protein. Phosphorylation of beta-catenin marks it for ubiquitination and rapid proteasomal degradation. We found phospho-beta-catenin accumulated as detergent-insoluble, punctate, cytoplasmic inclusions in hippocampal pyramidal neurons more abundantly in AD than in aged controls. In AD, beta-catenin was ubiquitin conjugated, thus suggesting impaired proteasome-dependent degradation. Phospho-beta-catenin was partially sequestered within granulovacuolar degeneration bodies but not in lysosomes, indicating sequestration within autophagosomes. Exposure of neuronal cultures to proteasome inhibitors induced formation of detergent-insoluble, phospho-beta-catenin-positive cytoplasmic inclusions that coalesced into aggresomes and colocalized with gamma-tubulin and vimentin. These aggregates were associated with apoptotic cell death and with activation of caspase-3, c-Jun-N-terminal kinases, and c-Jun. These findings suggest that phospho-beta-catenin accumulation in AD might result from impaired proteasome function.
Collapse
Affiliation(s)
- Mahin Ghanevati
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
157
|
Daniel KG, Chen D, Orlu S, Cui QC, Miller FR, Dou QP. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells. Breast Cancer Res 2005; 7:R897-908. [PMID: 16280039 PMCID: PMC1410741 DOI: 10.1186/bcr1322] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/28/2005] [Accepted: 08/26/2005] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. METHODS Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. RESULTS When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations similar to those found in patients, when treated with just CQ or PDTC alone, but not TM, undergo proteasome inhibition and apoptosis. CONCLUSION The feature of breast cancer cells and tissues to accumulate copper can be used as a targeting method for anticancer therapy through treatment with novel compounds such as CQ and PDTC that become active proteasome inhibitors and breast cancer cell killers in the presence of copper.
Collapse
Affiliation(s)
- Kenyon G Daniel
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Di Chen
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Shirley Orlu
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Qiuzhi Cindy Cui
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Fred R Miller
- The Breast Cancer Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Q Ping Dou
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
158
|
Drexler HCA, Euler M. Synergistic apoptosis induction by proteasome and histone deacetylase inhibitors is dependent on protein synthesis. Apoptosis 2005; 10:743-58. [PMID: 16133866 DOI: 10.1007/s10495-005-2942-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proteasome inhibitors are able to efficiently induce apoptosis in many tumor cells while leaving quiescent, untransformed cells largely unharmed. Here we investigated the further enhancement of proteasome inhibitor-mediated apoptosis induction in Bcr-Abl positive K562 CML cells by simultaneous treatment with different histone deacetylase inhibitors (HDIs). Combining proteasome and HDIs resulted in rapid hyperacetylation of histone H3 and accumulation of polyubiquitinated proteins and the synergistic induction of apoptosis. Apoptosis induction was associated with caspase 8, 3 and 9 activation, Bid processing, destruction of the mitochondrial membrane potential, cleavage of PARP and lamin B and extensive DNA fragmentation. The pan-caspase inhibitor Z-VAD-FMK and the caspase-8 inhibitor Z-IETD-FMK could inhibit K562 cell apoptosis. Apoptosis was also delayed by overexpression of Bcl-xL, as well as by crmA, a known inhibitor of caspases 1 and 8. Caspase 8 activity could still be detected in the presence of ectopic Bcl-xL, but not in crmA transfected cells. The most striking anti-apoptotic effect though was obtained by the translational inhibitor cycloheximide, which abolished caspase 8 processing, blocked Bid cleavage and maintained the mitochondrial transmembrane potential. Apoptosis by the combination treatment occurred independently from CD95/Fas receptor stimulation. These results demonstrated that transcriptional activation by HDIs combined with proteasome inhibitor mediated posttranslational stabilization of protein(s) results in significantly enhanced CML apoptosis which was striktly dependent on uninterrupted protein synthesis.
Collapse
Affiliation(s)
- H C A Drexler
- Max Planck Institut für physiologische und klinische Forschung, Abt. Molekulare Zellbiologie, Benekestr. 2, 61231 Bad Nauheim, Germany.
| | | |
Collapse
|
159
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latent infections in lymphocytes and endothelial cells, and latent infection is closely linked to tumorigenesis. As few viral markers are expressed during latency, compounds that can safely and efficiently increase lytic gene expression in vivo have been sought. We have found that the non-tumour-promoting phorbol ester prostratin and the proteasome inhibitor bortezomib induce immediate-early, early and late KSHV gene expression from two lymphoma cell lines in vitro. Their ability to induce lytic gene expression supports a role for phorbol-ester and proteasome-regulated signalling pathways in KSHV reactivation and prompts further investigation of prostratin and bortezomib as therapeutic agents for KSHV-associated malignancies.
Collapse
|
160
|
Manning AM, Mercurio F. Transcription inhibitors in inflammation. Expert Opin Investig Drugs 2005; 6:555-67. [PMID: 15989620 DOI: 10.1517/13543784.6.5.555] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Advances in molecular medicine have revealed a key role for altered gene expression in the aetiology of many inflammatory diseases, including asthma, rheumatoid arthritis, inflammatory bowel disease and sepsis. Until recently, however, modulation of gene transcription has not been the subject of directed pharmaceutical research efforts. Notwithstanding, it is clear that the efficacy of several well-established anti-inflammatory therapeutics is mediated through their ability to modulate gene transcription. Understanding the mechanisms of action of these therapeutics and defining new gene regulatory pathways has stimulated a new wave of anti-inflammatory drug discovery. This update aims to cover our current understanding of transcription inhibitors in inflammation, including the mechanism of action of established therapeutics and the properties of new chemical entities recently described in the literature.
Collapse
Affiliation(s)
- A M Manning
- Signal Pharmaceuticals, Inc., 5555 Oberlin Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
161
|
Pajonk F, van Ophoven A, Weissenberger C, McBride WH. The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism. BMC Cancer 2005; 5:76. [PMID: 16001975 PMCID: PMC1177933 DOI: 10.1186/1471-2407-5-76] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 07/07/2005] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND By modulating the expression levels of specific signal transduction molecules, the 26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity if proteasome inhibition occurs only transiently before radiation. Further, since proteasome inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome inhibition. METHODS Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay. RESULTS Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not involve early activation of caspase-3. Short-time inhibition of proteasome function also caused radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK activity. CONCLUSION We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does not contribute to the radiosensitizing effects of MG-132.
Collapse
Affiliation(s)
- Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA90095-1714, USA
| | - Arndt van Ophoven
- Department of Urology, University Hospital Münster, Albert-Schweitzer-Straße 33, D-48149 Münster Germany
| | - Christian Weissenberger
- Department of Radiation Oncology, University Hospital Freiburg, Robert-Koch-Straße 3, D-79106 Freiburg, Germany
| | - William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA90095-1714, USA
| |
Collapse
|
162
|
Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci Lett 2005; 380:93-8. [PMID: 15854758 DOI: 10.1016/j.neulet.2005.01.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/20/2004] [Accepted: 01/09/2005] [Indexed: 12/22/2022]
Abstract
Recent studies have suggested that defects in the ubiquitin-proteasome system (UPS) contribute to the etiopathogenetic mechanisms underlying dopaminergic neuronal degeneration in Parkinson's disease. The present study aims to study the effects of proteasome inhibition in the nerve terminals of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNpc). Following a unilaterally intrastriatal injection of lactacystin, a selective proteasome inhibitor, dopaminergic neurons in the ipsilateral SNpc progressively degenerated with alpha-synuclein-immunopositive intracytoplasmic inclusions. When lactacystin was administered at a high concentration, the striatum was simultaneously involved, and alpha-synuclein-immunopositive extracytoplasmic granules appeared extensively within the SN pars reticulata (SNpr). In addition, during the retrograde neuron degeneration in SN, the level of heme oxygenase-1 immunopositivity, an oxidative stress marker, was markedly increased in SNpc neurons. These results reveal that intrastriatal proteasome inhibition sufficiently induces retrograde dopaminergic neuronal degeneration with abundant accumulation of alpha-synuclein in the SN.
Collapse
Affiliation(s)
- Hideto Miwa
- Department of Neurology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-8510, Japan.
| | | | | | | | | |
Collapse
|
163
|
Rajkumar SV, Richardson PG, Hideshima T, Anderson KC. Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005; 23:630-9. [PMID: 15659509 DOI: 10.1200/jco.2005.11.030] [Citation(s) in RCA: 432] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 26S proteasome is a large intracellular adenosine 5'-triphosphate-dependent protease that identifies and degrades proteins tagged for destruction by the ubiquitin system. The orderly degradation of cellular proteins is critical for normal cell cycling and function, and inhibition of the proteasome pathway results in cell-cycle arrest and apoptosis. Dysregulation of this enzymatic system may also play a role in tumor progression, drug resistance, and altered immune surveillance, making the proteasome an appropriate and novel therapeutic target in cancer. Bortezomib (formerly known as PS-341) is the first proteasome inhibitor to enter clinical practice. It is a boronic aid dipeptide that binds directly with and inhibits the enzymatic complex. Bortezomib has recently shown significant preclinical and clinical activity in several cancers, confirming the therapeutic value of proteasome inhibition in human malignancy. It was approved in 2003 for the treatment of advanced multiple myeloma (MM), with approximately one third of patients with relapsed and refractory MM showing significant clinical benefit in a large clinical trial. Its mechanism of action is partly mediated through nuclear factor-kappa B inhibition, resulting in apoptosis, decreased angiogenic cytokine expression, and inhibition of tumor cell adhesion to stroma. Additional mechanisms include c-Jun N-terminal kinase activation and effects on growth factor expression. Several clinical trials are currently ongoing in MM as well as several other malignancies. This article discusses proteasome inhibition as a novel therapeutic target in cancer and focuses on the development, mechanism of action, and current clinical experience with bortezomib.
Collapse
Affiliation(s)
- S Vincent Rajkumar
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
164
|
Son SH, Yu E, Choi EK, Lee H, Choi J. Promyelocytic leukemia protein-induced growth suppression and cell death in liver cancer cells. Cancer Gene Ther 2005; 12:1-11. [PMID: 15529177 DOI: 10.1038/sj.cgt.7700755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The promyelocytic leukemia protein (PML), involved in the pathogenesis of acute promyelocytic leukemia, is a coactivator of p53 tumor suppressive functions. The ability of PML to inhibit growth and induce cell death in solid tumor cells, however, has not been determined. We therefore assayed the tumor suppressor activities of PML and compared them with those of p53 in four liver cancer cell lines. Following infection of cells with replication-deficient recombinant PML adenovirus, the exogenous PML localized in the nucleus and formed abnormally enlarged PML-nuclear bodies after 24 hours. In vitro growth curve analysis showed that the overexpressed PML initially induced a substantial G1 cell cycle arrest and triggered massive cell death in all tested cell lines, irrespective of their p53 status. PML-induced cell death decreased by about 30% in the presence of a broad caspase inhibitor, zVAD. The cell death effect of PML was higher than that induced by p53 over a longer period of time. As with p53, overexpression of PML was closely related to upregulation of p21 and decrease of cyclin D1 expression. Unexpectedly, retinoic acid (RA) antagonized rather than enhanced PML-triggered cell death. RA enhanced the expression of adenovirus-cytomegalovirus-promoted PML at both transcription and protein levels within 12 hours after treatment; however, the PML protein was significantly degraded in the presence of RA at days 3-5 postinfection. PML degradation was also observed in SK-BR3 breast cancer cells treated with RA. Taken together, our findings strongly support the hypothesis that PML acts as a strong independent cell death inducer and that RA conversely abolishes the therapeutic effects of the PML proteins through proteasomal degradation of the protein.
Collapse
Affiliation(s)
- Se-Hee Son
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
165
|
|
166
|
|
167
|
Murn J, Urleb U, Mlinaric-Rascan I. Internucleosomal DNA cleavage in apoptotic WEHI 231 cells is mediated by a chymotrypsin-like protease. Genes Cells 2004; 9:1103-11. [PMID: 15507121 DOI: 10.1111/j.1365-2443.2004.00794.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although several lines of evidence support a role for serine proteases in apoptosis, little is known about the mechanisms involved. In the present study, we have examined the apoptosis-inducing potential and dissected the death-signalling pathways of N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and N-tosyl-L-lysine chloromethyl ketone (TLCK), inhibitors of chymotrypsin- and trypsin-like proteases, respectively. Our results designate two distinct roles for serine proteases. Firstly, we show that both inhibitors induce biochemical and morphological characteristics of apoptosis, including proteolysis of poly(ADP-ribose) polymerase 1 (PARP-1) and inhibitor of caspase-activated DNase (ICAD), as well as mitochondrial dysfunction, and that their action is abrogated by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (z-VAD.fmk). These results suggest that inhibition of anti-apoptotic serine proteases governs the onset of the caspase-dependant apoptotic cascade. Secondly, we also demonstrate the involvement of a serine protease in the terminal stage of apoptosis. We showed that chymotrypsin-like protease activity is required for internucleosomal DNA fragmentation in apoptotic cells. Hence, DNA fragmentation is abrogated in TPCK-pre-treated WEHI 231 cells undergoing apoptosis triggered either by anti-IgM or TLCK. These results indicate that internucleosomal DNA cleavage in apoptotic cells is mediated by a chymotrypsin-like protease.
Collapse
Affiliation(s)
- Jernej Murn
- Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
168
|
VAN Baarlen P, Staats M, VAN Kan JAL. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. MOLECULAR PLANT PATHOLOGY 2004; 5:559-74. [PMID: 20565630 DOI: 10.1111/j.1364-3703.2004.00253.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SUMMARY The genus Botrytis contains necrotrophic plant pathogens that have a wide host range (B. cinerea) or are specialized on a single host species, e.g. B. elliptica on lily. In this study, it was found that B. elliptica-induced cell death of lily displays hallmark features of animal programmed cell death or apoptosis including cytoplasmic shrinkage, nuclear DNA fragmentation and the accumulation of NO as well as H(2)O(2). A pharmacological approach showed that B. elliptica-induced cell death could be modulated by serine and cysteine protease inhibitors including one caspase inhibitor. Blocking phosphatase activity stimulated cell death and concomitant lesion formation, suggesting that B. elliptica-induced cell death is mediated by kinase/phosphatase pathways. Blocking Ca(2+) influx restricted cell death. Blocking steps of sphingolipid biosynthesis delayed lily cell death for several days. B. elliptica culture filtrate (CF) was able to induce lily cell death by means of secreted proteins. Induction of cell death is necessary and sufficient for pathogenicity and host specialization because prior infiltration of B. elliptica CF enabled subsequent infection of lily by the otherwise incompatible pathogens B. cinerea and B. tulipae. The secreted B. elliptica proteins also induced cell death in some but not all Arabidopsis accessions and mutants. Arabidopsis accessions that respond to infiltration of B. elliptica CF also display cell death symptoms upon inoculation with B. elliptica conidia.
Collapse
Affiliation(s)
- Peter VAN Baarlen
- Wageningen University, Plant Sciences, Laboratory of Phytopathology, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
169
|
Abstract
Multiple myeloma (MM) represented 14% of new haematological malignancies in the US in 2003 and almost 19% of anticipated deaths. Treatment with standard chemotherapy has resulted in a median survival of about 3 years and despite the improvements in survival seen with the use of intensive therapy supported by autologous stem cell transplantation, MM remains incurable; hence, new therapeutic strategies are urgently needed. One novel approach to the treatment of MM is the use of proteasome inhibitors. Proteasomes are ubiquitous protease complexes involved in diverse aspects of cell biology, such as protein homeostasis, cell cycle progression, apoptosis and inflammation, as well as resistance to antineoplastic therapy. The first-in-class proteasome inhibitor, bortezomib was recently approved in the US for the treatment of patients with MM who have received at least two prior therapies and are progressing on their last therapy. Its use in earlier-stage MM, other haematological malignancies and in solid tumours as monotherapy and in combination therapy is currently under investigation.
Collapse
Affiliation(s)
- Paul G Richardson
- Dana-Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Division of Hematologic Oncology, Dana 1B02, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
170
|
Abstract
Androgen ablation and chemotherapy provide effective palliation for most patients with advanced prostate cancer, but eventually progressing androgen-independent prostate cancer threatens the lives of patients usually within a few years, mandating improvement in therapy. Proteasome inhibition has been proposed as a therapy target for the treatment of solid and hematological malignancies. The proteasome is a ubiquitous enzyme complex that is a hub for the regulation of many intracellular regulatory pathways; because of its essential function, this enzyme has become a new target for cancer treatment. Studies with bortezomib (VELCADE, formerly known as PS-341) and other proteasome inhibitors indicate that cancer cells are especially dependent on the proteasome for survival, and several mechanisms used by prostate cancer cells require proteasome function. Bortezomib has been studied extensively in vitro and in vivo, and anticancer activity has been seen in cell and animal models for several solid tumor types, including prostate cancer. A Phase I trial to determine the maximum tolerated dose of once-weekly bortezomib has been completed. This trial included a large fraction of patients with androgen-independent prostate cancer. The maximum tolerated dose was reached at 1.6 mg/m(2). A correlation was seen among bortezomib dose, proteasome inhibition, and positive modulation of serum prostate-specific antigen. There was also evidence of down-regulation of serum interleukin 6, a downstream nuclear factor kappaB effector. This Phase I trial and preclinical studies support additional testing of bortezomib in combination with radiation or chemotherapy for androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Christos N Papandreou
- Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
171
|
Bang JH, Han ES, Lim I, Lee CS. Differential response of MG132 cytotoxicity against small cell lung cancer cells to changes in cellular GSH contents. Biochem Pharmacol 2004; 68:659-66. [PMID: 15276073 DOI: 10.1016/j.bcp.2004.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 04/21/2004] [Indexed: 11/20/2022]
Abstract
The effect of the depletion or oxidation of cellular GSH on cytotoxicity of MG132 was assessed. Viability loss and decrease in GSH contents in small cell lung cancer (SCLC) cells treated with MG132 was attenuated by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk). Thiol compounds (N-acetylcysteine and N-(2-mercaptopropionyl)glycine) and free radical scavengers reduced MG132-induced cell death. Antioxidants, including N-acetylcysteine, inhibited the MG132-induced nuclear damage, loss in mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c and caspase-3 activation. Depletion of GSH due to buthionine sulfoxime did not affect the cell viability loss, ROS formation and GSH depletion due to MG132 in SCLC cells. A thiol oxidant monochloramine, p-chloromercuribenzoate and N-ethylmaleiamide also did not affect cytotoxicity of MG132. The results suggest that the toxicity of MG132 on SCLC cells is mediated by activation of caspase-8, -9 and -3. Removal of free radicals and recovery of GSH contents may attenuate MG132-induced apoptotic cell death. Nevertheless, depletion or oxidation of cellular GSH may not affect toxicity of MG132.
Collapse
Affiliation(s)
- Jang Ho Bang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | | | | | | |
Collapse
|
172
|
Abstract
The dipeptide boronic acid analogue VELCADE (Bortezomib; formerly known as PS-341, LDP-341 and MLM341) is a potent and selective inhibitor of the proteasome, a multicatalytic enzyme that mediates many cellular regulatory signals by degrading regulatory proteins or their inhibitors. The proteasome is, thus, a potential target for pharmacological agents. Bortezomib, the first proteasome inhibitor to reach clinical trials, has shown in vitro and in vivo activity against a variety of malignancies, including myeloma, chronic lymphocytic leukemia, prostate cancer, pancreatic cancer, and colon cancer. The drug is rapidly cleared from the vascular compartment, but a novel pharmacodynamic assay has shown that bortezomib--mediated proteasome blockade is dose-dependent and reversible. Based on phase I studies demonstrating that bortezomib has manageable toxicities in patients with advanced cancers, phase II trials have been initiated for both solid and hematological malignancies.
Collapse
Affiliation(s)
- Julian Adams
- Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA.
| | | |
Collapse
|
173
|
Bonvini P, Dalla Rosa H, Vignes N, Rosolen A. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res 2004; 64:3256-64. [PMID: 15126367 DOI: 10.1158/0008-5472.can-03-3531] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a constitutively active fusion tyrosine kinase involved in lymphomagenesis of human anaplastic large cell lymphomas (ALCL), the maturation and activity of which depend on the association with the heat shock protein (hsp) 90 protein chaperone. Targeting hsp90 by the ansamycins geldanamycin and 17-allyl-amino-demethoxygeldanamycin (17-AAG) promotes degradation of several proteins through the ubiquitin-proteasome pathway, including oncogenic Raf, v-Src, erbB2, and BCR-ABL. We have previously shown that 17-AAG prevents hsp90/NPM-ALK complex formation and fosters NPM-ALK turnover, perhaps through its association with the hsp70 chaperone. Here, we show that inhibition of the proteasome activity by the potent and specific compound pyrazylcarbonyl-Phe-Leu-boronate (PS-341) blocks 17-AAG-induced down-regulation of NPM-ALK, which becomes detergent-insoluble and relocates into ubiquitin-rich perinuclear vesicles that represent aggregated polyubiquitinated forms of the protein. Kinase activity was not mandatory for proteasomal degradation of NPM-ALK, because kinase-defective NPM-ALK was even more rapidly degraded upon 17-AAG treatment. Prolonged exposure to the proteasome inhibitor was shown to trigger caspase-3-mediated apoptosis in proliferating ALCL cells at nanomolar concentrations. However, we verified that the accumulation of detergent-insoluble NPM-ALK in ALCL cells was not a spurious consequence of PS341-committed apoptosis, because caspase inhibitors prevented poly(ADP-ribose) polymerase cleavage whereas they did not affect partitioning of aggregated NPM-ALK. In line with these observations, the carboxyl hsp70-interacting ubiquitin ligase (CHIP), was shown to increase basal ubiquitination and turnover of NPM-ALK kinase, supporting a mechanism whereby NPM-ALK proceeds rapidly toward hsp70-assisted ubiquitin-dependent proteasomal degradation, when chaperoning activity of hsp90 is prohibited by 17-AAG.
Collapse
Affiliation(s)
- Paolo Bonvini
- Clinica di Oncoematologia Pediatrica, Azienda Ospedaliera-Università di Padova, Padova, Italy.
| | | | | | | |
Collapse
|
174
|
Adrain C, Creagh EM, Cullen SP, Martin SJ. Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man. J Biol Chem 2004; 279:36923-30. [PMID: 15210720 DOI: 10.1074/jbc.m402638200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caspase family of cysteine proteases plays a conserved role in the coordinate demolition of cellular structures during programmed cell death from nematodes to man. Because cells undergoing programmed cell death in nematodes, flies, and mammals all share common features, this suggests that caspases target a common set of cellular structures in each of these organisms. However, although many substrates for mammalian caspases have been identified, few substrates for these proteases have been identified in invertebrates. To search for similarities between the repertoires of proteins targeted for proteolysis by caspases in flies and mammals, we have performed proteomics-based screens in Drosophila and human cell lines undergoing apoptosis. Here we show that several subunits of the proteasome undergo caspase-dependent proteolysis in both organisms and that this results in diminished activity of this multicatalytic protease complex. These data suggest that caspase-dependent proteolysis decreases protein turnover by the proteasome and that this is a conserved event in programmed cell death from Drosophila to mammals.
Collapse
Affiliation(s)
- Colin Adrain
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
175
|
Abstract
The ubiquitin-proteasome pathway plays a central role in the targeted destruction of cellular proteins, including cell cycle regulatory proteins. Because these pathways are critical for the proliferation and survival of all cells, and in particular cancerous cells, proteasome inhibition is a potentially attractive anticancer therapy. Based on encouraging cytotoxic activity, bortezomib was the first proteasome inhibitor to be evaluated in clinical trials. Efficacy and safety results from a phase 2 clinical trial contributed to approval of bortezomib for use in patients with relapsed and refractory multiple myeloma who have received at least 2 prior therapies and have demonstrated disease progression on their last therapy.
Collapse
Affiliation(s)
- Julian Adams
- Infinity Pharmaceuticals, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
176
|
Affiliation(s)
- Julian Adams
- Infinity Pharmaceuticals, Inc., 780 Memorial Drive, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
177
|
Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS, Gius D, Neckers L. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.551.3.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The ansamycin antibiotic, geldanamycin, targets the hsp 90 protein chaperone and promotes ubiquitin-dependent proteasomal degradation of its numerous client proteins. Bortezomib is a specific and potent proteasome inhibitor. Both bortezomib and the geldanamycin analogue, 17-N-allylamino-17-demethoxy geldanamycin, are in separate clinical trials as new anticancer drugs. We hypothesized that destabilization of hsp 90 client proteins with geldanamycin, while blocking their degradation with bortezomib, would promote the accumulation of aggregated, ubiquitinated, and potentially cytotoxic proteins. Indeed, geldanamycin plus bortezomib inhibited MCF-7 tumor cell proliferation significantly more than either drug alone. Importantly, while control cells were unaffected, human papillomavirus E6 and E7 transformed fibroblasts were selectively sensitive to geldanamycin plus bortezomib. Geldanamycin alone slightly increased protein ubiquitination, but when geldanamycin was combined with bortezomib, protein ubiquitination was massively increased, beyond the amount stabilized by bortezomib alone. In geldanamycin plus bortezomib-treated cells, ubiquitinated proteins were mostly detergent insoluble, indicating that they were aggregated. Individually, both geldanamycin and bortezomib induced hsp 90, hsp 70, and GRP78 stress proteins, but the drug combination superinduced these chaperones and caused them to become detergent insoluble. Geldanamycin plus bortezomib also induced the formation of abundant, perinuclear vacuoles, which were neither lysosomes nor autophagosomes and did not contain engulfed cytosolic ubiquitin or hsp 70. Fluorescence marker experiments indicated that these vacuoles were endoplasmic reticulum derived and that their formation was prevented by cycloheximide, suggesting a role for protein synthesis in their genesis. These observations support a mechanism whereby the geldanamycin plus bortezomib combination simultaneously disrupts hsp 90 and proteasome function, promotes the accumulation of aggregated, ubiquitinated proteins, and results in enhanced antitumor activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Kheem S. Bisht
- 3Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Rockville, Maryland
| | - David Gius
- 3Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Rockville, Maryland
| | | |
Collapse
|
178
|
Mitra-Kaushik S, Harding JC, Hess JL, Ratner L. Effects of the proteasome inhibitor PS-341 on tumor growth in HTLV-1 Tax transgenic mice and Tax tumor transplants. Blood 2004; 104:802-9. [PMID: 15090453 DOI: 10.1182/blood-2003-11-3967] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown that the transcription factor nuclear factor kappaB (NF-kappaB) regulates critical survival pathways in a variety of cancers, including human T-cell leukemia/lymphotrophic virus 1 (HTLV-1)-transformed CD4 T cells. The activation of NF-kappaB is controlled by proteasome-mediated degradation of the inhibitor of nuclear factor kappaBalpha (IkappaBalpha). We investigated the effects of PS-341, a peptide boronate inhibitor of the proteasome in HTLV-1 Tax transgenic tumors in vitro and in vivo. In Tax transgenic mice, PS-341 administered thrice weekly inhibited tumor-associated NF-kappaB activity. Quantitation of proliferation, apoptosis, and interleukin 6 (IL-6) and IL-10 secretion by tumor cells in culture revealed that the effects of PS-341 on cell growth largely correlated with inhibition of pathways mediated by NF-kappaB. However, the effect of PS-341 on the growth of tumors in Tax transgenic mice revealed heterogeneity in drug responsiveness. The tumor tissues treated with PS-341 show no consistent inhibition of NFkappaB activation in vivo. Annexin V staining indicated that PS-341 response in vivo correlated with sensitivity to apoptosis induced by gamma irradiation. On the other hand, transplanted Tax tumors in Rag-1 mice showed consistent inhibition of tumor growth and prolonged survival in response to the same drug regimen. TUNEL staining indicated that PS-341 treatment sensitizes Tax tumors to DNA fragmentation.
Collapse
Affiliation(s)
- Shibani Mitra-Kaushik
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
179
|
Kim SC, Rho MC, Lee HS, Kim YK, Kim K. Caspase-3-dependent apoptosis in vascular smooth muscle cell by proteasome inhibition. J Cardiovasc Pharmacol 2004; 42:554-60. [PMID: 14508242 DOI: 10.1097/00005344-200310000-00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of a number of substances on neointima formation following angioplasty have been investigated in animal models. It was suggested that delivering of proteasome inhibitor to the site of vascular injury would be a potential therapeutic approach in prevention of vascular restenosis. But the mechanisms underlying biologic activities of proteasome inhibition in vascular smooth muscle cells (VSMCs) are largely unknown. We have investigated effects of proteasome inhibition on VSMCs using proteasome inhibitor MG115. MG115 induced apoptotic death in VSMCs as determined by viability, morphology, and DNA fragmentation. Proteasome inhibition was accompanied by up-regulation of p53, p21, and p27. In contrast, there were no appreciable alterations in the levels of Bcl-2 and Bax. Proteasome inhibition was followed by activation of caspase-3 but not of -8. The induction of apoptosis was suppressed by treatment with a selective inhibitor of the caspase-3 family, z-DEVD-fmk but not by NG-monomethyl-L-arginine. These results indicate that proteasome inhibition induces apoptosis in VSMCs by activation of caspase-3.
Collapse
Affiliation(s)
- Sun Cheun Kim
- Drug & Toxicology Section, National Institute of Scientific Investigation Central District Office, Daejeon, Korea
| | | | | | | | | |
Collapse
|
180
|
Kamat AM, Karashima T, Davis DW, Lashinger L, Bar-Eli M, Millikan R, Shen Y, Dinney CPN, McConkey DJ. The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.279.3.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Bortezomib (PS-341, Velcade) is a dipeptidyl boronic acid inhibitor of the 20S proteasome that was developed as a therapeutic agent for cancer. Here, we investigated the effects of bortezomib on the growth of human 253JB-V bladder cancer cells. Although the drug did not stimulate significant increases in levels of apoptosis, it inhibited cell growth in a concentration-dependent fashion and augmented the growth inhibitory effects of gemcitabine in vitro. These effects were associated with accumulation of p53 and p21 and suppression of cyclin-dependent kinase 2 activity. Bortezomib also inhibited secretion of the proangiogenic factors matrix metalloproteinase-9, interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF). In vivo studies with 253JB-V tumors growing in nude mice demonstrated that bortezomib (1 mg/kg) did not inhibit tumor growth when it was delivered as a single agent, although it reduced tumor microvessel density and inhibited expression of VEGF and IL-8. However, combination therapy with bortezomib plus gemcitabine produced synergistic tumor growth inhibition associated with strong suppression of tumor cell proliferation. Together, our results demonstrate that bortezomib has significant antiproliferative activity in aggressive bladder cancer cells, which is best exploited within the context of combination chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Shen
- 4Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
181
|
Brodeur I, Goulet I, Tremblay CS, Charbonneau C, Delisle MC, Godin C, Huard C, Khandjian EW, Buchwald M, Lévesque G, Carreau M. Regulation of the Fanconi Anemia Group C Protein through Proteolytic Modification. J Biol Chem 2004; 279:4713-20. [PMID: 14625294 DOI: 10.1074/jbc.m301291200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the Fanconi anemia group C protein (FANCC) is still unknown, though many studies point to a role in damage response signaling. Unlike other known FA proteins, FANCC is mainly localized to the cytoplasm and is thought to act as a messenger of cellular damage rather than an effector of repair. FANCC has been shown to interact with several cytoplasmic and nuclear proteins and to delay the onset of apoptosis through redox regulation of GSTP1. We investigated the fate and function of FANCC during apoptosis. Here we show that FANCC undergoes proteolytic modification by a caspase into a predominant 47-kDa ubiquitinated protein fragment. Lack of proteolytic modification at the putative cleavage site delays apoptosis but does not affect MMC complementation. These results suggest that FANCC function is regulated through proteolytic processing.
Collapse
Affiliation(s)
- Isabelle Brodeur
- Unité de Génétique Humaine et Moléculaire, CHUQ-Pavillon St-François d'Assise, Quebec, Quebec G1L 3L5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Lu Y, Zi X, Pollak M. Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 2004; 108:334-41. [PMID: 14648698 DOI: 10.1002/ijc.11445] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The clinical usefulness of trastuzumab (Herceptin; Genentech, San Francisco, CA) in breast cancer treatment is limited by the rapid development of resistance. We previously reported that IGF-I signaling confers resistance to the growth-inhibitory actions of trastuzumab in a model system, but the underlying molecular mechanism remains unknown. We used SKBR3/neo cells (expressing few IGF-I receptors) and SKBR3/IGF-IR cells (overexpressing IGF-I receptor) as our experimental model. IGF-I antagonized the trastuzumab-induced increase in the level of the Cdk inhibitor p27(Kip1). This resulted in decreased association of p27(Kip1) with Cdk2, restoration of Cdk2 activity and attenuation of cell-cycle arrest in G(1) phase, all of which had been induced by trastuzumab treatment in SKBR3/IGF-IR cells. We also found that the decrease in p27(Kip1) induced by IGF-I was accompanied by an increase in expression of Skp2, which is a ubiquitin ligase for p27(Kip1), and by increased Skp2 association with p27(Kip1). A specific proteasome inhibitor (LLnL) completely blocked the ability of IGF-I to reduce the p27(Kip1) protein level, while IGF-I increased p27(Kip1) ubiquitination. This suggests that the action of IGF-I in conferring resistance to trastuzumab involves targeting of p27(Kip1) to the ubiquitin/proteasome degradation machinery. Finally, specific inhibitors of MAPK and PI3K suggest that the IGF-I-mediated reduction in p27(Kip1) protein level by increased degradation predominantly involves the PI3K pathway. Our results provide an example of resistance to an antineoplastic therapy that targets one tyrosine kinase receptor by increased signal transduction through an alternative pathway in a complex regulatory network.
Collapse
Affiliation(s)
- Yuhong Lu
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
183
|
Abstract
Eukaryotic organisms depend on an intricate and evolutionary conserved cell cycle to control cell division. The cell cycle is regulated by a number of important protein families which are common targets for mutational inactivation or overexpression in human tumours. The cyclin D and E families and their cyclin-dependent kinase partners initiate the phosphorylation of the retinoblastoma tumour suppressor protein and subsequent transition through the cell cycle. Cyclin/cdk activity and therefore control of cell division is restrained by two families of cyclin dependent kinase inhibitors. A greater understanding of the cell cycle has led to the development of a number of compounds with the potential to restore control of cell division in human cancers. This review will introduce the protein families that regulate the cell cycle, their aberrations in malignant progression and pharmacological strategies targeting this important process.
Collapse
Affiliation(s)
- Charles Swanton
- Royal Marsden Hospital Breast Unit, Royal Marsden Hospital NHS Trust, London, UK.
| |
Collapse
|
184
|
Chen WJ, Lin JK. Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins. J Biol Chem 2004; 279:13496-505. [PMID: 14726525 DOI: 10.1074/jbc.m212390200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pentagalloylglucose, which is found in many medicinal plants, can arrest the cell cycle at G(1) phase through down-regulation of cyclin-dependent kinases 2 and 4 and up-regulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1/WAF1) in human breast cancer cells. Pentagalloylglucose also induces apoptosis in human leukemic cells. However, the mechanisms by which pentagalloylglucose induces these effects is unclear. We now show that pentagalloylglucose inhibits the activities of purified 20 and 26 S proteasomes in vitro, the 26 S proteasome in Jurkat T cell lysates, and chymotrypsin-like activity of the 26 S proteasome in intact Jurkat T cells. The turnover of p27(Kip1) and p21(Cip1/WAF1), which is necessary for cell cycle progression mediated by proteasome degradation, was disrupted by treatment of human Jurkat T cells with pentagalloylglucose. This was shown by cycloheximide treatment and in vivo pulse-chase labeling experiments, and this effect correlated with the arrest of proliferation of Jurkat T cells at G(1). Inhibition of the proteasome by pentagalloylglucose and by the proteasome inhibitor MG132 caused accumulation of ubiquitin-tagged proteins in Jurkat T cells. The addition of pentagalloylglucose to Jurkat T cells enhanced the stability of the proteasome substrate Bax and increased cytochrome c release and apoptosis. Our findings suggest a mechanism for the effect of pentagalloylglucose on the cell cycle in human leukemic cells: that pentagalloylglucose down-regulates proteasome-mediated pathways because it is a proteasome inhibitor.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
185
|
Abstract
The ubiquitin pathway (UP) is involved in regulation of many essential cellular processes usually by the degradation of regulators of these processes. For example the UP is involved in regulation of cell cycle, proliferation, differentiation, organogenesis, development, and signal transduction in the lens and retina. A functional UP has also been documented in the cornea. Upon aging or exposure to stress there is an accumulation of damaged proteins, including ubiquitinated proteins, in the lens and retina. Some of these proteins may be cytotoxic. Thus, an active UP may be required to avoid such age and disease-related accumulation of damaged proteins. In this review we will explain the biochemistry of the UP and we will document the most important studies regarding UP function in the lens, retina and cornea.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, 711 Washington St, Boston MA 02111, USA.
| | | |
Collapse
|
186
|
Jana NR, Dikshit P, Goswami A, Nukina N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 2003; 279:11680-5. [PMID: 14701837 DOI: 10.1074/jbc.m310369200] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Curcumin is a natural polyphenolic compound having an antiproliferative property, which recent evidence suggests is due to its ability to induce apoptosis. However, the molecular mechanisms through which curcumin induces apoptosis are not fully understood. Here, we report that the curcumin-induced apoptosis is mediated through the impairment of the ubiquitin-proteasome system. Exposure of curcumin to the mouse neuro 2a cells causes a dose-dependent decrease in proteasome activity and an increase in ubiquitinated proteins. Curcumin exposure also decreases the turnover of the destabilized enhanced green fluorescence protein, a model substrate for proteasome and cellular p53 protein. Like other proteasome inhibitors, curcumin targets proliferative cells more efficiently than differentiated cells and induces apoptosis via mitochondrial pathways. Addition of curcumin to neuro 2a cells induces a rapid decrease in mitochondrial membrane potential and the release of cytochrome c into cytosol, followed by activation of caspase-9 and caspase-3.
Collapse
Affiliation(s)
- Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122050, India.
| | | | | | | |
Collapse
|
187
|
Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, del Rio G, Gibson BW, Ellerby HM, Bredesen DE. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 2003; 279:177-87. [PMID: 14561754 DOI: 10.1074/jbc.m304490200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alterations in Ca2+ homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) cause ER stress that ultimately leads to programmed cell death. Recent studies have shown that ER stress triggers programmed cell death via an alternative intrinsic pathway of apoptosis that, unlike the intrinsic pathway described previously, is independent of Apaf-1 and cytochrome c. In the present work, we have used a set of complementary approaches, including two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and nano-liquid chromatography-electrospray ionization mass spectrometry with tandem mass spectrometry, RNA interference, co-immunoprecipitation, immunodepletion of candidate proteins, and reconstitution studies, to identify mediators of the ER stress-induced cell death pathway. Our data identify two molecules, valosin-containing protein and apoptosis-linked gene-2 (ALG-2), that appear to play a role in mediating ER stress-induced cell death.
Collapse
Affiliation(s)
- Rammohan V Rao
- The Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
El-Nady GM, Ling R, Harrison TJ. Gene expression in HCV-associated hepatocellular carcinoma--upregulation of a gene encoding a protein related to the ubiquitin-conjugating enzyme. Liver Int 2003; 23:329-37. [PMID: 14708893 DOI: 10.1034/j.1478-3231.2003.00862.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIMS To investigate gene expression in HCV-associated human hepatocellular carcinomas (HCC) by identifying up- and down-regulated genes. METHODS Differential display RT-PCR was used to compare levels of gene expression in tumorous and non-tumorous tissues from the same livers. Differential expression was confirmed using a ribonuclease protection assay (RPA). The relative expression levels of one candidate gene were studied in various normal tissues and malignant cell lines using a multiple tissue expression (MTE) array. Further characterisation of this gene was carried out using nucleotide sequence analysis programmes and Northern hybridisation. RESULTS Fifty-two differentially expressed cDNA fragments were identified and 29 were cloned, sequenced and compared with the nucleotide sequence database. RPA confirmed reproducibly that one particular cDNA was upregulated in the tumour cells. Analysis using the MTE array revealed that this selected candidate gene is expressed at high levels in various human tumour cell lines. The expression levels in HCV-associated HCC were higher than in other tumours. Investigation revealed that this novel gene lies on chromosome 17. The transcript is approximately 2.5 kb in size and encodes a protein similar to the ubiquitin-conjugating enzyme. CONCLUSIONS The ubiquitin system may be involved in HCV-related hepatocarcinogenesis and in the development of other cancers.
Collapse
Affiliation(s)
- Ghada M El-Nady
- Centre for Hepatology, University College London, London, UK
| | | | | |
Collapse
|
189
|
Allaman-Pillet N, Størling J, Oberson A, Roduit R, Negri S, Sauser C, Nicod P, Beckmann JS, Schorderet DF, Mandrup-Poulsen T, Bonny C. Calcium- and proteasome-dependent degradation of the JNK scaffold protein islet-brain 1. J Biol Chem 2003; 278:48720-6. [PMID: 14507925 DOI: 10.1074/jbc.m306745200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In models of type 1 diabetes, cytokines induce pancreatic beta-cell death by apoptosis. This process seems to be facilitated by a reduction in the amount of the islet-brain 1/JNK interacting protein 1 (IB1/JIP1), a JNK-scaffold with an anti-apoptotic effect. A point mutation S59N at the N terminus of the scaffold, which segregates in diabetic patients, has the functional consequence of sensitizing cells to apoptotic stimuli. Neither the mechanisms leading to IB1/JIP1 down-regulation by cytokines nor the mechanisms leading to the decreased capacity of the S59N mutation to protect cells from apoptosis are understood. Here, we show that IB1/JIP1 stability is modulated by intracellular calcium. The effect of calcium depends upon JNK activation, which primes the scaffold for ubiquitination-mediated degradation via the proteasome machinery. Furthermore, we observe that the S59N mutation decreases IB1/JIP1 stability by sensitizing IB1/JIP1 to calcium- and proteasome-dependent degradation. These data indicate that calcium influx initiated by cytokines mediates ubiquitination and degradation of IB1/JIP1 and may, therefore, provide a link between calcium influx and JNK-mediated apoptosis in pancreatic beta-cells.
Collapse
Affiliation(s)
- Nathalie Allaman-Pillet
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
The pathogenic mechanisms giving rise to cancer frequently involve altered signal transduction pathways. Therefore therapeutic agents that directly address signal transduction molecules are being explored as cancer treatments. Inhibitors of protein tyrosine and threonine kinases including STI-571, ZD-1839, OSI-774, and flavopiridol are ATP-site antagonists that have completed initial phase I and phase II evaluations. Herceptin and C225 are monoclonal antibodies also directed against signaling targets. Numerous other kinase antagonists are in clinical evaluation, including UCN-01 and PD184352. Alternative strategies to downmodulate kinase-driven signaling include 17-allyl-amino-17-demethoxygeldanamycin and rapamycin derivatives, and phospholipase-directed signaling may be modulated by alkylphospholipids. Farnesyltransferase inhibitors were originally developed as inhibitors of ras-driven signals but may have activity by affecting other or additional targets. Signal transduction will remain a fertile basis for suggesting cancer treatments of the future, the evaluation of which should include monitoring effects of the drugs on their intended target signaling molecules in preclinical and early clinical studies.
Collapse
Affiliation(s)
- Edward A Sausville
- Developmental Therapeutics Program, National Cancer Institute, Rockville, Maryland 20852, USA.
| | | | | | | |
Collapse
|
191
|
McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 2003; 22:5755-73. [PMID: 12947384 DOI: 10.1038/sj.onc.1206676] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few years, the ubiquitin(Ub)/proteasome system has become increasingly recognized as a controller of numerous physiological processes, including signal transduction, DNA repair, chromosome maintenance, transcriptional activation, cell cycle progression, cell survival, and certain immune cell functions. This is in addition to its more established roles in the removal of misfolded, damaged, and effete proteins. This review examines the role of the Ub/proteasome system in processes underlying the classical effects of irradiation on cells, such as radiation-induced gene expression, DNA repair and chromosome instability, oxidative damage, cell cycle arrest, and cell death. Furthermore, recent evidence suggests that the proteasome is a redox-sensitive target for ionizing radiation and other oxidative stress signals. In other words, the Ub/proteasome system may not simply be a passive player in radiation-induced responses, but may modulate them. The extent of the modulation will be influenced by the functional and structural diversity that is expressed by the system. Cell types vary in the Ub/proteasome structures they possess and the level at which they function, and this changes as they go from the normal to the cancerous condition. Cancer-related functional changes within the Ub/proteasome system may therefore present unique targets for cancer therapy, especially when targeting agents are used in combination with radio- or chemotherapy. The peptide boronic acid compound PS-341, which was designed to inhibit proteasome chymotryptic activity, is in clinical trials for the treatment of solid and hematogenous tumors. It has shown some efficacy on its own and in combination with chemotherapy. Preclinical studies have shown that PS-341 will also potentiate the cytotoxic effects of radiation therapy. In addition, other drugs in common clinical use have been shown to affect proteasome function, and their activities may be valuably reconsidered from this perspective.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
192
|
Chen L, Smith L, Wang Z, Smith JB. Preservation of caspase-3 subunits from degradation contributes to apoptosis evoked by lactacystin: any single lysine or lysine pair of the small subunit is sufficient for ubiquitination. Mol Pharmacol 2003; 64:334-45. [PMID: 12869638 DOI: 10.1124/mol.64.2.334] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Procaspase-3 (p32) is processed by upstream caspases to p12 and p20 subunits, which heterodimerize. Concomitant with formation of the active heterotetramer, p20 is autoprocessed to p17. Treatment of HL-60 cells with lactacystin, a selective inhibitor of the proteasome, exponentially increased caspase-3-like hydrolytic activity and induced apoptosis but had little or no effect on the activity of upstream caspase-8, caspase-9, or granzyme B. Lactacystin treatment decreased the p32 zymogen and evoked the accumulation of the p17 and p12 subunits. Treatment of transfected human retinoblast 911 cells with a proteasome inhibitor evoked the accumulation of epitope-tagged p12, p17, and p20 but had no effect on p32 zymogen. This result suggests that caspase-3 subunits, in contrast to the zymogen, are unstable because of degradation by the ubiquitin-proteasome system. Ubiquitin conjugates of p12 and p17 accumulated in cells that were cotransfected with p12 and a caspase inactive mutant of p17. Substitution of arginine for all eight lysines of p12 almost abolished its ubiquitination. Any single lysine or lysine pair was sufficient for p12 ubiquitination. Lactacystin treatment of HL-60 cells induced proteolytic processing of the X-linked inhibitor of apoptosis (XIAP) and decreased full-length XIAP, which is known to have ubiquitin-protein ligase activity for active caspase-3. These findings indicate that caspase-3 subunits can be degraded by the ubiquitin-proteasome system and suggest that lactacystin induces apoptosis in part by disabling the ubiquitin-protein ligase function of XIAP and by stabilizing active caspase-3 subunits.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Toxicology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
193
|
Abstract
BACKGROUND Studies have shown that periodontal ligament fibroblasts (PDLF) and gingival fibroblasts (GF) respond differently to growth factors in the repair and regeneration of periodontal tissues. The goal of this study was to determine the effects of insulin-like growth factor-1 (IGF-1) signaling on cell apoptosis in PDLF compared to GF. METHODS The levels of apoptosis were compared between cultured PDLF and GF by DNA fragmentation assay and trypan blue exclusion assay, either in the presence or absence of IGF-1. The transcript level of upstream signaling molecules, such as IGF binding protein-5 (IGFBP-5), IGF-1 receptor (IGF-1R), and phosphoinositide 3-kinase (PI3K), was studied using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the role of IGFBP-5 in IGF-1 signaling was verified by annexin-V staining using flow cytometric analysis. RESULTS IGF-1 significantly inhibited the level of DNA fragmentation and decreased trypan blue-positive cells in PDLF compared to GF during serum deprivation. The mRNA expression of IGFBP-5, IGF-1R, and PI3K was constitutively upregulated in PDLF compared to GF. In the presence of exogenous IGFBP-5, the annexin-V-positive cells were significantly decreased in GF after IGF-1 stimulation. CONCLUSIONS The present study provides evidence that IGF-1 reduces apoptosis in cultured PDLF compared to GF. Upregulation of IGF-1R and PI3K in PDLF further suggests the activation of IGF signaling in PDLF. In addition, the anti-apoptotic effect of IGF-1 may be facilitated by the upregulation of IGFBP-5 in PDLF.
Collapse
Affiliation(s)
- Xiaozhe Han
- Department of Periodontology & Oral Biology, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
194
|
Zavrski I, Naujokat C, Niemöller K, Jakob C, Heider U, Langelotz C, Fleissner C, Eucker J, Possinger K, Sezer O. Proteasome inhibitors induce growth inhibition and apoptosis in myeloma cell lines and in human bone marrow myeloma cells irrespective of chromosome 13 deletion. J Cancer Res Clin Oncol 2003; 129:383-91. [PMID: 12851815 DOI: 10.1007/s00432-003-0454-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 04/22/2003] [Indexed: 10/26/2022]
Abstract
PURPOSE In this study, we investigated the effects of cell-permeable proteasome inhibitors MG-132, MG-262, PSI, and lactacystin on multiple myeloma cell lines OPM-2, U266, RPMI 8226-S, freshly isolated plasma cells with or without deletion of chromosome 13 from patients with multiple myeloma and plasma cell leukemia, and CD34+ human hematopoietic stem cells. The effects of proteasome inhibitors on cell cycle progression, cell growth, and apoptosis were determined. METHODS MTT-assay was used to examine the cytotoxicity, and annexin-V staining to quantify apoptosis. Cell cycle analyses were performed using 7-ADD and Ki-67 staining by flow cytometry. RESULTS PSI was the most potent proteasome inhibitor among those tested with a half maximal cytotoxicity (IC(50)) of 5.7 nM, followed by MG-262, MG-132, and lactacystin. Growth inhibition occurred irrespective of chromosome 13 status. Cell cycle arrest occurred in a dose- and time-dependent manner. Low, subapoptotic dosages led to a partial loss of Ki-67 antigen, whereas apoptotic dosages led to reduced Ki-67 levels. Apoptosis was partially dependent on activation of caspase-3, since Ac-DEVD-cho, a caspase-3 inhibitor, could reduce apoptosis significantly. The cytotoxicity of the four proteasome inhibitors tested was significantly lower in human hematopoietic stem cells than in myeloma cells. CONCLUSIONS Our results show that proteasome inhibitors induce time- and dose-dependent cell cycle alterations, growth inhibition, and apoptosis in human myeloma cells irrespective of chromosome 13 deletion.
Collapse
Affiliation(s)
- Ivana Zavrski
- Department of Oncology and Hematology, Universitätsklinikum Charité, Humboldt-Universität Berlin, 10098, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Bogner C, Ringshausen I, Schneller F, Fend F, Quintanilla-Martinez L, Häcker G, Goetze K, Oostendorp R, Peschel C, Decker T. Inhibition of the proteasome induces cell cycle arrest and apoptosis in mantle cell lymphoma cells. Br J Haematol 2003; 122:260-8. [PMID: 12846895 DOI: 10.1046/j.1365-2141.2003.04438.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mantle cell lymphoma (MCL) is a distinctive non-Hodgkin's lymphoma subtype, characterized by overexpression of cyclin D1 as a consequence of the chromosomal translocation t(11;14)(q13;q32). MCL remains an incurable disease, combining the unfavourable clinical features of aggressive and indolent lymphomas. The blastic variant of MCL, which is often associated with additional cytogenetic alterations, has an even worse prognosis and new treatment options are clearly needed. The present study investigated the effect of a specific proteasome inhibitor, lactacystin, on cell cycle progression and apoptosis in two lymphoma cell lines harbouring the t(11;14)(q13;q32) and additional cytogenetic alterations, including p53 mutation (NCEB) and p16 deletion (Granta 519). Granta cells were more susceptible to inhibition of the proteasome with respect to inhibition of proliferation and apoptosis induction. No changes were observed in the expression levels of the G1 regulatory molecules cyclin D1 and cdk4, but cell cycle arrest and apoptosis induction was accompanied by accumulation of the cdk inhibitor p21 in both cell lines. Increased p53 expression was only observed in Granta cells with wild-type p53. Cleavage of procaspase-3 and -9 was observed but cleavage of procaspase-8 was not involved in apoptosis induction. The proapoptotic effect of lactacystin was reversed by pretreatment with the pancaspase inhibitor zVAD.fmk. Lactacystin was also effective in inducing apoptosis in lymphoma cells from MCL patients. We conclude that inhibition of the proteasome might be a promising therapeutic approach for this incurable disease.
Collapse
Affiliation(s)
- Christian Bogner
- Third Department of Medicine, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:88-95. [PMID: 12816986 DOI: 10.4049/jimmunol.171.1.88] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Constitutive activation of the NF-kappaB has been documented to be involved in the pathogenesis of many human malignancies, including hemopoietic neoplasms. In this study, we examined the status of NF-kappaB in two non-Hodgkin's lymphoma cell lines derived from mantle cell lymphoma (MCL) samples and in patient MCL biopsy specimens by EMSA and confocal microscopic analysis. We observed that NF-kappaB is constitutively activated in both the MCL cell lines and in the MCL patient biopsy cells. Since NF-kappaB has been shown to play an important role in a variety of cellular processes, including cell cycle regulation and apoptosis, targeting the NF-kappaB pathways for therapy may represent a rational approach in this malignancy. In the MCL cell lines, inhibition of constitutive NF-kappaB by the proteasome inhibitor PS-341 or a specific pIkappaBalpha inhibitor, BAY 11-7082, led to cell cycle arrest in G(1) and rapid induction of apoptosis. Apoptosis was associated with the down-regulation of bcl-2 family members bcl-x(L) and bfl/A1, and the activation of caspase 3, that mediates bcl-2 cleavage, resulting in the release of cytochrome c from the mitochondria. PS-341or BAY 11-induced G(1) cell cycle arrest was associated with the inhibition of cyclin D1 expression, a molecular genetic marker of MCL. These studies suggest that constitutive NF-kappaB expression plays a key role in the growth and survival of MCL cells, and that PS-341 and BAY 11 may be useful therapeutic agents for MCL, a lymphoma that is refractory to most current chemotherapy regimens.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
197
|
Hong X, Lei L, Glas R. Tumors acquire inhibitor of apoptosis protein (IAP)-mediated apoptosis resistance through altered specificity of cytosolic proteolysis. J Exp Med 2003; 197:1731-43. [PMID: 12810691 PMCID: PMC2193958 DOI: 10.1084/jem.20020801] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many tumors overexpress members of the inhibitor of apoptosis protein (IAP) family. IAPs contribute to tumor cell apoptosis resistance by the inhibition of caspases, and are degraded by the proteasome to allow further progression of apoptosis. Here we show that tumor cells can alter the specificity of cytosolic proteolysis in order to acquire apoptosis resistance, which promotes formation of rapidly growing tumors. Survival of tumor cells with low proteasomal activity can occur in the presence of high expression of Tri-peptidyl-peptidase II (TPP II), a large subtilisin-like peptidase that complements proteasomal activity. We find that this state leaves tumor cells unable of effectively degrading IAPs, and that cells in this state form rapidly growing tumors in vivo. We also find, in studies of apoptosis resistant cells derived from large in vivo tumors, that these have acquired an altered peptidase activity, with up-regulation of TPP II activity and decreased proteasomal activity. Importantly, we find that growth of subcutaneous tumors is limited by maintenance of the apoptosis resistant phenotype. The apoptosis resistant phenotype was reversed by increased expression of Smac/DIABLO, an antagonist of IAP molecules. Our data suggest a reversible mechanism in regulation of apoptosis resistance that drives tumor progression in vivo. These data are relevant in relation to the multitude of therapy-resistant clinical tumors that have increased levels of IAP molecules.
Collapse
Affiliation(s)
- Xu Hong
- Microbiology and Tumor Biology Center and Department of Medicine, Karolinska Institutet, Huddinge University Hospital AB, Stockholm, Sweden
| | | | | |
Collapse
|
198
|
Abstract
Cell elimination through apoptosis, or programmed cell death, is an evolutionarily conserved central tenet of biology from embryological development to immune homeostasis. While many of the apoptotic signaling pathways have been elucidated, the relationship between ubiquitin and apoptosis is only beginning to be defined. In the past decade, many reports of polyubiquitin conjugation of key pro- and anti-apoptotic molecules have characterized ubiquitin as an essential regulatory modification targeting proteins for proteasomal degradation. However, recent work relating monoubiquitination and nonclassical polyubiquitin conjugation to apoptotic molecules has added an additional level of diversity to the role of ubiquitin in apoptotic regulation beyond degradation. This review focuses on the direct effects of ubiquitination on apoptosis-signaling molecules.
Collapse
Affiliation(s)
- Justine C Lee
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
199
|
Han X, Amar S. IGF-1 signaling enhances cell survival in periodontal ligament fibroblasts vs. gingival fibroblasts. J Dent Res 2003; 82:454-9. [PMID: 12766198 DOI: 10.1177/154405910308200610] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of insulin-like growth factors (IGFs) in the regulation of apoptosis has been suggested, yet their impact on specific cells such as periodontal ligament fibroblasts (PDLF) and gingival fibroblasts (GF) remains unknown. The purpose of this study was to test the role of IGF-1 signaling in cell survival in PDLF compared with GF. In periodontal tissue sections, a significantly reduced apoptotic rate was first demonstrated in PDLF compared with GF. In vitro, IGF-1 substantially enhanced cell survival in PDLF compared with GF by the up-regulation of anti-apoptotic molecules and the down-regulation of pro-apoptotic molecules. Furthermore, the differential expression of insulin-like growth factor binding protein 5 (IGFBP-5) was observed in vitro, and its differential distribution was confirmed in vivo. Analysis of the present data suggests an enhanced cell survival in PDLF compared with GF by the up-regulation of IGF-1 signaling pathway.
Collapse
Affiliation(s)
- X Han
- Department of Periodontology & Oral Biology, Goldman School of Dental Medicine, Boston University, 700 Albany Street, W-201E, Boston, MA, 02118, USA
| | | |
Collapse
|
200
|
Dewson G, Snowden RT, Almond JB, Dyer MJS, Cohen GM. Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 2003; 22:2643-54. [PMID: 12730678 DOI: 10.1038/sj.onc.1206326] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemotherapy resistance remains a major clinical problem in patients with B-cell chronic lymphocytic leukemia (B-CLL). Proteasome inhibitors are able to induce apoptosis in chemotherapy-resistant B-CLL cells in vitro. Exposure of B-CLL cells to the proteasome inhibitors, MG132 and lactacystin, resulted in inhibition of proteasomal activity within 30 min of treatment and was accompanied by an increase in the level of ubiquitinated proteins. Proteasome inhibitors did not alter the levels of expression of the proapoptotic Bcl-2 family proteins, Bax and Bid, prior to the onset of apoptosis. Instead, proteasome inhibitors induced a caspase-independent conformational change in Bax (as shown by a conformation-specific Bax antibody) and its translocation to mitochondria, resulting in mitochondrial perturbation, as evidenced by loss of the mitochondrial membrane potential and cytochrome c release. Similar conformational change and subcellular localization of Bax were observed during apoptosis induced with fludarabine, chlorambucil and prednisolone. These data suggest that alteration of Bax conformation and its redistribution to mitochondria are common and early features of B-CLL apoptosis in response to proteasome inhibitors and other chemotherapeutic agents.
Collapse
Affiliation(s)
- Grant Dewson
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, PO Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | |
Collapse
|