151
|
Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. ACTA ACUST UNITED AC 2004; 15:834-45. [PMID: 15483049 PMCID: PMC2915841 DOI: 10.1093/cercor/bhh184] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronically isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of post-traumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in chronically isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize neuronal activity) induced by low neuronal activity after deafferentation. To test this hypothesis we constructed computer models of neocortex incorporating a biologically based homeostatic plasticity rule that operates to maintain firing rates. After deafferentation, homeostatic upregulation of excitatory synapses on pyramidal cells, either with or without concurrent downregulation of inhibitory synapses or upregulation of intrinsic excitability, initiated slowly repeating burst discharges that closely resembled the epileptiform burst discharges recorded in chronically isolated neocortex. These burst discharges lasted a few hundred ms, propagated at 1-3 cm/s and consisted of large (10-15 mV) intracellular depolarizations topped by a small number of action potentials. Our results support a role for homeostatic synaptic plasticity as a novel mechanism of post-traumatic epileptogenesis.
Collapse
Affiliation(s)
- Arthur R Houweling
- The Salk Institute, Computational Neurobiology Laboratory, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
152
|
Yeung LC, Shouval HZ, Blais BS, Cooper LN. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci U S A 2004; 101:14943-8. [PMID: 15466713 PMCID: PMC522010 DOI: 10.1073/pnas.0405555101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modifications in the strengths of synapses are thought to underlie memory, learning, and development of cortical circuits. Many cellular mechanisms of synaptic plasticity have been investigated in which differential elevations of postsynaptic calcium concentrations play a key role in determining the direction and magnitude of synaptic changes. We have previously described a model of plasticity that uses calcium currents mediated by N-methyl-D-aspartate receptors as the associative signal for Hebbian learning. However, this model is not completely stable. Here, we propose a mechanism of stabilization through homeostatic regulation of intracellular calcium levels. With this model, synapses are stable and exhibit properties such as those observed in metaplasticity and synaptic scaling. In addition, the model displays synaptic competition, allowing structures to emerge in the synaptic space that reflect the statistical properties of the inputs. Therefore, the combination of a fast calcium-dependent learning and a slow stabilization mechanism can account for both the formation of selective receptive fields and the maintenance of neural circuits in a state of equilibrium.
Collapse
Affiliation(s)
- Luk Chong Yeung
- Institute for Brain and Neural Systems, Department of Physics, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
153
|
Homeostatic plasticity of GABA-ergic synaptic transmission in rat hippocampal cell cultures. NEUROPHYSIOLOGY+ 2004. [DOI: 10.1007/s11062-005-0032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
154
|
Abstract
The study of experience-dependent plasticity has been dominated by questions of how Hebbian plasticity mechanisms act during learning and development. This is unsurprising as Hebbian plasticity constitutes the most fully developed and influential model of how information is stored in neural circuits and how neural circuitry can develop without extensive genetic instructions. Yet Hebbian plasticity may not be sufficient for understanding either learning or development: the dramatic changes in synapse number and strength that can be produced by this kind of plasticity tend to threaten the stability of neural circuits. Recent work has suggested that, in addition to Hebbian plasticity, homeostatic regulatory mechanisms are active in a variety of preparations. These mechanisms alter both the synaptic connections between neurons and the intrinsic electrical properties of individual neurons, in such a way as to maintain some constancy in neuronal properties despite the changes wrought by Hebbian mechanisms. Here we review the evidence for homeostatic plasticity in the central nervous system, with special emphasis on results from cortical preparations.
Collapse
Affiliation(s)
- Niraj S Desai
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| |
Collapse
|
155
|
Ashby MC, De La Rue SA, Ralph GS, Uney J, Collingridge GL, Henley JM. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci 2004; 24:5172-6. [PMID: 15175386 PMCID: PMC3309030 DOI: 10.1523/jneurosci.1042-04.2004] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA receptors (AMPARs) are dynamically regulated at synapses, but the time course and location of their exocytosis and endocytosis are not known. Therefore, we have used ecliptic pHluorin-tagged glutamate receptor 2 to visualize changes in AMPAR surface expression in real time. We show that synaptic and extrasynaptic AMPARs respond very differently to NMDA receptor activation; there is a rapid internalization of extrasynaptic AMPARs that precedes the delayed removal of synaptic AMPARs.
Collapse
Affiliation(s)
- Michael C Ashby
- Medical Research Council, Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
156
|
Lee SH, Simonetta A, Sheng M. Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons. Neuron 2004; 43:221-36. [PMID: 15260958 DOI: 10.1016/j.neuron.2004.06.015] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 04/12/2004] [Accepted: 06/12/2004] [Indexed: 11/28/2022]
Abstract
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced internalization, homomeric GluR2 enters the recycling pathway, but following NMDA, GluR2 is diverted to late endosomes/lysosomes. In contrast, GluR1 remains in the recycling pathway, and GluR3 is targeted to lysosomes regardless of NMDA receptor activation. Interaction with NSF plays a role in regulated lysosomal targeting of GluR2. GluR1/GluR2 heteromeric receptors behave like GluR2 homomers, and endogenous AMPA receptors show differential activity-dependent sorting similar to homomeric GluR2. Thus, GluR2 is a key subunit that controls recycling and degradation of AMPA receptors after internalization.
Collapse
Affiliation(s)
- Sang Hyoung Lee
- The Picower Center for Learning and Memory, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
157
|
Burkitt AN, Meffin H, Grayden DB. Spike-Timing-Dependent Plasticity: The Relationship to Rate-Based Learning for Models with Weight Dynamics Determined by a Stable Fixed Point. Neural Comput 2004; 16:885-940. [PMID: 15070504 DOI: 10.1162/089976604773135041] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Experimental evidence indicates that synaptic modification depends on the timing relationship between the presynaptic inputs and the output spikes that they generate. In this letter, results are presented for models of spike-timing-dependent plasticity (STDP) whose weight dynamics is determined by a stable fixed point. Four classes of STDP are identified on the basis of the time extent of their input-output interactions. The effect on the potentiation of synapses with different rates of input is investigated to elucidate the relationship of STDP with classical studies of long-term potentiation and depression and rate-based Hebbian learning. The selective potentiation of higher-rate synaptic inputs is found only for models where the time extent of the input-output interactions is input restricted (i.e., restricted to time domains delimited by adjacent synaptic inputs) and that have a time-asymmetric learning window with a longer time constant for depression than for potentiation. The analysis provides an account of learning dynamics determined by an input-selective stable fixed point. The effect of suppressive interspike interactions on STDP is also analyzed and shown to modify the synaptic dynamics.
Collapse
|
158
|
Nimchinsky EA, Yasuda R, Oertner TG, Svoboda K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J Neurosci 2004; 24:2054-64. [PMID: 14985448 PMCID: PMC6730404 DOI: 10.1523/jneurosci.5066-03.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The number of receptors opening after glutamate release is critical for understanding the sources of noise and the dynamic range of synaptic transmission. We imaged [Ca2+] transients mediated by synaptically activated NMDA receptors (NMDA-Rs) in individual spines in rat brain slices. We show that Ca2+ influx through single NMDA-Rs can be reliably detected, allowing us to estimate the number of receptors opening after synaptic transmission. This number is small: at the peak of the synaptic response, less than one NMDA-R is open, on average. Therefore, stochastic interactions between transmitter and receptor contribute substantially to synaptic noise, and glutamate occupies a small fraction of receptors. The number of receptors opening did not scale with spine volume, and smaller spines experience larger [Ca2+] transients during synaptic transmission. Our measurements further demonstrate that optical recordings can be used to study single receptors in intact systems.
Collapse
Affiliation(s)
- Esther A Nimchinsky
- Howard Hughes Medical Institute, The Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
159
|
Watt AJ, Sjöström PJ, Häusser M, Nelson SB, Turrigiano GG. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat Neurosci 2004; 7:518-24. [PMID: 15048122 DOI: 10.1038/nn1220] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/10/2004] [Indexed: 11/10/2022]
Abstract
Most excitatory glutamatergic synapses contain both AMPA and NMDA receptors, but whether these receptors are regulated together or independently during synaptic plasticity has been controversial. Although long-term potentiation (LTP) is thought to selectively enhance AMPA currents and alter the NMDA-to-AMPA ratio, this ratio is well conserved across synapses onto the same neuron. This suggests that the NMDA-to-AMPA ratio is only transiently perturbed by LTP. To test this, we induced LTP at rat neocortical synapses and recorded mixed AMPA-NMDA currents. We observed rapid LTP of AMPA currents, as well as delayed potentiation of NMDA currents that required previous AMPA potentiation. The delayed potentiation of NMDA currents restored the original NMDA-to-AMPA ratio within 2 h of LTP induction. These data suggest that recruitment of AMPA receptors to synapses eventually induces a proportional increase in NMDA current. This may ensure that LTP does not alter the relative contributions of these two receptors to synaptic transmission and information processing.
Collapse
Affiliation(s)
- Alanna J Watt
- Department of Biology and Volen National Center for Complex Systems, MS 08, 415 South Street, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
160
|
Affiliation(s)
- Gina G Turrigiano
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
161
|
Grunwald ME, Mellem JE, Strutz N, Maricq AV, Kaplan JM. Clathrin-mediated endocytosis is required for compensatory regulation of GLR-1 glutamate receptors after activity blockade. Proc Natl Acad Sci U S A 2004; 101:3190-5. [PMID: 14981253 PMCID: PMC365765 DOI: 10.1073/pnas.0306156101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Indexed: 11/18/2022] Open
Abstract
Chronic changes in neural activity trigger a variety of compensatory homeostatic mechanisms by which neurons maintain a normal level of synaptic input. Here we show that chronic activity blockade triggers a compensatory change in the abundance of GLR-1, a Caenorhabditis elegans glutamate receptor. In mutants lacking a voltage-dependent calcium channel (unc-2) or a vesicular glutamate transporter (VGLUT; eat-4), the abundance of GLR-1 in the ventral nerve cord was increased. Similarly, the amplitude of glutamate-evoked currents in ventral cord interneurons was increased in eat-4 VGLUT mutants compared with wild-type controls. The effects of eat-4 VGLUT mutations on GLR-1 abundance in the ventral cord were eliminated in double mutants lacking both the clathrin adaptin protein unc-11 AP180 and eat-4 VGLUT. In contrast, mutations that decreased ubiquitination of GLR-1 did not prevent increased ventral cord abundance of GLR-1 in eat-4 VGLUT mutants. Taken together, our results suggest that GLR-1 is regulated in a homeostatic manner and that this effect depends on clathrin-mediated endocytosis but does not require ubiquitination of GLR-1.
Collapse
Affiliation(s)
- Maria E Grunwald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
162
|
Abstract
Alterations in neuronal activity can elicit long-lasting changes in the strength of synaptic transmission at excitatory synapses and, as a consequence, may underlie many forms of experience-dependent plasticity, including learning and memory. The best-characterized forms of such synaptic plasticity are the long-term depression (LTD) and long-term potentiation (LTP) observed at excitatory synapses in the CA1 region of the hippocampus. It is now well accepted that the trafficking of AMPA receptors to and away from the synaptic plasma membrane plays an essential role in both LTP and LTD, respectively. Here we review current models of AMPA receptor trafficking and how this trafficking may be regulated at the molecular level in order to produce the observed changes in synaptic strength. We also review recent work from our lab suggesting that synaptic plasticity in the mesolimbic dopamine system may contribute importantly to the neural adaptations elicited by drugs of abuse.
Collapse
Affiliation(s)
- Robert C Malenka
- Nancy Friend Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California 94304-5485, USA.
| |
Collapse
|
163
|
Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 2004; 7:244-53. [PMID: 14770185 DOI: 10.1038/nn1189] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 01/13/2004] [Indexed: 11/09/2022]
Abstract
Regulation of AMPA receptor (AMPAR) trafficking is important for neural plasticity. Here we examined the trafficking and synthesis of the GluR1 and GluR2 subunits using ReAsH-EDT(2) and FlAsH-EDT(2) staining. Activity blockade of rat cultured neurons increased dendritic GluR1, but not GluR2, levels. Examination of transected dendrites revealed that both AMPAR subunits were synthesized in dendrites and that activity blockade enhanced dendritic synthesis of GluR1 but not GluR2. In contrast, acute pharmacological manipulations increased dendritic synthesis of both subunits. AMPARs synthesized in dendrites were inserted into synaptic plasma membranes and, after activity blockade, the electrophysiological properties of native synaptic AMPARs changed in the manner predicted by the imaging experiments. In addition to providing a novel mechanism for synaptic modifications, these results point out the advantages of using FlAsH-EDT(2) and ReAsH-EDT(2) for studying the trafficking of newly synthesized proteins in local cellular compartments such as dendrites.
Collapse
Affiliation(s)
- William Ju
- Nancy Friend Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, 1201 Welch Road, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Hama H, Hara C, Yamaguchi K, Miyawaki A. PKC Signaling Mediates Global Enhancement of Excitatory Synaptogenesis in Neurons Triggered by Local Contact with Astrocytes. Neuron 2004; 41:405-15. [PMID: 14766179 DOI: 10.1016/s0896-6273(04)00007-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 12/02/2003] [Accepted: 12/29/2003] [Indexed: 11/29/2022]
Abstract
Here we provide evidence that astrocytes affect neuronal synaptogenesis by the process of adhesion. Local contact with astrocytes via integrin receptors elicited protein kinase C (PKC) activation in individual dissociated neurons cultured in astrocyte-conditioned medium. This activation, initially focal, soon spread throughout the entire neuron. We then demonstrated pharmacologically that the arachidonic acid cascade, triggered by the integrin reception, is responsible for the global activation of PKC. Local astrocytic contact also facilitated excitatory synaptogenesis throughout the neuron, a process which could be blocked by inhibitors of both integrins and PKC. Thus, propagation of PKC signaling represents an underlying mechanism for global neuronal maturation following local astrocyte adhesion.
Collapse
Affiliation(s)
- Hiroshi Hama
- Laboratory for Cell Function Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, Wako-City, Saitama, Japan
| | | | | | | |
Collapse
|
165
|
Fry M, Porter DM, Maue RA. Adenoviral-mediated expression of functional Na+ channel beta1 subunits tagged with a yellow fluorescent protein. J Neurosci Res 2004; 74:794-800. [PMID: 14635231 DOI: 10.1002/jnr.10804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated sodium (Na(+)) channels typically contain a pore-forming alpha subunit and one or two auxiliary beta subunits. Although initial characterization of known alpha and beta subunits has been facilitated by expression in heterologous cells, to understand fully the differences between individual subunits and the functional consequences of selective subunit expression, there is a need to acutely manipulate expression in cells that endogenously express Na(+) channels. To this end, we have constructed a recombinant adenovirus containing a cDNA for a mouse Na(+) channel beta1 subunit with a yellow fluorescent protein fused to its C-terminus (Ad-beta1-EYFP), and with fluorescence microscopy detected beta1-EYFP expression in primary cerebellar neurons and Chinese hamster ovary (CHO) cells upon transduction with this adenovirus, including expression in the plasma membrane. Consistent with this, patch clamp recordings confirmed that Na(+) currents in CHO cells expressing mouse Na(v)1.4 alpha subunits were appropriately modified by the viral-mediated expression of beta1-EYFP subunits. The results demonstrate that adenoviral-mediated gene delivery can be used effectively to express epitope-tagged Na(+) channel subunits with properties similar to wild-type subunits, and suggest that Ad-beta1-EYFP will be a useful reagent for investigating Na(+) channels in a variety of excitable cell types, including neurons.
Collapse
Affiliation(s)
- Mark Fry
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
166
|
Abstract
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.
Collapse
Affiliation(s)
- David S Bredt
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
167
|
Chandler LJ. Ethanol and brain plasticity: receptors and molecular networks of the postsynaptic density as targets of ethanol. Pharmacol Ther 2003; 99:311-26. [PMID: 12951163 DOI: 10.1016/s0163-7258(03)00096-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain plasticity refers to the ability of the brain to undergo structural and functional changes. It is a necessary process that allows us to adapt and learn from our environment and is fundamental to our survival. However, under certain conditions, these neuroadaptive responses can have adverse consequences. In particular, increasing evidence indicates that plastic processes are coopted by drugs of abuse, leading to addiction and associated drug-seeking behaviors. An extensive and diverse group of studies ranging from the molecular to the behavioral level has also strongly implicated glutamatergic neurotransmission as a critical mediator of experience-dependent synaptic plasticity. Thus, it is vital to understand how drugs of abuse interact and potentially alter glutamatergic neurotransmission and associated signal transduction processes. This review will focus on the cellular and molecular neuroscience of alcoholism, with emphasis on events at the glutamatergic postsynaptic density (PSD) and dendritic spine dynamics that appear to underlie much of the structural and functional plasticity of the CNS.
Collapse
Affiliation(s)
- L Judson Chandler
- Department of Physiology, Medical University of South Carolina, 67 President Street, Charleston, SC 29425-2508, USA.
| |
Collapse
|
168
|
Abstract
The mechanisms by which neurons regulate the number and strength of synapses during development and synaptic plasticity have not yet been defined fully. This lack of fundamental knowledge in the fields of neurodevelopment and synaptic plasticity can be attributed, in part, to compensatory mechanisms by which neurons accommodate for the loss of function in their synaptic partners. This is generally achieved either by scaling up neuronal transmitter release capabilities or by enhancing the postsynaptic responsiveness. Here, we demonstrate that regulation of synaptic strength and number between identified Lymnaea neurons visceral dorsal 4 (VD4, the presynaptic cell) and left pedal dorsal 1 (LPeD1, the postsynaptic cell) requires presynaptic activation of a cAMP-PKA-dependent signal. Experimental activation of the cAMP-PKA pathway resulted in reduced synaptic efficacy, whereas inhibition of the cAMP-PKA cascade permitted hyperinnervation and an overall enhancement of synaptic strength. Because synaptic transmission between VD4 and LPeD1 does not require a cAMP-PKA pathway, our data show that these messengers may play a novel role in regulating the synaptic efficacy during early synaptogenesis and plasticity.
Collapse
|
169
|
Inoue A, Okabe S. The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function. Curr Opin Neurobiol 2003; 13:332-40. [PMID: 12850218 DOI: 10.1016/s0959-4388(03)00077-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Physiological roles for postsynaptic molecules in synaptogenesis and plasticity are under intense investigation. Recent imaging experiments, including GFP-based and single-particle tracking strategies, reveal rapid movement of synaptic components to and from the postsynaptic sites. Furthermore, specific patterns of neuronal activity and/or activation of specific transmitter receptors trigger selective translocation of postsynaptic components. These emerging dynamic properties of synaptic specializations add another layer of complexity to the signaling mechanisms of CNS synapses.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Anatomy and Cell Biology, School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | |
Collapse
|
170
|
Dozmorov M, Niu YP, Xu HP, Xiao MY, Li R, Sandberg M, Wigström H. Active decay of composite excitatory postsynaptic potentials in hippocampal slices from young rats. Brain Res 2003; 973:44-55. [PMID: 12729952 DOI: 10.1016/s0006-8993(03)02536-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMDA receptor dependent synaptic plasticity was examined in hippocampal slices using a novel pharmacological pairing procedure. Field excitatory postsynaptic potentials (EPSPs) were recorded from the CA1 area of slices maintained in a low Mg(2+) solution using a stimulus rate of 0.1-0.2 Hz. The NMDA receptor antagonist 2-amino-5-phosphonovalerate (AP5) was initially included in the perfusion solution to establish baseline recording of isolated AMPA EPSPs. Washing out AP5 led to the expression of composite EPSPs, containing both AMPA and NMDA receptor mediated components. Following an initial, transient potentiation of the AMPA component, the composite responses gradually decayed for several hours, involving AMPA and NMDA components to a similar extent. This decay was input specific and could be terminated at any stage by reapplication of AP5. Subsequent long-term potentiation (LTP) reversed the effect to an extent inversely related to the degree of depression. Experiments to test the interaction with long-term depression (LTD) revealed a significant but incomplete overlap between the two depression processes. In conclusion, pairing synaptic activation at test stimulus frequency with pharmacological unblocking of NMDA receptors allows for expression of composite EPSPs that decay substantially, due to an active mechanism. The underlying process appears to be at least partly distinct from those involved in homosynaptic LTP and LTD.
Collapse
Affiliation(s)
- Mikhail Dozmorov
- Department of Medical Biophysics, Institute of Physiology and Pharmacology, Göteborg University, Medicinaregatan 13, Box 433, SE 405 30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
171
|
Munno DW, Prince DJ, Syed NI. Synapse number and synaptic efficacy are regulated by presynaptic cAMP and protein kinase A. J Neurosci 2003; 23:4146-55. [PMID: 12764102 PMCID: PMC6741068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The mechanisms by which neurons regulate the number and strength of synapses during development and synaptic plasticity have not yet been defined fully. This lack of fundamental knowledge in the fields of neurodevelopment and synaptic plasticity can be attributed, in part, to compensatory mechanisms by which neurons accommodate for the loss of function in their synaptic partners. This is generally achieved either by scaling up neuronal transmitter release capabilities or by enhancing the postsynaptic responsiveness. Here, we demonstrate that regulation of synaptic strength and number between identified Lymnaea neurons visceral dorsal 4 (VD4, the presynaptic cell) and left pedal dorsal 1 (LPeD1, the postsynaptic cell) requires presynaptic activation of a cAMP-PKA-dependent signal. Experimental activation of the cAMP-PKA pathway resulted in reduced synaptic efficacy, whereas inhibition of the cAMP-PKA cascade permitted hyperinnervation and an overall enhancement of synaptic strength. Because synaptic transmission between VD4 and LPeD1 does not require a cAMP-PKA pathway, our data show that these messengers may play a novel role in regulating the synaptic efficacy during early synaptogenesis and plasticity.
Collapse
Affiliation(s)
- David W Munno
- Respiratory Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1 Canada
| | | | | |
Collapse
|
172
|
Allison C, Pratt JA. Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol Ther 2003; 98:171-95. [PMID: 12725868 DOI: 10.1016/s0163-7258(03)00029-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of the neural mechanisms underlying the development of benzodiazepine (BZ) dependence remains incomplete. The gamma-aminobutyric acid (GABA(A)) receptor, being the main locus of BZ action, has been the main focus to date in studies performed to elucidate the neuroadaptive processes underlying BZ tolerance and withdrawal in preclinical studies. Despite this intensive effort, however, no clear consensus has been reached on the exact contribution of neuroadaptive processes at the level of the GABA(A) receptor to the development of BZ tolerance and withdrawal. It is likely that changes at the level of this receptor are inadequate in themselves as an explanation of these neuroadaptive processes and that neuroadaptations in other receptor systems are important in the development of BZ dependence. In particular, it has been hypothesised that as part of compensatory mechanisms to diazepam-induced chronic enhancement of GABAergic inhibition, excitatory mechanisms (including the glutamatergic system) become more sensitive [Behav. Pharmacol. 6 (1995) 425], conceivably contributing to BZ tolerance development and/or expression of withdrawal symptoms on cessation of treatment, including increased anxiety and seizure activity. Glutamate is a key candidate for changes in excitatory transmission mechanisms and BZ dependence, (1) since there are defined neuroanatomical relationships between glutamatergic and GABAergic neurons in the CNS and (2) because of the pivotal role of glutamatergic neurotransmission in mediating many forms of synaptic plasticity in the CNS, such as long-term potentiation and kindling events. Thus, it is highly possible that glutamatergic processes are also involved in the neuroadaptive processes in drug dependence, which can conceivably be considered as a form of synaptic plasticity. This review provides an overview of studies investigating changes in the GABAergic and glutamatergic systems in the brain associated with BZ dependence, with particular attention to the possible differential involvement of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in these processes.
Collapse
Affiliation(s)
- C Allison
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Taylor Street, G4 ONR, Glasgow, UK
| | | |
Collapse
|
173
|
Abstract
Activity-dependent changes in synaptic function are believed to underlie the formation of memories. A prominent example is long-term potentiation (LTP), whose mechanisms have been the subject of considerable scrutiny over the past few decades. I review studies from our laboratory that support a critical role for AMPA receptor trafficking in LTP and experience-dependent plasticity.
Collapse
Affiliation(s)
- Roberto Malinow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
174
|
Ivanova SY, Storozhuk MV, Melnick IV, Kostyuk PG. Chronic treatment with ionotropic glutamate receptor antagonist kynurenate affects GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 2003; 341:61-4. [PMID: 12676344 DOI: 10.1016/s0304-3940(03)00154-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well documented that prolonged treatment with antagonists of ionotropic glutamate receptors activates a number of homeostatic mechanisms including alteration of glutamatergic transmission. We studied whether this treatment can also affect GABAergic transmission. Using whole-cell voltage clamp recording and local extracellular stimulation we investigated evoked inhibitory postsynaptic currents (IPSCs) in cultured rat hippocampal neurons grown in the presence of ionotropic glutamate receptor antagonist kynurenate (1 mM) and in control conditions. Chronic kynurenate treatment did not significantly affect the amplitude of evoked IPSCs and IPSC reversal potentials. In contrast we found that the paired-pulse depression was increased by 67% in cultures treated with kynurenic acid. We conclude that additional mechanism(s), alteration of GABAergic synaptic transmission, may contribute to homeostatic plasticity induced by chronic block of ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Svetlana Y Ivanova
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, National Academy of Sciences, Bogomoletz str 4, 252024 Kiev 24, Ukraine
| | | | | | | |
Collapse
|
175
|
Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. J Neurosci 2003. [PMID: 12657676 DOI: 10.1523/jneurosci.23-06-02170.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To explore mechanisms governing the formation and remodeling of postsynaptic density (PSD), we used dissociated cultures of hippocampal neurons isolated from transgenic embryos expressing green fluorescent protein (GFP)-tagged PSD proteins PSD-Zip45 (Homer 1c) and PSD-95. Expression of GFP-tagged PSD molecules was stable, and the remodeling process of PSDs could be followed for >1 week. A higher expression level of GFP-PSD-Zip45 enabled us to quantitatively analyze the amount of PSD-Zip45 clusters during development. Repetitive imaging of the same cell populations between 11 and 17 d in culture revealed an increase of the average PSD-Zip45 cluster density from 0.32 to 0.73/microm. Newly generated dendrites rapidly acquired GFP-PSD-Zip45 clusters, and their density reached the level of parental dendrites within a few days. Temporal profiles of GFP-PSD-Zip45 cluster density showed a variety of patterns. Some dendrites showed a monotonous increase of clusters, whereas others showed complex patterns, including short decremental stages. Analysis of long-term remodeling of PSD-95-GFP clusters confirmed that the decremental stages were not specific to the PSD-Zip45 clusters. Comparison of the temporal profiles of the cluster density among neurons indicated synchronization of both GFP-PSD-Zip45 and PSD-95 clustering within individual cells. Furthermore, activation of cAMP-dependent protein kinase suppressed the decremental stages of cluster remodeling. These observations suggest the presence of signaling mechanisms that can induce synchronized addition or elimination of PSD proteins throughout dendritic arborization of a single neuron.
Collapse
|
176
|
Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW. Glycine binding primes NMDA receptor internalization. Nature 2003; 422:302-7. [PMID: 12646920 DOI: 10.1038/nature01497] [Citation(s) in RCA: 327] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 02/03/2003] [Indexed: 11/09/2022]
Abstract
NMDA (N-methyl-d-aspartate) receptors (NMDARs) are a principal subtype of excitatory ligand-gated ion channel with prominent roles in physiological and disease processes in the central nervous system. Recognition that glycine potentiates NMDAR-mediated currents as well as being a requisite co-agonist of the NMDAR subtype of 'glutamate' receptor profoundly changed our understanding of chemical synaptic communication in the central nervous system. The binding of both glycine and glutamate is necessary to cause opening of the NMDAR conductance pore. Although binding of either agonist alone is insufficient to cause current flow through the channel, we report here that stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. Glycine binding alone does not cause the receptor to be endocytosed; this requires both glycine and glutamate site activation of NMDARs. The priming effect of glycine is mimicked by the NMDAR glycine site agonist d-serine, and is blocked by competitive glycine site antagonists. Synaptic as well as extrasynaptic NMDARs are primed for internalization by glycine site stimulation. Our results demonstrate transmembrane signal transduction through activating the glycine site of NMDARs, and elucidate a model for modulating cell-cell communication in the central nervous system.
Collapse
Affiliation(s)
- Yi Nong
- Programme in Brain and Behaviour, Hospital for Sick Children, , University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
177
|
Ebihara T, Kawabata I, Usui S, Sobue K, Okabe S. Synchronized formation and remodeling of postsynaptic densities: long-term visualization of hippocampal neurons expressing postsynaptic density proteins tagged with green fluorescent protein. J Neurosci 2003; 23:2170-81. [PMID: 12657676 PMCID: PMC6742042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
To explore mechanisms governing the formation and remodeling of postsynaptic density (PSD), we used dissociated cultures of hippocampal neurons isolated from transgenic embryos expressing green fluorescent protein (GFP)-tagged PSD proteins PSD-Zip45 (Homer 1c) and PSD-95. Expression of GFP-tagged PSD molecules was stable, and the remodeling process of PSDs could be followed for >1 week. A higher expression level of GFP-PSD-Zip45 enabled us to quantitatively analyze the amount of PSD-Zip45 clusters during development. Repetitive imaging of the same cell populations between 11 and 17 d in culture revealed an increase of the average PSD-Zip45 cluster density from 0.32 to 0.73/microm. Newly generated dendrites rapidly acquired GFP-PSD-Zip45 clusters, and their density reached the level of parental dendrites within a few days. Temporal profiles of GFP-PSD-Zip45 cluster density showed a variety of patterns. Some dendrites showed a monotonous increase of clusters, whereas others showed complex patterns, including short decremental stages. Analysis of long-term remodeling of PSD-95-GFP clusters confirmed that the decremental stages were not specific to the PSD-Zip45 clusters. Comparison of the temporal profiles of the cluster density among neurons indicated synchronization of both GFP-PSD-Zip45 and PSD-95 clustering within individual cells. Furthermore, activation of cAMP-dependent protein kinase suppressed the decremental stages of cluster remodeling. These observations suggest the presence of signaling mechanisms that can induce synchronized addition or elimination of PSD proteins throughout dendritic arborization of a single neuron.
Collapse
Affiliation(s)
- Tatsuhiko Ebihara
- Molecular Neurophysiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
178
|
Bhaumik B, Mathur M. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity. J Comput Neurosci 2003; 14:211-27. [PMID: 12567018 DOI: 10.1023/a:1021911019241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.
Collapse
Affiliation(s)
- Basabi Bhaumik
- Department of Electrical Engineering, Indian Institute of Technology, Delhi, India.
| | | |
Collapse
|
179
|
Lauri SE, Lamsa K, Pavlov I, Riekki R, Johnson BE, Molnar E, Rauvala H, Taira T. Activity blockade increases the number of functional synapses in the hippocampus of newborn rats. Mol Cell Neurosci 2003; 22:107-17. [PMID: 12595243 DOI: 10.1016/s1044-7431(02)00012-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
During development neuronal circuitries are refined by activity. Here we studied the role of spontaneous electrical activity in the regulation of synapse formation in the intact newborn (Postnatal Day 3; P3) rat hippocampus in vitro. The blockade of the spontaneous network activity with TTX led to an increase in the number of functional excitatory synapses in the CA3 area of the developing hippocampus. In parallel, there was a substantial increase in the expression levels of the presynaptic markers synaptophysin, synaptotagmin, and synapsin I and of GluR1 AMPA receptor subunits. These changes were associated with an increase in the frequency and amplitude of AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). Our correlated immunocytochemical, electronmicroscopical, and electrophysiological experiments indicate that in the developing hippocampus spontaneous network activity controls the number of functional synapses.
Collapse
Affiliation(s)
- Sari E Lauri
- Department of Biosciences, Division of Animal Physiology, P.O. Box 65, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Xia H, von Zastrow M, Malenka RC. A novel anterograde trafficking signal present in the N-terminal extracellular domain of ionotropic glutamate receptors. J Biol Chem 2002; 277:47765-9. [PMID: 12368290 DOI: 10.1074/jbc.m207122200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors to and from the postsynaptic membrane plays an important role in regulating transmission at excitatory synapses. AMPA receptor subunits contain a large extracellular N-terminal domain that is important for receptor assembly (). To further investigate the determinants of receptor assembly and surface expression, we have epitope-tagged the N-terminal domain of the AMPA receptor subunit, GluR1, and expressed it in human embryonic kidney 293 cells and hippocampal neurons. Full-length GluR1 was readily detected on the cell surface in both cell types. However, surface expression was profoundly decreased by deletion or replacement of nine amino acids in the extreme N terminus. Immunoprecipitation experiments demonstrated that the mutant GluR1 in which this sequence was deleted still interacts with GluR2, suggesting that mutant GluR1 is capable of at least partial assembly into heteromeric structures. The mutant forms of GluR1 co-localize with an endoplasmic reticulum marker suggesting that they are retained in this structure. These results suggest a specific function of a short sequence present in the N-terminal domain in controlling anterograde trafficking of ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Houhui Xia
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94304, USA
| | | | | |
Collapse
|
181
|
Abstract
Ionotropic neurotransmitter receptors mediate rapid synaptic transmission in the CNS and PNS. Owing to this central role in trans-synaptic signal transduction, modulation of these receptors could play a crucial role in the expression of synaptic plasticity in the brain. AMPA receptors mediate the majority of rapid excitatory synaptic transmission in the CNS. Recent studies have indicated that the activity and synaptic distribution of these receptors is dynamically regulated and could be crucial for the short- and long-term modification of synaptic efficacy. Here we review recent data on the molecular mechanisms that underlie the modulation of AMPA receptors and the role of AMPA-receptor regulation in mediating synaptic plasticity.
Collapse
Affiliation(s)
- Insuk Song
- Dept of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 904A PCTB, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
182
|
Contractor A, Heinemann SF. Glutamate receptor trafficking in synaptic plasticity. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re14. [PMID: 12407224 DOI: 10.1126/stke.2002.156.re14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ionotropic glutamate receptors mediate excitatory synaptic transmission at most central mammalian synapses. In addition to converting the chemical signal released from the presynaptic terminal to an electrical response in the postsynaptic neuron, these receptors are critically involved in activity-dependent, long-term changes in synaptic strength and, therefore, are central to processes thought to underlie learning and memory. Several mechanisms have been proposed to play roles in altering synaptic strength, and it is clear that there are several different forms of long-term synaptic plasticity in the mammalian brain. Here, we review recent evidence that some forms of synaptic strengthening rely on the modification of the glutamate receptor complement at synapses in response to activity-dependent processes.
Collapse
Affiliation(s)
- Anis Contractor
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
183
|
Abstract
Synapse formation and stabilization in the vertebrate central nervous system is a dynamic process, requiring bi-directional communication between pre- and postsynaptic partners. Numerous mechanisms coordinate where and when synapses are made in the developing brain. This review discusses cellular and activity-dependent mechanisms that control the development of synaptic connectivity.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
184
|
Abstract
Activity-dependent changes in synaptic function are believed to underlie the formation of memories. Two prominent examples are long-term potentiation (LTP) and long-term depression (LTD), whose mechanisms have been the subject of considerable scrutiny over the past few decades. Here we review the growing literature that supports a critical role for AMPA receptor trafficking in LTP and LTD, focusing on the roles proposed for specific AMPA receptor subunits and their interacting proteins. While much work remains to understand the molecular basis for synaptic plasticity, recent results on AMPA receptor trafficking provide a clear conceptual framework for future studies.
Collapse
|
185
|
Differing mechanisms for glutamate receptor aggregation on dendritic spines and shafts in cultured hippocampal neurons. J Neurosci 2002. [PMID: 12196584 DOI: 10.1523/jneurosci.22-17-07606.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have explored the ability of axons from spinal and hippocampal neurons to aggregate NMDA- and AMPA-type glutamate receptors on each other as a way of exploring the molecular differences between their presynaptic elements. Spinal axons, which normally cluster only AMPA-type glutamate receptors on other spinal neurons, cluster both AMPA- and NMDA-type glutamate receptors on the dendritic shafts of hippocampal interneurons but are ineffective at clustering either subtype of glutamate receptor on the dendritic spines of hippocampal pyramidal neurons. Conversely, hippocampal axons appear to be multipotent, capable of clustering both AMPA- and NMDA-type glutamate receptors on hippocampal interneurons and pyramidal cells. The secretion of the neuronal activity-regulated pentraxin (Narp) by hippocampal axons is restricted to contacts with interneurons. Exogenous application of Narp to cultured hippocampal neurons results in clusters of both NMDA- and AMPA-type glutamate receptors on hippocampal interneurons but not hippocampal pyramidal neurons. Because Narp displays no ability to directly aggregate NMDA receptors, we propose that Narp aggregates NMDA receptors in hippocampal interneurons indirectly through cytoplasmic coupling to synaptic AMPA receptors. Furthermore, our data suggest the existence of a novel molecule(s), capable of forming excitatory synapses on dendritic spines.
Collapse
|
186
|
Mi R, Tang X, Sutter R, Xu D, Worley P, O'Brien RJ. Differing mechanisms for glutamate receptor aggregation on dendritic spines and shafts in cultured hippocampal neurons. J Neurosci 2002; 22:7606-16. [PMID: 12196584 PMCID: PMC6757964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
We have explored the ability of axons from spinal and hippocampal neurons to aggregate NMDA- and AMPA-type glutamate receptors on each other as a way of exploring the molecular differences between their presynaptic elements. Spinal axons, which normally cluster only AMPA-type glutamate receptors on other spinal neurons, cluster both AMPA- and NMDA-type glutamate receptors on the dendritic shafts of hippocampal interneurons but are ineffective at clustering either subtype of glutamate receptor on the dendritic spines of hippocampal pyramidal neurons. Conversely, hippocampal axons appear to be multipotent, capable of clustering both AMPA- and NMDA-type glutamate receptors on hippocampal interneurons and pyramidal cells. The secretion of the neuronal activity-regulated pentraxin (Narp) by hippocampal axons is restricted to contacts with interneurons. Exogenous application of Narp to cultured hippocampal neurons results in clusters of both NMDA- and AMPA-type glutamate receptors on hippocampal interneurons but not hippocampal pyramidal neurons. Because Narp displays no ability to directly aggregate NMDA receptors, we propose that Narp aggregates NMDA receptors in hippocampal interneurons indirectly through cytoplasmic coupling to synaptic AMPA receptors. Furthermore, our data suggest the existence of a novel molecule(s), capable of forming excitatory synapses on dendritic spines.
Collapse
Affiliation(s)
- Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
187
|
Abstract
Initiation and maintenance of the postsynaptic neurotransmitter-receptor field are important steps during synapse formation and maturation, as they play a determinative role in regulating synaptic strength. However, the mechanisms directing neurotransmitter-receptor clustering and maintenance are poorly understood. Recently, two models explaining glutamate-receptor clustering at the Drosophila neuromuscular junction have been proposed. One model postulates that release of an agent via single vesicle fusion events (minis) is required for the initiation of postsynaptic glutamate-receptor clustering, and that glutamate is not responsible for initiation or maintenance of the postsynaptic receptor field. The other model rules out a role for minis in initiation of clustering, and suggests a role for non-vesicular release of glutamate in receptor-field maintenance. Here, we compare and discuss the data underlying both models.
Collapse
Affiliation(s)
- Patrik Verstreken
- Program in Developmental Biology, Department of Molecular and Human Genetics, Division of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
188
|
Desai NS, Cudmore RH, Nelson SB, Turrigiano GG. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci 2002; 5:783-9. [PMID: 12080341 DOI: 10.1038/nn878] [Citation(s) in RCA: 430] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms underlying experience-dependent plasticity and refinement of central circuits are not yet fully understood. A non-Hebbian form of synaptic plasticity, which scales synaptic strengths up or down to stabilize firing rates, has recently been discovered in cultured neuronal networks. Here we demonstrate the existence of a similar mechanism in the intact rodent visual cortex. The frequency of miniature excitatory postsynaptic currents (mEPSCs) in principal neurons increased steeply between post-natal days 12 and 23. There was a concomitant decrease in mEPSC amplitude, which was prevented by rearing rats in complete darkness from 12 days of age. In addition, as little as two days of monocular deprivation scaled up mEPSC amplitude in a layer- and age-dependent manner. These data indicate that mEPSC amplitudes can be globally scaled up or down as a function of development and sensory experience, and suggest that synaptic scaling may be involved in the activity-dependent refinement of cortical connectivity.
Collapse
Affiliation(s)
- Niraj S Desai
- Department of Biology and Volen National Center for Complex Systems, MS 008, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
189
|
Abstract
P2X receptors within the CNS mediate excitatory synaptic transmission and also act presynaptically to modulate neurotransmitter release. We have studied the targeting and trafficking of P2X4 and P2X2 receptors heterologously expressed in cultured olfactory bulb neurons. Homomeric P2X4 receptors had a punctate distribution, and many of the puncta colocalized with early endosomes. In contrast, P2X2 receptors were primarily localized at the plasma membrane. By antibody-labeling of surface receptors in living neurons, we showed that P2X4 receptors undergo rapid constitutive internalization and subsequent reinsertion into the plasma membrane, whereas P2X2 receptors were not regulated in such a way. The internalization of P2X4 receptors was dynamin-dependent, and the binding of ATP enhanced the basal rate of retrieval in a Ca2+-independent manner. The presence of the P2X4 subunit in a P2X4/6 heteromer governed the trafficking properties of the receptor. P2X receptors acted presynaptically to enhance the release of glutamate, suggesting that the regulated cycling of P2X4-containing receptors might provide a mechanism for modulation of synaptic transmission.
Collapse
|
190
|
Valastro B, Girard M, Gagné J, Martin F, Parent AT, Baudry M, Massicotte G. Inositol hexakisphosphate-mediated regulation of glutamate receptors in rat brain sections. Hippocampus 2002; 11:673-82. [PMID: 11811661 DOI: 10.1002/hipo.1082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
D-myo-inositol 1,2,3,4,5,6-hexakisphosphate (InsP6), one of the most abundant inositol phosphates within cells, has been proposed to play a key role in vesicle trafficking and receptor compartmentalization. In the present study, we used in vitro receptor autoradiography, subcellular fractionation, and immunoblotting to investigate its effects on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors. Qualitative and quantitative analysis of 3H-AMPA binding indicated that incubation of frozen-thawed brain sections with InsP6 at 35 degrees C enhanced AMPA receptor binding in several brain regions, with maximal increases in the hippocampus and cerebellum. Moreover, saturation kinetics demonstrated that InsP6-induced augmentation of AMPA binding was due to an increment in the maximal number of AMPA binding sites. At the immunological level, Western blots performed on crude mitochondrial/synaptic (P2) fractions revealed that InsP6 (but not InsP5 and InsP3) treatment increased glutamate receptor (GluR)1 and GluR2 subunits of AMPA receptors, an effect that was associated with concomitant reductions in microsomal (P3) fractions. Interestingly, the InsP6-induced modulation of AMPA receptor binding was blocked at room temperature, and pretreatment with heparin also dampered its action on both AMPA receptor binding and GluR subunits. These effects of InsP6 appear to be specific to AMPA receptors, as neither 3H-glutamate binding to NMDA receptors nor levels of NR1 and NR2A subunits in P2 and P3 fractions were affected. Taken together, our data strongly suggest that InsP6 specifically regulates AMPA receptor distribution, possibly through a clathrin-dependent process.
Collapse
Affiliation(s)
- B Valastro
- Département de Chimie-Biologie, Université du Québec a Trois-Rivières, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
191
|
Bobanovic LK, Royle SJ, Murrell-Lagnado RD. P2X receptor trafficking in neurons is subunit specific. J Neurosci 2002; 22:4814-24. [PMID: 12077178 PMCID: PMC6757758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
P2X receptors within the CNS mediate excitatory synaptic transmission and also act presynaptically to modulate neurotransmitter release. We have studied the targeting and trafficking of P2X4 and P2X2 receptors heterologously expressed in cultured olfactory bulb neurons. Homomeric P2X4 receptors had a punctate distribution, and many of the puncta colocalized with early endosomes. In contrast, P2X2 receptors were primarily localized at the plasma membrane. By antibody-labeling of surface receptors in living neurons, we showed that P2X4 receptors undergo rapid constitutive internalization and subsequent reinsertion into the plasma membrane, whereas P2X2 receptors were not regulated in such a way. The internalization of P2X4 receptors was dynamin-dependent, and the binding of ATP enhanced the basal rate of retrieval in a Ca2+-independent manner. The presence of the P2X4 subunit in a P2X4/6 heteromer governed the trafficking properties of the receptor. P2X receptors acted presynaptically to enhance the release of glutamate, suggesting that the regulated cycling of P2X4-containing receptors might provide a mechanism for modulation of synaptic transmission.
Collapse
Affiliation(s)
- Laura K Bobanovic
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | | | | |
Collapse
|
192
|
Braithwaite SP, Xia H, Malenka RC. Differential roles for NSF and GRIP/ABP in AMPA receptor cycling. Proc Natl Acad Sci U S A 2002; 99:7096-101. [PMID: 12011465 PMCID: PMC124534 DOI: 10.1073/pnas.102156099] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) stability and movement at synapses are important factors controlling synaptic strength. Here, we study the roles of proteins [N-ethylmaleimide-sensitive fusion protein (NSF), glutamate receptor AMPAR binding protein (ABP)-interacting protein (GRIP)/(ABP), and protein interacting with C-kinase-1 (PICK1) that interact with the GluR2 subunit in the control of the surface expression and cycling of AMPARs. Epitope-tagged GluR2 formed functional receptors that exhibited targeting to synaptic sites. Constructs in which binding to NSF, PDZ proteins (GRIP/ABP and PICK1), or GRIP/ABP alone was eliminated each exhibited normal surface targeting and constitutive cycling. The lack of NSF binding, however, resulted in receptors that were endocytosed to a greater extent than wild-type receptors in response to application of AMPA or N-methyl-d-aspartate (NMDA). Conversely, the behavior of the GluR2 mutants incapable of binding to GRIP/ABP suggests that these PDZ proteins play a role in the stabilization of an intracellular pool of AMPARs that have been internalized on stimulation, thus inhibiting their recycling to the synaptic membrane. These results provide further evidence for distinct functional roles of GluR2-interacting proteins in AMPAR trafficking.
Collapse
Affiliation(s)
- Steven P Braithwaite
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5485, USA
| | | | | |
Collapse
|
193
|
Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD. Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 2002; 124:4586-94. [PMID: 11971705 DOI: 10.1021/ja003486s] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore the potential for use of ligand-conjugated nanocrystals to target cell surface receptors, ion channels, and transporters, we explored the ability of serotonin-labeled CdSe nanocrystals (SNACs) to interact with antidepressant-sensitive, human and Drosophila serotonin transporters (hSERT, dSERT) expressed in HeLa and HEK-293 cells. Unlike unconjugated nanocrystals, SNACs were found to dose-dependently inhibit transport of radiolabeled serotonin by hSERT and dSERT, with an estimated half-maximal activity (EC(50)) of 33 (dSERT) and 99 microM (hSERT). When serotonin was conjugated to the nanocrystal through a linker arm (LSNACs), the EC(50) for hSERT was determined to be 115 microM. Electrophysiology measurements indicated that LSNACs did not elicit currents from the serotonin-3 (5HT(3)) receptor but did produce currents when exposed to the transporter, which are similar to those elicited by antagonists. Moreover, fluorescent LSNACs were found to label SERT-transfected cells but did not label either nontransfected cells or transfected cells coincubated with the high-affinity SERT antagonist paroxetine. These findings support further consideration of ligand-conjugated nanocrystals as versatile probes of membrane proteins in living cells.
Collapse
Affiliation(s)
- Sandra J Rosenthal
- Department of Chemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002; 26:127-85. [PMID: 11856557 DOI: 10.1016/s0149-7634(01)00062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous bioelectric activity (SBA) taking the form of extracellularly recorded spike trains (SBA) has been quantitatively analyzed in organotypic neonatal rat visual cortex explants at different ages in vitro, and the effects investigated of both short- and long-term pharmacological suppression of glutamatergic synaptic transmission. In the presence of APV, a selective NMDA receptor blocker, 1-2- (but not 3-)week-old cultures recovered their previous SBA levels in a matter of hours, although in imitation of the acute effect of the GABAergic inhibitor picrotoxin (PTX), bursts of action potentials were abnormally short and intense. Cultures treated either overnight or chronically for 1-3 weeks with APV, the AMPA/kainate receptor blocker DNQX, or a combination of the two were found to display very different abnormalities in their firing patterns. NMDA receptor blockade for 3 weeks produced the most severe deviations from control SBA, consisting of greatly prolonged and intensified burst firing with a strong tendency to be broken up into trains of shorter spike clusters. This pattern was most closely approximated by acute GABAergic disinhibition in cultures of the same age, but this latter treatment also differed in several respects from the chronic-APV effect. In 2-week-old explants, in contrast, it was the APV+DNQX treated group which showed the most exaggerated spike bursts. Functional maturation of neocortical networks, therefore, may specifically require NMDA receptor activation (not merely a high level of neuronal firing) which initially is driven by endogenous rather than afferent evoked bioelectric activity. Putative cellular mechanisms are discussed in the context of a thorough review of the extensive but scattered literature relating activity-dependent brain development to spontaneous neuronal firing patterns.
Collapse
Affiliation(s)
- M A Corner
- Academic Medical Centre, Meibergdreef 33, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
195
|
Abstract
Advances in molecular, genetic, and cell biological techniques have allowed neuroscientists to delve into the cellular machinery of learning and memory. The calcium and calmodulin-dependent kinase type II (CaMKII) is one of the best candidates for being a molecular component of the learning and memory machinery in the mammalian brain. It is present in abundance at synapses and its enzymatic properties and responsiveness to intracellular Ca(2+) fit a model whereby Ca(2+) currents activate the kinase and lead to changes in synaptic efficacy. Indeed, such plastic properties of synapses are thought to be important for memory formation. Genetic analysis of the alpha isoform of CaMKII in mice support the hypothesis that CaMKII signaling is required to initiate the formation of new spatial memories in the hippocampus. CaMKII is also required for the correct induction of long-term potentiation (LTP) in the hippocampus, consistent with the widely held belief that LTP is a mechanism for learning and memory. Recent cell biological, genetic, and physiological analyses suggest that one of the cellular explanations for LTP and CaMKII function might be the trafficking of AMPA-type receptors to synapses in response to neural activity.
Collapse
Affiliation(s)
- Christopher Rongo
- Waksman Institute/Rutgers University, 190 Frelinghuysen Rd, Piscataway, NJ, USA.
| |
Collapse
|
196
|
Abstract
Paired recordings between CA3 pyramidal neurons were used to study the properties of synaptic plasticity in active and silent synapses. Synaptic depression is accompanied by decreases in both AMPAR and NMDAR function. The mechanisms of synaptic depression, and the potential to undergo activity-dependent plastic changes in efficacy, differ depending on whether a synapse is active, recently silent, or potentiated. These results suggest that silent and active synapses represent distinct synaptic "states," and that once unsilenced, synapses express plasticity in a graded manner. The state in which a synapse resides, and the states recently visited, determine its potential and mechanism for undergoing subsequent plastic changes.
Collapse
Affiliation(s)
- Johanna M Montgomery
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
197
|
Abstract
To explore mechanisms governing the formation, stability, and elimination of synapses during neuronal development, we used FM 1-43 fluorescence imaging to track vesicle turnover at >7000 individually identified developing synapses between embryonic rat hippocampal neurons in culture. The majority of presynaptic boutons were stable in efficacy and position over a period of 1.5 hr. Activity, evoked by burst-patterned field stimulation, decreased presynaptic function across the population of boutons, an effect that required NMDA receptor activation. Decreased FM 1-43 staining correlated with low synapsin-I and synaptophysin immunoreactivities, suggesting that decreased presynaptic function was commensurate with synaptic disassembly. These observations provide new information on the stability of developing presynaptic function and suggest that NMDA receptor activation may regulate the stability of developing synapses.
Collapse
|
198
|
Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci 2002. [PMID: 11850460 DOI: 10.1523/jneurosci.22-04-01328.2002] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maintaining the proper balance between excitation and inhibition is necessary to prevent cortical circuits from either falling silent or generating epileptiform activity. One mechanism through which cortical networks maintain this balance is through the activity-dependent regulation of inhibition, but whether this is achieved primarily through changes in synapse number or synaptic strength is not clear. Previously, we found that 2 d of activity deprivation increased the amplitude of miniature EPSCs (mEPSCs) onto cultured visual cortical pyramidal neurons. Here we find that this same manipulation decreases the amplitude of mIPSCs. This occurs with no change in single-channel conductance but is accompanied by a reduction in the average number of channels open during the mIPSC peak and a reduction in the intensity of staining for GABA(A) receptors (GABA(A)Rs) at postsynaptic sites. In addition, the number of synaptic sites that express detectable levels of GABA(A)Rs was decreased by approximately 50% after activity blockade, although there was no reduction in the total number of presynaptic contacts. These data suggest that activity deprivation reduces cortical inhibition by reducing both the number of GABA(A)Rs clustered at synaptic sites and the number of functional inhibitory synapses. Because excitatory and inhibitory synaptic currents are regulated in opposite directions by activity blockade, these data suggest that the balance between excitation and inhibition is dynamically regulated by ongoing activity.
Collapse
|
199
|
Kilman V, van Rossum MCW, Turrigiano GG. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci 2002; 22:1328-37. [PMID: 11850460 PMCID: PMC6757564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Maintaining the proper balance between excitation and inhibition is necessary to prevent cortical circuits from either falling silent or generating epileptiform activity. One mechanism through which cortical networks maintain this balance is through the activity-dependent regulation of inhibition, but whether this is achieved primarily through changes in synapse number or synaptic strength is not clear. Previously, we found that 2 d of activity deprivation increased the amplitude of miniature EPSCs (mEPSCs) onto cultured visual cortical pyramidal neurons. Here we find that this same manipulation decreases the amplitude of mIPSCs. This occurs with no change in single-channel conductance but is accompanied by a reduction in the average number of channels open during the mIPSC peak and a reduction in the intensity of staining for GABA(A) receptors (GABA(A)Rs) at postsynaptic sites. In addition, the number of synaptic sites that express detectable levels of GABA(A)Rs was decreased by approximately 50% after activity blockade, although there was no reduction in the total number of presynaptic contacts. These data suggest that activity deprivation reduces cortical inhibition by reducing both the number of GABA(A)Rs clustered at synaptic sites and the number of functional inhibitory synapses. Because excitatory and inhibitory synaptic currents are regulated in opposite directions by activity blockade, these data suggest that the balance between excitation and inhibition is dynamically regulated by ongoing activity.
Collapse
Affiliation(s)
- Valerie Kilman
- Department of Biology and Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
200
|
Hopf FW, Waters J, Mehta S, Smith SJ. Stability and plasticity of developing synapses in hippocampal neuronal cultures. J Neurosci 2002; 22:775-81. [PMID: 11826107 PMCID: PMC6758526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
To explore mechanisms governing the formation, stability, and elimination of synapses during neuronal development, we used FM 1-43 fluorescence imaging to track vesicle turnover at >7000 individually identified developing synapses between embryonic rat hippocampal neurons in culture. The majority of presynaptic boutons were stable in efficacy and position over a period of 1.5 hr. Activity, evoked by burst-patterned field stimulation, decreased presynaptic function across the population of boutons, an effect that required NMDA receptor activation. Decreased FM 1-43 staining correlated with low synapsin-I and synaptophysin immunoreactivities, suggesting that decreased presynaptic function was commensurate with synaptic disassembly. These observations provide new information on the stability of developing presynaptic function and suggest that NMDA receptor activation may regulate the stability of developing synapses.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, Emeryville, California 94608, Abteilung, Germany.
| | | | | | | |
Collapse
|