151
|
Affiliation(s)
- Colm Power
- Department of Academic Surgery, Cork University Hospital and University College Cork, Ireland
| | | | | |
Collapse
|
152
|
Schimmel M, Bauer G. Proapoptotic and redox state-related signaling of reactive oxygen species generated by transformed fibroblasts. Oncogene 2002; 21:5886-96. [PMID: 12185588 DOI: 10.1038/sj.onc.1205740] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 05/16/2002] [Accepted: 05/20/2002] [Indexed: 11/08/2022]
Abstract
Oncogenic transformed fibroblasts are characterized by extracellular superoxide anion generation through a membrane-associated NADPH oxidase. After cellular glutathione depletion, extracellular reactive oxygen species (ROS) generated by transformed fibroblasts exhibit a strong apoptosis-inducing potential. As apoptosis induction under glutathione depletion is inhibited by catalase, the NADPH oxidase inhibitor apocynin, superoxide dismutase, the hydroxyl radical scavenger terephthalate and the iron chelator deferoxamine, the metal-catalysed Haber-Weiss reaction seems to be the responsible signaling mechanism. In contrast to extracellular ROS, intracellular ROS play no role for apoptosis induction in glutathione-depleted transformed fibroblasts initially, since a high level of intracellular catalase scavenges intracellular hydrogen peroxide. Intracellular catalase seems to be induced by extracellular hydrogen peroxide, as pretreatment of transformed fibroblasts with exogenous catalase downmodulates endogenous catalase and renders glutathione-depleted transformed cells susceptible for the effect of endogenous hydrogen peroxide. In contrast to transformed fibroblasts, nontransformed glutathione-depleted fibroblasts do not generate substantial extracellular ROS, but apoptosis is efficiently induced in these cells by intracellular ROS. Our data show that extracellular ROS of transformed fibroblasts exhibit redox-related signaling and at the same time represent a potential apoptosis-inducing hazard through the metal-catalysed Haber-Weiss reaction.
Collapse
Affiliation(s)
- Mareike Schimmel
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany
| | | |
Collapse
|
153
|
Shen HM, Ding WX, Ong CN. Intracellular glutathione is a cofactor in methylseleninic acid-induced apoptotic cell death of human hepatoma HEPG(2) cells. Free Radic Biol Med 2002; 33:552-61. [PMID: 12160937 DOI: 10.1016/s0891-5849(02)00918-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selenium is a widely studied dietary anticancer agent. Among various selenium compounds, the methylated forms appear to be particularly effective in cancer prevention. Intracellular glutathione (GSH) is known to be involved in the metabolism of many methylated forms of selenium. In this study, we investigated the role of intracellular GSH in methylseleninic acid (MSeA)-induced apoptosis in human hepatoma (HepG(2)) cells. MSeA was shown to deplete intracellular GSH rapidly, preceding the typical apoptotic changes such as DNA fragmentation as measured by the TUNEL assay. When the intracellular GSH concentration was enhanced using N-acetylcysteiene (NAC) (a GSH synthesis precursor) and decreased using buthionine sufoxamine (BSO) (a GSH synthesis inhibitor), NAC markedly augmented MSeA-induced apoptosis, while BSO significantly inhibited MSeA-induced apoptosis. Different from the effect of sodium selenite, there was no measurable superoxide radical level in MSeA-treated cells. These observations suggest that intracellular GSH mainly acts as a cofactor to facilitate MSeA-induced apoptosis, while its antioxidant function becomes largely irrelevant. It is thus postulated that some cancer cells, such as liver cancer cells with higher level of intracellular GSH, would be more susceptible to MSeA cytotoxicity.
Collapse
Affiliation(s)
- Han-Ming Shen
- Department of Community, Occupational, and Family Medicine, National University of Singapore, Republic of Singapore.
| | | | | |
Collapse
|
154
|
Laurindo FRM, de Souza HP, Pedro MDA, Janiszewski M. Redox aspects of vascular response to injury. Methods Enzymol 2002; 352:432-54. [PMID: 12125370 DOI: 10.1016/s0076-6879(02)52039-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology and Applied Physiology Laboratories, Heart Institute, University of São Paulo School of Medicine, CEP 05403-000 São Paulo, Brazil
| | | | | | | |
Collapse
|
155
|
Gao D, Hiromura M, Yasui H, Sakurai H. Direct reaction between shikonin and thiols induces apoptosis in HL60 cells. Biol Pharm Bull 2002; 25:827-32. [PMID: 12132652 DOI: 10.1248/bpb.25.827] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shikonin (beta-alkannin), a naphthoquinone compound, was found to induce apoptotic features such as chromatin condensation, DNA fragmentation, and activation of caspase 3 in HL60 cells. The mechanism was examined in terms of oxidative stress in the cells. Exposure of the cells to shikonin greatly reduced the total thiols, protein thiols, and glutathione levels, however, lipid peroxide levels were enhanced. The depletion of thiol levels in the cells was thus thought to induce lipid peroxidation and DNA fragmentation. An electron spin resonance study revealed that shikonin reacts directly with glutathione and other oxidative stress-relevant compounds in the lysate of HL60 cells. Pretreatment of such cells with N-acetylcysteine before shikonin treatment completely inhibited the DNA fragmentation. From these results, it was proposed that the chemical reaction between shikonin and cellular thiols such as glutathione and protein thiols induces apoptosis in HL60 cells.
Collapse
Affiliation(s)
- Dayuan Gao
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
156
|
Hegarty NJ, Watson RWG, Young LS, O'Neill AJ, Brady HR, Fitzpatrick JM. Cytoprotective effects of nitrates in a cellular model of hydronephrosis. Kidney Int 2002; 62:70-7. [PMID: 12081565 DOI: 10.1046/j.1523-1755.2002.00404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The earliest insult to the kidney following the onset of ureteral obstruction is a marked elevation in collecting system pressure. This imparts a mechanical stress that is transmitted directly from the collecting system to the kidney substance. Renal tubular injury is the principal functional and histological change encountered, with glomerular changes being less marked and occurring later. Nitric oxide (NO) has been shown to protect against renal injury in UO, but its mode of action has not been clearly defined. METHODS MDCK (canine) and HK-2 (human) renal tubular cells were grown under control conditions or subjected to mechanical strain for periods of 24 and 48 hours. Cells were studied treated with or without Fas-antibody, etoposide or diethyl maleate (DEM) alone or in combination with NG-monomethyl l-arginine (L-NMMA), sodium nitroprusside (SNP) or l-arginine. Cell proliferation and apoptosis was determined using propidium iodide DNA staining. NO production and inducible NO synthase (iNOS) expression were measured by the Griess reaction and Western blotting, respectively. RESULTS Cells subjected to mechanical strain displayed a decrease in the proportion of cells undergoing cell division. They also showed an increased susceptibility to apoptosis. Associated with this was a decrease in Bcl-2 expression. An increase in iNOS expression was seen in cells subjected to mechanical strain, but no increase in NO production. The cellular effects of mechanical strain were reversed by SNP and l-arginine. CONCLUSIONS Culture of renal tubule cells in an environment of mechanical strain results in an imbalance in homeostasis and a net cell loss. This can be reversed by the administration of an NO donor or precursor.
Collapse
Affiliation(s)
- Nicholas J Hegarty
- Department of Surgery, Mater Misericordiae Hospital, University College Dublin, 47 Eccles Street, Dublin 7, Ireland
| | | | | | | | | | | |
Collapse
|
157
|
Abstract
Cells are constantly generating reactive oxygen species (ROS) during aerobic metabolism. As a consequence, each cell is equipped with an extensive antioxidant defence system to combat excessive production of ROS. Oxidative stress occurs in cells when the generation of ROS overwhelms the cell's natural antioxidant defences. There is a growing consensus that oxidative stress and the redox state of a cell plays a pivotal role in regulating apoptosis, a tightly controlled form of cell death in which a cell partakes in its own demise. More recently, a role for reactive nitrogen species (RNI) as both positive and negative regulators of cell death has been established. This review describes the major sources of ROS and RNI in a cell, the control of cell death by these species and the role of antioxidants as regulators of oxidative stress and apoptosis. Finally, the various methods that can be employed in establishing a role for both ROS and RNI in apoptosis will be discussed with particular emphasis on their intracellular detection.
Collapse
Affiliation(s)
- James F Curtin
- Tumour Biology Laboratory, Department of Biochemistry, Lee Maltings, University College Cork, Ireland
| | | | | |
Collapse
|
158
|
Kagan VE, Gleiss B, Tyurina YY, Tyurin VA, Elenström-Magnusson C, Liu SX, Serinkan FB, Arroyo A, Chandra J, Orrenius S, Fadeel B. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:487-99. [PMID: 12077280 DOI: 10.4049/jimmunol.169.1.487] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure of phosphatidylserine (PS) on the surface of apoptotic cells has been suggested to serve as an important recognition signal for macrophages. In this work we show that triggering of the death receptor Fas on Jurkat cells results in the generation of reactive oxygen species with oxidation and externalization of PS but not of the other major aminophospholipid, phosphatidylethanolamine. These cells were readily ingested by several classes of macrophages, whereas Raji cells, which are defective for Fas-induced PS exposure, remained unengulfed. However, when Raji cells were incubated with the thiol-reactive agent N-ethylmaleimide to induce PS exposure in the absence of other features of apoptosis, these cells were also engulfed by macrophages. Phagocytosis of Fas-triggered Jurkat cells was inhibited by superoxide dismutase and catalase, which prevent oxidation of PS while allowing PS to remain externalized on these cells. Moreover, liposomes containing oxidized PS (PS-OX) were more potent inhibitors of phagocytosis than those containing its nonoxidized counterpart. Finally, enrichment of the plasma membrane of Jurkat or Raji cells, or myeloid leukemic HL-60 cells, with exogenous PS resulted in phagocytic cell clearance, and this process was further enhanced when PS was substituted for by PS-OX. Taken together, our data suggest that the presence of PS-OX in conjunction with nonoxidized PS on the cell surface is an important signal for macrophage clearance of apoptotic cells.
Collapse
Affiliation(s)
- Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Pullar JM, Hampton MB. Diphenyleneiodonium triggers the efflux of glutathione from cultured cells. J Biol Chem 2002; 277:19402-7. [PMID: 11904296 DOI: 10.1074/jbc.m111053200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Diphenyleneiodonium (DPI) is a broad-spectrum flavoprotein inhibitor commonly used to inhibit oxidant production by the NADPH oxidase of phagocytic and nonphagocytic cells. A previous study has shown that DPI can sensitize T24 bladder carcinoma cells to Fas-mediated apoptosis. We observed DPI to deplete intracellular reduced glutathione (GSH) in T24 cells and a range of other primary and transformed cell types. The effect was immediate, with 50% loss of intracellular GSH within 2 h of treatment with DPI. The glutathione was quantitatively recovered in the extracellular medium, indicating that efflux was occurring. The loss of GSH was blocked with bromosulfophthalein, an inhibitor of the canalicular GSH transporters. We conclude that DPI induces a dramatic efflux of cellular GSH from T24 cells via a specific transport channel. This provides a potential mechanism for its proapoptotic effect, and it also has important implications for the regulation of glutathione homeostasis in cells.
Collapse
Affiliation(s)
- Juliet M Pullar
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, P. O. Box 4345, Christchurch, New Zealand.
| | | |
Collapse
|
160
|
Franklin CC, Krejsa CM, Pierce RH, White CC, Fausto N, Kavanagh TJ. Caspase-3-Dependent Cleavage of the Glutamate-L-Cysteine Ligase Catalytic Subunit during Apoptotic Cell Death. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1887-94. [PMID: 12000740 PMCID: PMC1850882 DOI: 10.1016/s0002-9440(10)61135-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptotic cell death is usually accompanied by activation of a family of cysteine proteases termed caspases. Caspases mediate the selective proteolysis of multiple cellular targets often resulting in the disruption of survival pathways. Intracellular levels of the antioxidant glutathione (GSH) are an important determinant of cellular susceptibility to apoptosis. The rate-limiting step in GSH biosynthesis is mediated by glutamate-L-cysteine ligase (GCL), a heterodimeric enzyme consisting of a catalytic (GCLC) and a modifier (GCLM) subunit. In this report we demonstrate that GCLC is a direct target for caspase-mediated cleavage in multiple models of apoptotic cell death. Mutational analysis revealed that caspase-mediated cleavage of GCLC occurs at Asp(499) within the sequence AVVD(499)G. GCLC cleavage occurs upstream of Cys(553), which is thought to be important for association with GCLM. GCLC cleavage is accompanied by a rapid loss of intracellular GSH due to caspase-mediated extrusion of GSH from the cell. However, while GCLC cleavage is dependent on caspase-3, GSH extrusion occurs by a caspase-3-independent mechanism. Our identification of GCLC as a target for caspase-3-dependent cleavage during apoptotic cell death suggests that this post-translational modification may represent a novel mechanism for regulating GSH biosynthesis during apoptosis.
Collapse
|
161
|
Abstract
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.
Collapse
Affiliation(s)
- Christophe Fleury
- CNRS-UPRES-A 8087, Laboratoire de génétique moléculaire et physiologique de l'EPHE, université de Versailles/Saint-Quentin, Bâtiment Fermat, 45, avenue des Etats-Unis, 78035 Versailles cedex, France
| | | | | |
Collapse
|
162
|
Abstract
Reactive oxygen species (ROS) are frequently associated with cytotoxicity, often being described as damaging, harmful or toxic. It is generally assumed that, under pathological circumstances, ROS elicit wide-spread and random acts of oxidation. This passive attack of cellular components by ROS, in conditions where oxidative stress is the initiating stimulus for apoptosis, is assumed to simply trigger cell death as a result of cumulative oxidative damage. However, accumulating evidence now suggests that ROS may act as signalling molecules for the initiation and execution of the apoptotic death programme in many, if not all, current models of apoptotic cell death. Signalling by ROS would not appear to be random, as previously assumed, but targeted at specific metabolic and signal transduction cellular components. There is also evidence that the enzymatic generation of ROS may not simply be an unwanted by-product of the primary reaction catalysed, but that ROS may be used as signalling molecules to regulate cellular processes including apoptosis. This view of ROS as signalling molecules (as opposed to toxic metabolites) has been further bolstered by the findings that cellular antioxidants such as glutathione and thioredoxin not only serve to regulate ROS levels but also act as reversible redox modifiers of enzyme function. This review will attempt to delineate the involvement of ROS in apoptosis in light of these recent discoveries and provide evidence for a crucial role for ROS in the initiation and execution of the death process.
Collapse
Affiliation(s)
- R J Carmody
- Department of Molecular and Cellular Engineering, Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
163
|
Abstract
Nitric oxide (NO), an important molecule involved in neurotransmission, vascular homeostasis, immune regulation, and host defense, is generated from a guanido nitrogen of L-arginine by the family of NO synthase enzymes. Large amounts of NO produced for relatively long periods of time (days to weeks) by inducible NO synthase in macrophages and vascular endothelial cells after challenge with lipopolysaccharide or cytokines (such as interferons, tumor necrosis factor-alpha, and interleukin-1), are cytotoxic for various pathogens and tumor cells. This cytotoxic effect against tumor cells was found to be associated with apoptosis (programmed cell death). The mechanism of NO-mediated apoptosis involves accumulation of the tumor suppressor protein p53, damage of different mitochondrial functions, alterations in the expression of members of the Bcl-2 family, activation of the caspase cascade, and DNA fragmentation. Depending on the amount, duration, and the site of NO production, this molecule may not only mediate apoptosis in target cells but also protect cells from apoptosis induced by other apoptotic stimuli. In this review, we will concentrate on the current knowledge about the role of NO as an effector of apoptosis in tumor cells and discuss the mechanisms of NO-mediated apoptosis.
Collapse
Affiliation(s)
- V Umansky
- Division of Cellular Immunology, Tumor Immunology Program, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
164
|
Gutiérrez-Martín Y, Martín-Romero FJ, Henao F, Gutiérrez-Merino C. Synaptosomal plasma membrane Ca(2+) pump activity inhibition by repetitive micromolar ONOO(-) pulses. Free Radic Biol Med 2002; 32:46-55. [PMID: 11755316 DOI: 10.1016/s0891-5849(01)00760-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A sustained increase of intracellular free [Ca(2+)] ([Ca(2+)](i)) has been shown to be an early event of neuronal cell death induced by peroxynitrite (ONOO(-)). In this paper, chronic exposure to ONOO(-) has been simulated by treatment of rat brain synaptosomes or plasma membrane vesicles with repetitive pulses of ONOO(-) during at most 50 min, which efficiently produced nitrotyrosine formation in several membrane proteins (including the Ca(2+)-ATPase). The plasma membrane Ca(2+)-ATPase activity at near-physiological conditions (pH 7, submicromolar Ca(2+), and millimolar Mg(2+)-ATP concentrations), which plays a major role in the control of synaptic [Ca(2+)](i), can be more than 75% inhibited by a sustained exposure to micromolar ONOO(-) (e.g., to 100 pulses of 10 microM ONOO(-)). This inhibition is irreversible and mostly due to a decreased V(max), and to the 2-fold increase of the K(0.5) for Ca(2+) stimulation and about 5-fold increase of the K(M) for Mg(2+)-ATP. [Ca(2+)](i) increases to >400 nM when synaptosomes are subjected to this treatment. Reduced glutathione can afford only partial protection against the inhibition produced by micromolar ONOO(-) pulses. Therefore, inhibition of the plasma membrane Ca(2+)-pump activity during chronic exposure to ONOO(-) may account by itself for a large and sustained increase of intracellular [Ca(2+)](i) in synaptic nerve terminals.
Collapse
Affiliation(s)
- Yolanda Gutiérrez-Martín
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n 06080-Badajoz, Spain
| | | | | | | |
Collapse
|
165
|
Bauer G. Signaling and proapoptotic functions of transformed cell-derived reactive oxygen species. Prostaglandins Leukot Essent Fatty Acids 2002; 66:41-56. [PMID: 12051956 DOI: 10.1054/plef.2001.0332] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transformed fibroblasts generate extracellular superoxide anions through the recently identified membrane-associated NADPH oxidase. These cell-derived superoxide anions exhibit signaling functions such as regulation of proliferation and maintenance of the transformed state. Their dismutation product hydrogen peroxide regulates the intracellular level of catalase, whose activity has been observed to be upregulated in certain transformed cells. After glutathione depletion, transformed cell-derived reactive oxygen species (ROS) exhibit apoptosis-inducing potential through the metal-catalyzed Haber-Weiss reaction. Moreover, transformed cell-derived ROS represent key elements for selective and efficient apoptosis induction by natural antitumor systems (such as fibroblasts, granulocytes and macrophages). These effector cells release peroxidase, which utilizes target cell-derived hydrogen peroxide for HOCl synthesis. In a second step, HOCl interacts with target cell-derived superoxide anions and forms apoptosis-inducing hydroxyl radicals. In a parallel signaling pathway, effector cell-derived NO interacts with target cell-derived superoxide anions and generates the apoptosis inducer peroxynitrite. Therefore, transformed cell-derived ROS determine transformed cells as selective targets for induction of apoptosis by these effector systems. It is therefore proposed that transformed cell derived ROS interact with associated cells to exhibit directed and specific signaling functions, some of which are beneficial and some of which can become detrimental to transformed cells.
Collapse
Affiliation(s)
- G Bauer
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany.
| |
Collapse
|
166
|
Hayter HL, Pettus BJ, Ito F, Obeid LM, Hannun YA. TNFalpha-induced glutathione depletion lies downstream of cPLA(2) in L929 cells. FEBS Lett 2001; 507:151-6. [PMID: 11684089 DOI: 10.1016/s0014-5793(01)02967-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both glutathione (GSH) depletion and arachidonic acid (AA) generation have been shown to regulate sphingomyelin (SM) hydrolysis and are known components in tumor necrosis factor alpha (TNFalpha)-induced cell death. In addition, both have hypothesized direct roles in activation of N-sphingomyelinase (SMase); however, it is not known whether these are independent pathways of N-SMase regulation or linked components of a single ordered pathway. This study was aimed at differentiating these possibilities using L929 cells. Depletion of GSH with L-buthionin-(S,R)-sulfoximine (BSO) induced 50% hydrolysis of SM at 12 h. In addition, TNF induced a depletion of GSH, and exogenous addition of GSH blocked TNF-induced SM hydrolysis as well as TNF-induced cell death. Together, these results establish GSH upstream of SM hydrolysis and ceramide generation in L929 cells. We next analyzed the L929 variant, C12, which lacks both cytosolic phospholipase A(2) (cPLA(2)) mRNA and protein, in order to determine the relationship of cPLA(2) and GSH. TNF did not induce a significant drop in GSH levels in the C12 line. On the other hand, AA alone was capable of inducing a 60% depletion of GSH in C12 cells, suggesting that these cells remain responsive to AA distal to the site of cPLA(2). Furthermore, depleting GSH with BSO failed to effect AA release, but caused a drop in SM levels, showing that the defect in these cells was upstream of the GSH drop and SMase activation. When cPLA(2) was restored to the C12 line by expression of the cDNA, the resulting CPL4 cells regained sensitivity to TNF. Treatment of the CPL4 cells with TNF resulted in GSH levels dropping to levels near those of the wild-type L929 cells. These results demonstrate that GSH depletion following TNF treatment in L929 cells is dependent on intact cPLA(2) activity, and suggest a pathway in which activation of cPLA(2) is required for the oxidation and reduction of GSH levels followed by activation of SMases.
Collapse
Affiliation(s)
- H L Hayter
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
167
|
Kang HS, Choi I. Protein phosphatase 2A modulates the proliferation of human multiple myeloma cells via regulation of the production of reactive oxygen intermediates and anti-apoptotic factors. Cell Immunol 2001; 213:34-44. [PMID: 11747354 DOI: 10.1006/cimm.2001.1861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the roles of reactive oxygen intermediates (ROI) in Fas-mediated apoptosis of myeloma cells, the effects of antioxidants were tested. Fas-mediated apoptosis was further increased in the presence of antioxidants such as N-acetyl-L-cysteine and glutathione, but it was decreased when hydrogen peroxide was added. The intracellular ROI level was significantly decreased in myeloma cells treated with okadaic acid, an inhibitor of protein phosphatases 1 and 2A (PP1/PP2A). To clarify the direct roles of PP2A in myeloma cell growth, the PP2A transfected cell lines, sense- or antisense-PP2A transfectants, were established. Spontaneous cell growth of antisense-PP2A transfectants was reduced compared with that of vector transfectants. The intracellular ROI level was significantly decreased in antisense-PP2A transfectants but increased in sense-PP2A transfectants compared with vector controls. In addition, anti-apoptotic factors such as bcl-2 and IL-6 were reduced in antisense-PP2A transfectants. Taken together, these results indicate that PP2A is an essential factor for survival and growth of myeloma cells via regulation of intracellular ROI and anti-apoptotic factors.
Collapse
Affiliation(s)
- H S Kang
- Laboratory of Immunology, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, 305-333, Republic of Korea
| | | |
Collapse
|
168
|
Abstract
Apoptosis, or programmed cell death, and the elimination of apoptotic cells are crucial factors in the maintenance of liver health Apoptosis allows hepatocytes to die without provoking a potentially harmful inflammatory response In contrast to necrosis, apoptosis is tightly controlled and regulated via several mechanisms, including Fas/Fas ligand interactions, the effects of cytokines such as tumor necrosis factor alpha (TNF-alpha) and transforming growth factor beta (TGF-beta), and the influence of pro- and antiapoptotic mitochondria-associated proteins of the B-cell lymphoma-2 (Bcl-2) family. Efficient elimination of apoptotic cells in the liver relies on Kupffer cells and endothelial cells and is thought to be regulated by the expression of certain cell surface receptors. Liver disease is often associated with enhanced hepatocyte apoptosis, which is the case in viral and autoimmune hepatitis, cholestatic diseases, and metabolic disorders. Disruption of apoptosis is responsible for other diseases, for example, hepatocellular carcinoma. Use and abuse of certain drugs, especially alcohol, chemotherapeutic agents, and acetaminophen, have been associated with increased apoptosis and liver damage. Apoptosis also plays a role in transplantation-associated liver damage, both in ischemia/reperfusion injury and graft rejection. The role of apoptosis in various liver diseases and the mechanisms by which apoptosis occurs in the liver may provide insight into these diseases and suggest possible treatments.
Collapse
Affiliation(s)
- M G Neuman
- Department of Clinical Pharmacology, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
169
|
Andrieu-Abadie N, Gouazé V, Salvayre R, Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med 2001; 31:717-28. [PMID: 11557309 DOI: 10.1016/s0891-5849(01)00655-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ceramide is one of the major sphingosine-based lipid second messengers that is generated in response to various extracellular agents. However, while widespread attention has focused on ceramide as a second messenger involved in the induction of apoptosis, important issues with regard to the mechanisms of ceramide formation and mode of action remain to be addressed. Several lines of evidence suggest that ceramide and oxidative stress are intimately related in cell death induction. This review focuses on the putative relationships between oxidative stress and sphingolipid metabolism in the apoptotic process and discusses the potential mechanisms that connect and regulate the two phenomena.
Collapse
Affiliation(s)
- N Andrieu-Abadie
- INSERM Unit 466, Laboratoire de Biochimie Médicale, Centre Hospitalier Universitaire de Rangueil, Toulouse, France.
| | | | | | | |
Collapse
|
170
|
Finkelstein EI, Nardini M, van der Vliet A. Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobacco-related lung disease? Am J Physiol Lung Cell Mol Physiol 2001; 281:L732-9. [PMID: 11504702 DOI: 10.1152/ajplung.2001.281.3.l732] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoking is known to contribute to inflammatory diseases of the respiratory tract by promoting recruitment of inflammatory-immune cells such as neutrophils and perhaps by altering neutrophil functional properties. We investigated whether acrolein, a toxic unsaturated aldehyde found in cigarette smoke, could directly affect neutrophil function. Exposure of freshly isolated human neutrophils to acrolein markedly inhibited spontaneous neutrophil apoptosis as indicated by loss of membrane asymmetry and DNA fragmentation and induced increased neutrophil production of the chemokine interleukin-8 (IL-8). Acrolein (1--50 microM) was found to induce marked activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPKs), and inhibition of p38 MAPK activation by SB-203580 prevented acrolein-induced IL-8 release. However, inhibition of either ERK or p38 MAPK did not affect acrolein-dependent inhibition of apoptosis. Acrolein exposure prevented the activation of caspase-3, a crucial step in the execution of neutrophil apoptosis, presumably by direct inhibition of the enzyme. Our results indicate that acrolein may contribute to smoke-induced inflammatory processes in the lung by increasing neutrophil recruitment and reducing neutrophil clearance by apoptosis.
Collapse
Affiliation(s)
- E I Finkelstein
- Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
171
|
Renz A, Berdel WE, Kreuter M, Belka C, Schulze-Osthoff K, Los M. Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood 2001; 98:1542-8. [PMID: 11520805 DOI: 10.1182/blood.v98.5.1542] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse death stimuli including anticancer drugs trigger apoptosis by inducing the translocation of cytochrome c from the outer mitochondrial compartment into the cytosol. Once released, cytochrome c cooperates with apoptotic protease-activating factor-1 and deoxyadenosine triphosphate in caspase-9 activation and initiation of the apoptotic protease cascade. The results of this study show that on death induction by chemotherapeutic drugs, staurosporine and triggering of the death receptor CD95, cytochrome c not only translocates into the cytosol, but furthermore can be abundantly detected in the extracellular medium. The cytochrome c release from the cell is a rapid and apoptosis-specific process that occurred within 1 hour after induction of apoptosis, but not during necrosis. Interestingly, elevated cytochrome c levels were observed in sera from patients with hematologic malignancies. In the course of cancer chemotherapy, the serum levels of cytochrome c in the majority of the patients grew rapidly as a result of increased cell death. These data suggest that monitoring of cytochrome c in the serum of patients with tumors might serve as a useful clinical marker for the detection of the onset of apoptosis and cell turnover in vivo.
Collapse
Affiliation(s)
- A Renz
- Department of Immunology and Cell Biology, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
172
|
Cullen KV, Davey RA, Davey MW. Verapamil-stimulated glutathione transport by the multidrug resistance-associated protein (MRP1) in leukaemia cells. Biochem Pharmacol 2001; 62:417-24. [PMID: 11448450 DOI: 10.1016/s0006-2952(01)00681-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistance mediated by the multidrug resistance-associated protein MRP1 is associated with decreased drug accumulation, which is in turn dependent on cellular glutathione. We have reported that verapamil, an inhibitor of drug transport, caused a decrease in cellular glutathione in CCRF-CEM/E1000 MRP1-overexpressing leukaemia cells (Biochem Pharmacol 55;1283--9, 1998). We now demonstrate that other inhibitors of MRP1-mediated drug transport (e.g. MK571, indomethacin, genistein, and nifedipine) deplete cellular glutathione in these leukaemia cells (>30% decrease; P < 0.01) while having no effect on the parental CCRF-CEM cells. However, treatment with etoposide or vincristine (at similar molar concentrations) caused a 20% decrease in glutathione. Verapamil-stimulated glutathione transport correlated with MRP1 expression in a series of drug-resistant cells, and glutathione was quantitatively recovered in the extracellular media. Further, verapamil-stimulated glutathione transport was rapid (50% decrease in 10 min), dose-dependent, and inhibited by vanadate, an inhibitor of ATPase activity, but not by sulphobromophthalein (BSP) or methionine, inhibitors of hepatic glutathione transporters. Incubation of CCRF-CEM/E1000 cells in 25 mM glutathione not only showed that verapamil-mediated efflux occurred against the concentration gradient, but also demonstrated the MRP1-mediated uptake of glutathione (P < 0.01 compared to the parental CCRF-CEM cells), which was not inhibited by vanadate. These results demonstrate that while MRP1 transports glutathione in the presence of inhibitors of drug transport, there is no convincing evidence for co-transport of glutathione with drug. They further demonstrate that MRP1 mediates the facilitated transport of glutathione into the MRP1-overexpressing CEM/E1000 cells, suggesting that MRP1 may play a major role in cellular glutathione homeostasis.
Collapse
Affiliation(s)
- K V Cullen
- Cell and Molecular Biology Department, University of Technology, Sydney, Gore Hill 2065, Australia
| | | | | |
Collapse
|
173
|
Dbaibo GS, El-Assaad W, Krikorian A, Liu B, Diab K, Idriss NZ, El-Sabban M, Driscoll TA, Perry DK, Hannun YA. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett 2001; 503:7-12. [PMID: 11513845 DOI: 10.1016/s0014-5793(01)02625-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ceramide accumulation in the cell can occur from either hydrolysis of sphingomyelin or by de novo synthesis. In this study, we found that blocking de novo ceramide synthesis significantly inhibits ceramide accumulation and subsequent cell death in response to tumor necrosis factor alpha. When cells were pre-treated with glutathione, a proposed cellular regulator of neutral sphingomyelinase, inhibition of ceramide accumulation at early time points was achieved with attenuation of cell death. Inhibition of both pathways achieved near-complete inhibition of ceramide accumulation and cell death indicating that both pathways of ceramide generation are stimulated. This illustrates the complexity of ceramide generation in cytokine action.
Collapse
Affiliation(s)
- G S Dbaibo
- Department of Pediatrics, American University of Beirut, Lebanon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Rodriguez-Lafrasse C, Alphonse G, Broquet P, Aloy MT, Louisot P, Rousson R. Temporal relationships between ceramide production, caspase activation and mitochondrial dysfunction in cell lines with varying sensitivity to anti-Fas-induced apoptosis. Biochem J 2001; 357:407-16. [PMID: 11439090 PMCID: PMC1221967 DOI: 10.1042/0264-6021:3570407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To clarify the chronology of events leading to anti-Fas-induced apoptosis, and the mechanisms of resistance to this death effector, we compared the response kinetics of three tumour cell lines that display varying sensitivity to anti-Fas (based on levels of apoptosis), in terms of ceramide release, mitochondrial function and the caspase-activation pathway. In the highly sensitive Jurkat cell line, early caspase-8 activation, observed from 2 h after treatment, was chronologically associated with an acute depletion of glutathione and the cleavage of caspase-3 and poly-ADP ribosyl polymerase (PARP), followed by a progressive fall in the mitochondrial transmembrane potential (Delta(psi)m), between 4 and 48 h after treatment. Ceramide levels began to increase 2 h after the addition of anti-Fas (with no increase during the first hour), and increased continuously to 640% of control cells at 48 h. In the moderately sensitive SCC61 adherent cells, comparable results were observed, though with lower levels of ceramide and a delay in the response kinetics, with apoptotic cells becoming flotant. Finally, despite early cleavage of caspase-8 at 2 h, and a sustained level of activation until 48 h, no apoptotic response was observed in anti-Fas-resistant SQ20B cells. This was confirmed by a lack of ceramide generation and mitochondrial changes, and by the absence of any detectable cleavage of caspase-3 or PARP. Inhibition of caspase processing, and amplification of endogenous ceramide signalling by pharmacological agents, allowed us to establish the order of cellular events, locating ceramide release after caspase-8 activation and before caspase-3 activation, and demonstrating a direct involvement for ceramide release in mitochondrial dysfunction. Furthermore, these experiments provide strong arguments for the role of endogenous ceramide as a key executor of apoptosis, rather than as a consequence of membrane alterations.
Collapse
Affiliation(s)
- C Rodriguez-Lafrasse
- INSERM U189, Department of Biochemistry, Lyon-Sud Medical School, BP12, 69921 Oullins Cedex, France.
| | | | | | | | | | | |
Collapse
|
175
|
Cumming RC, Lightfoot J, Beard K, Youssoufian H, O'Brien PJ, Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med 2001; 7:814-20. [PMID: 11433346 DOI: 10.1038/89937] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Fanconi anemia group C protein (FANCC) plays an important role in hematopoiesis by ensuring the survival of hematopoietic progenitor cells through an unknown mechanism. We investigated the function of FANCC by identifying FANCC-binding proteins in hematopoietic cells. Here we show that glutathione S-transferase P1-1 (GSTP1) interacts with FANCC, and that overexpression of both proteins in a myeloid progenitor cell line prevents apoptosis following factor deprivation. FANCC increases GSTP1 activity after the induction of apoptosis. GSTP1 is an enzyme that catalyzes the detoxification of xenobiotics and by-products of oxidative stress, and it is frequently upregulated in neoplastic cells. Although FANCC lacks homology with conventional disulfide reductases, it functions by preventing the formation of inactivating disulfide bonds within GSTP1 during apoptosis. The prevention of protein oxidation by FANCC reveals a novel mechanism of enzyme regulation during apoptosis and has implications for the treatment of degenerative diseases with thiol reducing agents.
Collapse
Affiliation(s)
- R C Cumming
- Program in Genetics and Genomic Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
176
|
Hammond CL, Lee TK, Ballatori N. Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol 2001; 34:946-54. [PMID: 11451183 DOI: 10.1016/s0168-8278(01)00037-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- C L Hammond
- Department of Environmental Medicine, University of Rochester School of Medicine, NY 14642, USA
| | | | | |
Collapse
|
177
|
Leira F, Vieites JM, Vieytes MR, Botana LM. Apoptotic events induced by the phosphatase inhibitor okadaic acid in normal human lung fibroblasts. Toxicol In Vitro 2001; 15:199-208. [PMID: 11377092 DOI: 10.1016/s0887-2333(01)00013-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied different biochemical indicators of apoptosis in okadaic acid-treated normal human lung fibroblasts (NHLF). Apoptosis was identified by fluorimetric microplate measurements of DNA content, caspase-3 activation and changes in mitochondrial and plasma membrane after 1-48-h treatments with 1-1000 nM okadaic acid. Cells exposed to okadaic acid showed activation of caspase-3, decreased DNA content (<50% of controls at >100 nM okadaic acid after 12 h of incubation) and translocation of phosphatidylserine to the outer leaflet of the plasma membrane, as indicated by the increase in Merocyanine 540 fluorescence after 4 h of incubation with more than 250 nM okadaic acid. Decreased mitochondrial membrane potential (53-98% of controls) was observed with MitoTracker Red CMXRos in all cases, which indicated an active role of mitochondria during the early phase of apoptosis. However, reactive oxygen species were significantly reduced in okadaic acid-treated fibroblasts (50-70% of controls at 1000 nM after 3 h of incubation), which indicates that ROS cannot be considered as a hallmark of apoptosis in okadaic acid-treated cells. These results provide evidence of apoptotic events induced by okadaic acid in NHLF, which can be detected by means of sensitive and reliable fluorimetric microplate assays.
Collapse
Affiliation(s)
- F Leira
- ANFACO-CECOPESCA, Campus Universitario de Vigo, 36310, Vigo, Spain.
| | | | | | | |
Collapse
|
178
|
Chronic Alcohol Consumption and Cerebral Indices of Oxidative Stress: Is There a Link? Alcohol Clin Exp Res 2001. [DOI: 10.1097/00000374-200105000-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
179
|
Gotz ME, Janetzky B, Pohli S, Gottschalk A, Gsell W, Tatschner T, Ransmayr G, Leblhuber F, Gerlach M, Reichmann H, Riederer P, Boning J. Chronic Alcohol Consumption and Cerebral Indices of Oxidative Stress: Is There a Link? Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02272.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
180
|
McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001; 21:1249-59. [PMID: 11158311 PMCID: PMC99578 DOI: 10.1128/mcb.21.4.1249-1259.2001] [Citation(s) in RCA: 1509] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
gadd153, also known as chop, is a highly stress-inducible gene that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER) (so-called ER stress). Although all reported types of ER stress induce expression of Gadd153, its role in the stress response has remained largely undefined. Several studies have correlated Gadd153 expression with cell death, but a mechanistic link between Gadd153 and apoptosis has never been demonstrated. To address this issue we employed a cell model system in which Gadd153 is constitutively overexpressed, as well as two cell lines in which Gadd153 expression is conditional. In all cell lines, overexpression of Gadd153 sensitized cells to ER stress. Investigation of the mechanisms contributing to this effect revealed that elevated Gadd153 expression results in the down-regulation of Bcl2 expression, depletion of cellular glutathione, and exaggerated production of reactive oxygen species. Restoration of Bcl2 expression in Gadd153-overexpressing cells led to replenishment of glutathione and a reduction in levels of reactive oxygen species, and it protected cells from ER stress-induced cell death. We conclude that Gadd153 sensitizes cells to ER stress through mechanisms that involve down-regulation of Bcl2 and enhanced oxidant injury.
Collapse
Affiliation(s)
- K D McCullough
- Cell Stress and Aging Section, Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | |
Collapse
|
181
|
Kearns PR, Pieters R, Rottier MM, Pearson AD, Hall AG. Raised blast glutathione levels are associated with an increased risk of relapse in childhood acute lymphocytic leukemia. Blood 2001; 97:393-8. [PMID: 11154214 DOI: 10.1182/blood.v97.2.393] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A preliminary study has linked raised blast glutathione levels with chemoresistance in acute myeloid and lymphoblastic leukemia in adults and children. In this study, therefore, the relationship between leukemic blast glutathione levels and prognosis in childhood acute lymphoblastic leukemia (ALL) was investigated. A total of 77 childhood ALL samples were analyzed, 62 at initial presentation and 15 at relapse. A 20-fold interindividual variation in glutathione levels at presentation (median, 6.54 nmol/mg protein; range, 1.37 to 27.9) was demonstrated. The median level in T-lineage ALL was 2. 3-fold higher than in B-lineage ALL (Mann-Whitney test, P <.0001). There was a significant correlation between presenting white cell count (WBC) and glutathione level (Spearman rank correlation coefficient, rho = 0.45, P =.001). A high DNA index correlated with low glutathione levels (Mann-Whitney test, P =.013). There was no significant relationship between glutathione levels and in vitro drug sensitivity. Patients with glutathione levels above the median had a significantly greater risk of relapse (log-rank test statistic, 5.55; P =.018), and the overall survival rate was significantly reduced (log-rank test statistic, 4.38; P =.04). Multivariate analysis demonstrated that glutathione concentration was of independent prognostic value when assessed in conjunction with age, gender, WBC, and immunophenotype. The association of elevated blast glutathione levels with an increased risk of relapse suggests that glutathione-depleting agents may be of therapeutic value in patients who present with a high WBC.
Collapse
Affiliation(s)
- P R Kearns
- Department of Paediatric Oncology, University of Newcastle, and the Medical School, Newcastle Upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
182
|
Xu K, Thornalley PJ. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 2001; 61:165-77. [PMID: 11163331 DOI: 10.1016/s0006-2952(00)00526-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The dietary isothiocyanate and cancer chemopreventive agent, phenethyl isothiocyanate, induced apoptosis of human leukaemia HL60 and human myeloblastic leukaemia ML-1 cells in vitro. Cytotoxicity was associated with an initial decrease in GSH and GSSG, with a concomitant formation of the GSH adduct S-(N-phenethylthiocarbamoyl)glutathione inside cells, which was then exported from cells. After 12 hr, the cellular concentration of GSH recovered and then declined after 24 hr. Buthionine sulphoximine prevented the recovery of cellular GSH concentration and potentiated the cytotoxicity of phenethyl isothiocyanate. S-(N-phenethylthiocarbamoyl)glutathione spontaneously fragmented to GSH and phenethyl isothiocyanate, GSH oxidized to GSSG and glutathionyl-protein disulphides, and phenethyl isothiocyanate hydrolyzed to phenylethylamine. GSH and GSSG depletion was more marked in ML-1 cells than in HL60 cells. Studies with [(14)C]-labelled phenethyl isothiocyanate gave evidence of phenethylthiocarbamoylation of cells that maximized after 2-3 hr. This occurred later than the maximum concentration of S-(N-phenethylthiocarbamoyl)glutathione, but coincided with the commitment to apoptosis and cytotoxicity which developed later. The cytotoxicity of phenethyl isothiocyanate was prevented by a high concentration of GSH (15 mM) and delayed by the antioxidant and c-Jun N-terminal kinase signalling pathway inhibitor curcumin. GSH prevented and curcumin partly prevented the decrease in cellular GSH. These studies show that the cysteinyl thiol group of GSH is an important site of thiocarbamoylation by phenethyl isothiocyanate during induction of apoptosis and that this may lead to depletion of cellular GSH by efflux of the GSH conjugate. Thiocarbamoylation also occurred at other sites. The recent demonstration of a critical role for activation of caspase-8 in phenethyl isothiocyanate-induced apoptosis suggests that this thiocarbamoylation directly or indirectly leads to functional activation of a cell death receptor/adaptor protein complex.
Collapse
Affiliation(s)
- K Xu
- Department of Biological Sciences, University of Essex, Central Campus, Wivenhoe Park, CO4 3SQ, Essex, Colchester, UK
| | | |
Collapse
|
183
|
Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M. Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:51-60. [PMID: 11154760 DOI: 10.1016/s0165-3806(00)00112-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hypoxic-ischemic brain injury involves an increased formation of reactive oxygen species. Key factors in the cellular protection against such agents are the GSH-associated reactions. In the present study we examined alterations in total glutathione and GSSG concentrations in mitochondria-enriched fractions and tissue homogenates from the cerebral cortex of 7-day-old rats at 0, 1, 3, 8, 14, 24 and 72 h after hypoxia-ischemia. The concentration of total glutathione was transiently decreased immediately after hypoxia-ischemia in the mitochondrial fraction, but not in the tissue, recovered, and then decreased both in mitochondrial fraction and homogenate after 14 h, reaching a minimum at 24 h after hypoxia-ischemia. The level of GSSG was approximately 4% of total glutathione and increased selectively in the mitochondrial fraction immediately after hypoxia-ischemia. The decrease in glutathione may be important in the development of cell death via impaired free radical inactivation and/or redox related changes. The effects of hypoxia-ischemia on the concentrations of selected amino acids varied. The levels of phosphoethanolamine, an amine previously reported to be released in ischemia, mirrored the changes in glutathione. GABA concentrations initially increased (0-3 h) followed by a decrease at 72 h. Glutamine levels increased, whereas glutamate and aspartate were unchanged up to 24 h after the insult. The results on total glutathione and GSSG are discussed in relation to changes in mitochondrial respiration and microtubule associated protein-2 (MAP2) which are reported on in accompanying paper [64].
Collapse
Affiliation(s)
- C Wallin
- Department of Anatomy and Cell Biology, Göteborg University, P.O. Box 420, SE 405 30, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
184
|
Abstract
The tripeptide glutathione is the thiol compound present in the highest concentration in cells of all organs. Glutathione has many physiological functions including its involvement in the defense against reactive oxygen species. The cells of the human brain consume about 20% of the oxygen utilized by the body but constitute only 2% of the body weight. Consequently, reactive oxygen species which are continuously generated during oxidative metabolism will be generated in high rates within the brain. Therefore, the detoxification of reactive oxygen species is an essential task within the brain and the involvement of the antioxidant glutathione in such processes is very important. The main focus of this review article will be recent results on glutathione metabolism of different brain cell types in culture. The glutathione content of brain cells depends strongly on the availability of precursors for glutathione. Different types of brain cells prefer different extracellular glutathione precursors. Glutathione is involved in the disposal of peroxides by brain cells and in the protection against reactive oxygen species. In coculture astroglial cells protect other neural cell types against the toxicity of various compounds. One mechanism for this interaction is the supply by astroglial cells of glutathione precursors to neighboring cells. Recent results confirm the prominent role of astrocytes in glutathione metabolism and the defense against reactive oxygen species in brain. These results also suggest an involvement of a compromised astroglial glutathione system in the oxidative stress reported for neurological disorders.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-chemisches Institut der Universität, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| |
Collapse
|
185
|
Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 2000; 275:33585-92. [PMID: 10899161 DOI: 10.1074/jbc.m003890200] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Doxorubicin (DOX) is a broad spectrum anthracycline antibiotic used to treat a variety of cancers. Redox activation of DOX to form reactive oxygen species has been implicated in DOX-induced cardiotoxicity. In this work we investigated DOX-induced apoptosis in cultured bovine aortic endothelial cells and cardiomyocytes isolated from adult rat heart. Exposure of bovine aortic endothelial cells or myocytes to submicromolar levels of DOX induced significant apoptosis as measured by DNA fragmentation and terminal deoxynucleotidyltransferase-mediated nick-end labeling assays. Pretreatment of cells with 100 microm nitrone spin traps, N-tert-butyl-alpha-phenylnitrone (PBN) or alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) dramatically inhibited DOX-induced apoptosis. Ebselen (20-50 microm), a glutathione peroxidase mimetic, also significantly inhibited apoptosis. DOX (0.5-1 microm) inactivated mitochondrial complex I by a superoxide-dependent mechanism. PBN (100 microm), POBN (100 microm), and ebselen (50 microm) restored complex I activity. These compounds also inhibited DOX-induced caspase-3 activation and cytochrome c release. PBN and ebselen also restored glutathione levels in DOX-treated cells. We conclude that nitrone spin traps and ebselen inhibit the DOX-induced apoptotic signaling mechanism and that this antiapoptotic mechanism may be linked in part to the inhibition in formation or scavenging of hydrogen peroxide. Therapeutic strategies to mitigate DOX cardiotoxicity should be reexamined in light of these emerging antiapoptotic mechanisms of antioxidants.
Collapse
Affiliation(s)
- S Kotamraju
- Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
186
|
Abstract
Ion fluxes and volume changes of the whole cell as well as of organelles belong to the hallmarks of apoptosis; however, the molecular mechanism regulating these changes is only poorly characterized. Several ion channels in the plasma membrane, in particular the N-type K(+) channel, the chloride channel cystic fibrosis conductance regulator, and an outward rectifying chloride channel, as well as the mitochondrial permeability transition pore, have been implicated to be involved in signal transduction cascades regulating apoptosis. Furthermore, Bcl-2-like proteins have been suggested to function, at least in part, as ion channels, because they display some homology to bacterial pore-forming toxins. In contrast to the demonstration of the involvement of these different ion channels in apoptosis, the molecular consequences regulated by these ion channels, and finally triggering apoptosis, are almost completely unknown.
Collapse
Affiliation(s)
- E Gulbins
- Department of Physiology, University of Tuebingen, 72076 Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
187
|
Lepri E, Gambelunghe C, Fioravanti A, Pedini M, Micheletti A, Rufini S. N-acetylcysteine increases apoptosis induced by H(2)O(2) and mo-antiFas triggering in a 3DO hybridoma cell line. Cell Biochem Funct 2000; 18:201-8. [PMID: 10965357 DOI: 10.1002/1099-0844(200009)18:3<201::aid-cbf873>3.0.co;2-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
N-Acetylcysteine (NAC) has been used as an antioxidant to prevent apoptosis triggered by different stimuli in different cell types. It is common opinion that cellular redox, which is largely determined by the ratio of oxidized and reduced glutathione (GSH), plays a significant role in the propensity of cells to undergo apoptosis. However, there are also contrasting opinions stating that intracellular GSH depletion or supplemented GSH alone are not sufficient to lead cells to apoptosis or conversely protect them. Unexpectedly, this study shows that NAC, even if it maintains the peculiar characteristics of an agent capable of reducing cell proliferation and increasing intracellular GSH content, increases apoptosis induced by H(2)O(2) treatment and mo-antiFas triggering in a 3DO cell line. We found that 24 h of NAC pre-treatment can shift cellular death from necrotic to apoptotic and determine an early expression of FasL in a 3DO cell line treated with H(2)O(2).
Collapse
Affiliation(s)
- E Lepri
- Department of Hygiene, Division of Virology, University of Perugia, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
188
|
Yang CF, Shen HM, Ong CN. Intracellular thiol depletion causes mitochondrial permeability transition in ebselen-induced apoptosis. Arch Biochem Biophys 2000; 380:319-30. [PMID: 10933887 DOI: 10.1006/abbi.2000.1939] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ebselen, a selenoorganic compound, has recently been shown to display a novel property of inducing apoptosis through rapid depletion of intracellular thiols in human hepatoma cells, HepG(2). The present study was thus designed to explore the mechanism of how ebselen triggers apoptosis upon depletion of intracellular thiols. The results demonstrated that ebselen treatment triggered mitochondrial permeability transition rather rapidly as revealed by redistribution of calcein green fluorescence from cytosol into mitochondria. Ebselen treatment also caused a dose- and time-dependent loss of mitochondrial membrane potential (MMP) and release of cytochrome c. Pretreatment with N-acetylcysteine, a precursor of intracellular reduced glutathione (GSH) synthesis, significantly attenuated the ebselen-induced MMP disruption and subsequently inhibited the apoptosis. In contrast, pretreatment with buthionine sulfoximine, a specific inhibitor of intracellular GSH synthesis, significantly augmented the ebselen-induced MMP alteration, and enhanced the apoptosis. Although ebselen treatment significantly increased the intracellular superoxide radical and calcium concentrations, superoxide dismutase, and BAPTA (a calcium chelator), however, failed to prevent ebselen-induced MMP loss and apoptosis. Neither caspase-9 nor caspase-3 activation was detected in ebselen-treated cells. Z-VAD-FMK, a general caspase inhibitor, also had no effect on ebselen-induced MMP decrease and apoptosis. The overall findings thus suggest that mitochondrial permeability transition resulted from intracellular thiol depletion is a critical event in ebselen-induced apoptosis.
Collapse
Affiliation(s)
- C F Yang
- Department of Community, Occupational and Family Medicine, Faculty of Medicine, MD3, National University of Singapore, 16 Medical Drive, 117597, Singapore
| | | | | |
Collapse
|
189
|
Balestrieri ML, Lee T. Regulation of the biosynthesis of acyl analogs of platelet-activating factor by purinergic agonist in endothlial cells. FEBS Lett 2000; 479:63-6. [PMID: 10940389 DOI: 10.1016/s0014-5793(00)01870-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously shown that platelet-activating factor (PAF)-dependent transacetylase (TA) contains three catalytic activities, namely PAF: lysophospholipid TA (TAL), PAF: sphingosine TA (TAs) and PAF acetylhydrolase. It serves as a modifier of PAF actions by producing different lipid signal molecules. The TAL activity is involved in the biosynthesis of acyl analogs of PAF (acyl-PAF, 1-acyl-2-acetyl-sn-glycero-3-phosphocholine, acylacetyl-GPC) in agonist-stimulated endothelial cells. In the present investigation, we have studied the mechanism(s) by which the TA activity is regulated in ATP-treated endothelial cells. We have demonstrated that ATP, and thiol-modifying agents with ATP, specifically regulate only the TAL part of the TA activities.
Collapse
Affiliation(s)
- M L Balestrieri
- Basic and Applied Research Unit, Oak Ridge Associated Universities, TN 37831-0117, USA
| | | |
Collapse
|
190
|
Abstract
Cell survival requires multiple factors, including appropriate proportions of molecular oxygen and various antioxidants. Although most oxidative insults can be overcome by the cell's natural defenses, sustained perturbation of this balance may result in either apoptotic or necrotic cell death. Numerous, recent studies have shown that the mode of cell death that occurs depends on the severity of the insult. Oxidants and antioxidants can not only determine cell fate, but can also modulate the mode of cell death. Effects of oxidative stress on components of the apoptotic machinery may mediate this modulation. This review will address some of the current paradigms for oxidative stress and apoptosis, and discuss the potential mechanisms by which oxidants can modulate the apoptotic pathway.
Collapse
Affiliation(s)
- J Chandra
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
191
|
Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4904-11. [PMID: 10931172 DOI: 10.1046/j.1432-1327.2000.01595.x] [Citation(s) in RCA: 846] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson's disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood-brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.
Collapse
Affiliation(s)
- J B Schulz
- Neurodegeneration Laboratory, Department of Neurology, University of Tübingen, Germany.
| | | | | | | |
Collapse
|
192
|
Cai J, Wallace DC, Zhivotovsky B, Jones DP. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radic Biol Med 2000; 29:334-42. [PMID: 11035262 DOI: 10.1016/s0891-5849(00)00312-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Release of mitochondrial cytochrome c (cyt c) is an early and common event during apoptosis. Previous studies showed that the loss of cyt c triggered superoxide production by mitochondria and contributed to the oxidation of cellular thiol-disulfide redox state. In this study, we tested whether loss of the functional electron transport chain due to depleting mitochondrial DNA (mtDNA) would affect this redox-signaling mechanism during apoptosis. Results showed that cyt c release and caspase activation in response to staurosporine treatment were preserved in cells lacking mitochondrial DNA (rho0 cells). However, unlike the case with rho+ cells, in which a dramatic oxidation of intracellular glutathione (GSH) occurred after mitochondrial cyt c release, the thiol-disulfide redox state in apoptotic rho0 cells remained largely unchanged. Thus, mitochondrial signaling of caspase activation can be separated from the bioenergetic function, and mitochondrial respiratory chain is the principal source of ROS generation in staurosporine-induced apoptosis.
Collapse
Affiliation(s)
- J Cai
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
193
|
Dixit BL, Balendiran GK, Watowich SJ, Srivastava S, Ramana KV, Petrash JM, Bhatnagar A, Srivastava SK. Kinetic and structural characterization of the glutathione-binding site of aldose reductase. J Biol Chem 2000; 275:21587-95. [PMID: 10764810 DOI: 10.1074/jbc.m909235199] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldose reductase (AR), a member of the aldo-keto reductase superfamily, has been implicated in the etiology of secondary diabetic complications. However, the physiological functions of AR under euglycemic conditions remain unclear. We have recently demonstrated that, in intact heart, AR catalyzes the reduction of the glutathione conjugate of the lipid peroxidation product 4-hydroxy-trans-2-nonenal (Srivastava, S., Chandra, A., Wang, L., Seifert, W. E., Jr., DaGue, B. B., Ansari, N. H., Srivastava, S. K., and Bhatnagar, A. (1998) J. Biol. Chem. 273, 10893-10900), consistent with a possible role of AR in the metabolism of glutathione conjugates of aldehydes. Herein, we present several lines of evidence suggesting that the active site of AR forms a specific glutathione-binding domain. The catalytic efficiency of AR in the reduction of the glutathione conjugates of acrolein, trans-2-hexenal, trans-2-nonenal, and trans,trans-2,4-decadienal was 4-1000-fold higher than for the corresponding free alkanal. Alterations in the structure of glutathione diminished the catalytic efficiency in the reduction of the acrolein adduct, consistent with the presence of specific interactions between the amino acid residues of glutathione and the AR active site. In addition, non-aldehydic conjugates of glutathione or glutathione analogs displayed active-site inhibition. Molecular dynamics calculations suggest that the conjugate adopts a specific low energy configuration at the active site, indicating selective binding. These observations support an important role of AR in the metabolism of glutathione conjugates of endogenous and xenobiotic aldehydes and demonstrate, for the first time, efficient binding of glutathione conjugates to an aldo-keto reductase.
Collapse
Affiliation(s)
- B L Dixit
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0647, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Pierce RH, Campbell JS, Stephenson AB, Franklin CC, Chaisson M, Poot M, Kavanagh TJ, Rabinovitch PS, Fausto N. Disruption of redox homeostasis in tumor necrosis factor-induced apoptosis in a murine hepatocyte cell line. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:221-36. [PMID: 10880392 PMCID: PMC1850198 DOI: 10.1016/s0002-9440(10)64533-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor (TNF) is a mediator of the acute phase response in the liver and can initiate proliferation and cause cell death in hepatocytes. We investigated the mechanisms by which TNF causes apoptosis in hepatocytes focusing on the role of oxidative stress, antioxidant defenses, and mitochondrial damage. The studies were conducted in cultured AML12 cells, a line of differentiated murine hepatocytes. As is the case for hepatocytes in vivo, AML12 cells were not sensitive to cell death by TNF alone, but died by apoptosis when exposed to TNF and a small dose of actinomycin D (Act D). Morphological signs of apoptosis were not detected until 6 hours after the treatment and by 18 hours approximately 50% of the cells had died. Exposure of the cells to TNF+Act D did not block NFkappaB nuclear translocation, DNA binding, or its overall transactivation capacity. Induction of apoptosis was characterized by oxidative stress indicated by the loss of NAD(P)H and glutathione followed by mitochondrial damage that included loss of mitochondrial membrane potential, inner membrane structural damage, and mitochondrial condensation. These changes coincided with cytochrome C release and the activation of caspases-8, -9, and -3. TNF-induced apoptosis was dependent on glutathione levels. In cells with decreased levels of glutathione, TNF by itself in the absence of transcriptional blocking acted as an apoptotic agent. Conversely, the antioxidant alpha-lipoic acid, that protected against the loss of glutathione in cells exposed to TNF+Act D completely prevented mitochondrial damage, caspase activation, cytochrome C release, and apoptosis. The results demonstrate that apoptosis induced by TNF+Act D in AML12 cells involves oxidative injury and mitochondrial damage. As injury was regulated to a larger extent by the glutathione content of the cells, we suggest that the combination of TNF+Act D causes apoptosis because Act D blocks the transcription of genes required for antioxidant defenses.
Collapse
Affiliation(s)
- R H Pierce
- Department of Pathology, the University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Apoptosis is a genetically programmed, physiological method of cell destruction. A variety of genes are now recognised as positive or negative regulators of this process. Expression of inducible heat shock proteins (hsp) is known to correlate with increased resistance to apoptosis induced by a range of diverse cytotoxic agents and has been implicated in chemotherapeutic resistance of tumours and carcinogenesis. Intensive research on apoptosis over the past number of years has provided significant insights into the mechanisms and molecular events that occur during this process. The modulatory effects of hsps on apoptosis are well documented, however, the mechanisms of hsp-mediated protection against apoptosis remain to be fully defined, although several hypotheses have been proposed. Elucidation of these mechanisms should reveal novel targets for manipulating the sensitivity of leukaemic cells to therapy. This review aims to explain the currently understood process of apoptosis and the effects of hsps on this process. Several proposed mechanisms for hsp protection against apoptosis and the therapeutic implications of hsps in leukaemia are also discussed.
Collapse
Affiliation(s)
- E M Creagh
- Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Ireland
| | | | | |
Collapse
|
196
|
García-Ruiz C, Marí M, Morales A, Colell A, Ardite E, Fernández-Checa JC. Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology 2000; 32:56-65. [PMID: 10869289 DOI: 10.1053/jhep.2000.8267] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Ceramide has been identified as a putative lipid messenger that mediates diverse cellular processes including cell death. Since glutathione (GSH) depletion is known to sensitize cells to many cytotoxic agents and as a result of the reported regulation of neutral sphyngomyelinase (NSMase) by GSH, the present study compared the role of individual SMases in the induction of oxidative stress, regulation of cellular GSH, and apoptosis of rat hepatocytes. Exposure of cultured rat hepatocytes to exogenous Bacillus cereus sphingomyelinase (bSMase), a neutral SMase, or human placenta sphingomyelinase (hSMase), an acidic SMase (ASMase), generated similar ceramide levels in a dose-dependent manner. However, whereas bSMase increased hepatocellular GSH levels, hSMase depleted GSH stores, an effect that was prevented by monensin and mannose 6-phosphate (M-6-P), suggesting that exogenous hSMase enters hepatocytes by endocytosis and is delivered to an endosomal/lysosomal acidic compartment. Interestingly, despite the differential effect of either SMases on cell GSH levels, both bSMase and hSMase increased gamma-glutamylcysteine synthetase heavy-subunit chain (gamma-GCS-HS) mRNA levels. Consistent with these findings on GSH regulation, hSMase, but not bSMase, generated reactive oxygen species (ROS), being accompanied by mitochondrial depolarization, suggesting that hSMase targeted mitochondria, leading to oxidative stress. Accordingly, hepatocytes displayed a selective sensitivity to hSMase in contrast to bSMase exposure, and depletion of GSH stores enhanced susceptibility to hSMase as a result of potentiation of ROS formation and caspase 3 activation. Thus, these findings reveal the ability of ASMase to induce oxidative stress as a result of the targeting of mitochondria, and that GSH depletion sensitizes hepatocytes to the ASMase-induced apoptosis.
Collapse
Affiliation(s)
- C García-Ruiz
- Liver Unit, Instituto Malalties Digestives, Hospital Clinic i Provencial, Instituto de Investigaciones Biom¿edicas, August Pi i Sunyer, Consejo Superior Investigaciones Cient¿ificas, Barcelona 08036, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
197
|
Umansky V, Rocha M, Breitkreutz R, Hehner S, Bucur M, Erbe N, Dröge W, Ushmorov A. Glutathione is a factor of resistance of Jurkat leukemia cells to nitric oxide-mediated apoptosis. J Cell Biochem 2000; 78:578-87. [PMID: 10861855 DOI: 10.1002/1097-4644(20000915)78:4<578::aid-jcb7>3.0.co;2-a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously reported that nitric oxide (NO) stimulates apoptosis in different human neoplastic lymphoid cell lines through mitochondrial damage (including degradation of cardiolipin, a major mitochondrial lipid) followed by activation of caspases. Here we demonstrate that Jurkat human leukemia cells which survive after 24 h treatment with NO form subpopulations with higher and lower cardiolipin content (designated as NAO(high) and NAO(low), respectively). Sorted NAO(high) cells were found to survive in culture whereas sorted NAO(low) cells died. Moreover, NAO(high) cells acquired an increased resistance to the exposure to NO donors which remained unchanged during long-term culture. These cells showed a similar cardiolipin content and expressed the same level of anti-apoptotic proteins Bcl-2 and Bcl-x(L) as APO-S unsorted cells but contained significantly higher concentration of the antioxidant glutathione. Depletion of glutathione in these cells with buthionine-sulfoximine (BSO) correlated with a significant stimulation of NO-mediated apoptosis whereas the exposure of NO-sensitive APO-S cells to the glutathione precursor N-acetylcysteine (NAC) resulted in a substantial suppression of this effect. Our data suggest a complex mechanism of the resistence to NO-induced apoptosis in Jurkat human leukemia cells in which glutathione plays an important role.
Collapse
Affiliation(s)
- V Umansky
- Division of Cellular Immunology, Tumor Immunology Program, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Hentze H, Gantner F, Kolb SA, Wendel A. Depletion of hepatic glutathione prevents death receptor-dependent apoptotic and necrotic liver injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:2045-56. [PMID: 10854226 PMCID: PMC1850090 DOI: 10.1016/s0002-9440(10)65076-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of the death receptors, tumor necrosis factor-receptor-1 (TNF-R1) or CD95, is a hallmark of inflammatory or viral liver disease. In different murine in vivo models, we found that livers depleted of gamma-glutamyl-cysteinyl-glycine (GSH) by endogenous enzymatic conjugation after phorone treatment were resistant against death receptor-elicited injury as assessed by transaminase release and histopathology. In apoptotic models initiated by engagement of CD95, or by injection of TNF or lipopolysaccharide into galactosamine-sensitized mice, hepatic caspase-3-like proteases were not activated in the GSH-depleted state. Under GSH depletion, also caspase-independent, TNF-R1-mediated injury (high-dose actinomycin D or alpha-amanitin), as well as necrotic hepatotoxicity (high-dose lipopolysaccharide) were entirely blocked. In the T-cell-dependent model of concanavalin A-induced hepatotoxicity, GSH depletion resulted in a suppression of interferon-gamma release, delay of systemic TNF release, hepatic nuclear factor-kappaB activation, and an abrogation of sinusoidal endothelial cell detachment as assessed by electron microscopy. When GSH depletion was initiated 3 hours after concanavalin A injection, ie, after the peak of early pro-inflammatory cytokines, livers were still protected. We conclude that sufficient hepatic GSH levels are a prerequisite for the execution of death receptor-mediated hepatocyte demise.
Collapse
Affiliation(s)
- H Hentze
- Department of Biochemical Pharmacology, University of Konstanz, Germany
| | | | | | | |
Collapse
|
199
|
Liu J, Shen HM, Ong CN. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG(2) cells. Cancer Lett 2000; 153:85-93. [PMID: 10779635 DOI: 10.1016/s0304-3835(00)00391-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Salvia miltiorrhiza (SM) is a traditional Chinese herbal medicine, commonly used to treat liver diseases in China for centuries. Several earlier studies have indicated that SM exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we evaluated the molecular mechanism of SM in a human hepatoma cell line, HepG(2). Our results show that SM exerted clear cytotoxic effects, and strongly inhibited the proliferation of HepG(2) cells. It was also observed that SM treatment caused apoptotic cell death as evaluated by: (a), morphological changes by using acridine orange/ethidium bromide staining; (b), DNA fragmentation by TdT-mediated dUTP nick end labeling (TUNEL); and (c), sub-G(1) cell analysis. Furthermore, depletion of intracellular glutathione (GSH) and reduction of mitochondrial membrane potential were found to be involved in the initiation of apoptosis by SM.
Collapse
Affiliation(s)
- J Liu
- Department of Community, Occupational and Family Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
200
|
Seyfried J, Soldner F, Kunz WS, Schulz JB, Klockgether T, Kovar KA, Wüllner U. Effect of 1-methyl-4-phenylpyridinium on glutathione in rat pheochromocytoma PC 12 cells. Neurochem Int 2000; 36:489-97. [PMID: 10762085 DOI: 10.1016/s0197-0186(99)00156-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effect of the selective dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) on glutathione redox status and the generation of reactive oxygen intermediates (ROI) in rat pheochromocytoma PC 12 cells in vitro. Treatment with MPP+ (250 microM) led to a 63% increase of reduced glutathione (GSH) after 24 h, while a 10-fold higher concentration of MPP+ (2.5 mM) depleted cellular GSH to 12.5% of control levels within that time. Similarly, the complex I-inhibitor rotenone induced a time-dependent loss of GSH at 1 and 10 microM, whereas treatment with lower concentrations of rotenone (0.1, 0.01 microM) increased cellular GSH. Both MPP+ and rotenone increased cellular levels of oxidised glutathione (GSSG) and the higher concentrations of both compounds led to an elevated ratio of oxidised glutathione (GSSG) vs total glutathione (GSH + GSSG) indicating a shift in cellular redox balance. MPP+ or rotenone did not induce the generation of ROI or significant elevation of intracellular levels of thiobabituric acid reactive substances (TBARS) for up to 48 h. Our data suggest that MPP+ has differential effects on glutathione homeostasis depending on the degree of complex I-inhibition and that inhibition of complex I is not sufficient to generate ROI in this paradigm.
Collapse
Affiliation(s)
- J Seyfried
- Department of Neurology, University of Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|