151
|
Kim SJ, Nian C, Doudet DJ, McIntosh CHS. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 2008; 57:1331-9. [PMID: 18299314 DOI: 10.2337/db07-1639] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Dipeptidyl peptidase-IV (DPP-IV) inhibitors have been introduced as therapeutics for type 2 diabetes. They partially act by blocking degradation of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), thus increasing circulating levels of active hormones. In addition to their insulinotropic actions, GLP-1 and GIP also promote beta-cell proliferation and survival, and DPP-IV inhibitors exert similar effects in rodent type 2 diabetes models. The study objective was to establish whether DPP-IV inhibitor treatment prolonged survival of transplanted islets and to determine whether positron emission tomography (PET) was appropriate for quantifying the effect of inhibition on islet mass. RESEARCH DESIGN & METHODS Effects of the DPP-IV inhibitor MK0431 (sitagliptin) on glycemic control and functional islet mass in a streptozotocin (STZ)-induced type 1 diabetes mouse model were determined with metabolic studies and microPET imaging. RESULTS The type 1 diabetes mouse model exhibited elevated plasma DPP-IV levels that were substantially inhibited in mice on an MK0431 diet. Residual beta-cell mass was extremely low in STZ-induced diabetic mice, and although active GLP-1 levels were increased by the MK0431 diet, there were no significant effects on glycemic control. After islet transplantation, mice fed normal diet rapidly lost their ability to regulate blood glucose, reflecting the suboptimal islet transplant. By contrast, the MK0431 group fully regulated blood glucose throughout the study, and PET imaging demonstrated a profound protective effect of MK0431 on islet graft size. CONCLUSIONS Treatment with a DPP-IV inhibitor can prolong islet graft retention in an animal model of type 1 diabetes.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
152
|
Abstract
Forkhead proteins, and FoxO1 in particular, play a significant role in regulating whole body energy metabolism. Glucose homeostasis is achieved by adjusting endogenous glucose production as well as glucose uptake by peripheral tissues in response to insulin. In the fasted state, the liver is primarily responsible for maintaining glucose levels, with FoxO1 playing a key role in promoting the expression of gluconeogenic enzymes. Following feeding, pancreatic beta cells secrete insulin, which promotes the uptake of glucose by peripheral tissues including skeletal muscle and adipose tissue, and can in part suppress gluconeogenic enzyme expression in the liver. In addition to directly regulating metabolism, FoxO1 also plays a role in the formation of both adipose tissue and skeletal muscle, two major organs that are critical for maintaining energy homeostasis. The importance of FoxO1 in energy homeostasis is particularly striking under conditions of metabolic dysfunction or insulin resistance. In obese or diabetic states, FoxO1-dependent gene expression promotes some of the deleterious characteristics associated with these conditions, including hyperglycemia and glucose intolerance. In addition, the increase in pancreatic beta cell mass that normally occurs in response to a rise in insulin demand is blunted by nuclear FoxO1 expression. However, under these same pathophysiological conditions, FoxO1 expression may help drive the expression of genes involved in combating oxidative stress, thereby preserving cellular function. FoxO1 may also be involved in promoting the switch from carbohydrate to fatty acid as the major energy source during starvation.
Collapse
|
153
|
Belgardt BF, Husch A, Rother E, Ernst MB, Wunderlich FT, Hampel B, Klöckener T, Alessi D, Kloppenburg P, Brüning JC. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab 2008; 7:291-301. [PMID: 18396135 DOI: 10.1016/j.cmet.2008.01.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/14/2007] [Accepted: 01/17/2008] [Indexed: 11/25/2022]
Abstract
Insulin- and leptin-stimulated phosphatidylinositol-3 kinase (PI3K) activation has been demonstrated to play a critical role in central control of energy homeostasis. To delineate the importance of pathways downstream of PI3K specifically in pro-opiomelanocortin (POMC) cell regulation, we have generated mice with selective inactivation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in POMC-expressing cells (PDK1(DeltaPOMC) mice). PDK1(DeltaPOMC) mice initially display hyperphagia, increased body weight, and impaired glucose metabolism caused by reduced hypothalamic POMC expression. On the other hand, PDK1(DeltaPOMC) mice exhibit progressive, severe hypocortisolism caused by loss of POMC-expressing corticotrophs in the pituitary. Expression of a dominant-negative mutant of FOXO1 specifically in POMC cells is sufficient to ameliorate positive energy balance in PDK1(DeltaPOMC) mice but cannot restore regular pituitary function. These results reveal important but differential roles for PDK1 signaling in hypothalamic and pituitary POMC cells in the control of energy homeostasis and stress response.
Collapse
Affiliation(s)
- Bengt F Belgardt
- Institute for Genetics, Department of Mouse Genetics and Metabolism, Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Glauser DA, Schlegel W. FoxO proteins in pancreatic β-cells as potential therapeutic targets in diabetes. Expert Rev Endocrinol Metab 2008; 3:175-185. [PMID: 30764091 DOI: 10.1586/17446651.3.2.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes results from complete (Type 1) or progressive (Type 2) insulin insufficiency. Resulting chronic and acute hyperglycemia are thus prevented mainly by insulin injections, a therapy that is care intensive, costly and does not abolish vascular damage, with severe consequences for the patient in the long term. In view of the epidemic spread of the disease, diabetes is considered a major threat for public healthcare systems. Thus, there is a great incentive to find therapies and drugs preserving or restoring pancreatic β-cells mass and function. In this context, this review addresses the FoxO transcription factors as direct or indirect, in vivo or ex vivo drug targets, since FoxO proteins play a central role for β-cells growth and resistance to oxidative stress. The review includes specific proposals for preclinical drug development.
Collapse
Affiliation(s)
- Dominique A Glauser
- a Fondation pour Recherches Médicales, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.
| | - Werner Schlegel
- b Fondation pour Recherches Médicales, Medical Faculty, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.
| |
Collapse
|
155
|
Ayala JE, Bracy DP, Hansotia T, Flock G, Seino Y, Wasserman DH, Drucker DJ. Insulin action in the double incretin receptor knockout mouse. Diabetes 2008; 57:288-97. [PMID: 17977951 DOI: 10.2337/db07-0704] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The incretins glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide have been postulated to play a role in regulating insulin action, although the mechanisms behind this relationship remain obscure. We used the hyperinsulinemic-euglycemic clamp to determine sites where insulin action may be modulated in double incretin receptor knockout (DIRKO) mice, which lack endogenous incretin action. RESEARCH DESIGN AND METHODS DIRKO and wild-type mice were fed regular chow or high-fat diet for 4 months. Clamps were performed on 5-h-fasted, conscious, unrestrained mice using an arterial catheter for sampling. RESULTS Compared with wild-type mice, chow and high fat-fed DIRKO mice exhibited decreased fat and muscle mass associated with increased energy expenditure and ambulatory activity. Clamp rates of glucose infusion (GIR), endogenous glucose production (endoR(a)), and disappearance (R(d)) were not different in chow-fed wild-type and DIRKO mice, although insulin levels were lower in DIRKO mice. Liver Akt expression was decreased but Akt activation was increased in chow-fed DIRKO compared with wild-type mice. High-fat feeding resulted in fasting hyperinsulinemia and hyperglycemia in wild-type but not in DIRKO mice. GIR, suppression of endoR(a), and stimulation of R(d) were inhibited in high fat-fed wild-type mice but not in DIRKO mice. High-fat feeding resulted in impaired tissue glucose uptake (R(g)) in skeletal muscle of wild-type mice but not of DIRKO mice. Liver and muscle Akt activation was enhanced in high fat-fed DIRKO compared with wild-type mice. CONCLUSIONS In summary, DIRKO mice exhibit enhanced insulin action compared with wild-type mice when fed a regular chow diet and are protected from high-fat diet-induced obesity and insulin resistance.
Collapse
MESH Headings
- Adipose Tissue/anatomy & histology
- Animals
- Crosses, Genetic
- Dietary Fats
- Energy Metabolism
- Female
- Glucagon-Like Peptide-1 Receptor
- Glucose Clamp Technique
- Hyperinsulinism
- Insulin/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/anatomy & histology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Gastrointestinal Hormone/deficiency
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Glucagon/deficiency
- Receptors, Glucagon/genetics
Collapse
Affiliation(s)
- Julio E Ayala
- Vanderbilt University Medical Center, 2200 Pierce Ave., 702 Light Hall, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
156
|
Lamont BJ, Drucker DJ. Differential antidiabetic efficacy of incretin agonists versus DPP-4 inhibition in high fat fed mice. Diabetes 2008; 57:190-8. [PMID: 17928394 DOI: 10.2337/db07-1202] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We examined whether chronic administration of a glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 (Ex-4), a glucose-dependent insulinotropic polypeptide (GIP) receptor agonist D-Ala(2)-GIP (DA-GIP), or a dipeptidyl peptidase-4 (DPP-4) inhibitor (DPP-4i) des-fluoro-sitagliptin produced comparable antidiabetic actions in high fat-fed mice. RESEARCH DESIGN AND METHODS High fat-fed mice were administered twice-daily injections of Ex-4, DA-GIP, vehicle (saline), or vehicle with the addition of des-fluoro-sitagliptin (DPP-4i) in food to produce sustained inhibition of DPP-4 activity. RESULTS AND CONCLUSIONS Mice treated with vehicle alone or DA-GIP exhibited progressive weight gain, whereas treatment with Ex-4 or DPP-4i prevented weight gain. Although Ex-4 improved oral glucose tolerance and insulin-to-glucose ratios after an intraperitoneal glucose tolerance test (IPGTT), DPP-4i had no significant effect after IPGTT but improved glucose excursion and insulin levels after an oral glucose tolerance test. The extent of improvement in glycemic control was more sustained with continuous DPP-4 inhibition, as evidenced by loss of glucose control evident 9 h after peptide administration and a significant reduction in A1C observed with DPP-4i but not with DA-GIP or Ex-4 therapy. DA-GIP, but not Ex-4 or DPP-4i, was associated with impairment in insulin sensitivity and increased levels of plasma leptin and resistin. Although none of the therapies increased beta-cell mass, only Ex-4-treated mice exhibited increased pancreatic mRNA transcripts for Irs2, Egfr, and Gck. These findings highlight significant differences between pharmacological administration of incretin receptor agonists and potentiation of endogenous GLP-1 and GIP via DPP-4 inhibition.
Collapse
Affiliation(s)
- Benjamin J Lamont
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
157
|
|
158
|
Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol Cell Biol 2007; 28:1644-56. [PMID: 18086876 DOI: 10.1128/mcb.00325-07] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cyclic AMP (cAMP)/protein kinase A (PKA) cascade plays a central role in beta-cell proliferation and apoptosis. Here, we show that the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates expression of the antiapoptotic Bcl-2 gene in pancreatic beta cells through a pathway involving AMP-activated protein kinase (AMPK), cAMP-responsive CREB coactivator 2 (TORC2), and cAMP response element binding protein (CREB). Stimulation of beta-INS-1 (clone 832/13) cells with GIP resulted in increased Bcl-2 promoter activity. Analysis of the rat Bcl-2 promoter revealed two potential cAMP response elements, one of which (CRE-I [GTGACGTAC]) was shown, using mutagenesis and deletion analysis, to be functional. Subsequent studies established that GIP increased the nuclear localization of TORC2 and phosphorylation of CREB serine 133 through a pathway involving PKA activation and reduced AMPK phosphorylation. At the nuclear level, phospho-CREB and TORC2 were demonstrated to bind to CRE-I of the Bcl-2 promoter, and GIP treatment resulted in increases in their interaction. Furthermore, GIP-mediated cytoprotection was partially reversed by small interfering RNA-mediated reduction in BCL-2 or TORC2/CREB or by pharmacological activation of AMPK. The antiapoptotic effect of GIP in beta cells is therefore partially mediated through a novel mode of transcriptional regulation of Bcl-2 involving cAMP/PKA/AMPK-dependent regulation of CREB/TORC2 activity.
Collapse
|
159
|
Yano T, Liu Z, Donovan J, Thomas MK, Habener JF. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes 2007; 56:2946-57. [PMID: 17878289 DOI: 10.2337/db07-0291] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Diabetes is caused by a deficiency of pancreatic beta-cells that produce insulin. Approaches to enhance beta-cell mass by increasing proliferation and survival are desirable. We determined whether stromal cell-derived factor (SDF)-1/CXCL12 and its receptor, CX chemokine receptor (CXCR)4, are important for the survival of beta-cells. RESEARCH DESIGN AND METHODS Mouse pancreata and clonal beta-cells were examined for expression of SDF-1 and CXCR4, activation of AKT and downstream signaling pathways by SDF-1, and protection against apoptosis and diabetes induced by streptozotocin (STZ). RESULTS CXCR4 is expressed in beta-cells, and SDF-1 is expressed in microvascular endothelial cells within the islets and in surrounding interstitial stromal tissue. Transgenic mice overexpressing SDF-1 within their beta-cells (RIP-SDF-1 mice) are resistant to STZ-induced beta-cell apoptosis and diabetes. In MIN6 beta-cells, a CXCR4 antagonist (AMD3100) induces apoptosis, increases reactive oxygen species, decreases expression levels of the anti-apoptotic protein Bcl-2, and reduces phosphorylation of the proapoptotic protein Bad. Active phosphorylated prosurvival kinase Akt is increased both in the beta-cells of RIP-SDF-1 mice and in INS-1 cells treated with SDF-1 and sensitive to AMD3100. Inhibition of AKT expression by small interfering RNA attenuates the ameliorative effects of SDF-1 on caspase-dependent apoptosis induced by thapsigargin or glucose deprivation in INS-1 beta-cells. Specific inhibition of Akt activation by a soluble inhibitor (SH-5) reverses the anti-apoptotic effects of SDF-1 in INS-1 cells and mouse islets. CONCLUSIONS SDF-1 promotes pancreatic beta-cell survival via activation of Akt, suggesting that SDF-1 agonists may prove beneficial for treatment of diabetes.
Collapse
Affiliation(s)
- Tatsuya Yano
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
160
|
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are physiological gut peptides with insulin-releasing and extrapancreatic glucoregulatory actions. Incretin analogues/mimetics activate GLP-1 or GIP receptors whilst avoiding physiological inactivation by dipeptidyl peptidase 4 (DPP-4), and they represent one of the newest classes of antidiabetic drug. The first clinically approved GLP-1 mimetic for the treatment of type-2 diabetes is exenatide (Byetta/exendin) which is administered subcutaneously twice daily. Clinical trials of liraglutide, a GLP-1 analogue suitable for once-daily administration, are ongoing. A number of other incretin molecules are at earlier stages of development. This review discusses the various attributes of GLP-1 and GIP for diabetes treatment and summarises current clinical data. Additionally, it explores the therapeutic possibilities offered by preclinical agents, such as non-peptide GLP-1 mimetics, GLP-1/glucagon hybrid peptides, and specific GIP receptor antagonists.
Collapse
Affiliation(s)
- Brian D Green
- School of Biological Sciences, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast BT6 0NJ, Northern Ireland, UK.
| | | |
Collapse
|
161
|
Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology 2007; 133:1796-805. [PMID: 18054552 PMCID: PMC2185546 DOI: 10.1053/j.gastro.2007.09.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/30/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In addition to its role as the primary mediator of the enteroinsular axis, glucose-dependent insulinotropic polypeptide (GIP) may play a critical role in the development of obesity. The purpose of these studies was to characterize the effects of GIP and its receptor (GIPR) in adipocyte development and signaling. METHODS Effects of GIP and GIPR on differentiated 3T3-L1 cells were analyzed using Western blot analysis, Oil-Red-O staining, cyclic adenosine monophosphate radioimmunoassay, immunofluorescence microscopy, and glucose uptake measurements. RESULTS To determine whether GIP and GIPR are important components in adipocyte development, the expression profile of GIPR during differentiation was examined. GIPR protein expression was enhanced during the differentiation process, and coincubation with its ligand GIP augmented the expression of aP2, a fat cell marker. Conversely, the suppression of GIPR expression by a specific short hairpin RNA attenuated Oil-Red-O staining and aP2 expression, suggesting that the GIPR may play a critical role in adipocyte development. To investigate specific signaling components that may mediate the effects of GIP, we analyzed Akt, glucose transporter-4, and glucose uptake, all of which are modulated by insulin in fat cells. Like insulin, GIP induced the activation of Akt in a concentration-dependent manner, promoted membrane glucose transporter-4 accumulation, and enhanced [(3)H]-2-deoxyglucose uptake. CONCLUSIONS These studies provide further evidence for an important physiologic role for GIP in lipid homeostasis and possibly in the pathogenesis of obesity. Furthermore, our data indicate that the GIPR might represent a suitable target for the treatment of obesity.
Collapse
|
162
|
Piteau S, Olver A, Kim SJ, Winter K, Pospisilik JA, Lynn F, Manhart S, Demuth HU, Speck M, Pederson RA, McIntosh CHS. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun 2007; 362:1007-12. [PMID: 17803965 DOI: 10.1016/j.bbrc.2007.08.115] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 11/24/2022]
Abstract
In type 2 diabetes (T2DM) beta-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3+/-3.8%) than ZF rats (48.8+/-22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0+/-17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.
Collapse
Affiliation(s)
- Shalea Piteau
- University of British Columbia, Department of Cellular & Physiological Sciences, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Elghazi L, Rachdi L, Weiss AJ, Cras-Méneur C, Bernal-Mizrachi E. Regulation of beta-cell mass and function by the Akt/protein kinase B signalling pathway. Diabetes Obes Metab 2007; 9 Suppl 2:147-57. [PMID: 17919189 DOI: 10.1111/j.1463-1326.2007.00783.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin receptor substrate-2/phosphoinositide 3-kinase (PI3K) pathway plays a critical role in the regulation of beta-cell mass and function, demonstrated both in vitro and in vivo. The serine threonine kinase Akt is one of the promising downstream molecules of this pathway that has been identified as a potential target to regulate function and induce proliferation and survival of beta cells. Here we summarize some of the molecular mechanisms, downstream signalling pathways and critical components involved in the regulation of beta-cell mass and function by Akt.
Collapse
Affiliation(s)
- L Elghazi
- Department of Internal Medicine, Division of Endocrinology, Washington University School of Medicine, Metabolism & Lipid Research, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
164
|
Kim SJ, Nian C, McIntosh CHS. Resistin Is a Key Mediator of Glucose-dependent Insulinotropic Polypeptide (GIP) Stimulation of Lipoprotein Lipase (LPL) Activity in Adipocytes. J Biol Chem 2007; 282:34139-47. [PMID: 17890220 DOI: 10.1074/jbc.m704896200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies on the physiological roles of the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP) have largely focused on its insulinotropic action and ability to regulate beta-cell mass. In previous studies on the stimulatory effect of GIP on adipocyte lipoprotein lipase (LPL), a pathway was identified involving increased phosphorylation of protein kinase B (PKB) and reduced phosphorylation of LKB1 and AMP-activated protein kinase (AMPK). The slow time of onset of the responses suggested that GIP may have induced release of an intermediary molecule, and the current studies focused on the possible contribution of the adipokine resistin. In differentiated 3T3-L1 adipocytes, GIP, in the presence of insulin, increased resistin secretion through a pathway involving p38 mitogen-activated protein kinase (p38 MAPK) and the stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK). The other major incretin hormone, glucagon-like peptide-1 (GLP-1), exhibited no significant effects. Chronic elevation of circulating GIP levels in the Vancouver Diabetic Fatty (VDF) Zucker rat resulted in increases in circulating resistin levels and activation of p38 MAPK or SAPK/JNK in epididymal fat tissue, suggesting the existence of identical pathways in vivo as well as in vitro. Administration of resistin to 3T3-L1 adipocytes mimicked the effects of GIP on the PKB/LKB1/AMPK/LPL pathway: increasing phosphorylation of PKB, reducing levels of phosphorylated LKB1 and AMPK, and increasing LPL activity. Knockdown of resistin using RNA interference attenuated the effect of GIP on the PKB/LKB1/AMPK/LPL pathway in 3T3-L1 adipocytes, supporting a role for resistin as a mediator.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
165
|
Guo XN, Rajput A, Rose R, Hauser J, Beko A, Kuropatwinski K, LeVea C, Hoffman RM, Brattain MG, Wang J. Mutant PIK3CA-bearing colon cancer cells display increased metastasis in an orthotopic model. Cancer Res 2007; 67:5851-8. [PMID: 17575153 DOI: 10.1158/0008-5472.can-07-0049] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in the PIK3CA gene are common in human cancers, including colon cancer. We compared two pairs of colon cancer cells (HCT116 and DLD1) bearing only the wild-type (WT) or mutant (MUT) PIK3CA allele for their survival capacity under stress conditions in vitro as well as their metastatic properties in an in vivo orthotopic model. When subjected to growth factor deprivation stress (GFDS), the MUT PIK3CA cells displayed resistance to GFDS-induced apoptosis relative to the WT cells. Phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT were constitutively activated during stress conditions in the MUT PIK3CA cells but not in the WT cells. The MUT cells showed hypersensitivity to PI3K inhibition. Moreover, the proapoptotic protein Bax was expressed at a very high level in the WT PIK3CA cells, whereas it was almost undetectable in the MUT cells. Inhibition of Bax expression by small interfering RNA protected the WT PIK3CA cells from GFDS-induced apoptosis, suggesting an important role of Bax in GFDS-induced apoptosis. These results indicated that the MUT PI3K confers resistance to GFDS-induced apoptosis and that the MUT cells are more dependent on the PI3K pathway for survival. In vivo studies showed that the MUT PIK3CA-bearing cells were more metastatic than the WT cells in an orthotopic model of colon cancer. Taken together, these results suggest that MUT PI3K imparts a more aggressive phenotype in colon cancer cells and could be a potential therapeutic target for treatment of colon cancer patients bearing PIK3CA mutations.
Collapse
Affiliation(s)
- Xiao-Ning Guo
- Department of Pharmacology and Therapeutics, Surgical Oncology, and Pathology, Roswell Park Cancer Institute, NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Brubaker PL. Incretin-based therapies: mimetics versus protease inhibitors. Trends Endocrinol Metab 2007; 18:240-5. [PMID: 17629492 DOI: 10.1016/j.tem.2007.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/04/2007] [Accepted: 06/20/2007] [Indexed: 01/21/2023]
Abstract
The physiological incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), lower blood glucose levels through multiple mechanisms, including enhancement of glucose-stimulated insulin secretion. Although of demonstrated benefit to glycemic control in patients with type 2 diabetes, particularly for GLP-1, the half-lives of these peptides are too short for practical therapeutic utility. Here, we discuss recent approaches to incretin-based therapy, including the use of long-acting GLP-1 receptor agonists, degradation-resistant GLP-1 analogs, GLP-1 analogs conjugated to albumin, non-peptide small molecules that bind to the GLP-1 receptor, and inhibitors of dipeptidyl peptidase IV, the enzyme that degrades both GIP and GLP-1.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
167
|
Podcheko A, Northcott P, Bikopoulos G, Lee A, Bommareddi SR, Kushner JA, Farhang-Fallah J, Rozakis-Adcock M. Identification of a WD40 repeat-containing isoform of PHIP as a novel regulator of beta-cell growth and survival. Mol Cell Biol 2007; 27:6484-96. [PMID: 17636024 PMCID: PMC2099606 DOI: 10.1128/mcb.02409-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pleckstrin homology domain-interacting protein (PHIP) was originally identified as a 902-amino-acid (aa) protein that regulates insulin receptor-stimulated GLUT4 translocation in skeletal-muscle cells. Immunoblotting and immunohistological analyses of pancreatic beta-cells reveal prominent expression of a 206-kDa PHIP isoform restricted to the nucleus. Herein, we report the cloning of this larger, 1,821-aa isoform of PHIP (PHIP1), which represents a novel WD40 repeat-containing protein. We demonstrate that PHIP1 overexpression stimulates insulin-like growth factor 1-dependent and -independent proliferation of beta-cells, an event which correlates with transcriptional upregulation of the cyclin D2 promoter and the accumulation of cyclin D2 protein. RNA interference knockdown of PHIP1 in INS-1 cells abrogates insulin receptor substrate 2 (IRS2)-mediated DNA synthesis, providing for a specific role for PHIP1 in the enhancement of IRS2-dependent signaling responses leading to beta-cell growth. Finally, we provide evidence that PHIP1 overexpression blocks free fatty acid-induced apoptosis in INS-1 cells, which is accompanied by marked activation of phosphoprotein kinase B (PKB)/AKT and the concomitant inhibition of caspase-9 and caspase-3 cleavage. Our finding that the restorative effect of PHIP1 on beta-cell lipotoxicity can be attenuated by the overexpression of dominant-negative PKB suggests a key role for PKB in PHIP1-mediated cytoprotection. Taken together, these findings provide strong support for PHIP1 as a novel positive regulator of beta-cell function. We suggest that PHIP1 may be involved in the induction of long-term gene expression programs to promote beta-cell mitogenesis and survival.
Collapse
Affiliation(s)
- Alexey Podcheko
- Department of Laboratory Medicine and Pathobiology, 1 King's College Circle, Room 6238, University of Toronto, Toronto, Canada M5S 1A8
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). The published literature was reviewed, with emphasis on recent advances in our understanding of the biology of GIP and GLP-1. GIP and GLP-1 are both secreted within minutes of nutrient ingestion and facilitate the rapid disposal of ingested nutrients. Both peptides share common actions on islet beta-cells acting through structurally distinct yet related receptors. Incretin-receptor activation leads to glucose-dependent insulin secretion, induction of beta-cell proliferation, and enhanced resistance to apoptosis. GIP also promotes energy storage via direct actions on adipose tissue, and enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis. In contrast, GLP-1 exerts glucoregulatory actions via slowing of gastric emptying and glucose-dependent inhibition of glucagon secretion. GLP-1 also promotes satiety and sustained GLP-1-receptor activation is associated with weight loss in both preclinical and clinical studies. The rapid degradation of both GIP and GLP-1 by the enzyme dipeptidyl peptidase-4 has led to the development of degradation-resistant GLP-1-receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes. These agents decrease hemoglobin A1c (HbA1c) safely without weight gain in subjects with type 2 diabetes. GLP-1 and GIP integrate nutrient-derived signals to control food intake, energy absorption, and assimilation. Recently approved therapeutic agents based on potentiation of incretin action provide new physiologically based approaches for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
169
|
Abstract
The gastrointestinal tract has a crucial role in the control of energy homeostasis through its role in the digestion, absorption, and assimilation of ingested nutrients. Furthermore, signals from the gastrointestinal tract are important regulators of gut motility and satiety, both of which have implications for the long-term control of body weight. Among the specialized cell types in the gastrointestinal mucosa, enteroendocrine cells have important roles in regulating energy intake and glucose homeostasis through their actions on peripheral target organs, including the endocrine pancreas. This article reviews the biological actions of gut hormones regulating glucose homeostasis, with an emphasis on mechanisms of action and the emerging therapeutic roles of gut hormones for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Daniel J Drucker
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
170
|
Kim SJ, Nian C, McIntosh CHS. Activation of Lipoprotein Lipase by Glucose-dependent Insulinotropic Polypeptide in Adipocytes. J Biol Chem 2007; 282:8557-67. [PMID: 17244606 DOI: 10.1074/jbc.m609088200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has been mainly studied because of its glucose-dependent insulinotropic action and its ability to regulate beta-cell proliferation and survival. Considerably less is known about the effects of GIP on fat metabolism, and the present study was directed at identifying the mechanisms underlying its stimulatory action on lipoprotein lipase (LPL). In differentiated 3T3-L1 adipocytes, GIP, in the presence of insulin, increased LPL activity and triglyceride accumulation through a pathway involving increased phosphorylation of protein kinase B (PKB) and reductions in phosphorylated LKB1 and AMP-activated protein kinase (AMPK). Knockdown of AMPK using RNA interference and application of the AMPK inhibitor, Compound C, supported this conclusion. In contrast, the other major incretin hormone, glucagon-like peptide-1, exhibited no significant effects on LPL activity or PKB, LKB1, or AMPK phosphorylation. Cultured subcutaneous human adipocytes showed similar responses to GIP but with greater sensitivity. Chronic elevation of circulating GIP levels in the Vancouver diabetic fatty Zucker rat in vivo resulted in increased LPL activity and elevated triglyceride accumulation in epididymal fat tissue, combined with a modulation of PKB, LKB1, and AMPK phosphorylation similar to that observed in vitro. This appears to be the first demonstration of a GIP-stimulated signal transduction pathway involved in increasing fat storage in adipocytes.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cellular and Physiological Sciences, the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
171
|
Huypens PR. Leptin and adiponectin regulate compensatory beta cell growth in accordance to overweight. Med Hypotheses 2006; 68:1134-7. [PMID: 17098372 DOI: 10.1016/j.mehy.2006.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/31/2022]
Abstract
Compensatory beta cell growth occurs in accordance to overweight and increasing insulin demands. The proliferative actions of insulin and insulin-like growth factors are mediated via the IRS-2-PI(3)K-Akt pathway of pleiotropic insulin signaling. However, sustained activation leads to negative feedback via the mTOR-induced proteasomal degradation of IRS-2. The proliferative actions of incretins and adipokines are mediated via other pathways that ultimately converge with the IRS-2-PI(3)K-Akt axis. The incretins GIP and GLP-1 increase IRS-2 levels in beta cells by acting via the cAMP-PKA pathway, whereas leptin inhibits PTEN activity via CK2-dependent pathways. By increasing PIP(3) availability the adipokine amplifies the magnitude as well as duration of factors acting via the IRS-2-PI(3)K-Akt pathway. Considering that AMPK prevents mTOR-induced degradation of IRS-2, we propose that adiponectin and leptin cooperatively achieve compensatory beta cell growth in accordance to adiposity. In conditions of overt obesity, when adiponectin levels are too low to provide sufficient IRS-2 levels, loss of compensatory beta cell growth may occur.
Collapse
|
172
|
Flatt PR, Green BD. Nutrient regulation of pancreatic β-cell function in diabetes: problems and potential solutions. Biochem Soc Trans 2006; 34:774-8. [PMID: 17052195 DOI: 10.1042/bst0340774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing prevalence of obesity combined with longevity will produce an epidemic of Type 2 (non-insulin-dependent) diabetes in the next 20 years. This disease is associated with defects in insulin secretion, specifically abnormalities of insulin secretory kinetics and pancreatic β-cell glucose responsiveness. Mechanisms underlying β-cell dysfunction include glucose toxicity, lipotoxicity and β-cell hyperactivity. Defects at various sites in β-cell signal transduction pathways contribute, but no single lesion can account for the common form of Type 2 diabetes. Recent studies highlight diverse β-cell actions of GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic polypeptide). These intestinal hormones target the β-cell to stimulate glucose-dependent insulin secretion through activation of protein kinase A and associated pathways. Both increase gene expression and proinsulin biosynthesis, protect against apoptosis and stimulate replication/neogenesis of β-cells. Incretin hormones therefore represent an exciting future multi-action solution to correct β-cell defect in Type 2 diabetes.
Collapse
Affiliation(s)
- P R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| | | |
Collapse
|
173
|
Hurley RL, Barré LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA. Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 2006; 281:36662-72. [PMID: 17023420 DOI: 10.1074/jbc.m606676200] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) and cAMP signaling systems are both key regulators of cellular metabolism. In this study, we show that AMPK activity is attenuated in response to cAMP-elevating agents through modulation of at least two of its alpha subunit phosphorylation sites, viz. alpha-Thr(172) and alpha1-Ser(485)/alpha2-Ser(491), in the clonal beta-cell line INS-1 as well as in mouse embryonic fibroblasts and COS cells. Forskolin, isobutylmethylxanthine, and the glucose-dependent insulinotropic peptide inhibited AMPK activity and reduced phosphorylation of the activation loop alpha-Thr(172) via inhibition of calcium/calmodulin-dependent protein kinase kinase-alpha and -beta, but not LKB1. These agents also enhanced phosphorylation of alpha-Ser(485/491) by the cAMP-dependent protein kinase. AMPK alpha-Ser(485/491) phosphorylation was necessary but not sufficient for inhibition of AMPK activity in response to forskolin/isobutylmethylxanthine. We show that AMPK alpha-Ser(485/491) can be a site for autophosphorylation, which may play a role in limiting AMPK activation in response to energy depletion or other regulators. Thus, our findings not only demonstrate cross-talk between the cAMP/cAMP-dependent protein kinase and AMPK signaling modules, but also describe a novel mechanism by which multisite phosphorylation of AMPK contributes to regulation of its enzyme activity.
Collapse
Affiliation(s)
- Rebecca L Hurley
- Department of Medicine and Biochemistry, Dartmouth Medical School, Remsen 322, N. College St., Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Welters HJ, Diakogiannaki E, Mordue JM, Tadayyon M, Smith SA, Morgan NG. Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic beta-cells exposed to palmitate. Apoptosis 2006; 11:1231-8. [PMID: 16703263 DOI: 10.1007/s10495-006-7450-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Saturated and mono-unsaturated fatty acids exert differential effects on pancreatic beta-cell viability during chronic exposure. Long chain saturated molecules (e.g. palmitate) are cytotoxic to beta-cells and this is associated with caspase activation and induction of apoptosis. By contrast, mono-unsaturated fatty acids (e.g. palmitoleate) are not toxic and can protect against the detrimental effects of palmitate. In the present study, we show that the protective actions of palmitoleate in BRIN-BD11 beta-cells result in attenuated caspase activation following exposure to palmitate and that a similar response occurs in cells having elevated levels of cAMP. However, unlike palmitoleate, elevation of cAMP was unable to prevent the cytotoxic actions of palmitate since it caused a diversion of the pathway of cell death from apoptosis to necrosis. Palmitoleate did not alter cAMP levels in BRIN-BD11 cells and the results suggest that a change in cAMP is not involved in mediating the protective effects of this fatty acid. Moreover, they reveal that attenuated caspase activation does not always correlate with altered cell viability in cultured beta-cells and suggest that mono-unsaturated fatty acids control cell viability by regulating a different step in the apoptotic pathway from that influenced by cAMP.
Collapse
Affiliation(s)
- Hannah J Welters
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Devon, Research Way, Plymouth, PL6 8BU, UK
| | | | | | | | | | | |
Collapse
|
175
|
Irwin N, Clarke GC, Green BD, Greer B, Harriott P, Gault VA, O'Harte FPM, Flatt PR. Evaluation of the antidiabetic activity of DPP IV resistant N-terminally modified versus mid-chain acylated analogues of glucose-dependent insulinotropic polypeptide. Biochem Pharmacol 2006; 72:719-28. [PMID: 16859646 DOI: 10.1016/j.bcp.2006.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(Lys(37)PAL) and N-AcGIP(Lys(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25nmolkg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(Lys(37)PAL) or N-AcGIP(Lys(37)PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Type 2 diabetes is characterized by hyperglycemia resulting from insulin resistance in the setting of inadequate beta-cell compensation. Currently available therapeutic agents lower blood glucose through multiple mechanisms but do not directly reverse the decline in beta-cell mass. Glucagon-like peptide-1 (GLP-1) receptor agonists, exemplified by Exenatide (exendin-4), not only acutely lower blood glucose but also engage signaling pathways in the islet beta-cell that lead to stimulation of beta-cell replication and inhibition of beta-cell apoptosis. Similarly, glucose-dependent insulinotropic polypeptide (GIP) receptor activation stimulates insulin secretion, enhances beta-cell proliferation, and reduces apoptosis. Moreover, potentiation of the endogenous postprandial levels of GLP-1 and GIP via inhibition of dipeptidyl peptidase-IV (DPP-IV) also expands beta-cell mass via related mechanisms. The thiazolidinediones (TZDs) enhance insulin sensitivity, reduce blood glucose levels, and also preserve beta-cell mass, although it remains unclear whether TZDs affect beta-cell mass via direct mechanisms. Complementary approaches to regeneration of beta-cell mass involve combinations of factors, exemplified by epidermal growth factor and gastrin, which promote islet neogenesis and ameliorate diabetes in rodent studies. Considerable preclinical data support the concept that one or more of these therapeutic approaches, alone or in combination, may potentially reverse the decline in beta-cell mass that is characteristic of the natural history of type 2 diabetes.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, Toronto General Hospital, Banting and Best Diabetes Center, University of Toronto, Toronto, Ontario, Canada M5S 2S2
| | | |
Collapse
|
177
|
Buteau J, Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass. Diabetes 2006; 55:1190-6. [PMID: 16644672 DOI: 10.2337/db05-0825] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The glucoincretin hormone glucagon-like peptide-1 (GLP-1) increases pancreatic beta-cell proliferation and survival through sequential activation of the epidermal growth factor receptor (EGFR), phosphatidylinositol-3 kinase (PI 3-kinase), and Akt. We investigated the role of transcription factor FoxO1 in the proliferative and antiapoptotic actions of GLP-1 in beta-cells. GLP-1 inhibited FoxO1 through phosphorylation-dependent nuclear exclusion in pancreatic beta (INS832/13) cells. The effect of GLP-1 was suppressed by inhibitors of EGFR (AG1478) and PI 3-kinase (LY294002). In contrast, LY294002 but not AG1478 suppressed insulin-induced FoxO1 phosphorylation. Expression of constitutively nuclear FoxO1 in beta-cells prevented the proliferative and antiapoptotic actions of GLP-1 in cultured beta-cells and the increase in pancreatic beta-cell mass in response to Exendin4 in transgenic mice. Gene expression and chromatin immunoprecipitation assays demonstrated that GLP-1 increases pancreatic and duodenal homeobox gene-1 and Foxa2 expression and inhibits FoxO1 binding to both promoters. We propose that FoxO1 mediates the pleiotropic effects of the glucoincretin hormone on cell proliferation and survival.
Collapse
Affiliation(s)
- Jean Buteau
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University Medical Center, Berrie Research Pavilion, 1150 St. Nicholas Ave., Room 238, New York, NY 10032, USA
| | | | | |
Collapse
|
178
|
Abstract
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote beta cell proliferation and inhibit apoptosis, leading to expansion of beta cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, The Banting and Best Diabetes Centre, Toronto General Hospital, University of Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|