151
|
Santos L, Hall P, Metz C, Bucala R, Morand EF. Role of macrophage migration inhibitory factor (MIF) in murine antigen-induced arthritis: interaction with glucocorticoids. Clin Exp Immunol 2001; 123:309-14. [PMID: 11207663 PMCID: PMC1905992 DOI: 10.1046/j.1365-2249.2001.01423.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
(MIF) is a broad-spectrum proinflammatory cytokine implicated in human rheumatoid arthritis. The synthesis of MIF by synovial cells is stimulated by glucocorticoids, and previous studies suggest that MIF antagonizes the anti-inflammatory effects of glucocorticoids. This has not been established in a model of arthritis. We wished to test the hypothesis that MIF can act to reverse the anti-inflammatory effects of glucocorticoids in murine antigen-induced arthritis (AIA). Cutaneous DTH reactions and AIA were induced by intradermal injection and intra-articular injection, respectively, of methylated bovine serum albumin in presensitized mice. Animals were treated with anti-MIF MoAbs, recombinant MIF, and/or dexamethasone (DEX). Skin thickness of DTH reactions was measured with callipers and arthritis severity was measured by blinded quantitative histological assessment of synovial cellularity. Cutaneous DTH to the disease-initiating antigen was significantly inhibited by anti-MIF MoAb treatment (P < 0.001). AIA was also significantly inhibited by anti-MIF MoAb (P < 0.02). DEX treatment induced a dose-dependent inhibition of AIA, which was significant at 0.2 mg/kg (P < 0.05). MIF treatment reversed the effect of therapeutic DEX on AIA (P < 0.001). DEX also significantly inhibited DTH reactions (P < 0.05) but rMIF had no effect on this effect of DEX. DTH and AIA are MIF-dependent models of inflammation and arthritis. The reversal of glucocorticoid suppression of AIA by MIF supports the concept that MIF is a counter-regulator of glucocorticoid control of synovial inflammation. Although DTH was observed to be MIF-dependent and glucocorticoid-sensitive, rMIF had no reversing effect on the suppression of DTH by glucocorticoids. This suggests that inflammatory processes in specific tissues may respond differently to MIF in the presence of glucocorticoids.
Collapse
Affiliation(s)
- L Santos
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia
| | | | | | | | | |
Collapse
|
152
|
Abe R, Peng T, Sailors J, Bucala R, Metz CN. Regulation of the CTL response by macrophage migration inhibitory factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:747-53. [PMID: 11145646 DOI: 10.4049/jimmunol.166.2.747] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophage migration inhibitory factor (MIF) has been shown to be a pivotal cytokine that mediates host inflammatory and immune responses. Recently, immunoneutralization of MIF has been found to inhibit tumor growth in mice; however, the contributing mechanisms underlying this effect have not been well defined. We investigated whether MIF plays a regulatory role in the expression of CTL activity. In a mouse model of the CTL response using the OVA-transfected tumor cell line EL4 (EG.7), we found that cultures of splenocytes obtained from EG.7-primed mice secrete high levels of MIF following Ag stimulation in vitro. Notably, parallel splenocyte cultures treated with neutralizing anti-MIF mAb showed a significant increase in the CTL response directed against EG.7 cells compared with control mAb-treated cultures. This effect was accompanied by elevated expression of IFN-gamma. Histological examination of the EG. 7 tumors from anti-MIF-treated animals showed a prominent increase in both CD4(+) and CD8(+) T cells as well as apoptotic tumor cells, consistent with the observed augmentation of CTL activity in vivo by anti-MIF. This increased CTL activity was associated with enhanced expression of the common gamma(c)-chain of the IL-2R that mediates CD8(+) T cell survival. Finally, CD8(+) T lymphocytes obtained from the spleens of anti-MIF-treated EG.7 tumor-bearing mice, when transferred into recipient tumor-bearing mice, showed increased accumulation in the tumor tissue. These data provide the first evidence of an important role for MIF in the regulation and trafficking of anti-tumor T lymphocytes in vivo.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Cell Movement/immunology
- Cells, Cultured
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/immunology
- Female
- Injections, Intraperitoneal
- Lymphocytes, Tumor-Infiltrating/immunology
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/physiology
- Mice
- Mice, Inbred C57BL
- Neoplasm Transplantation
- T-Lymphocytes, Cytotoxic/immunology
- Thymoma/immunology
- Thymoma/pathology
- Thymoma/prevention & control
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- R Abe
- Laboratories of. Vascular Biology and Medical Biochemistry, The Picower Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
153
|
Kleemann R, Rorsman H, Rosengren E, Mischke R, Mai NT, Bernhagen J. Dissection of the enzymatic and immunologic functions of macrophage migration inhibitory factor. Full immunologic activity of N-terminally truncated mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7183-93. [PMID: 11106430 DOI: 10.1046/j.1432-1327.2000.01823.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine with broad regulatory functions in innate immunity. MIF belongs to the few cytokines displaying catalytic activities, i.e. MIF has a Pro2-dependent tautomerase and a Cys-Ala-Leu-Cys (CALC) cysteine-based thiol-protein oxidoreductase activity. Previous studies have addressed the roles of the catalytic site residues and the C-terminus. The two activities have not been directly compared. Here we report on the N-terminal mutational analysis and minimization of MIF and on a dissection of the two catalytic activities by comparing mutants P2AMIF, Delta4MIF, Delta5MIF, Delta6MIF, Delta7MIF, Delta8MIF, and Delta10MIF with the cysteine mutants of MIF. As N-terminal deletion was predicted to interfere with protein structure due to disruption of the central beta sheet, it was surprising that deletion of up to six N-terminal residues resulted in normally expressed proteins with wild-type conformation. Strikingly, such mutants exhibited full MIF-specific immunologic activity. While mutation of Pro2 eliminated tautomerase activity, the CALC cysteine residues had no influence on this activity. However, mutant C81SMIF, which otherwise has full biologic activity, only had 32% tautomerase activity. Deletion of four N-terminal residues did not interfere with insulin reduction by MIF. By contrast, reduction of 2-hydroxyethyldisulfide (HED) was markedly affected by N-terminal manipulation, with P2AMIF and Delta2MIF exhibiting 40% activity, and Delta4MIF completely failing to reduce HED. This study constitutes the first comparison of the two catalytic activities of MIF and should assist in understanding the molecular links between the catalytic and immunologic activities of this cytokine and in providing guidelines for N-terminal protein minimization.
Collapse
Affiliation(s)
- R Kleemann
- Laboratory of Biochemistry, Institute for Interfacial Engineering, University of Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
154
|
Benigni F, Atsumi T, Calandra T, Metz C, Echtenacher B, Peng T, Bucala R. The proinflammatory mediator macrophage migration inhibitory factor induces glucose catabolism in muscle. J Clin Invest 2000; 106:1291-300. [PMID: 11086030 PMCID: PMC381433 DOI: 10.1172/jci9900] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Severe infection or tissue invasion can provoke a catabolic response, leading to severe metabolic derangement, cachexia, and even death. Macrophage migration inhibitory factor (MIF) is an important regulator of the host response to infection. Released by various immune cells and by the anterior pituitary gland, MIF plays a critical role in the systemic inflammatory response by counterregulating the inhibitory effect of glucocorticoids on immune-cell activation and proinflammatory cytokine production. We describe herein an unexpected role for MIF in the regulation of glycolysis. The addition of MIF to differentiated L6 rat myotubes increased synthesis of fructose 2,6-bisphosphate (F2,6BP), a positive allosteric regulator of glycolysis. Increased expression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) enhanced F2,6BP production and, consequently, cellular lactate production. The catabolic effect of TNF-alpha on myotubes was mediated by MIF, which served as an autocrine stimulus for F2, 6BP production. TNF-alpha administered to mice decreased serum glucose levels and increased muscle F2,6BP levels; pretreatment with a neutralizing anti-MIF mAb completely inhibited these effects. Anti-MIF also prevented hypoglycemia and increased muscle F2,6BP levels in TNF-alpha-knockout mice that were administered LPS, supporting the intrinsic contribution of MIF to these inflammation-induced metabolic changes. Taken together with the recent finding that MIF is a positive, autocrine stimulator of insulin release, these data suggest an important role for MIF in the control of host glucose disposal and carbohydrate metabolism.
Collapse
Affiliation(s)
- F Benigni
- The Picower Institute for Medical Research, Manhasset, New York 10030, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
OBJECTIVE To analyze the implications for therapeutic advances in the treatment of sepsis and septic shock based on the mechanisms underlying the response to microbial infection. DATA SOURCES Clinical trials and experimental models designed to determine the key mechanisms involved in cellular and molecular processes of inflammatory reactions. STUDY SELECTION Analyses of normal immune reactions to microbial infection, processes involved in the development of sepsis, and reasons for frequent failure of regimens based on current therapeutic rationales. DATA EXTRACTION/SYNTHESIS Review of the data suggests that the dysregulation of the immune system resulting in sepsis/septic shock is ineffectually blocked by interfering with the action of inflammatory mediators or cascades, as these processes may be too complex to be easily antagonized. Rather, blockade of the action of microbial products or of the intracellular processes activated by receptor interaction with these products may provide a more promising therapeutic alternative. CONCLUSIONS The sepsis syndrome induced by microbial pathogens reflects excessive stimulation of the processes of innate immunity. Bacterial components reacting with specific receptors activate intracellular processes, resulting in the release of excessive amounts of mediators of inflammation as well as triggering multiple complex proteolytic cascades. Blockade or antagonism of the actions of individual intermediary messenger molecules has proved therapeutically unsuccessful, because blockade of mediators alone does not block the direct activation of processes such as coagulation and complement. The dysregulation that characterizes sepsis may be amenable to blockade of the bacterial components or to the intracellular pathways triggered by these products.
Collapse
Affiliation(s)
- M P Glauser
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
156
|
|
157
|
Nishihira J. Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res 2000; 20:751-62. [PMID: 11032394 DOI: 10.1089/10799900050151012] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in inflammatory and immune responses. MIF was originally discovered as a lymphokine involved in delayed hypersensitivity and various macrophage functions, including phagocytosis, spreading, and tumoricidal activity. Recently, MIF was reevaluated as a proinflammatory cytokine and pituitary-derived hormone potentiating endotoxemia. This protein is ubiquitously expressed in various organs, such as the brain and kidney. Among cytokines, MIF is unique in terms of its abundant expression and storage within the cytoplasm and, further, for its counteraction against glucocorticoids. MIF has unexpectedly been found to convert D-dopachrome, an enantiomer of naturally occurring L-dopachrome, to 5,6-dihydroxyindole. However, its physiologic significance remains to be elucidated. It was demonstrated that anti-MIF antibodies effectively suppress tumor growth and tumor-associated angiogenesis, suggesting that MIF is involved not only in inflammatory and immune responses but also in tumor cell growth. At present, MIF cannot be clearly categorized as either a cytokine, hormone, or enzyme. This review presents the latest findings on the role of MIF in the immune system and in cell growth, with regard to tumorigenesis and wound repair, and discusses its potential functions in various pathophysiologic states.
Collapse
Affiliation(s)
- J Nishihira
- Central Research Institute, Hokkaido University School of Medicine, Sapporo, Japan.
| |
Collapse
|
158
|
Abstract
In order to confirm the hypothesis of the immunomodulating action of anti-oxidants (bringing back altered immune function to more optimum values), the possibility that anti-oxidants may be useful in two experimental models of altered immune function has been studied. The first is a pathological model, that is, lethal murine endotoxic shock caused by an LPS injection of 100 mg/kg, in which the lymphocytes show increased adherence and depressed chemotaxis. The injection of N-acetylcysteine (150 mg/kg), which increased both functions in control animals, decreased adherence and increased chemotaxis in mice with endotoxic shock. The second is a physiological model; aged human subjects (70 +/- 5-year-old men) who, in their largest segment of population ('standard' group) showed an increased lymphocyte adherence and decreased lymphoproliferative response to mitogens compared with younger adults. The ingestion of vitamin E (200 mg daily for 3 months in this standard group) lowered adherence and stimulated lymphoproliferation. However, a smaller segment of the human population tested showed 'non-standard' values in these lymphocyte functions, that is, very low adherence and very high proliferation. In those subjects, vitamin E showed the opposite effects, namely adherence increase and depressed lymphoproliferation. In both age groups of men, these functions reached adult levels after vitamin E ingestion. These data suggest that anti-oxidants preserve adequate function of immune cells against homeostatic disturbances such as those caused by endotoxic shock and ageing.
Collapse
Affiliation(s)
- M De la Fuente
- Department of Animal Physiology, Faculty of Biology, Complutense University, Madrid, Spain.
| | | |
Collapse
|
159
|
Lan HY, Yang N, Nikolic-Paterson DJ, Yu XQ, Mu W, Isbel NM, Metz CN, Bucala R, Atkins RC. Expression of macrophage migration inhibitory factor in human glomerulonephritis. Kidney Int 2000; 57:499-509. [PMID: 10652026 DOI: 10.1046/j.1523-1755.2000.00869.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND We have recently demonstrated that macrophage migration inhibitory factor (MIF) plays a pathogenic role in experimental glomerulonephritis (GN). The aim of the current study was to investigate MIF expression in human GN. METHODS MIF expression was examined by in situ hybridization and immunohistochemistry staining in 65 biopsies from a variety of glomerulonephridities. RESULTS There is constitutive expression of MIF mRNA and protein in normal human kidney that is largely restricted to tubular epithelial cells and to some glomerular epithelial cells. There was little change in the pattern of MIF expression in nonproliferative forms of GN such as minimal change disease and membranous GN. However, there was a marked increase in both glomerular and tubular MIF expression in proliferative forms of GN, including focal segmental glomerulosclerosis (FGS), lupus nephritis, crescentic GN, and mesangiocapillary proliferative GN. The prominent macrophage and T-cell infiltrate in these diseases were largely restricted to areas with marked up-regulation of MIF expression, contributing to glomerular hypercellularity, glomerular focal segmental lesions, crescent formation, tubulitis, and granulomatous lesions. De novo MIF expression was evident in glomerular endothelial cells and mesangial cells in proliferative forms of GN. In addition, many infiltrating macrophages and T cells showed MIF mRNA and protein expression. Quantitative analysis found that increased glomerular and tubular MIF expression gave a highly significant correlation with macrophage and T-cell accumulation, the severity of histologic lesions, and the loss of creatinine clearance. CONCLUSIONS Renal MIF expression is markedly up-regulated in proliferative forms of human GN, and this correlates with leukocyte infiltration, histologic damage, and renal function impairment. These results suggest that MIF may be an important mediator of renal injury in progressive forms of human GN. Based on these findings, together with the known pathogenic role of MIF in experimental GN, we propose that MIF is an attractive therapeutic target in the treatment of progressive forms of GN.
Collapse
Affiliation(s)
- H Y Lan
- Department of Nephrology, Monash Medical Center, Clayton, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hültner L, Heumann D, Männel D, Bucala R, Glauser MP. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 2000; 6:164-70. [PMID: 10655104 DOI: 10.1038/72262] [Citation(s) in RCA: 560] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of new therapeutic targets for the management of septic shock remains imperative as all investigational therapies, including anti-tumor necrosis factor (TNF) and anti-interleukin (IL)-1 agents, have uniformly failed to lower the mortality of critically ill patients with severe sepsis. We report here that macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock. High concentrations of MIF were detected in the peritoneal exudate fluid and in the systemic circulation of mice with bacterial peritonitis. Experiments performed in TNFalpha knockout mice allowed a direct evaluation of the part played by MIF in sepsis in the absence of this pivotal cytokine of inflammation. Anti-MIF antibody protected TNFalpha knockout from lethal peritonitis induced by cecal ligation and puncture (CLP), providing evidence of an intrinsic contribution of MIF to the pathogenesis of sepsis. Anti-MIF antibody also protected normal mice from lethal peritonitis induced by both CLP and Escherichia coli, even when treatment was started up to 8 hours after CLP. Conversely, co-injection of recombinant MIF and E. coli markedly increased the lethality of peritonitis. Finally, high concentrations of MIF were detected in the plasma of patients with severe sepsis or septic shock. These studies define a critical part for MIF in the pathogenesis of septic shock and identify a new target for therapeutic intervention.
Collapse
Affiliation(s)
- T Calandra
- Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Das UN. Critical advances in septicemia and septic shock. Crit Care 2000; 4:290-6. [PMID: 11094508 PMCID: PMC137258 DOI: 10.1186/cc711] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Revised: 08/01/2000] [Accepted: 08/08/2000] [Indexed: 01/21/2023] Open
Abstract
Recent advances suggest that toll-like receptors, various cytokines, cicosanoids, free radicals and macrophage migration inhibitory factor (MIF) play an important role in the pathobiology of septicemia and septic shock. Anti-MIF antibodies can decrease the plasma concentrations of tumor necrosis factor (TNF), lower bacterial circulating counts and enhance survival of animals with septicemia and septic shock. Monocyte expression of MHC-class II antigens, neutrophil expression of the integrin CD11b/CD18 and neutrophil activation can be related to the development of, and/or recovery from, post-operative sepsis. Thus, biological variations in the response of an individual to a given stimulus, appears to determine his/her ability or inability to develop and also recover from sepsis and septic shock. This suggests that it may be possible to predict the development of septicemia and septic shock in a given individual and take appropriate action both to prevent and treat them adequately.
Collapse
Affiliation(s)
- U N Das
- EFA Sciences LLC, Norwood, Massachusetts 02062, USA.
| |
Collapse
|
162
|
Korsgren M, Källström L, Uller L, Bjerke T, Sundler F, Persson CG, Korsgren O. Role of macrophage migration inhibitory factor (MIF) in allergic and endotoxin-induced airway inflammation in mice. Mediators Inflamm 2000; 9:15-23. [PMID: 10877450 PMCID: PMC1781742 DOI: 10.1080/09629350050024339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has recently been forwarded as a critical regulator of inflammatory conditions, and it has been hypothesized that MIF may have a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). Hence, we examined effects of MIF immunoneutralization on the development of allergen-induced eosinophilic inflammation as well as on lipopolysaccharide (LPS)-induced neutrophilic inflammation in lungs of mice. Anti-MIF serum validated with respect to MIF neutralizing capacity or normal rabbit serum (NRS) was administered i.p. repeatedly during allergen aerosol exposure of ovalbumin (OVA)-immunized mice in an established model of allergic asthma, or once before instillation of a minimal dose of LPS into the airways of mice, a tentative model of COPD. Anti-MIF treatment did not affect the induced lung tissue eosinophilia or the cellular composition of bronchoalveolar lavage fluid (BALF) in the asthma model. Likewise, anti-MIF treatment did not affect the LPS-induced neutrophilia in lung tissue, BALF, or blood, nor did it reduce BALF levels of tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-1alpha (MIP-1alpha). The present data suggest that MIF is not critically important for allergen-induced eosinophilic, and LPS-induced neutrophilic responses in lungs of mice. These findings do not support a role of MIF inhibition in the treatment of inflammatory respiratory diseases.
Collapse
Affiliation(s)
- M Korsgren
- Department of Physiological Sciences, Lund University Hospital, Sweden.
| | | | | | | | | | | | | |
Collapse
|
163
|
Brown FG, Nikolic-Paterson DJ, Metz C, Bucala R, Atkins RC, Lan HY. Up-regulation of macrophage migration inhibitory factor in acute renal allograft rejection in the rat. Clin Exp Immunol 1999; 118:329-36. [PMID: 10540199 PMCID: PMC1905421 DOI: 10.1046/j.1365-2249.1999.01048.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have identified a key role for macrophage migration inhibitory factor (MIF) in a number of immune cell-mediated diseases. The current study investigated the potential role of MIF in acute allograft rejection. Lewis rats underwent bilateral nephrectomy and then received an orthotopic DA renal allograft or an orthotopic Lewis renal isograft. Groups of six animals were killed at day 1 or 5 after transplantation. No immunosuppression was used. Animals receiving a renal allograft exhibited severe rejection on day 5, as shown by high levels of serum creatinine, very low rates of creatinine clearance, and severe tubulitis with a dense macrophage and T cell infiltrate. In contrast, isografts had normal renal function on day 5 with no histological evidence of rejection. Northern blotting showed that renal MIF mRNA expression was unchanged at day 1, but was increased 3.5-fold on day 5. In situ hybridization showed a marked increase in MIF mRNA expression by tubular cells and MIF mRNA expression by many infiltrating mononuclear cells in day 5 allografts. Immunostaining confirmed an increase in tubular MIF protein expression, particularly in areas of severe tubular damage with prominent leucocytic infiltration. Double staining showed that many infiltrating macrophages and T cells expressed the MIF protein in day 5 allografts. There was only a minor increase in MIF expression in day 5 isografts, demonstrating that neither surgical injury nor stress cause significant up-regulation of MIF expression in allograft rejection. In conclusion, this study has demonstrated that local MIF production is specifically increased in acute renal allograft rejection. These results suggest that MIF may play an important role in the cellular immune response mediating acute allograft rejection.
Collapse
Affiliation(s)
- F G Brown
- Department of Nephrology, Monash Medical Centre and Department of Medicine, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
164
|
Shimizu T, Abe R, Ohkawara A, Nishihira J. Increased production of macrophage migration inhibitory factor by PBMCs of atopic dermatitis. J Allergy Clin Immunol 1999; 104:659-64. [PMID: 10482843 DOI: 10.1016/s0091-6749(99)70339-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disorder. The underlying cause of AD is multifactorial, and several cytokines are considered to be involved in this severe inflammatory skin disease. Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine essential for T-cell activation and delayed-type hypersensitivity. Recently we demonstrated that serum MIF content was significantly elevated in patients with AD. Consistent with this, expression of MIF messenger RNA in keratinocytes of the eczematous skin lesion was up-regulated. OBJECTIVE AND METHOD Although keratinocytes are considered to be a potential source of increased serum MIF content in AD, precise evaluation has not been carried out in other tissues. MIF is ubiquitously expressed in various cells, including T cells and macrophages. In this study we examined MIF production and its messenger RNA level of PBMCs from patients with AD to investigate the contribution of these cells to elevated serum MIF content and to its pathologic characteristics. RESULTS Consistent with our previous findings, the serum MIF content of patients with AD was significantly elevated compared with nonatopic healthy control subjects and patients with chronic urticaria without eczema. As for the MIF productivity of unstimulated PBMCs, the MIF content in the culture medium of PBMCs obtained from patients with AD (40.4 +/- 8.4 ng/mL) (mean +/- SEM) was significantly increased compared with that from healthy control subjects (6.6 +/- 1.1 ng/mL) and patients with chronic urticaria (8.5 +/- 1.4 ng/ml) (P <.0001). When PBMCs were stimulated by concanavalin A, MIF production by PBMCs of patients with AD was more enhanced than in control subjects or patients with chronic urticaria. The increased ratio of MIF production by PBMCs in response to concanavalin A was significantly correlated with the severity of clinical features of AD. Supporting these results, the level of MIF mRNA in PMBCs of patients with AD was significantly higher than in nonatopic healthy control subjects. CONCLUSIONS The current results showed that PBMCs should be an important source of increased serum MIF in AD. Because MIF has the potential to induce local and systemic inflammatory and immune responses, it is conceivable that MIF produced by PBMCs may affect local and systemic pathologic features in AD.
Collapse
Affiliation(s)
- T Shimizu
- Department of Dermatology and the Central Research Institute, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
165
|
Swope MD, Lolis E. Macrophage migration inhibitory factor: cytokine, hormone, or enzyme? Rev Physiol Biochem Pharmacol 1999; 139:1-32. [PMID: 10453691 DOI: 10.1007/bfb0033647] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- M D Swope
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
166
|
Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem 1999; 274:18100-6. [PMID: 10364264 DOI: 10.1074/jbc.274.25.18100] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory mediator with the unique ability to counter-regulate the inhibitory effects of glucocorticoids on immune cell activation. MIF is released from cells in response to glucocorticoids, certain pro-inflammatory stimuli, and mitogens and acts to regulate glucocorticoid action on the ensuing inflammatory response. To gain insight into the molecular mechanism of MIF action, we have examined the role of MIF in the proliferation and intracellular signaling events of the well characterized, NIH/3T3 fibroblast cell line. Both endogenously secreted and exogenously added MIFs stimulate the proliferation of NIH/3T3 cells, and this response is associated with the activation of the p44/p42 extracellular signal-regulated (ERK) mitogen-activated protein kinases (MAP). The MIF-induced activation of these kinases was sustained for a period of at least 24 h and was dependent upon protein kinase A activity. We further show that MIF regulates cytosolic phospholipase A2 activity via a protein kinase A and ERK dependent pathway and that the glucocorticoid suppression of cytokine-induced cytoplasmic phospholipase A2 activity and arachidonic acid release can be reversed by the addition of recombinant MIF. These studies indicate that the sustained activation of p44/p42 MAP kinase and subsequent arachidonate release by cytoplasmic phospholipase A2 are important features of the immunoregulatory and intracellular signaling events initiated by MIF and provide the first insight into the mechanisms that underlie the pro-proliferative and inflammatory properties of this mediator.
Collapse
Affiliation(s)
- R A Mitchell
- Department of Experimental Pathology, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
167
|
Kleemann R, Kapurniotu A, Mischke R, Held J, Bernhagen J. Characterization of catalytic centre mutants of macrophage migration inhibitory factor (MIF) and comparison to Cys81Ser MIF. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:753-66. [PMID: 10215893 DOI: 10.1046/j.1432-1327.1999.00327.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.
Collapse
Affiliation(s)
- R Kleemann
- Laboratory of Biochemistry, University of Stuttgart, Germany
| | | | | | | | | |
Collapse
|
168
|
Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med 1999; 5:181-91. [PMID: 10404515 PMCID: PMC2230298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) has been shown to counterregulate glucocorticoid action and to play an essential role in the activation of macrophages and T cells in vivo. MIF also may function as an autocrine growth factor in certain cell systems. We have explored the role of MIF in the growth of the 38C13 B cell lymphoma in C3H/HeN mice, a well-characterized syngeneic model for the study of solid tumor biology. MATERIALS AND METHODS Tumor-bearing mice were treated with a neutralizing anti-MIF monoclonal antibody and the tumor response assessed grossly and histologically. Tumor capillaries were enumerated by immunohistochemistry and analyzed for MIF expression. The effect of MIF on endothelial cell proliferation was studied in vitro, utilizing both specific antibody and antisense oligonucleotide constructs. The role of MIF in angiogenesis also was examined in a standard Matrigel model of new blood vessel formation in vivo. RESULTS The administration of anti-MIF monoclonal antibodies to mice was found to reduce significantly the growth and the vascularization of the 38C13 B cell lymphoma. By immunohistochemistry, MIF was expressed predominantly within the tumor-associated neovasculature. Cultured microvascular endothelial cells, but not 38C13 B cells, produced MIF protein and required its activity for proliferation in vitro. Anti-MIF monoclonal antibody also was found to markedly inhibit the neovascularization response elicited by Matrigel implantation. CONCLUSION These data significantly expand the role of MIF in host responses, and suggest a new target for the development of anti-neoplastic agents that inhibit tumor neovascularization.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Cell Division
- Collagen
- Disease Models, Animal
- Drug Combinations
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Humans
- Immunohistochemistry
- Laminin
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/physiopathology
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Mice
- Mice, Inbred Strains
- Neovascularization, Pathologic/metabolism
- Oligonucleotides, Antisense/pharmacology
- Proteoglycans
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Chesney
- Laboratory of Medical Biochemistry, Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
169
|
An Essential Role for Macrophage Migration Inhibitory Factor (MIF) in Angiogenesis and the Growth of a Murine Lymphoma. Mol Med 1999. [DOI: 10.1007/bf03402061] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
170
|
Waeber G, Calandra T, Bonny C, Bucala R. A role for the endocrine and pro-inflammatory mediator MIF in the control of insulin secretion during stress. Diabetes Metab Res Rev 1999; 15:47-54. [PMID: 10398546 DOI: 10.1002/(sici)1520-7560(199901/02)15:1<47::aid-dmrr9>3.0.co;2-j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The systemic response to injury or infection is often accompanied by significant alterations in host metabolism and glucose homeostasis. Within the liver, these changes include a decrease in glycogenesis and an increase in gluconeogenesis, and in peripheral tissues, the development of insulin resistance and the increased utilization of glucose by non-insulin-dependent pathways. Depending on the severity and the duration of the response, both hyper- and hypoglycemia can ensue and each can become a clinically important manifestation of the systemic inflammatory response. The protein known as macrophage migration inhibitory factor (MIF) has been identified recently to play a central role in host immunity and to regulate glucocorticoid effects on the immune and inflammatory systems. MIF is released in vivo from activated immune cells as well as by the anterior pituitary gland upon stimulation of the hypothalamic-pituitary-adrenal axis. MIF also has been found to be secreted together with insulin from the pancreatic beta-cells and to act as an autocrine factor to stimulate insulin release. Since circulating MIF levels are elevated during stress or systemic inflammatory processes, this protein may play a central role in the control of insulin secretion during various disease states.
Collapse
Affiliation(s)
- G Waeber
- Department of Internal Medicine B, University Hospital CHUV, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|