151
|
Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. J Neurochem 2011; 117:665-77. [DOI: 10.1111/j.1471-4159.2011.07235.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
152
|
Zhu C, Solorzano C, Sahar S, Realini N, Fung E, Sassone-Corsi P, Piomelli D. Proinflammatory stimuli control N-acylphosphatidylethanolamine-specific phospholipase D expression in macrophages. Mol Pharmacol 2011; 79:786-92. [PMID: 21233218 PMCID: PMC3063731 DOI: 10.1124/mol.110.070201] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 01/12/2011] [Indexed: 11/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid amide that modulates pain and inflammation by engaging peroxisome proliferator-activated receptor type-α. Here, we show that the proinflammatory bacterial endotoxin lipopolysaccharide (LPS) decreases PEA biosynthesis in RAW264.7 macrophages by suppressing the transcription of N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), which catalyzes the production of PEA and other lipid amides. Using a luciferase reporter construct and chromatin immunoprecipitation, we further show that LPS treatment reduces acetylation of histone proteins bound to the NAPE-PLD promoter, an effect that is blocked by the histone deacetylase inhibitor trichostatin A. The transcription factor Sp1 is involved in regulating baseline NAPE-PLD expression but not in the transcriptional suppression induced by LPS. The ability of LPS to down-regulate PEA biosynthesis is impaired in peritoneal macrophages from mutant NAPE-PLD-deficient mice, in which PEA is produced through a compensatory mechanism distinct from NAPE-PLD. Moreover, NAPE-PLD-deficient mice fail to mount a normal inflammatory reaction in response to carrageenan administration in vivo. Our findings suggest that proinflammatory stimuli suppress NAPE-PLD expression and PEA biosynthesis in macrophages and that this effect might contribute to the inflammatory response.
Collapse
Affiliation(s)
- Chenggang Zhu
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Gross RW, Han X. Lipidomics at the interface of structure and function in systems biology. CHEMISTRY & BIOLOGY 2011; 18:284-91. [PMID: 21439472 PMCID: PMC3132894 DOI: 10.1016/j.chembiol.2011.01.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/23/2010] [Accepted: 01/03/2011] [Indexed: 12/11/2022]
Abstract
Cells, tissues, and biological fluids contain a diverse repertoire of many tens of thousands of structurally distinct lipids that play multiple roles in cellular signaling, bioenergetics, and membrane structure and function. In an era where lipid-related disease states predominate, lipidomics has assumed a prominent role in systems biology through its unique ability to directly identify functional alterations in multiple lipid metabolic and signaling networks. The development of shotgun lipidomics has led to the facile accrual of high density information on alterations in the lipidome mediating physiologic cellular adaptation during health and pathologic alterations during disease. Through both targeted and nontargeted investigations, lipidomics has already revealed the chemical mechanisms underlying many lipid-related disease states.
Collapse
Affiliation(s)
- Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
154
|
Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver. Proc Natl Acad Sci U S A 2011; 108:6323-8. [PMID: 21383171 DOI: 10.1073/pnas.1017689108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mammalian liver regenerates upon tissue loss, which induces quiescent hepatocytes to enter the cell cycle and undergo limited replication under the control of multiple hormones, growth factors, and cytokines. Endocannabinoids acting via cannabinoid type 1 receptors (CB(1)R) promote neural progenitor cell proliferation, and in the liver they promote lipogenesis. These findings suggest the involvement of CB(1)R in the control of liver regeneration. Here we report that mice lacking CB(1)R globally or in hepatocytes only and wild-type mice treated with a CB(1)R antagonist have a delayed proliferative response to two-thirds partial hepatectomy (PHX). In wild-type mice, PHX leads to increased hepatic expression of CB(1)R and hyperactivation of the biosynthesis of the endocannabinoid anandamide in the liver via an in vivo pathway involving conjugation of arachidonic acid and ethanolamine by fatty-acid amide hydrolase. In wild-type but not CB(1)R(-/-) mice, PHX induces robust up-regulation of key cell-cycle proteins involved in mitotic progression, including cyclin-dependent kinase 1 (Cdk1), cyclin B2, and their transcriptional regulator forkhead box protein M1 (FoxM1), as revealed by ultrahigh-throughput RNA sequencing and pathway analysis and confirmed by real-time PCR and Western blot analyses. Treatment of wild-type mice with anandamide induces similar changes mediated via activation of the PI3K/Akt pathway. We conclude that activation of hepatic CB(1)R by newly synthesized anandamide promotes liver regeneration by controlling the expression of cell-cycle regulators that drive M phase progression.
Collapse
|
155
|
Kopp F, Komatsu T, Nomura DK, Trauger SA, Thomas JR, Siuzdak G, Simon GM, Cravatt BF. The glycerophospho metabolome and its influence on amino acid homeostasis revealed by brain metabolomics of GDE1(-/-) mice. ACTA ACUST UNITED AC 2011; 17:831-40. [PMID: 20797612 DOI: 10.1016/j.chembiol.2010.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
GDE1 is a mammalian glycerophosphodiesterase (GDE) implicated by in vitro studies in the regulation of glycerophophoinositol (GroPIns) and possibly other glycerophospho (GroP) metabolites. Here, we show using untargeted metabolomics that GroPIns is profoundly (>20-fold) elevated in brain tissue from GDE1(-/-) mice. Furthermore, two additional GroP metabolites not previously identified in eukaryotic cells, glycerophosphoserine (GroPSer) and glycerophosphoglycerate (GroPGate), were also highly elevated in GDE1(-/-) brains. Enzyme assays with synthetic GroP metabolites confirmed that GroPSer and GroPGate are direct substrates of GDE1. Interestingly, our metabolomic profiles also revealed that serine (both L-and D-) levels were significantly reduced in brains of GDE1(-/-) mice. These findings designate GroPSer as a previously unappreciated reservoir for free serine in the nervous system and suggest that GDE1, through recycling serine from GroPSer, may impact D-serine-dependent neural signaling processes in vivo.
Collapse
Affiliation(s)
- Florian Kopp
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
Since the first endocannabinoid anandamide was identified in 1992, extensive research has been conducted to characterize the elements of the tightly controlled endocannabinoid signaling system. While it was established that the activity of endocannabinoids are terminated by a two-step process that includes cellular uptake and degradation, there is still a continuing debate about the mechanistic role of these processes in inactivating anandamide signals.
Collapse
|
157
|
Abstract
Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.
Collapse
|
158
|
Hu SSJ, Arnold A, Hutchens JM, Radicke J, Cravatt BF, Wager-Miller J, Mackie K, Straiker A. Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 2010; 518:3848-66. [PMID: 20653038 DOI: 10.1002/cne.22429] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid receptors and their ligands constitute an endogenous signaling system that is found throughout the body, including the eye. This system can be activated by Delta(9)-tetrahydrocannabinol, a major drug of abuse. Cannabinoids offer considerable therapeutic potential in modulating ocular immune and inflammatory responses and in regulating intraocular pressure. The location of cannabinoid receptor 1 (CB(1)) in the retina is known, but recently a constellation of proteins has been identified that produce and break down endocannabinoids (eCBs) and modulate CB(1) function. Localization of these proteins is critical to defining specific cannabinoid signaling circuitry in the retina. Here we show the localization of diacylglycerol lipase-alpha and -beta (DGLalpha/beta), implicated in the production of the eCB 2-arachidonoyl glycerol (2-AG); monoacylglycerol lipase (MGL) and alpha/beta-hydrolase domain 6 (ABHD6), both implicated in the breakdown of 2-AG; cannabinoid receptor-interacting protein 1a (CRIP1a), a protein that may modulate CB(1) function; and fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA), which have been shown to break down the eCB anandamide and related acyl amides. Our most prominent finding was that DGLalpha is present in postsynaptic type 1 OFF cone bipolar cells juxtaposed to CB(1)-containing cone photoreceptor terminals. CRIP1a is reliably presynaptic to DGLalpha, consistent with a possible role in cannabinoid signaling, and NAAA is restricted to retinal pigment epithelium, whereas DGLbeta is limited to retinal blood vessels. These results taken together with previous anatomical and functional studies define specific cannabinoid circuitry likely to modulate eCB signaling at the first synapse of the retina as well as in the inner plexiform layer.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, Hansen HS. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J 2010; 25:765-74. [PMID: 20959516 DOI: 10.1096/fj.10-166595] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study was undertaken to investigate the link between dietary fat content and intestinal levels of anorectic N-acylethanolamines (NAEs), including oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA). Male rats were fed high-fat diets (HFDs) with variable percentages of fat [20-45% of total energy (E%)] for 1-7 d; afterward, the jejunums were isolated, and jejunal NAE levels were measured by liquid-chromatography mass spectrometry. Enzyme activities and mRNA expression levels were measured for two synthesizing enzymes, N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and glycerophosphodiesterase (GDE1), and one degrading enzyme, fatty acid amide hydrolase (FAAH). We found a dose-response relation between the quantity/percentage of dietary fat, irrespective of the energy density, and the reduction of intestinal levels of OEA, PEA, and LEA. The reductions were present after 1 d of 45E% HFD. LEA, the major NAE species, was shown to have an anorectic potency slightly less than that of OEA but higher than PEA. Regulation at the enzyme level seems not to explain the changes in NAE levels. The results suggest the presence of a fat sensor, mediating the reduced intestinal NAE levels. The intestinal NAE levels are reduced in a dose- and time-dependent manner in response to dietary fat intake, and this may contribute to the well-known hyperphagic effect of HFDs.
Collapse
Affiliation(s)
- Thi Ai Diep
- Department of Pharmacology and Pharmacotheraphy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
160
|
Ezzili C, Otrubova K, Boger DL. Fatty acid amide signaling molecules. Bioorg Med Chem Lett 2010; 20:5959-68. [PMID: 20817522 PMCID: PMC2942981 DOI: 10.1016/j.bmcl.2010.08.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/06/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022]
Abstract
Key studies leading to the discovery and definition of the role of endogenous fatty acid amide signaling molecules are summarized.
Collapse
Affiliation(s)
- Cyrine Ezzili
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Katerina Otrubova
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
161
|
Abstract
The endocannabinoid system is recognized to play an important role in regulating a variety of physiological processes, including appetite control and energy balance, pain perception, and immune responses. The endocannabinoid system has also recently been implicated in the regulation of bone metabolism. Endogenously produced cannabinoids are hydrophobic molecules derived from hydrolysis of membrane phospholipids. These substances, along with plant-derived and synthetic cannabinoids, interact with the type 1 (CB(1)) and 2 (CB(2)) cannabinoid receptors and the GPR55 receptor to regulate cellular function through a variety of signaling pathways. Endocannabinoids are produced in bone, but the mechanisms that regulate their production are unclear. Skeletal phenotyping of mice with targeted inactivation of cannabinoid receptors and pharmacological studies have shown that cannabinoids play a key role in the regulation of bone metabolism. Mice with CB(1) deficiency have high peak bone mass as a result of an osteoclast defect but develop age-related osteoporosis as a result of impaired bone formation and accumulation of bone marrow fat. Mice with CB(2) deficiency have relatively normal peak bone mass but develop age-related osteoporosis as a result of increased bone turnover with uncoupling of bone resorption from bone formation. Mice with GPR55 deficiency have increased bone mass as a result of a defect in the resorptive activity of osteoclasts, but bone formation is unaffected. Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.
Collapse
Affiliation(s)
- Aymen I Idris
- Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Scotland, UK
| | | |
Collapse
|
162
|
Hill MN, Karatsoreos IN, Hillard CJ, McEwen BS. Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology 2010; 35:1333-8. [PMID: 20399021 PMCID: PMC2914801 DOI: 10.1016/j.psyneuen.2010.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 03/05/2010] [Accepted: 03/15/2010] [Indexed: 01/13/2023]
Abstract
Functional interactions between glucocorticoids and the endocannabinoid system have been repeatedly documented; yet, to date, no studies have demonstrated in vivo that glucocorticoid hormones regulate endocannabinoid signaling. We demonstrate that systemic administration of the glucocorticoid corticosterone (3 and 10 mg/kg) resulted in an increase in the tissue content of the endocannabinoid N-arachidonylethanolamine (AEA) within several limbic structures (amygdala, hippocampus, hypothalamus), but not the prefrontal cortex, of male rats. Tissue AEA content was increased at 10min and returned to control 1h post-corticosterone administration. The other primary endocannabinoid, 2-arachidonoylglycerol, was found to be elevated by corticosterone exclusively within the hypothalamus. The rapidity of the change suggests that glucocorticoids act through a non-genomic pathway. Tissue contents of two other N-acylethanolamines, palmitoylethanolamide and oleolyethanolamide, were not affected by corticosterone treatment, suggesting that the mechanism of regulation is neither fatty acid amide nor N-acylphosphatidylethanolamine phospholipase D. These data provide in vivo support for non-genomic steroid effects in mammals and suggest that AEA is a mediator of these effects.
Collapse
Affiliation(s)
- Matthew N. Hill
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Ilia N. Karatsoreos
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| |
Collapse
|
163
|
Endocannabinoid signaling directs differentiation of trophoblast cell lineages and placentation. Proc Natl Acad Sci U S A 2010; 107:16887-92. [PMID: 20837524 DOI: 10.1073/pnas.1010892107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most mammals, placentation is critical for fetal development and pregnancy success. Exposure to marijuana during pregnancy has adverse effects, but whether the placenta is a target of cannabinoid/endocannabinoid signaling is not known. Using mice as a model system, we found that the endocannabinoid system is present in the ectoplacental cone and spongiotrophoblast cells. We also observed that aberrant endocannabinoid signaling confers premature trophoblast stem cell differentiation, and defective trophoblast development and invasion. These defects are reflected in retarded fetal development and compromised pregnancy outcome. Because the endocannabinoid system is conserved in mice and humans, our study suggests that endocannabinoid signaling is critical to placentation and pregnancy success in humans and implicates its potential significance in stem cell biology.
Collapse
|
164
|
Ueda N, Tsuboi K, Uyama T. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1274-85. [PMID: 20736084 DOI: 10.1016/j.bbalip.2010.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Ethanolamides of different long-chain fatty acids constitute a class of endogenous lipid molecules generally called N-acylethanolamines (NAEs). They contain N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine, which receive considerable attention because of their actions as an endogenous cannabinoid receptor ligand (endocannabinoid), an anti-inflammatory substance, and an appetite-suppressing substance, respectively. Identification of their biosynthetic routes in animal tissues and molecular characterization of the enzymes involved are essential for better understanding of physiological importance of NAEs as well as development of enzyme inhibitors as possible therapeutic drugs. In the classical "transacylation-phosphodiesterase pathway", NAEs are formed from glycerophospholipids via N-acylphosphatidylethanolamine (NAPE), an unusual derivative of phosphatidylethanolamine with a third acyl chain attached to the amino group, by sequential catalyses by Ca(2+)-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D. However, recent studies reveal that NAE-generating pathways are more complex than presumed before. In this review article, we will focus on recent findings regarding mammalian enzymes that are involved or might be involved in the biosynthesis of NAEs.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
165
|
Hill MN, McEwen BS. Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:791-7. [PMID: 19903506 PMCID: PMC2945244 DOI: 10.1016/j.pnpbp.2009.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/16/2022]
Abstract
The endocannabinoid system is a neuroactive lipid signaling system that functions to gate synaptic transmitter release. Accumulating evidence has demonstrated that this system is responsive to modulation by both stress and glucocorticoids within the hypothalamus and limbic structures; however, the nature of this regulation is more complex than initially assumed. The aim of the current review is to summarize the research to date which examines the effects of acute stress and glucocorticoid administration on endocannabinoid signaling in limbic-hypothalamic-pituitary-adrenal (LHPA) axis, and in turn the role endocannabinoid signaling plays in the neurobehavioural responses to acute stress and glucocorticoid administration. The majority of research suggests that acute stress produces a mobilization of the endocannabinoid 2-arachidonoylglycerol (2-AG) while concurrently reducing the tissue content of the other endocannabinoid ligand anandamide. Genetic and pharmacological studies demonstrate that the reduction in anandamide signaling may be involved in the initiation of HPA axis activation and the generation of changes in emotional behaviour, while the increase in 2-AG signaling may be involved in terminating the stress response, limiting neuronal activation and contributing to changes in motivated behaviours. Collectively, these studies reveal a complex interplay between endocannabinoids and the HPA axis, and further identify endocannabinoid signaling as a critical regulator of the stress response.
Collapse
Affiliation(s)
- Matthew N Hill
- Laboratory of Neuroendocrinology, Rockefeller University, New York, NY 10065, USA.
| | | |
Collapse
|
166
|
Hill MN, Titterness AK, Morrish AC, Carrier EJ, Lee TTY, Gil-Mohapel J, Gorzalka BB, Hillard CJ, Christie BR. Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus 2010; 20:513-23. [PMID: 19489006 DOI: 10.1002/hipo.20647] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Voluntary exercise and endogenous cannabinoid activity have independently been shown to regulate hippocampal plasticity. The aim of the current study was to determine whether the endocannabinoid system is regulated by voluntary exercise and if these changes contribute to exercise-induced enhancement of cell proliferation. In Experiment 1, 8 days of free access to a running wheel increased the agonist binding site density of the cannabinoid CB(1) receptor; CB(1) receptor-mediated GTPgammaS binding; and the tissue content of the endocannabinoid anandamide in the hippocampus but not in the prefrontal cortex. In Experiment 2, the CB(1) receptor antagonist AM251 (1 mg kg(-1)) was administered daily to animals given free access to a running wheel for 8 days, after which cell proliferation in the hippocampus was examined through immunohistochemical analysis of the cell cycle protein Ki-67. Voluntary exercise increased proliferation of progenitor cells, as evidenced by the increase in the number of Ki-67 positive cells in the granule cell layer of the dentate gyrus (DG) in the hippocampus. However, this effect was abrogated by concurrent treatment with AM251, indicating that the increase in endocannabinoid signaling in the hippocampus is required for the exercise-induced increase in cell proliferation. These data demonstrate that the endocannabinoid system in the hippocampus is sensitive to environmental change and suggest that it is a mediator of experience-induced plasticity.
Collapse
Affiliation(s)
- Matthew N Hill
- Department of Psychology, University of British Columbia, Vancouver, B.C., Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Simon GM, Cravatt BF. Characterization of mice lacking candidate N-acyl ethanolamine biosynthetic enzymes provides evidence for multiple pathways that contribute to endocannabinoid production in vivo. MOLECULAR BIOSYSTEMS 2010; 6:1411-8. [PMID: 20393650 DOI: 10.1039/c000237b] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthesis of the endocannabinoid anandamide (AEA) and related N-acyl ethanolamine (NAE) lipids is complex and appears to involve multiple pathways, including: (1) direct release of NAEs from N-acyl phosphatidyl ethanolamine (NAPE) precursors by the phosphodiesterase NAPE-PLD, and (2) double O-deacylation of NAPEs followed by phosphodiester bond hydrolysis of the resulting glycero-phospho (GP)-NAEs. We recently identified GDE1 as a GP-NAE phosphodiesterase that may be involved in the second pathway. Here, we report the generation and characterization of GDE1(-/-) mice, which are viable and overtly normal in their cage behavior. Brain homogenates from GDE1(-/-) mice exhibit a near-complete loss of detectable GP-NAE phosphodiesterase activity; however, bulk brain levels of AEA and other NAEs were unaltered in these animals. To address the possibility of compensatory pathways, we generated GDE1(-/-)/NAPE-PLD(-/-) mice. Conversion of NAPE to NAE was virtually undetectable in brain homogenates from these animals as measured under standard assay conditions, but again, bulk changes in brain NAEs were not observed. Interestingly, significant reductions in the accumulation of brain NAEs, including anandamide, were detected in GDE1(-/-)/NAPE-PLD(-/-) mice treated with a fatty acid amide hydrolase (FAAH) inhibitor that blocks NAE degradation. Finally, we determined that primary neurons from GDE1(-/-)/NAPE-PLD(-/-) mice can convert NAPEs to NAEs by a pathway that is not preserved following cell homogenization. In summary, combined inactivation of GDE1 and NAPE-PLD results in partial disruption of NAE biosynthesis, while also pointing to the existence of an additional enzymatic pathway(s) that converts NAPEs to NAEs. Characterization of this pathway should provide clarity on the multifaceted nature of NAE biosynthesis.
Collapse
Affiliation(s)
- Gabriel M Simon
- The Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
168
|
Staege MS, Hesse M, Max D. Lipases and Related Molecules in Cancer. CANCER GROWTH AND METASTASIS 2010. [DOI: 10.4137/cgm.s2816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lipases are enzymes that catalyze the hydrolysis of lipids. Based on protein structures and sequences, lipases can be classified into different protein families. The majority of conventional mammalian lipases are members of the protein super-families of serine esterases and alpha-beta hydrolases. Differential expression of lipases and related alpha-beta hydrolases in tumor cells has been observed. The physiological or patho-physiological functions of these tumor related enzymes are largely unknown. However, lipases are not only involved in energy metabolism but also in the metabolism of bioactive molecules, e.g. phosphatidic acid or arachidonic acid, suggesting that tumor-specifically expressed lipases might be interesting targets for the development of future treatment strategies. Moreover, independent of the patho-physiological function, tumor associated lipases can serve as targets for immunological treatment strategies. In addition, lipases with exclusive expression in single tumor entities can serve as potential diagnostic targets.
Collapse
Affiliation(s)
- Martin S. Staege
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, D-06097 Halle, Germany
| | - Manuela Hesse
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, D-06097 Halle, Germany
| | - Daniela Max
- Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, D-06097 Halle, Germany
| |
Collapse
|
169
|
Banni S, Di Marzo V. Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol Nutr Food Res 2010; 54:82-92. [PMID: 20013888 DOI: 10.1002/mnfr.200900516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among the several known fatty acid-derived chemical signals, the endogenous ligands of cannabinoid receptors type-1 and -2, two G-protein-coupled receptors involved in several aspects of mammalian physiology and pathology, are perhaps those the levels of which have proven to be most sensitive to the fatty acid composition of the diet. The two most studied such ligands, known as endocannabinoids, are N-arachidonoyl-ethanolamine and 2-archidonoylglycerol, and are found in tissues together with other N-acyl-ethanolamines and 2-acylglycerols, not all of which activate the cannabinoid receptors, although several of them do exhibit important pharmacological effects. In this review article, we describe literature data indicating that the tissue concentrations of the endocannabinoids and related signalling molecules, and hence the activity of the respective receptors, can be modulated by modifying the fatty acid composition of the diet, and particularly its content in long chain PUFAs or in long chain PUFA precursors. We also discuss the potential impact of these diet-induced changes of endocannabinoid tone on three of the major pathological conditions in which cannabinoid receptors have been involved, that is metabolic dysfunctions, inflammation and affective disorders.
Collapse
Affiliation(s)
- Sebastiano Banni
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Cagliari, Italy
| | | |
Collapse
|
170
|
Hansen HS. Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain. Exp Neurol 2010; 224:48-55. [PMID: 20353771 DOI: 10.1016/j.expneurol.2010.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Acylethanolamides are formed in the brain "on demand" from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and several other quantitative minor species including anandamide (= arachidonoylethanolamide). PEA and OEA can activate several different receptors and inhibit some ion channels, e.g., PPARalpha, vanilloid receptor, K(+) channels (Kv4.3, Kv1.5), and OEA can activate GPR119 and inhibit ceramidases. Targets for SEA are less clear, but it has some cannabimimetic actions in rats in vivo. All acylethanolamides accumulate during neuronal injury, and injected OEA has neuroprotective effects, and PEA has anti-inflammatory effects as studied in the peripheral system. Several of the pharmacological effects seem to be mediated via activation of PPARalpha. Recently, injected OEA has been found to consolidate memories in rats. Inhibitors of the acylethanolamide-degrading enzyme FAAH can increase levels of all acylethanolamides including annandamide, and some of the pharmacological effects caused by these inhibitors may be explained by increased cerebral levels of OEA and PEA, e.g., suppression of nicotine-induced activation of dopamine neurons. Furthermore, through activation of PPARalpha, OEA and PEA may stimulate neurosteroid synthesis, thereby modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting to emerge.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology & Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
171
|
Taylor AH, Amoako AA, Bambang K, Karasu T, Gebeh A, Lam PMW, Marzcylo TH, Konje JC. Endocannabinoids and pregnancy. Clin Chim Acta 2010; 411:921-30. [PMID: 20302856 DOI: 10.1016/j.cca.2010.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 12/12/2022]
Abstract
Acylethanolamides such as anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol are endocannabinoids that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. These compounds, their various receptors, the purported membrane transporter(s), and related enzymes that synthesize and degrade them are collectively referred to as the "endocannabinoid system (ECS)". Poorly defined cellular and molecular mechanisms control the biological actions of the ECS. Over the last decade evidence has been emerging to suggest that the ECS plays a significant role in various aspects of human reproduction. In this review, we summarize our current understanding of this role especially the involvement of AEA and related ECS elements in regulating oogenesis, embryo oviductal transport, blastocyst implantation, placental development and pregnancy outcomes, and sperm survival, motility, capacitation and acrosome reaction. Additionally, the possibility that plasma and tissue AEA and other cannabinoids may represent reliable diagnostic markers of natural and assisted reproduction and pregnancy outcomes in women will be discussed.
Collapse
Affiliation(s)
- Anthony H Taylor
- Reproductive Sciences Section, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Tan B, O'Dell DK, Yu YW, Monn MF, Hughes HV, Burstein S, Walker JM. Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J Lipid Res 2010; 51:112-9. [PMID: 19584404 DOI: 10.1194/jlr.m900198-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a partially purified bovine brain extract, our lab identified three novel endogenous acyl amino acids in mammalian tissues. The presence of numerous amino acids in the body and their ability to form amides with several saturated and unsaturated fatty acids indicated the potential existence of a large number of heretofore unidentified acyl amino acids. Reports of several additional acyl amino acids that activate G-protein coupled receptors (e.g., N-arachidonoyl glycine, N-arachidonoyl serine) and transient receptor potential channels (e.g., N-arachidonoyl dopamine, N-acyl taurines) suggested that some or many novel acyl amino acids could serve as signaling molecules. Here, we used a targeted lipidomics approach including specific enrichment steps, nano-LC/MS/MS, high-throughput screening of the datasets with a potent search algorithm based on fragment ion analysis, and quantification using the multiple reaction monitoring mode in Analyst software to measure the biological levels of acyl amino acids in rat brain. We successfully identified 50 novel endogenous acyl amino acids present at 0.2 to 69 pmol g(-1) wet rat brain.
Collapse
Affiliation(s)
- Bo Tan
- Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University Bloomington IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
173
|
Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010; 49:299-315. [PMID: 20152858 DOI: 10.1016/j.plipres.2010.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-acylethanolamines (NAEs) constitute a class of bioactive lipid molecules present in animal and plant tissues. Among the NAEs, N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine attract much attention due to cannabimimetic activity as an endocannabinoid, anti-inflammatory and analgesic activities, and anorexic activity, respectively. In mammalian tissues, NAEs are formed from glycerophospholipids through the phosphodiesterase-transacylation pathway consisting of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Recent studies revealed the presence of alternative pathways and enzymes responsible for the NAE formation. As for the degradation of NAEs, fatty acid amide hydrolase (FAAH), which hydrolyzes NAEs to fatty acids and ethanolamine, plays a central role. However, a lysosomal enzyme referred to as NAE-hydrolyzing acid amidase (NAAA) also catalyzes the same reaction and may be a new target for the development of therapeutic drugs. In this article we discuss recent progress in the studies on the enzymes involved in the biosynthesis and degradation of NAEs with special reference to NAAA.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | |
Collapse
|
174
|
Snider NT, Walker VJ, Hollenberg PF. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev 2010; 62:136-54. [PMID: 20133390 DOI: 10.1124/pr.109.001081] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, 7720 Medical Science II, 1301 E. Catherine Street, Ann Arbor, MI 48109-5622, USA.
| | | | | |
Collapse
|
175
|
Izzo AA, Sharkey KA. Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 2010; 126:21-38. [PMID: 20117132 DOI: 10.1016/j.pharmthera.2009.12.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 12/11/2022]
Abstract
Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy.
| | | |
Collapse
|
176
|
N-palmitoyl-ethanolamine: Biochemistry and new therapeutic opportunities. Biochimie 2010; 92:724-7. [PMID: 20096327 DOI: 10.1016/j.biochi.2010.01.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/12/2010] [Indexed: 12/22/2022]
Abstract
Although its presence in mammalian tissues has been known since the 1960s, N-palmitoyl-ethanolamine (PEA) has emerged only recently among other bioactive N-acylethanolamines as an important local pro-homeostatic mediator which, due to its chemical stability, can be also administered exogenously as the active principle of current anti-inflammatory and analgesic preparations (e.g. Normast, Pelvilen). Much progress has been made towards the understanding of the mechanisms regulating both the tissue levels of PEA under physiological and pathological conditions, and its pharmacological actions. Here we review these new developments in PEA biochemistry and pharmacology, and discuss novel potential indications for the therapeutic use of this compound and of synthetic tools that selectively retard its catabolism, such as the inhibitors of the recently cloned N-acylethanolamine-hydrolyzing acid amidase.
Collapse
|
177
|
Characterization of the human tumor suppressors TIG3 and HRASLS2 as phospholipid-metabolizing enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1114-24. [DOI: 10.1016/j.bbalip.2009.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 12/15/2022]
|
178
|
Max D, Hesse M, Volkmer I, Staege MS. High expression of the evolutionarily conserved alpha/beta hydrolase domain containing 6 (ABHD6) in Ewing tumors. Cancer Sci 2009; 100:2383-9. [PMID: 19793082 PMCID: PMC11158961 DOI: 10.1111/j.1349-7006.2009.01347.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite improvements in the treatment of patients with Ewing family tumors (EFT), the prognosis for patients with advanced disease is still unsatisfactory. Recently, we identified lipase I as an EFT-associated gene that might be interesting for the development of new immunological or pharmacological treatment strategies. Lipase I is a member of the large protein superfamilies of alpha/beta hydrolases and serine hydrolases. In the present paper we describe high expression of another member of these superfamilies in EFT. By DNA microarray data base mining we found exceptional high expression of alpha/beta hydrolase domain containing 6 (ABHD6) in EFT but not in other sarcomas. Expression of ABHD6 in EFT correlated with expression of another EFT-associated gene, aristaless. Analysis of ABHD6-associated GGAA microsatellites revealed shorter microsatellites in EFT with lack of ABHD6 expression. ABHD6 homologues were found in varying chordata but not in other animal species. Based on homology modeling we predicted the 3D-structure of ABHD6, which shows high similarity with bacterial homoserine transacetylases. High expression of ABHD6 in EFT in comparison to normal tissues and other tumors suggests that ABHD6 might be an interesting new diagnostic or therapeutic target for EFT. However, knock down of ABHD6 in EFT cells did not inhibit tumor cell growth.
Collapse
Affiliation(s)
- Daniela Max
- Children's Cancer Research Center, Martin-Luther-University Halle-Wittenberg, University Clinic and Polyclinic for Child and Adolescent Medicine, Halle, Germany
| | | | | | | |
Collapse
|
179
|
Sullivan CB, Matafonova E, Roberts LJ, Amarnath V, Davies SS. Isoketals form cytotoxic phosphatidylethanolamine adducts in cells. J Lipid Res 2009; 51:999-1009. [PMID: 19965577 DOI: 10.1194/jlr.m001040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Levuglandins and their stereo- and regio-isomers (termed isolevuglandins or isoketals) are gamma-ketoaldehydes (IsoK) that rapidly react with lysines to form stable protein adducts. IsoK protein adduct levels increase in several pathological conditions including cardiovascular disease. IsoKs can induce ion channel dysfunction and cell death, potentially by adducting to cellular proteins. However, IsoKs also adduct to phosphatidylethanolamine (PE) in vitro, and whether PE adducts form in cells or contribute to the effects of IsoKs is unknown. When radiolabeled IsoK was added to HEK293 cells, 40% of the radiolabel extracted into the chloroform lower phase suggesting the possible formation of PE adducts. We therefore developed methods to measure IsoK-PE adducts in cells. IsoK-PE was quantified by LC/MS/MS after hydrolysis to IsoK-ethanolamine by Streptomyces chromofuscus phospholipase D. In HEK293 and human umbilical vein endothelial cells (HUVEC), IsoK dose-dependently increased PE adduct concentrations to a greater extent than protein adduct. To test the biological significance of IsoK-PE formation, we treated HUVEC with IsoK-PE. IsoK-PE dose dependently induced cytotoxicity (LC(50) 2.2 muM). These results indicate that cellular PE is a significant target of IsoKs, and that formation of PE adducts may mediate some of the biological effects of IsoKs relevant to disease.
Collapse
Affiliation(s)
- C Blake Sullivan
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
180
|
Eisenstein SA, Holmes PV, Hohmann AG. Endocannabinoid modulation of amphetamine sensitization is disrupted in a rodent model of lesion-induced dopamine dysregulation. Synapse 2009; 63:941-50. [PMID: 19593824 DOI: 10.1002/syn.20679] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We tested the hypothesis that increased dopaminergic sensitivity induced by olfactory bulbectomy is mediated by dysregulation of endocannabinoid signaling. Bilateral olfactory bulbectomy induces behavioral and neurobiological symptomatology related to increased dopaminergic sensitivity. Rats underwent olfactory bulbectomy or sham operations and were assessed 2 weeks later in two tests of hyperdopaminergic responsivity: locomotor response to novelty and locomotor sensitization to amphetamine. Amphetamine (1 mg/kg i.p.) was administered to rats once daily for 8 consecutive days to induce locomotor sensitization. URB597, an inhibitor of the anandamide hydrolyzing enzyme fatty-acid amide hydrolase (FAAH), was administered daily (0.3 mg/kg i.p.) to sham and olfactory bulbectomized (OBX) rats to investigate the impact of FAAH inhibition on locomotor sensitization to amphetamine. Pharmacological specificity was evaluated with the CB(1) antagonist/inverse agonist rimonabant (1 mg/kg i.p). OBX rats exhibited heightened locomotor activity in response to exposure either to a novel open field or to amphetamine administration relative to sham-operated rats. URB597 produced a CB(1)-mediated attenuation of amphetamine-induced locomotor sensitization in sham-operated rats. By contrast, URB597 failed to inhibit amphetamine sensitization in OBX rats. The present results demonstrate that enhanced endocannabinoid transmission attenuates development of amphetamine sensitization in intact animals but not in animals with OBX-induced dopaminergic dysfunction. Our data collectively suggest that the endocannabinoid system is compromised in olfactory bulbectomized rats.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, Georgia 30602-3013, USA
| | | | | |
Collapse
|
181
|
Petersen G, Pedersen AH, Pickering DS, Begtrup M, Hansen HS. Effect of synthetic and natural phospholipids on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D activity. Chem Phys Lipids 2009; 162:53-61. [DOI: 10.1016/j.chemphyslip.2009.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 01/02/2023]
|
182
|
Montero-Moran G, Caviglia JM, McMahon D, Rothenberg A, Subramanian V, Xu Z, Lara-Gonzalez S, Storch J, Carman GM, Brasaemle DL. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J Lipid Res 2009; 51:709-19. [PMID: 19801371 DOI: 10.1194/jlr.m001917] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two amino terminal 6-histidine tags. Recombinant CGI-58 displayed acyl-CoA-dependent acyltransferase activity to lysophosphatidic acid, but not to other lysophospholipid or neutral glycerolipid acceptors. Production of phosphatidic acid increased with time and increasing concentrations of recombinant CGI-58 and was optimal between pH 7.0 and 8.5. The enzyme showed saturation kinetics with respect to 1-oleoyl-lysophosphatidic acid and oleoyl-CoA and preference for arachidonoyl-CoA and oleoyl-CoA. The enzyme showed slight preference for 1-oleoyl lysophosphatidic acid over 1-palmitoyl, 1-stearoyl, or 1-arachidonoyl lysophosphatidic acid. Recombinant CGI-58 showed intrinsic fluorescence for tryptophan that was quenched by the addition of 1-oleoyl-lysophosphatidic acid, oleoyl-CoA, arachidonoyl-CoA, and palmitoyl-CoA, but not by lysophosphatidyl choline. Expression of CGI-58 in fibroblasts from humans with CDS increased the incorporation of radiolabeled fatty acids released from the lipolysis of stored triacylglycerols into phospholipids. CGI-58 is a CoA-dependent lysophosphatidic acid acyltransferase that channels fatty acids released from the hydrolysis of stored triacylglycerols into phospholipids.
Collapse
Affiliation(s)
- Gabriela Montero-Moran
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Hu SSJ, Bradshaw HB, Benton VM, Chen JSC, Huang SM, Minassi A, Bisogno T, Masuda K, Tan B, Roskoski R, Cravatt BF, Di Marzo V, Walker JM. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot Essent Fatty Acids 2009; 81:291-301. [PMID: 19570666 PMCID: PMC2757501 DOI: 10.1016/j.plefa.2009.05.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
Abstract
N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine). In the present study we investigated these biosynthetic mechanisms and report that NADA synthesis requires TH in dopaminergic terminals; however, NA-tyrosine, which we identify here as an endogenous lipid, is not an intermediate. We show that NADA biosynthesis primarily occurs through an enzyme-mediated conjugation of arachidonic acid with dopamine. While this conjugation likely involves a complex of enzymes, our data suggest a direct involvement of fatty acid amide hydrolase in NADA biosynthesis either as a rate-limiting enzyme that liberates arachidonic acid from AEA, or as a conjugation enzyme, or both.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- Department of Psychological and Brain Sciences and the Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 USA
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences and the Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 USA
- The Kinsey Institute for Research in Sex, Gender and Reproduction, Indiana University, Bloomington, IN 47405 USA
- Correspondence: Dr. Heather B. Bradshaw, Department of Psychological and Brain Sciences, the Kinsey Institute of Research in Sex, Gender, and Reproduction, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, USA. Tel. 812 856-1559; Fax. 812 855-4691;
| | - Valery M. Benton
- Department of Psychological and Brain Sciences and the Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 USA
| | - Jay Shih-Chieh Chen
- Department of Psychological and Brain Sciences and the Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 USA
| | - Susan M. Huang
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Alberto Minassi
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - Kim Masuda
- Departments of Cell Biology and Chemistry, the Scripps Research Institute, La Jolla, CA 92037 USA
| | - Bo Tan
- Department of Psychological and Brain Sciences and the Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 USA
| | - Robert Roskoski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, LA 70119 USA
| | - Benjamin F. Cravatt
- Departments of Cell Biology and Chemistry, the Scripps Research Institute, La Jolla, CA 92037 USA
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - J. Michael Walker
- Department of Psychological and Brain Sciences and the Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
184
|
Guan Z. Discovering novel brain lipids by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2814-21. [PMID: 19303823 PMCID: PMC2723173 DOI: 10.1016/j.jchromb.2009.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 11/20/2022]
Abstract
Discovery and structural elucidation of novel brain lipids hold great promise in revealing new lipid functions in the brain and in understanding the biochemical mechanisms underlying brain physiology and pathology. The revived interests in searching for novel brain lipids have been stimulated by the expanding knowledge of the roles of lipids in brain functions, lipids acting as signaling molecules, and the advent of lipidomics enabled by the advances in mass spectrometry (MS) and liquid chromatography (LC). The identification and characterization of two classes of novel lipids from the brain are reviewed here: N-acyl phosphatidylserine (N-acyl-PS) and dolichoic acid (Dol-CA). The identification of these lipids benefited from the use of efficient lipid fractionation and separation techniques and highly sensitive, high-resolution tandem MS.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, 240 Nanaline Duke, P.O. Box 3711, Durham, NC 27710, USA.
| |
Collapse
|
185
|
Astarita G, Piomelli D. Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2755-67. [PMID: 19171504 PMCID: PMC2723187 DOI: 10.1016/j.jchromb.2009.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 12/16/2022]
Abstract
The endocannabinoids are signaling lipids present in many living organisms. They activate G protein-coupled cannabinoid receptors to modulate a broad range of biological processes that include emotion, cognition, inflammation and reproduction. The endocannabinoids are embedded in an interconnected network of cellular lipid pathways, the regulation of which is likely to control the strength and duration of endocannabinoid signals. Therefore, physiopathological or pharmacological perturbations of these pathways may indirectly affect endocannabinoid activity and, vice versa, endocannabinoid activity may influence lipid pathways involved in other metabolic and signaling events. Recent progress in liquid chromatography and mass spectrometry has fueled the development of targeted lipidomic approaches, which allow researchers to examine complex lipid interactions in cells and gain a broader view of the endocannabinoid system. Here, we review these new developments from the perspective of our laboratory's experience in the field.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Department of Pharmacology, University of California, Irvine, CA 92967-4625, United States
| | | |
Collapse
|
186
|
Abstract
In animal tissues anandamide and other bioactive N-acylethanolamines are principally produced from glycerophospholipids through the transacylation-phosphodiesterase pathway consisting of two enzymatic reactions. The first reaction is the generation of N-acylphosphatidylethanolamine (NAPE) by transferring an acyl group esterified at sn-1 position of glycerophospholipid to the amino group of phosphatidylethanolamine. This reaction is catalyzed by Ca(2+)-dependent N-acyltransferase. The discovery of Ca(2+)-independent N-acyltransferase revealed the existence of plural enzymes which are capable of catalyzing this reaction. The second reaction is the release of N-acylethanolamine from NAPE catalyzed by NAPE-hydrolyzing phospholipase D (NAPE-PLD). The enzyme belongs to the metallo-beta-lactamase family and specifically hydrolyzes NAPEs. Recent studies, including analysis of NAPE-PLD-deficient mice, led to the discovery of NAPE-PLD-independent pathways for the anandamide biosynthesis.
Collapse
Affiliation(s)
- Yasuo Okamoto
- The Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | | | | |
Collapse
|
187
|
Ulcerative colitis induces changes on the expression of the endocannabinoid system in the human colonic tissue. PLoS One 2009; 4:e6893. [PMID: 19730730 PMCID: PMC2731878 DOI: 10.1371/journal.pone.0006893] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/04/2009] [Indexed: 11/19/2022] Open
Abstract
Background Recent studies suggest potential roles of the endocannabinoid system in gastrointestinal inflammation. Although cannabinoid CB2 receptor expression is increased in inflammatory disorders, the presence and function of the remaining proteins of the endocannabinoid system in the colonic tissue is not well characterized. Methodology Cannabinoid CB1 and CB2 receptors, the enzymes for endocannabinoid biosynthesis DAGLα, DAGLβ and NAPE-PLD, and the endocannabinoid-degradating enzymes FAAH and MAGL were analysed in both acute untreated active ulcerative pancolitis and treated quiescent patients in comparison with healthy human colonic tissue by immunocytochemistry. Analyses were carried out according to clinical criteria, taking into account the severity at onset and treatment received. Principal Findings Western blot and immunocytochemistry indicated that the endocannabinoid system is present in the colonic tissue, but it shows a differential distribution in epithelium, lamina propria, smooth muscle and enteric plexi. Quantification of epithelial immunoreactivity showed an increase of CB2 receptor, DAGLα and MAGL expression, mainly in mild and moderate pancolitis patients. In contrast, NAPE-PLD expression decreased in moderate and severe pancolitis patients. During quiescent pancolitis, CB1, CB2 and DAGLα expression dropped, while NAPE-PLD expression rose, mainly in patients treated with 5-ASA or 5-ASA+corticosteroids. The number of immune cells containing MAGL and FAAH in the lamina propria increased in acute pancolitis patients, but dropped after treatment. Conclusions Endocannabinoids signaling pathway, through CB2 receptor, may reduce colitis-associated inflammation suggesting a potential drugable target for the treatment of inflammatory bowel diseases.
Collapse
|
188
|
Faure L, Coulon D, Laroche-Traineau J, Le Guedard M, Schmitter JM, Testet E, Lessire R, Bessoule JJ. Discovery and characterization of an Arabidopsis thaliana N-acylphosphatidylethanolamine synthase. J Biol Chem 2009; 284:18734-41. [PMID: 19447891 PMCID: PMC2707190 DOI: 10.1074/jbc.m109.005744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/14/2009] [Indexed: 11/06/2022] Open
Abstract
N-Acylethanolamines (NAEs) are lipids involved in several physiological processes in animal and plant cells. In brain, NAEs are ligands of endocannabinoid receptors, which modulate various signaling pathways. In plant, NAEs regulate seed germination and root development, and they are involved in plant defense against pathogen attack. This signaling activity is started by an enzyme called N-acylphosphatidylethanolamine (NAPE) synthase. This catalyzes the N-acylation of phosphatidylethanolamine to form NAPE, which is most likely hydrolyzed by phospholipase D beta/gamma isoforms to generate NAE. This compound is further catabolized by fatty amide hydrolase. The genes encoding the enzymes involved in NAE metabolism are well characterized except for the NAPE synthase gene(s). By heterologous expression in Escherichia coli and overexpression in plants, we characterized an acyltransferase from Arabidopsis thaliana (At1g78690p) catalyzing the synthesis of lipids identified as NAPEs (two-dimensional TLC, phospholipase D hydrolysis assay, and electrospray ionization-tandem mass spectrometry analyses). The ability of free fatty acid and acyl-CoA to be used as acyl donor was compared in vitro with E. coli membranes and purified enzyme (obtained by immobilized metal ion affinity chromatography). In both cases, NAPE was synthesized only in the presence of acyl-CoA. beta-Glucuronidase promoter experiments revealed a strong expression in roots and young tissues of plants. Using yellow fluorescent protein fusion, we showed that the NAPE synthase is located in the plasmalemma of plant cells.
Collapse
Affiliation(s)
- Lionel Faure
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| | - Denis Coulon
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| | - Jeanny Laroche-Traineau
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| | - Marina Le Guedard
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| | - Jean-Marie Schmitter
- the Université de Bordeaux, UMR 5248 CNRS-UBX1-ENITAB, IECB, 2 Rue Robert Escarpit, 33607 Pessac, France
| | - Eric Testet
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| | - René Lessire
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| | - Jean-Jacques Bessoule
- From the Laboratoire de Biogenèse Membranaire, Université Victor Segalen Bordeaux 2, UMR-CNRS 5200, 146 Rue Léo Saignat, Case 92, 33076 Bordeaux Cedex, France and
| |
Collapse
|
189
|
Nagy B, Fedonidis C, Photiou A, Wahba J, Paule C, Ma D, Buluwela L, Nagy I. Capsaicin-sensitive primary sensory neurons in the mouse express N-Acyl phosphatidylethanolamine phospholipase D. Neuroscience 2009; 161:572-7. [PMID: 19327387 PMCID: PMC2724038 DOI: 10.1016/j.neuroscience.2009.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 01/30/2023]
Abstract
Our previous finding, that the capsaicin- and KCl-induced Ca(2+)-dependent production of the intra- and intercellular signaling molecule N-arachidonoyl ethanolamine (anandamide) in cultured primary sensory neurons could be abolished and reduced by approximately 2/3 by capsaicin-induced degeneration of capsaicin-sensitive neurons, respectively suggests that a major sub-population of capsaicin-sensitive cells together with a group of non-capsaicin-sensitive cells should express enzymes involved in Ca(2+)-dependent anandamide synthesis. N-acyl phosphotidylethanolamine phospholipase D (NAPE-PLD) is known to be involved in Ca(2+)-dependent anandamide production. Hence, here, we used reverse transcriptase and quantitative real time polymerase chain reaction to study NAPE-PLD expression in dorsal root ganglia and to clarify the sub-population of cells expressing this enzyme. Cultures prepared from mouse dorsal root ganglia were grown either in the absence or presence of the neurotoxin, capsaicin (10 muM) overnight. We report, that NAPE-PLD is expressed both in dorsal root ganglia and cultures prepared from dorsal root ganglia and grown in the absence of capsaicin. Furthermore, we also report that capsaicin application downregulates the expression of NAPE-PLD as well as the capsaicin receptor, transient receptor potential vanilloid type 1 ion channel, by about 70% in the cultures prepared from dorsal root ganglia. These findings indicate that a major sub-population of capsaicin-sensitive primary sensory neurons expresses NAPE-PLD, and suggest that NAPE-PLD is expressed predominantly by capsaicin-sensitive neurons in dorsal root ganglia. These data also suggest that NAPE-PLD might be a target to control the activity and excitability of a major sub-population of nociceptive primary sensory neurons.
Collapse
Key Words
- anandamide
- dorsal root ganglion
- transient receptor vanilloid type 1
- trpv1
- nociceptive
- pain
- anandamide, n-arachidonoyl ethanolamine
- cb1, cannabinoid 1
- cb2, cannabinoid 2
- drg, dorsal root ganglia
- faah, fatty acid amide hydrolase
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- nape-pld, n-acyl phosphotidylethanolamine phospholipase d
- pcr, polymerase chain reaction
- rt, reverse transcriptase
- trpv1, transient receptor potential vanilloid type 1
Collapse
Affiliation(s)
- B. Nagy
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - C. Fedonidis
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - A. Photiou
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
- Department of Oncology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - J. Wahba
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - C.C. Paule
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - D. Ma
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - L. Buluwela
- Department of Oncology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - I. Nagy
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
190
|
Muccioli GG, Sia A, Muchowski PJ, Stella N. Genetic manipulation of palmitoylethanolamide production and inactivation in Saccharomyces cerevisiae. PLoS One 2009; 4:e5942. [PMID: 19529773 PMCID: PMC2691958 DOI: 10.1371/journal.pone.0005942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 05/21/2009] [Indexed: 12/01/2022] Open
Abstract
Background Lipids can act as signaling molecules, activating intracellular and membrane-associated receptors to regulate physiological functions. To understand how a newly discovered signaling lipid functions, it is necessary to identify and characterize the enzymes involved in their production and inactivation. The signaling lipid N-palmitoylethanolamine (PEA) is known to activate intracellular and membrane-associated receptors and regulate physiological functions, but little is known about the enzymes involved in its production and inactivation. Principal Findings Here we show that Saccharomyces cerevisiae produce and inactivate PEA, suggesting that genetic manipulations of this lower eukaryote may be used to identify the enzymes involved in PEA metabolism. Accordingly, using single gene deletion mutants, we identified yeast genes that control PEA metabolism, including SPO14 (a yeast homologue of the mammalian phospholipase D) that controls PEA production and YJU3 (a yeast homologue of the mammalian monoacylglycerol lipase) that controls PEA inactivation. We also found that PEA metabolism is affected by heterologous expression of two mammalian proteins involved in neurodegenerative diseases, namely huntingtin and α-synuclein. Significance Together these findings show that forward and reverse genetics in S. cerevisiae can be used to identify proteins involved in PEA production and inactivation, and suggest that mutated proteins causing neurodegenerative diseases might affect the metabolism of this important signaling lipid.
Collapse
Affiliation(s)
- Giulio G. Muccioli
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Laboratory, Chemical and Physico-chemical Analysis of Drugs Unit, UCL-CHAM (7230), Université catholique de Louvain, Bruxelles, Belgium
| | - Angela Sia
- Gladstone Institute of Neurological Disease and Departments of Biochemistry and Biophysics, and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Paul J. Muchowski
- Gladstone Institute of Neurological Disease and Departments of Biochemistry and Biophysics, and Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PJM); (NS)
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (PJM); (NS)
| |
Collapse
|
191
|
Hwang J, Adamson C, Butler D, Janero DR, Makriyannis A, Bahr BA. Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci 2009; 86:615-23. [PMID: 19527737 DOI: 10.1016/j.lfs.2009.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 12/31/2022]
Abstract
AIMS This review posits that fatty acid amide hydrolase (FAAH) inhibition has therapeutic potential against neuropathological states including traumatic brain injury; Alzheimer's, Huntington's, and Parkinson's diseases; and stroke. MAIN METHODS This proposition is supported by data from numerous in vitro and in vivo experiments establishing metabolic and pharmacological contexts for the neuroprotective role of the endogenous cannabinoid ("endocannabinoid") system and selective FAAH inhibitors. KEY FINDINGS The systems biology of endocannabinoid signaling involves two main cannabinoid receptors, the principal endocannabinoid lipid mediators N-arachidonoylethanolamine ("anandamide") (AEA) and 2-arachidonoyl glycerol (2-AG), related metabolites, and the proteins involved in endocannabinoid biosynthesis, biotransformation, and transit. The endocannabinoid system is capable of activating distinct signaling pathways on-demand in response to pathogenic events or stimuli, thereby enhancing cell survival and promoting tissue repair. Accumulating data suggest that endocannabinoid system modulation at discrete targets is a promising pharmacotherapeutic strategy for treating various medical conditions. In particular, neuronal injury activates cannabinoid signaling in the central nervous system as an intrinsic neuroprotective response. Indirect potentiation of this salutary response through pharmacological inhibition of FAAH, an endocannabinoid-deactivating enzyme, and consequent activation of signaling pathways downstream from cannabinoid receptors have been shown to promote neuronal maintenance and function. SIGNIFICANCE This therapeutic modality has the potential to offer site- and event-specific neuroprotection under conditions where endocannabinoids are being produced as part of a physiological protective mechanism. In contrast, direct application of cannabinoid receptor agonists to the central nervous system may activate CB receptors indiscriminately and invite unwanted psychotrophic effects.
Collapse
Affiliation(s)
- Jeannie Hwang
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
192
|
Giuffrida A, McMahon LR. In vivo pharmacology of endocannabinoids and their metabolic inhibitors: therapeutic implications in Parkinson's disease and abuse liability. Prostaglandins Other Lipid Mediat 2009; 91:90-103. [PMID: 19523530 DOI: 10.1016/j.prostaglandins.2009.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 01/03/2023]
Abstract
This review focuses on the behavioral pharmacology of endogenous cannabinoids (endocannabinoids) and indirect-acting cannabinoid agonists that elevate endocannabinoid tone by inhibiting the activity of metabolic enzymes. Similarities and differences between prototype cannabinoid agonists, endocannabinoids and inhibitors of endocannabinoid metabolism are discussed in the context of endocannabinoid pharmacokinetics in vivo. The distribution and function of cannabinoid and non-CB(1)/CB(2) receptors are also covered, with emphasis on their role in disorders characterized by dopamine dysfunction, such as drug abuse and Parkinson's disease. Finally, evidence is presented to suggest that FAAH inhibitors lack the abuse liability associated with CB(1) agonists, although they may modify the addictive properties of other drugs, such as alcohol.
Collapse
Affiliation(s)
- Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | |
Collapse
|
193
|
Petrosino S, Ligresti A, Di Marzo V. Endocannabinoid chemical biology: a tool for the development of novel therapies. Curr Opin Chem Biol 2009; 13:309-20. [DOI: 10.1016/j.cbpa.2009.04.616] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/17/2009] [Indexed: 01/26/2023]
|
194
|
Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol 2009; 78:553-60. [PMID: 19413995 DOI: 10.1016/j.bcp.2009.04.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 02/06/2023]
Abstract
Anandamide and the other N-acylethanolamines, e.g. oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA), may be formed by several enzymatic pathways from their precursors, which are the N-acylated ethanolamine phospholipids. The exact enzymatic pathways involved in their biosynthesis in specific tissues are not clarified. It has been suggested that endogenous anandamide could stimulate food intake by activation of cannabinoid receptors in the brain and/or in the intestinal tissue. On the other hand, endogenous OEA and PEA have been suggested to inhibit food intake by acting on receptors in the intestine. At present, there is no clear role for endogenous anandamide in controlling food intake via cannabinoid receptors, neither centrally nor in the gastrointestinal tract. However, OEA, PEA and perhaps also LEA may be involved in regulation of food intake by selective prolongation of feeding latency and post-meal interval. These N-acylethanolamines seem to be formed locally in the intestine, where they can activate PPARalpha located in close proximity to their site of synthesis. The rapid onset of OEA response and its reliance on an intact vagus nerve suggests that activation of PPARalpha does not result in formation of a transcription-dependent signal but must rely on an unidentified non-genomic signal that translates to activation of vagal afferents. Whether GPR119, TRPV1 and/or intestinal ceramide levels also contribute to the anorectic and weight-reducing effect of exogenous OEA is less clear. Prolonged intake of dietary fat (45 energy%) may promote over-consumption of food by decreasing the endogenous levels of OEA, PEA and LEA in the intestine.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology & Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
195
|
Abstract
Endocannabinoids, such as anandamide and 2-arachidonoylglycerol, are synthesized from membrane phospholipids in the heart and other cardiovascular tissues. They activate cannabinoid CB1 and CB2 receptors, transient receptor potential V1 (TRPV1), peroxisome proliferator-activated receptors, and perhaps a novel vascular G-protein-coupled receptor. Inactivation is by cellular uptake and fatty acid amide hydrolase. Endocannabinoids relax coronary and other arteries and decrease cardiac work but seem not to be involved in tonic regulation of cardiovascular function. They act as a stress response system, which is activated, for example, in myocardial infarction and circulatory shock. Endocannabinoids are largely protective; they decrease tissue damage and arrhythmia in myocardial infarction and may reduce progression of atherosclerosis (CB2 receptor stimulation inhibits lesion progression), and fatty acid amide hydrolase knockout mice (which have enhanced endocannabinoid levels) show decreased cardiac dysfunction with age compared with wild types. However, endocannabinoids may mediate doxorubicin-induced cardiac dysfunction. Their signaling pathways are not fully elucidated but they can lead to changed expression of a variety of genes, including those involved in inflammatory responses. There is potential for therapeutic targeting of endocannabinoids and their receptors, but their apparent involvement in both protective and deleterious actions on the heart means that careful risk assessment is needed before any treatment can be introduced.
Collapse
Affiliation(s)
- C Robin Hiley
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
196
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
197
|
De Petrocellis L, Di Marzo V. An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 2009; 23:1-15. [PMID: 19285257 DOI: 10.1016/j.beem.2008.10.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A rather complex and pleiotropic endogenous signalling system was discovered in the late 1990s, starting from studies on the mechanism of action of Delta(9)-tetrahydrocannabinol, the major psychoactive principle of the hemp plant Cannabis sativa. This system includes: (1) at least two G-protein-coupled receptors, known as the cannabinoid CB(1) and CB(2) receptors; (2) the endogenous agonists at these receptors, known as endocannabinoids, of which anandamide and 2-arachidonoylglycerol are the best known; and (3) proteins and enzymes for the regulation of endocannabinoid levels and action at receptors. The number of the members of this endocannabinoid signalling system seems to be ever increasing as new non-CB(1) non-CB(2) receptors for endocannabinoids, endocannabinoid-related molecules with little activity at CB(1) and CB(2) receptors, and new enzymes for endocannabinoid biosynthesis and degradation are being identified every year. The complexity of the endocannabinoid system and of its physiological and pathological function is outlined in this introductory chapter, for a better understanding of the subsequent chapters in this special issue.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry and Institute of Cybernetics, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | | |
Collapse
|
198
|
Schlosburg JE, Kinsey SG, Lichtman AH. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS JOURNAL 2009; 11:39-44. [PMID: 19184452 DOI: 10.1208/s12248-008-9075-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 12/09/2008] [Indexed: 12/20/2022]
Abstract
The endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA) produces most of its pharmacological effects by binding and activating CB(1) and CB(2) cannabinoid receptors within the CNS and periphery. However, the actions of AEA are short lived because of its rapid catabolism by fatty acid amide hydrolase (FAAH). Indeed, FAAH knockout mice as well as animals treated with FAAH inhibitors are severely impaired in their ability to hydrolyze AEA as well as a variety of noncannabinoid lipid signaling molecules and consequently possess greatly elevated levels of these endogenous ligands. In this mini review, we describe recent research that has investigated the functional consequences of inhibiting this enzyme in a wide range of animal models of inflammatory and neuropathic pain states. FAAH-compromised animals reliably display antinociceptive and anti-inflammatory phenotypes with a similar efficacy as direct-acting cannabinoid receptor agonists, such as Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of Cannabis sativa. Importantly, FAAH blockade does not elicit any apparent psychomimetic effects associated with THC or produce reinforcing effects that are predictive of human drug abuse. The beneficial effects caused by FAAH blockade in these models are predominantly mediated through the activation of CB(1) and/or CB(2) receptors, though noncannabinoid mechanisms of actions can also play contributory or even primary roles. Collectively, the current body of scientific literature suggests that activating the endogenous cannabinoid system by targeting FAAH is a promising strategy to treat pain and inflammation but lacks untoward side effects typically associated with Cannabis sativa.
Collapse
Affiliation(s)
- Joel E Schlosburg
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, P.O. Box 980613, Richmond, Virginia 23298-0613, USA
| | | | | |
Collapse
|
199
|
Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 2009; 205:433-41. [PMID: 19187936 DOI: 10.1016/j.atherosclerosis.2008.12.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/09/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
In this study we analysed the possible modulation of endocannabinoids and related molecules during atherosclerosis development in mice. Wild-type and apolipoprotein E knockout (ApoE(-/-)) mice were fed either normal chow or high-cholesterol diet for 8-12 weeks, and tissue endocannabinoid levels were measured by liquid chromatography-mass spectrometry. We found increased levels of 2-AG in aortas and visceral adipose tissue (VAT) of ApoE(-/-) mice fed on high-cholesterol diet for 12 weeks as compared to ApoE(-/-) mice fed on normal chow or wild-type mice fed on cholesterol. No significant difference in 2-AG levels was observed after 8 weeks of diet, and no changes in anandamide levels were found in any group. The levels of the anandamide-related mediators with anti-inflammatory or anti-lipogenic properties, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), decreased or increased only in VAT or in both tissues, respectively. Endocannabinoid- and OEA/PEA-degrading enzymes were expressed by macrophages within atherosclerotic lesions. In vitro, 2-AG and OEA-induced monocyte migration at 0.3-1microM, which corresponds to the levels observed in aortas. PEA 1microM also induced monocyte migration but counteracted the effect of 2-AG, whereas OEA enhanced it. Enhanced 2-AG levels in advanced atherosclerotic lesions may trigger the inflammatory process by recruiting more inflammatory cells and inducing extracellular matrix degradation via CB(2) receptors, and this possibility was supported in vitro but not in vivo by experiments with the CB(2) antagonist, SR144528.
Collapse
|
200
|
Alexander SPH, Kendall DA. The life cycle of the endocannabinoids: formation and inactivation. Curr Top Behav Neurosci 2009; 1:3-35. [PMID: 21104378 DOI: 10.1007/978-3-540-88955-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this chapter, we summarise the current thinking about the nature of endocannabinoids. In describing the life cycle of these agents, we highlight the synthetic and catabolic enzymes suggested to be involved. For each of these, we provide a systematic analysis of information on sequence, subcellular and cellular distribution, as well as physiological and pharmacological substrates, enhancers and inhibitors, together with brief descriptions of the impact of manipulating enzyme levels through genetic mechanisms (dealt with in more detail in the chapter "Genetic Models of the Endocannabinoid System" by Monory and Lutz, this volume). In addition, we describe experiments investigating the stimulation of endocannabinoid synthesis and release in intact cell systems.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK.
| | | |
Collapse
|