151
|
Suzuki Y, Amano T, Shioi Y. Characterization and cloning of the chlorophyll-degrading enzyme pheophorbidase from cotyledons of radish. PLANT PHYSIOLOGY 2006; 140:716-25. [PMID: 16384908 PMCID: PMC1361337 DOI: 10.1104/pp.105.071290] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/10/2005] [Accepted: 12/06/2005] [Indexed: 05/05/2023]
Abstract
Enzymatic removal of the methoxycarbonyl group of pheophorbide (Pheid) a in chlorophyll degradation was investigated in cotyledons of radish (Raphanus sativus). The enzyme pheophorbidase (PPD) catalyzes the conversion of Pheid a to a precursor of pyropheophorbide (PyroPheid), C-13(2)-carboxylPyroPheid a, by demethylation, and then the precursor is decarboxylated nonenzymatically to yield PyroPheid a. PPD activity sharply increased with the progression of senescence in radish, suggesting de novo synthesis of PPD. The enzyme activity was separated into two peaks in anion-exchange and hydrophobic chromatography; the terms type 1 and type 2 were applied according to the order of elution of these enzymes in anion-exchange chromatography. PPD types 1 and 2 were purified 9,999- and 6,476-fold, with a yield of 0.703% and 2.73%, respectively. Among 12 substrates tested, both enzymes were extremely specific for Pheids of the dihydroporphyrin and tetrahydroporphyrin types, indicating that they are responsible for the formation of these PyroPheids. Both PPDs had molecular masses of 113,000 kD on gel filtration and showed three bands of 16.8, 15.9, and 11.8 kD by SDS-PAGE. The partial N-terminal amino acid sequences for these bands of PPD (type 2) were determined. Based on their N-terminal amino acid sequences, a full-length cDNA of PPD was cloned. The molecular structure of PPD, particularly the molecular mass and subunit structure, is discussed in relation to the results of SDS-PAGE.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
152
|
Abstract
The catabolic pathway of chlorophyll (Chl) during senescence and fruit ripening leads to the accumulation of colorless breakdown products (NCCs). This review updates an earlier review on Chl breakdown published here in 1999 ( 69 ). It summarizes recent advances in the biochemical reactions of the pathway and describes the characterization of new NCCs and their formation inside the vacuole. Furthermore, I focus on the recent molecular identification of three chl catabolic enzymes, chlorophyllase, pheophorbide a oxygenase (PAO), and red Chl catabolite reductase (RCCR). The analysis of Chl catabolic mutants demonstrates the importance of Chl breakdown for plant development and survival. Mutants defective in PAO or RCCR develop a lesion mimic phenotype, due to the accumulation of breakdown intermediates. Thus, Chl breakdown is a prerequisite to detoxify the potentially phototoxic pigment within the vacuoles in order to permit the remobilization of nitrogen from Chl-binding proteins to proceed during senescence.
Collapse
Affiliation(s)
- S Hörtensteiner
- Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland.
| |
Collapse
|
153
|
Nkembo KM, Lee JB, Hayashi T. Selective enhancement of scopadulcic acid B production in the cultured tissues of Scoparia dulcis by methyl jasmonate. Chem Pharm Bull (Tokyo) 2005; 53:780-2. [PMID: 15997134 DOI: 10.1248/cpb.53.780] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of methyl jasmonate (MeJA) on isoprenoid production were evaluated in cultured tissues of Scoparia dulcis. It was found that MeJA suppressed the accumulation of chlorophylls, carotenoids, phytol and beta-sitosterol in the tissues. MeJA, however, remarkably enhanced the production of scopadulcic acid B (SDB), with 10 microM being optimal observed concentration for stimulation of SDB production. The maximum concentration of SDB was observed 6 d after MeJA treatment.
Collapse
|
154
|
Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ. The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. THE PLANT CELL 2005; 17:2587-600. [PMID: 16055629 PMCID: PMC1197437 DOI: 10.1105/tpc.105.035162] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In mammals, electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in beta-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | |
Collapse
|
155
|
Pruzinská A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania KH, Kräutler B, Youn JY, Liljegren SJ, Hörtensteiner S. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. PLANT PHYSIOLOGY 2005; 139:52-63. [PMID: 16113212 PMCID: PMC1203357 DOI: 10.1104/pp.105.065870] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 05/04/2023]
Abstract
During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulated during dark-induced chl breakdown in Arabidopsis (Arabidopsis thaliana). Three of these NCCs and one FCC (primary fluorescent chl catabolite-1) were identical to known catabolites from canola (Brassica napus). The presence in Arabidopsis of two modified FCCs supports the hypothesis that modifications, as present in NCCs, occur at the level of FCC. Chl degradation in Arabidopsis correlated with the accumulation of FCCs and NCCs, as well as with an increase in PAO activity. This increase was due to an up-regulation of Pao gene expression. In contrast, red chl catabolite reductase is not regulated during leaf development and senescence. A pao1 knockout mutant was identified and analyzed. The mutant showed an age- and light-dependent cell death phenotype on leaves and in flowers caused by the accumulation of photoreactive pheide a. In the dark, pao1 exhibited a stay-green phenotype. The key role of PAO in chl breakdown is discussed.
Collapse
|
156
|
Arkus KAJ, Cahoon EB, Jez JM. Mechanistic analysis of wheat chlorophyllase. Arch Biochem Biophys 2005; 438:146-55. [PMID: 15913540 DOI: 10.1016/j.abb.2005.04.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 04/25/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
Chlorophyllase catalyzes the initial step in the degradation of chlorophyll and plays a key role in leaf senescence and fruit ripening. Here, we report the cloning of chlorophyllase from Triticum aestivum (wheat) and provide a detailed mechanistic analysis of the enzyme. Purification of recombinant chlorophyllase from an Escherichia coli expression system indicates that the enzyme functions as a dimeric protein. Wheat chlorophyllase hydrolyzed the phytol moiety from chlorophyll (k(cat) = 566 min(-1); K(m) = 63 microM) and was active over a broad temperature range (10-75 degrees C). In addition, the enzyme displays carboxylesterase activity toward p-nitrophenyl (PNP)-butyrate, PNP-decanoate, and PNP-palmitate. The pH-dependence of the reaction showed the involvement of an active site residue with a pK(a) of approximately 6.5 for both k(cat) and k(cat)/K(m) with chlorophyll, PNP-butyrate, and PNP-decanoate. Using these substrates, solvent kinetic isotope effects ranging from 1.5 to 1.9 and from 1.4 to 1.9 on k(cat) and k(cat)/K(m), respectively, were observed. Proton inventory experiments suggest the transfer of a single proton in the rate-limiting step. Our analysis of wheat chlorophyllase indicates that the enzyme uses a charge-relay mechanism similar to other carboxylesterases for catalysis. Understanding the activity and mechanism of chlorophyllase provides insight on the biological and chemical control of senescence in plants and lays the groundwork for biotechnological improvement of this enzyme.
Collapse
Affiliation(s)
- Kiani A J Arkus
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | |
Collapse
|
157
|
Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:201-17. [PMID: 15807783 DOI: 10.1111/j.1365-313x.2005.02366.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Coronatine (COR) is a phytotoxin produced by several pathovars of Pseudomonas syringae and consists of coronafacic acid (CFA), an analog of methyl jasmonic acid (MeJA), and coronamic acid (CMA), which resembles 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor to ethylene. An understanding of how COR functions, is perceived by different plant tissues, and the extent to which it mimics MeJA remain unclear. In this study, COR and related compounds were examined with respect to structure and function. The results indicate that conjugation of CFA to an amino acid is required for optimal activity in tomato, including chlorosis, changes in chloroplast structure, cell wall thickening, accumulation of proteinase inhibitors, induction of anthocyanins, and root growth inhibition. cDNA microarrays were utilized to understand the molecular processes that are regulated by MeJA, COR, CFA and CMA in tomato leaves. A comparison of COR- and MeJA-regulated transcriptomes revealed that COR regulated 35% of the MeJA-induced genes. There was significant overlap in the number of COR and CFA-regulated genes with CFA impacting the expression of 39.4% of the COR-regulated genes. Taken together, the results of biological assays, ultrastructural studies, and gene expression profiling demonstrate that: (1) the intact COR molecule impacts signaling in tomato via the jasmonic acid, ethylene, and auxin pathways; (2) CMA does not function as a structural analog of ACC; (3) COR has a broader range of functions than either CFA or CMA; and (4) COR and MeJA share similar, but not identical activities and impact multiple phytohormone pathways in tomato.
Collapse
Affiliation(s)
- Srinivasa Rao Uppalapati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Efrati A, Eyal Y, Paran I. Molecular mapping of the chlorophyll retainer (cl) mutation in pepper (Capsicum spp.) and screening for candidate genes using tomato ESTs homologous to structural genes of the chlorophyll catabolism pathway. Genome 2005; 48:347-51. [PMID: 15838558 DOI: 10.1139/g04-119] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chlorophyll retainer (cl) mutation causes inhibition of chlorophyll degradation during pepper fruit ripening and is controlled by a single recessive gene. The retention of chlorophyll in mature red or yellow fruits produces brown- or green-colored ripe fruits, respectively. We mapped CL on chromosome 1 of pepper corresponding to chromosome 8 in tomato in which a homologous mutation, green flesh, was previously assigned. To test whether known structural genes from the chlorophyll catabolism pathway could correspond to CL, we mapped tomato expressed sequence tag clones corresponding to three loci of CHLOROPHYLLASE and one locus of PHEOPHORBIDE A OXYGENASE in the tomato introgression lines population. The three CHLOROPHYLLASE loci mapped to chromosomes 6, 9, and 12, while PHEOPHORBIDE A OXYGENASE mapped to chromosome 11, indicating that CL may correspond to an as yet unavailable gene from the chlorophyll catabolism pathway or to a regulator of the pathway.Key words: fruit color, pepper, tomato, molecular mapping, chlorophyll catabolism.
Collapse
Affiliation(s)
- Ari Efrati
- Department of Plant Genetics and Breeding, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
159
|
Kariola T, Brader G, Li J, Palva ET. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. THE PLANT CELL 2005; 17:282-94. [PMID: 15598807 PMCID: PMC544505 DOI: 10.1105/tpc.104.025817] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 10/07/2004] [Indexed: 05/17/2023]
Abstract
Accumulation of reactive oxygen species (ROS) is central to plant response to several pathogens. One of the sources of ROS is the chloroplast because of the photoactive nature of the chlorophylls. Chlorophyllase 1 (encoded by AtCLH1) of Arabidopsis thaliana is quickly induced after tissue damage (e.g., caused by the bacterial necrotroph Erwinia carotovora or the necrotrophic fungus Alternaria brassicicola). RNA interference silencing of AtCLH1 resulted in failure to degrade free chlorophyll after tissue damage and in resistance to E. carotovora. Both inoculation with E. carotovora and exposure to high light caused elevated accumulation of hydrogen peroxide in AtCLH1 silenced plants. This was accompanied by expression of marker genes for systemic acquired resistance and induction of antioxidant defenses. Interestingly, downregulation of AtCLH1 resulted in increased susceptibility to A. brassicicola, resistance to which requires jasmonate signaling. We propose that AtCLH1 is involved in plant damage control and can modulate the balance between different plant defense pathways.
Collapse
Affiliation(s)
- Tarja Kariola
- Department of Biological and Environmental Sciences, Genetics, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
160
|
Ougham HJ, Morris P, Thomas H. The Colors of Autumn Leaves as Symptoms of Cellular Recycling and Defenses Against Environmental Stresses. Curr Top Dev Biol 2005; 66:135-60. [PMID: 15797453 DOI: 10.1016/s0070-2153(05)66004-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The color changes that occur during foliar senescence are directly related to the regulation of nutrient mobilization and resorption from leaf cells, often under conditions of biotic and abiotic stress. Chlorophyll is degraded through a metabolic pathway that becomes specifically activated in senescence. Chlorophyll catabolic enzymes and genes have been identified and characterized and aspects of their regulation analyzed. Particular genetic interventions in the pathway lead to disruptions in protein mobilization and increased sensitivity to light-dependent cell damage and death. The chemistry and metabolism of carotenoid and anthocyanin pigments in senescing leaves are considered. Bright autumn colors observed in the foliage of some woody species have been hypothesized to act as a defense signal to potential insect herbivores. Critical consideration of the biochemical and physiological features of normal leaf senescence leads to the conclusion that accumulating or unmasking compounds with new colors are unlikely to represent a costly investment on the part of the tree. The influences of human evolutionary and social history on our own perception of autumn coloration are discussed. The possibility that insect herbivores may respond to volatiles emitted during leaf senescence, rather than to bright colors, is also presented. Finally, some new approaches to the analysis of protein recycling in senescence are briefly considered.
Collapse
Affiliation(s)
- Helen J Ougham
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, United Kingdom
| | | | | |
Collapse
|
161
|
Eckhardt U, Grimm B, Hörtensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. PLANT MOLECULAR BIOLOGY 2004; 56:1-14. [PMID: 15604725 DOI: 10.1007/s11103-004-2331-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chlorophyll (Chl) has unique and essential roles in photosynthetic light-harvesting and energy transduction, but its biosynthesis, accumulation and degradation is also associated with chloroplast development, photomorphogenesis and chloroplast-nuclear signaling. Biochemical analyses of the enzymatic steps paved the way to the identification of their encoding genes. Thus, important progress has been made in the recent elucidation of almost all genes involved in Chl biosynthesis and breakdown. In addition, analysis of mutants mainly in Arabidopsis , genetically engineered plants and the application of photo-reactive herbicides contributed to the genetic and regulatory characterization of the formation and breakdown of Chl. This review highlights recent progress in Chl metabolism indicating highly regulated pathways from the synthesis of precursors to Chl and its degradation to intermediates, which are not longer photochemically active.
Collapse
Affiliation(s)
- Ulrich Eckhardt
- Institut für Biologie, Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstr 13, Haus 12, Berlin, D-10115, Germany
| | | | | |
Collapse
|
162
|
Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. PLANT PHYSIOLOGY 2004. [PMID: 15347784 DOI: 10.1104/pp.104.046482.2556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Full genome microarrays were used to assess transcriptional responses of Arabidopsis seedlings to changing external supply of the essential macronutrient potassium (K(+)). Rank product statistics and iterative group analysis were employed to identify differentially regulated genes and statistically significant coregulated sets of functionally related genes. The most prominent response was found for genes linked to the phytohormone jasmonic acid (JA). Transcript levels for the JA biosynthetic enzymes lipoxygenase, allene oxide synthase, and allene oxide cyclase were strongly increased during K(+) starvation and quickly decreased after K(+) resupply. A large number of well-known JA responsive genes showed the same expression profile, including genes involved in storage of amino acids (VSP), glucosinolate production (CYP79), polyamine biosynthesis (ADC2), and defense (PDF1.2). Our findings highlight a novel role of JA in nutrient signaling and stress management through a variety of physiological processes such as nutrient storage, recycling, and reallocation. Other highly significant K(+)-responsive genes discovered in our study encoded cell wall proteins (e.g. extensins and arabinogalactans) and ion transporters (e.g. the high-affinity K(+) transporter HAK5 and the nitrate transporter NRT2.1) as well as proteins with a putative role in Ca(2+) signaling (e.g. calmodulins). On the basis of our results, we propose candidate genes involved in K(+) perception and signaling as well as a network of molecular processes underlying plant adaptation to K(+) deficiency.
Collapse
Affiliation(s)
- Patrick Armengaud
- Plant Sciences Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.
| | | | | |
Collapse
|
163
|
Cummins I, Edwards R. Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:894-904. [PMID: 15341632 DOI: 10.1111/j.1365-313x.2004.02174.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Carboxyesterases which activate aryloxyphenoxypropionate (AOPP) graminicides to their bioactive herbicidal acids by hydrolysing the respective ester precursors have been identified in black-grass (Alopecurus myosuroides), a problem weed of cereal crops in Northern Europe. The dominant 40 kDa carboxyesterase was purified 1700-fold and identified as a serine hydrolase by affinity labelling with a biotinylated fluorophosphonate suicide substrate. MS-MS sequencing of a peptide digest identified it to be a member of the GDSL family of serine hydrolases. The full-length A. myosuroides hydrolase (Amgdsh1) was cloned by RACE-PCR and expressed in the yeast Pichia pastoris as a secreted enzyme. Expression was associated with activity towards AOPP esters. AmGDSH1 was predicted to be glycosylated and exported to the apoplast in planta. Based on the analysis of related sequences in monocotyledonous plants an alternative classification of the GDSL plant hydrolase superfamily is suggested and their importance in endogenous metabolism and herbicide bioactivation in crops and weeds discussed.
Collapse
Affiliation(s)
- Ian Cummins
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
164
|
Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. PLANT PHYSIOLOGY 2004; 136:2556-76. [PMID: 15347784 PMCID: PMC523322 DOI: 10.1104/pp.104.046482] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 07/30/2004] [Accepted: 08/02/2004] [Indexed: 05/17/2023]
Abstract
Full genome microarrays were used to assess transcriptional responses of Arabidopsis seedlings to changing external supply of the essential macronutrient potassium (K(+)). Rank product statistics and iterative group analysis were employed to identify differentially regulated genes and statistically significant coregulated sets of functionally related genes. The most prominent response was found for genes linked to the phytohormone jasmonic acid (JA). Transcript levels for the JA biosynthetic enzymes lipoxygenase, allene oxide synthase, and allene oxide cyclase were strongly increased during K(+) starvation and quickly decreased after K(+) resupply. A large number of well-known JA responsive genes showed the same expression profile, including genes involved in storage of amino acids (VSP), glucosinolate production (CYP79), polyamine biosynthesis (ADC2), and defense (PDF1.2). Our findings highlight a novel role of JA in nutrient signaling and stress management through a variety of physiological processes such as nutrient storage, recycling, and reallocation. Other highly significant K(+)-responsive genes discovered in our study encoded cell wall proteins (e.g. extensins and arabinogalactans) and ion transporters (e.g. the high-affinity K(+) transporter HAK5 and the nitrate transporter NRT2.1) as well as proteins with a putative role in Ca(2+) signaling (e.g. calmodulins). On the basis of our results, we propose candidate genes involved in K(+) perception and signaling as well as a network of molecular processes underlying plant adaptation to K(+) deficiency.
Collapse
Affiliation(s)
- Patrick Armengaud
- Plant Sciences Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.
| | | | | |
Collapse
|
165
|
Lin JF, Wu SH. Molecular events in senescing Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:612-28. [PMID: 15272878 DOI: 10.1111/j.1365-313x.2004.02160.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Senescence is the final stage of leaf development. Although it means the loss of vitality of leaf tissue, leaf senescence is tightly controlled by the development to increase the fitness of the whole plant. The molecular mechanisms regulating the induction and progression of leaf senescence are complex. We used a cDNA microarray, containing 11 500 Arabidopsis DNA elements, and the whole-genome Arabidopsis ATH1 Genome Array to examine global gene expression in dark-induced leaf senescence. By monitoring the gene expression patterns at carefully chosen time points, with three biological replicates each time, we identified thousands of up- or down-regulated genes involved in dark-induced senescence. These genes were clustered and categorized according to their expression patterns and responsiveness to dark treatment. Genes with different expression kinetics were classified according to different biological processes. Genes showing significant alteration of expression patterns in all available biochemical pathways were plotted to envision the molecular events occurring in the processes examined. With the expression data, we postulated an innovative biochemical pathway involving pyruvate orthophosphate dikinase in generating asparagine for nitrogen remobilization in dark-treated leaves. We also surveyed the alteration in expression of Arabidopsis transcription factor genes and established an apparent association of GRAS, bZIP, WRKY, NAC, and C2H2 transcription factor families with leaf senescence.
Collapse
Affiliation(s)
- Ji-Feng Lin
- Institute of Botany, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
166
|
Jung S. Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or norflurazon on antioxidant systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:225-31. [PMID: 15051046 DOI: 10.1016/j.plaphy.2004.01.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 01/12/2004] [Indexed: 05/23/2023]
Abstract
Methyl jasmonate (MeJA) and norflurazon (NF) treatments resulted in a substantial decrease in photosynthetic activities and chlorophylls (Chls) in Arabidopsis thaliana plants, causing a senescence-like yellowing and a bleaching in MeJA- and NF-treated plants, respectively. Non-radiative energy dissipation through q(N) and non-photochemical quenching increased greatly in NF-treated plants in concomitance with an increase in photoprotectants antheraxanthin and zeaxanthin from interconversion of violaxanthin, although they were not changed in MeJA-treated plants. A significant accumulation of anthocyanin was observed only in MeJA-treated plants, not in NF-treated plants. Total activities of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) increased greatly in response to MeJA, particularly a 100-fold increase in POD activity 7 days after MeJA treatment. NF application to plants exhibited less increase in antioxidant enzymes than MeJA-treated plants. NF-treated young leaves had a greater decline in Chls and CAT activity, and less zeaxanthin accumulation compared to NF-treated mature leaves, indicating that NF-treated young leaves are more susceptible to excess light exposure and a possible photooxidative stress. Both MeJA- and NF-treated Arabidopsis plants suffered destruction of Chls, however, they developed differential antioxidant responses during the stress, in large part by an increased anthocyanin level in the epidermis and enzymatic antioxidants in MeJA-treated plants and by accumulation of antheraxanthin and zeaxanthin, and enhanced energy dissipation in NF-treated plants.
Collapse
Affiliation(s)
- S Jung
- Department of Biotechnology, Biotechnology Research Institute, Chonnam National University, 300 Yongbong-dong, Puk-gu, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
167
|
González-Aguilar GA, Tiznado-Hernández ME, Zavaleta-Gatica R, Martínez-Téllez MA. Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochem Biophys Res Commun 2004; 313:694-701. [PMID: 14697246 DOI: 10.1016/j.bbrc.2003.11.165] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tropical fruits cannot be stored at low temperatures due to the chilling injury phenomena. With the goal of reducing the chilling injury, we tested 10(-4) and 10(-5) M of methyl jasmonate (MJ) treatment before the storage of red and white cultivars of guava fruits at 5 degrees C for up to 15 days plus two days at 20 degrees C. Every five days, we evaluated chilling injury index, ion leakage percentage, vitamin C, sugars, total phenols, and the activity of the enzymes lipoxygenase (LOX) and phenylalanine-ammonia lyase (PAL). We found that methyl jasmonate treatments reduce the chilling injury index and the ion leakage percentage. Furthermore, MJ did not affect vitamin C, chlorophyll, and total phenols. MJ increased sugar content, PAL, and LOX activities. We concluded that MJ reduces chilling injury and activates the fruit defense response as indicated by the behavior of total phenols and the increase in sugar content, PAL, and LOX activities.
Collapse
Affiliation(s)
- G A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, AC, Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera a la Victoria Km 0.6, A P 1735, Hermosillo 83000, Sonora, Mexico.
| | | | | | | |
Collapse
|
168
|
Pruzinská A, Tanner G, Anders I, Roca M, Hörtensteiner S. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci U S A 2003; 100:15259-64. [PMID: 14657372 PMCID: PMC299977 DOI: 10.1073/pnas.2036571100] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Indexed: 11/18/2022] Open
Abstract
Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron-sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.
Collapse
Affiliation(s)
- Adriana Pruzinská
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | | | | | | |
Collapse
|
169
|
Tanaka R, Hirashima M, Satoh S, Tanaka A. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the "stay-green" phenotype in Arabidopsis. PLANT & CELL PHYSIOLOGY 2003; 44:1266-74. [PMID: 14701922 DOI: 10.1093/pcp/pcg172] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygenation of pheophorbide a is a key step in chlorophyll breakdown. Several biochemical studies have implicated that this step was catalyzed by an iron-containing and ferredoxin-dependent monooxygenase, pheophorbide a oxygenase (PaO). It has been proposed that inhibition of its activity arrests the chlorophyll breakdown and leads to the "stay-green" phenotype. We searched the Arabidopsis genome for a possible PaO-encoding gene and hypothesized that it has homology to known iron-containing Rieske-type monooxygenase sequences. We identified three such open reading frames, Tic55, ACD1 and ACD1-like. We produced transgenic Arabidopsis plants which expressed antisense RNA as a method to inhibit the expression of these genes. The appearance of these antisense plants were indistinguishable from that of the wild type under illumination. However, after they were kept under darkness for 5 d and again illuminated, the leaves of the antisense ACD1 plants (AsACD1) were bleached. Leaves of AsACD1 accumulated 387 nmol (g FW)(-1) pheophorbide a which corresponded to 60% of chlorophyll a degraded. The rate of decrease in chlorophyll a was not influenced in senesced AsACD1 leaves. These results demonstrated that ACD1 is involved in PaO activity, and its inhibition led to photooxidative destruction of the cell instead of the "stay-green" phenotype.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, and Core Research of Science and Technology (CREST), Japan Science and Technology Corporation (JST), Kita-ku, N19 W8, Sapporo, 060-0819 Japan.
| | | | | | | |
Collapse
|
170
|
Collakova E, DellaPenna D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. PLANT PHYSIOLOGY 2003; 133:930-40. [PMID: 14512521 PMCID: PMC219066 DOI: 10.1104/pp.103.026138] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 06/16/2003] [Accepted: 07/20/2003] [Indexed: 05/18/2023]
Abstract
Tocopherols are amphipathic antioxidants synthesized exclusively by photosynthetic organisms. Tocopherol levels change significantly during plant growth and development and in response to stress, likely as a consequence of the altered expression of pathway-related genes. Homogentisate phytyltransferase (HPT) is a key enzyme limiting tocopherol biosynthesis in unstressed Arabidopsis leaves (E. Collakova, D. DellaPenna [2003] Plant Physiol 131: 632-642). Wild-type and transgenic Arabidopsis plants constitutively overexpressing HPT (35S::HPT1) were subjected to a combination of abiotic stresses for up to 15 d and tocopherol levels, composition, and expression of several tocopherol pathway-related genes were determined. Abiotic stress resulted in an 18- and 8-fold increase in total tocopherol content in wild-type and 35S::HPT1 leaves, respectively, with tocopherol levels in 35S::HPT1 being 2- to 4-fold higher than wild type at all experimental time points. Increased total tocopherol levels correlated with elevated HPT mRNA levels and HPT specific activity in 35S::HPT1 and wild-type leaves, suggesting that HPT activity limits total tocopherol synthesis during abiotic stress. In addition, substrate availability and expression of pathway enzymes before HPT also contribute to increased tocopherol synthesis during stress. The accumulation of high levels of beta-, gamma-, and delta-tocopherols in stressed tissues suggested that the methylation of phytylquinol and tocopherol intermediates limit alpha-tocopherol synthesis. Overexpression of gamma-tocopherol methyltransferase in the 35S::HPT1 background resulted in nearly complete conversion of gamma- and delta-tocopherols to alpha- and beta-tocopherols, respectively, indicating that gamma-tocopherol methyltransferase activity limits alpha-tocopherol synthesis in stressed leaves.
Collapse
Affiliation(s)
- Eva Collakova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
171
|
Todorov D, Karanov E, Smith A, Hall M. Chlorophyllase Activity and Chlorophyll Content in Wild and Mutant Plants of Arabidopsis thaliana. BIOLOGIA PLANTARUM 2003; 46:125-127. [PMID: 0 DOI: 10.1023/a:1022355525907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
172
|
Clerkx EJM, Vries HBD, Ruys GJ, Groot SPC, Koornneef M. Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. PLANT PHYSIOLOGY 2003; 132:1077-84. [PMID: 12805635 PMCID: PMC167045 DOI: 10.1104/pp.103.022715] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 03/24/2003] [Accepted: 03/27/2003] [Indexed: 05/20/2023]
Abstract
Seeds are usually stored in physiological conditions in which they gradually lose their viability and vigor depending on storage conditions, storage time, and genotype. Very little is known about the underlying genetics of seed storability and seed deterioration. We analyzed a mutant in Arabidopsis disturbed in seed storability. This mutant was isolated as a grs (green-seeded) mutant in an abi3-1 (abscisic acid 3) mutant background. Genetic and physiological characterization showed that the monogenic grs mutant was not visibly green seeded and mapped on chromosome 4. This enhancer mutation did not affect the ABA sensitivity of seed germination or seed dormancy but was found to affect seed storability and seedling vigor. Seed storability was assessed in a controlled deterioration test, in which the germination capacity of the mutant decreased with the duration of the treatment. The decrease in viability and vigor was confirmed by storing the seeds in two relative humidities (RHs) for a prolonged period. At 60% RH, the mutant lost germinability, but storage at 32% RH showed no decrease of germination although seed vigor decreased. The decrease in viability and vigor could be related to an increase in conductivity, suggesting membrane deterioration. This was not affected by light conditions during imbibition, expected to influence the generation of active oxygen species. During seed maturation, ABI3 regulates several processes: acquiring dormancy and long-term storability and loss of chlorophyll. Our results indicate that GRS is a common regulator in the latter two but not of dormancy/germination.
Collapse
Affiliation(s)
- Emile J M Clerkx
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, The Netherlands
| | | | | | | | | |
Collapse
|
173
|
Lange BM, Ghassemian M. Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. PLANT MOLECULAR BIOLOGY 2003; 51:925-48. [PMID: 12777052 DOI: 10.1023/a:1023005504702] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The isoprenoid biosynthetic pathway provides intermediates for the synthesis of a multitude of natural products which serve numerous biochemical functions in plants: sterols (isoprenoids with a C30 backbone) are essential components of membranes; carotenoids (C40) and chlorophylls (which contain a C20 isoprenoid side-chain) act as photosynthetic pigments; plastoquinone, phylloquinone and ubiquinone (all of which contain long isoprenoid side-chains) participate in electron transport chains; gibberellins (C20), brassinosteroids (C30) and abscisic acid (C15) are phytohormones derived from isoprenoid intermediates; prenylation of proteins (with C15 or C20 isoprenoid moieties) may mediate subcellular targeting and regulation of activity; and several monoterpenes (C10), sesquiterpenes (C15) and diterpenes (C20) have been demonstrated to be involved in plant defense. Here we present a comprehensive analysis of genes coding for enzymes involved in the metabolism of isoprenoid-derived compounds in Arabidopsis thaliana. By combining homology and sequence motif searches with knowledge regarding the phylogenetic distribution of pathways of isoprenoid metabolism across species, candidate genes for these pathways in A. thaliana were obtained. A detailed analysis of the vicinity of chromosome loci for genes of isoprenoid metabolism in A. thaliana provided evidence for the clustering of genes involved in common pathways. Multiple sequence alignments were used to estimate the number of genes in gene families and sequence relationship trees were utilized to classify their individual members. The integration of all these datasets allows the generation of a knowledge-based metabolic map of isoprenoid metabolic pathways in A. thaliana and provides a substantial improvement of the currently available gene annotation.
Collapse
Affiliation(s)
- B Markus Lange
- Torrey Mesa Research Institute, Syngenta Research & Technology, 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | |
Collapse
|
174
|
Roca M, Mínguez-Mosquera MI. Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content. PHYSIOLOGIA PLANTARUM 2003; 117:459-466. [PMID: 12675736 DOI: 10.1034/j.1399-3054.2003.00073.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Olive fruits of the Arbequina variety are differentiated from those of Hojiblanca and Picual by the differing presence of 132-OH-chlorophyll a and of dephytylated chlorophyll derivatives during the life cycle of the fruit. During the fruit growth stage, which coincides with chlorophyll synthesis, chlorophyllase (EC: 3.1.1.14) is present in the three varieties but only yields chlorophyllides in Arbequina. The presence of oxidized catabolites of chlorophyll a in fruits of the Arbequina variety during this same period confirms the activity of oxidative enzyme systems. The low synthesis of chlorophylls in the fruits of the Arbequina variety is associated with the fact that, during the natural biosynthetic turnover, the catabolic pathway is more potentiated than the anabolic one. In the ripening phase, in the Hojiblanca and Picual fruits, chlorophyllase activity was measured but the absence of chlorophyllides showed that this enzyme remains latent and that oxidative enzymes are the ones taking part in the chlorophyll disappearance. In the Arbequina variety, both chlorophyllase and oxidative enzymes are responsible for the chlorophyll degradation.
Collapse
Affiliation(s)
- María Roca
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa, CSIC, Avenida. Padre García Tejero, 4, Sevilla 41012, Spain
| | | |
Collapse
|
175
|
Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence--a genomics approach. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:3-22. [PMID: 17147676 DOI: 10.1046/j.1467-7652.2003.00004.x] [Citation(s) in RCA: 387] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Senescence in green plants is a complex and highly regulated process that occurs as part of plant development or can be prematurely induced by stress. In the last decade, the main focus of research has been on the identification of senescence mutants, as well as on genes that show enhanced expression during senescence. Analysis of these is beginning to expand our understanding of the processes by which senescence functions. Recent rapid advances in genomics resources, especially for the model plant species Arabidopsis, are providing scientists with a dazzling array of tools for the identification and functional analysis of the genes and pathways involved in senescence. In this review, we present the current understanding of the mechanisms by which plants control senescence and the processes that are involved.
Collapse
|
176
|
Tsuchiya T, Suzuki T, Yamada T, Shimada H, Masuda T, Ohta H, Takamiya KI. Chlorophyllase as a serine hydrolase: identification of a putative catalytic triad. PLANT & CELL PHYSIOLOGY 2003; 44:96-101. [PMID: 12552153 DOI: 10.1093/pcp/pcg011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.
Collapse
Affiliation(s)
- Tohru Tsuchiya
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501 Japan.
| | | | | | | | | | | | | |
Collapse
|
177
|
Hörtensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:927-37. [PMID: 11912235 DOI: 10.1093/jexbot/53.370.927] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Senescence is a highly organized and well-regulated process. As much as 75% of total cellular nitrogen may be located in mesophyll chloroplasts of C(3)-plants. Proteolysis of chloroplast proteins begins in an early phase of senescence and the liberated amino acids can be exported to growing parts of the plant (e.g. maturing fruits). Rubisco and other stromal enzymes can be degraded in isolated chloroplasts, implying the involvement of plastidial peptide hydrolases. Whether or not ATP is required and if stromal proteins are modified (e.g. by reactive oxygen species) prior to their degradation are questions still under debate. Several proteins, in particular cysteine proteases, have been demonstrated to be specifically expressed during senescence. Their contribution to the general degradation of chloroplast proteins is unclear. The accumulation in intact cells of peptide fragments and inhibitor studies suggest that multiple degradation pathways may exist for stromal proteins and that vacuolar endopeptidases might also be involved under certain conditions. The breakdown of chlorophyll-binding proteins associated with the thylakoid membrane is less well investigated. The degradation of these proteins requires the simultaneous catabolism of chlorophylls. The breakdown of chlorophylls has been elucidated during the last decade. Interestingly, nitrogen present in chlorophyll is not exported from senescencing leaves, but remains within the cells in the form of linear tetrapyrrolic catabolites that accumulate in the vacuole. The degradation pathways for chlorophylls and chloroplast proteins are partially interconnected.
Collapse
Affiliation(s)
- Stefan Hörtensteiner
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | |
Collapse
|
178
|
Benedetti CE, Arruda P. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. PLANT PHYSIOLOGY 2002; 128:1255-63. [PMID: 11950974 PMCID: PMC154253 DOI: 10.1104/pp.010813] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2001] [Revised: 10/31/2001] [Accepted: 01/04/2002] [Indexed: 05/20/2023]
Abstract
The Arabidopsis gene ATHCOR1, which encodes the CORI1 (coronatine-induced) protein, was expressed in bacterial cells. Soluble recombinant CORI1 was purified and shown to possess chlorophyllase (Chlase) activity in vitro. To determine its activity in vivo, wild-type Arabidopsis and coi1 mutant, which lacks ATHCOR1 transcripts, were transformed with sense and antisense forms of the gene. Wild-type and coi1 plants overexpressing ATHCOR1 showed increased contents of chlorophyllide (Chlide) without a substantial change in the total amount of the extractable chlorophyll (Chl). These plants presented high Chlide to Chl ratios in leaves, whereas antisense plants and nontransformed coi1 mutant showed undetectable ATHCOR1 mRNA and significantly lower Chlide to Chl ratios, relative to wild-type control. Overexpression of ATHCOR1 caused an increased breakdown of Chl a, as revealed by the Chlide a to b ratio, which was significantly higher in sense than wild-type, coi1 mutant, and antisense plants. This preferential activity of CORI1 toward Chl a was further supported by in vitro analyses using the purified protein. Increased Chlase activity was detected in developing flowers, which correlated to the constitutive expression of ATHCOR1 in this organ. Flowers of the antisense plant showed reduced Chlide to Chl ratio, suggesting a role of CORI1 in Chl breakdown during flower senescence. The results show that ATHCOR1 has Chlase activity in vivo, however, because coi1 flowers have no detectable ATHCOR1 mRNA and present Chlide to Chl ratios comparable with the wild type, an additional Chlase is likely to be active in Arabidopsis. In accordance, transcripts of a second Arabidopsis Chlase gene, AtCLH2, were detected in both normal and mutant flowers.
Collapse
Affiliation(s)
- Celso Eduardo Benedetti
- Centro de Biologia Molecular e Engenharia Genética, and Depto de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, CP6010, CEP 13083-970, Campinas, SP, Brazil.
| | | |
Collapse
|
179
|
Thomas H, Ougham H, Canter P, Donnison I. What stay-green mutants tell us about nitrogen remobilization in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:801-808. [PMID: 11912223 DOI: 10.1093/jexbot/53.370.801] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leaf senescence has an important role in the plant's nitrogen economy. Chlorophyll catabolism is a visible symptom of protein mobilization. Genetic and environmental factors that interfere with yellowing tend to modify protein degradation as well. The chlorophyll-protein relationship is much closer for membrane proteins than it is for soluble or total leaf proteins. In stay-greens, genotypes with a specific defect in the chlorophyll catabolism pathway, soluble protein degradation during senescence may be close to normal, but light-harvesting and reaction centre thylakoid membrane proteins are much more stable. Genes for the chlorophyll catabolism pathway and its control are important in the regulation of protein mobilization. Genes for three steps in the pathway are reported to have been isolated. The gene responsible for the stay-green phenotype in grasses and legumes has not yet been cloned but a fair amount is known about it. Pigment metabolism in senescing leaves of the Festuca-Lolium stay-green mutant is clearly disturbed and is consistent with a blockage at the ring-opening (PaO) step in chlorophyll breakdown. PaO is de novo synthesized in senescence and thought to be the key enzyme in the chlorophyll a catabolic pathway. The stay-green mutation is likely to be located in the PaO gene, or a specific regulator of it. These genes may well be in the various senescence-enhanced cDNA collections that have been generated, but functional handles on them are currently lacking. When the stay-green locus from Festuca pratensis was introgressed into Lolium temulentum, a gene encoding F. pratensis UDPG-pyrophosphorylase was shown to have been transferred on the same chromosome segment. A strategy is described for cloning the stay-green gene, based on subtractive PCR-based analyses of intergeneric introgressions and map-based cloning.
Collapse
Affiliation(s)
- Howard Thomas
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK.
| | | | | | | |
Collapse
|
180
|
Satoh H, Uchida A, Nakayama K, Okada M. Water-soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. PLANT & CELL PHYSIOLOGY 2001; 42:906-11. [PMID: 11577184 DOI: 10.1093/pcp/pce117] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two kinds of water-soluble chlorophyll (Chl) proteins (WSCPs) have been found, e.g., a WSCP from Chenopodium, Atriplex, Polygonum, and Amaranthus species (class I) and that from Brassica, Raphanus, and Lepidium species (class II). Classes I and II WSCPs differ mainly in their photoconvertiblity. Class I WSCPs show a light-induced absorption change, whereas Class II WSCPs do not. The molecular and functional properties of Class I WSCP are largely uncertain. On the other hand, recent studies on the adaptation of plants to osmotic stress revealed the participation of drought-stress induced proteins with molecular masses of 20-22 kDa possessing a sequence similarity with class II WSCPs. This mini review focuses on the molecular signature of class II WSCPs. The physiological function of class II WSCPs has not been clarified either, but, their water-solubility, low Chl content, and stress-inducibility suggested little contribution to photosynthesis. Several molecular properties predicting its physiological role are as follows. The WSCP tetramer, may have only one or no Chl molecules in each subunit. All WSCPs possess a motif for Künitz-type proteinase inhibitor family in their sequence. WSCP is induced by drought- and heat-stresses suggesting its protective role during stress conditions. Monomeric recombinant apo-WSCP is able to remove Chls from the thylakoid membrane in aqueous solution and form into a tetramer. Brassica-WSCP contains a signal sequence targeted to endoplasmic reticulum. The highly conserved, C-terminal region is missing in the mature WSCP. Possible functions of class II WSCPs in plant tissues are discussed.
Collapse
Affiliation(s)
- H Satoh
- Department of Biomolecular Science, Toho University, Miyama, Funabashi, Chiba, 274-8510 Japan.
| | | | | | | |
Collapse
|
181
|
Doi M, Inage T, Shioi Y. Chlorophyll degradation in a Chlamydomonas reinhardtii mutant: an accumulation of pyropheophorbide a by anaerobiosis. PLANT & CELL PHYSIOLOGY 2001; 42:469-474. [PMID: 11382812 DOI: 10.1093/pcp/pce057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chlorophyll degradation was investigated in cells of a chlorophyll b-less mutant of Chlamydomonas reinhardtii under aerobic and anaerobic conditions. During degradation of chlorophyll under anaerobic conditions, chlorophyll catabolite P535, an open-tetrapyrrole, was not excreted, but pyropheophorbide a was accumulated as the end product with a transient accumulation of chlorophyllide a and pheophorbide a in cells, in contrast to the breakdown under aerobic conditions. It is likely that in the absence of oxygen, degradation of chlorophyll a proceeds to pyropheophorbide a by three consecutive reactions, dephytylation, metal-releasing and demethoxycarbonylation, and then stops due to a limitation of the oxygen that the monooxygenase reaction requires for bilin formation. A novel enzyme catalyzing demethoxycarbonylation of pheophorbide a was partially purified. The enzyme activity increased dependent on the age of cells, and its increase was completely suppressed by cycloheximide. Production of P535 was also dependent on cytoplasmic protein synthesis.
Collapse
Affiliation(s)
- M Doi
- Research Center for Higher Education, Kyushu University, Ropponmatsu, Fukuoka, 810-8560 Japan
| | | | | |
Collapse
|
182
|
The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11149948 PMCID: PMC14663 DOI: 10.1073/pnas.021465298] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
accelerated cell death 2 (acd2) mutants of Arabidopsis have spontaneous spreading cell death lesions and constitutive activation of defenses in the absence of pathogen infection. Lesion formation in acd2 plants can be triggered by the bacterial toxin coronatine through a light-dependent process. Coronatine-triggered and spontaneous lesion spreading in acd2 plants also requires protein translation, indicating that cell death occurs by an active process. We have cloned the ACD2 gene; its predicted product shows significant and extensive similarity to red chlorophyll catabolite reductase, which catalyzes one step in the breakdown of the porphyrin component of chlorophyll [Wüthrich, K. L., Bovet, L., Hunziger, P. E., Donnison, I. S. & Hörtensteiner, S. (2000) Plant J. 21, 189-198]. Consistent with this, ACD2 protein contains a predicted chloroplast transit peptide, is processed in vivo, and purifies with the chloroplast fraction in subcellular fractionation experiments. At some stages of development, ACD2 protein also purifies with the mitochondrial fraction. We hypothesize that cell death in acd2 plants is caused by the accumulation of chlorophyll breakdown products. Such catabolites might be specific triggers for cell death or they might induce cellular damage through their ability to absorb light and emit electrons that generate free radicals. In response to infection by Pseudomonas syringae, transgenic plants expressing excess ACD2 protein show reduced disease symptoms but not reduced growth of bacteria. Thus, breakdown products of chlorophyll may act to amplify the symptoms of disease, including cell death and yellowing. We suggest that economically important plants overexpressing ACD2 might also show increased tolerance to pathogens and might be useful for increasing crop yields.
Collapse
|
183
|
Mach JM, Castillo AR, Hoogstraten R, Greenberg JT. The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 2001; 98:771-6. [PMID: 11149948 PMCID: PMC14663 DOI: 10.1073/pnas.98.2.771] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
accelerated cell death 2 (acd2) mutants of Arabidopsis have spontaneous spreading cell death lesions and constitutive activation of defenses in the absence of pathogen infection. Lesion formation in acd2 plants can be triggered by the bacterial toxin coronatine through a light-dependent process. Coronatine-triggered and spontaneous lesion spreading in acd2 plants also requires protein translation, indicating that cell death occurs by an active process. We have cloned the ACD2 gene; its predicted product shows significant and extensive similarity to red chlorophyll catabolite reductase, which catalyzes one step in the breakdown of the porphyrin component of chlorophyll [Wüthrich, K. L., Bovet, L., Hunziger, P. E., Donnison, I. S. & Hörtensteiner, S. (2000) Plant J. 21, 189-198]. Consistent with this, ACD2 protein contains a predicted chloroplast transit peptide, is processed in vivo, and purifies with the chloroplast fraction in subcellular fractionation experiments. At some stages of development, ACD2 protein also purifies with the mitochondrial fraction. We hypothesize that cell death in acd2 plants is caused by the accumulation of chlorophyll breakdown products. Such catabolites might be specific triggers for cell death or they might induce cellular damage through their ability to absorb light and emit electrons that generate free radicals. In response to infection by Pseudomonas syringae, transgenic plants expressing excess ACD2 protein show reduced disease symptoms but not reduced growth of bacteria. Thus, breakdown products of chlorophyll may act to amplify the symptoms of disease, including cell death and yellowing. We suggest that economically important plants overexpressing ACD2 might also show increased tolerance to pathogens and might be useful for increasing crop yields.
Collapse
Affiliation(s)
- J M Mach
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
184
|
Takamiya KI, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll: what has gene cloning revealed? TRENDS IN PLANT SCIENCE 2000; 5:426-31. [PMID: 11044719 DOI: 10.1016/s1360-1385(00)01735-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanism responsible for the degreening of plants and the degradation of chlorophyll was unclear for many years. However, recent studies have identified the colorless intermediates and helped to construct a basic pathway for degradation. After the successive removal of phytol and Mg21 from the chlorophyll molecule by chlorophyllase and 'Mg dechelatase', pheophorbide a is cleaved and reduced to yield a colorless, open tetrapyrrole intermediate. After further modifications, this is finally transported to the vacuole. Cloning the genes for chlorophyllase isozymes and the reductase should help to elucidate the physiological roles of each enzyme at a molecular level.
Collapse
Affiliation(s)
- K I Takamiya
- Dept of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
185
|
Hörtensteiner S, Kräutler B. Chlorophyll breakdown in oilseed rape. PHOTOSYNTHESIS RESEARCH 2000; 64:137-46. [PMID: 16228452 DOI: 10.1023/a:1006456310193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chlorophyll catabolism accompanying leaf senescence is one of the most spectacular natural phenomena. Despite this fact, the metabolism of chlorophyll has been largely neglegted until recently. Oilseed rape has been used extensively as a model plant for the recent elucidating of structures of chlorophyll catabolites and for investigation of the enzymic reactions of the chlorophyll breakdown pathway. The key reaction which causes loss of green color is catalyzed in a two-step reaction by pheophorbide a oxygenase and red chlorophyll catabolite reductase. In this Minireview, we summarize the actual knowledge about catabolites and enzymes of chlorophyll catabolism in oilseed rape and discuss the significance of this pathway in respect to chlorophyll degradation during Brassica napus seed development.
Collapse
Affiliation(s)
- S Hörtensteiner
- Institute of Plant Biology, University of Zürich, CH-8008, Zürich, Switzerland
| | | |
Collapse
|