151
|
Nakatani Y, Furutani S, Ihara M, Matsuda K. Ivermectin modulation of pH-sensitive chloride channels in the silkworm larvae of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:1-5. [PMID: 26778427 DOI: 10.1016/j.pestbp.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 05/27/2023]
Affiliation(s)
- Yuri Nakatani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shogo Furutani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
152
|
Chosidow A, Gendrel D. [Safety of oral ivermectin in children]. Arch Pediatr 2015; 23:204-9. [PMID: 26697814 DOI: 10.1016/j.arcped.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/17/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022]
Abstract
Ivermectin is an antiparasitic drug, a derivate of avermectins, and a product of fermentation of an actinomycete, Streptomyces avermitilis. Its structure associates two avermectins. Ivermectin acts on the chloride-dependent channels of both glutamate and γ-aminobutyric acid, interrupting neurotransmission in invertebrates. In humans, several mechanisms of brain protection exist, including P-glycoprotein, present on the apical face of endothelial cells of the blood-brain barrier and coded by the MDR1 gene. Ivermectin is presently used in mass treatment of onchocerciasis, other filariasis, some intestinal nematode infections, but also in scabies, and more rarely in resistant head lice. The side effects described are related to the release of antigen and cause an inflammatory reaction. Studies conducted in children or infants have shown good tolerance of ivermectin. However, its use in infants who weigh less than 15kg is a problem because of the absence of marketing authorization for this age group. However, the risk of excessive and uncontrolled use in head lice requires close surveillance.
Collapse
Affiliation(s)
- A Chosidow
- Service de pédiatrie générale, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France.
| | - D Gendrel
- Service de pédiatrie générale, hôpital Necker-Enfants-Malades, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
153
|
Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields. Sci Rep 2015; 5:17090. [PMID: 26621458 PMCID: PMC4664861 DOI: 10.1038/srep17090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/26/2015] [Indexed: 01/21/2023] Open
Abstract
The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply various acaricides. Unfortunately T. urticae has been documented to quickly develop resistance to these acaricides which directly cause control failures. Here, we investigated resistance ratios and distribution of multiple resistance-associated mutations in field collected T. urticae samples compared with a susceptible population. Our research revealed that a mutation in the cytochrome b gene (G126S) in 35% tested T. urticae populations and a mutation in the voltage-gated sodium channel gene (F1538I) in 66.7% populations may contribute resistance to bifenazate and bifenthrin, respectively. No mutations were detected in Glutamate-gated chloride channel subunits tested, suggesting target site insensitivity may not be important in our hop T. urticae resistance to abamectin. However, P450-mediated detoxification was observed and is a putative mechanism for abamectin resistance. Molecular mechanisms of T. urticae chemical adaptation in hopyards is imperative new information that will help growers develop effective and sustainable management strategies.
Collapse
|
154
|
Ho LK, Nodwell JR. David and Goliath: chemical perturbation of eukaryotes by bacteria. J Ind Microbiol Biotechnol 2015; 43:233-48. [PMID: 26433385 PMCID: PMC4752587 DOI: 10.1007/s10295-015-1686-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
Abstract
Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
155
|
Abstract
Ivermectin 1% cream (Soolantra(®); Rosiver™; Izefla(®)) is a novel topical agent indicated for the once-daily treatment of inflammatory lesions of rosacea. Ivermectin is a derivative of the avermectin family of macrocyclic lactone parasiticides. It displays anti-inflammatory properties as well as broad-spectrum anti-parasitic activity, both of which may contribute to its efficacy in treating rosacea. In phase III trials of 12 or 16 weeks' duration in adults with moderate to severe papulopustular rosacea, once-daily ivermectin 1% cream improved the symptoms of rosacea (as per Investigator Global Assessment and inflammatory lesion count) and health-related quality of life versus vehicle, and was more effective than twice-daily metronidazole 0.75% cream in terms of these measures. Ivermectin 1% cream continues to provide benefit for up to 52 weeks of treatment, according to extension studies, and is well tolerated, with the most common treatment-related adverse events (skin burning sensation, pruritus, dry skin and skin irritation) each occurring with low incidence (<2%). Thus, ivermectin 1% cream is an effective and well tolerated option for the topical treatment of inflammatory lesions of rosacea, with the convenience of once-daily application.
Collapse
Affiliation(s)
- Emma D Deeks
- Springer, Private Bag 65901, Mairangi Bay, 0754, Auckland, New Zealand.
| |
Collapse
|
156
|
Xu G, Wu SF, Wu YS, Gu GX, Fang Q, Ye GY. De novo assembly and characterization of central nervous system transcriptome reveals neurotransmitter signaling systems in the rice striped stem borer, Chilo suppressalis. BMC Genomics 2015; 16:525. [PMID: 26173787 PMCID: PMC4501067 DOI: 10.1186/s12864-015-1742-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/30/2015] [Indexed: 01/27/2023] Open
Abstract
Background Neurotransmitter signaling systems play crucial roles in multiple physiological and behavioral processes in insects. Genome wide analyses of de novo transcriptome sequencing and gene specific expression profiling provide rich resources for studying neurotransmitter signaling pathways. The rice striped stem borer, Chilo suppressalis is a destructive rice pest in China and other Asian countries. The characterization of genes involved in neurotransmitter biosynthesis and transport could identify potential targets for disruption of the neurochemical communication and for crop protection. Results Here we report de novo sequencing of the C. suppressalis central nervous system transcriptome, identification and expression profiles of genes putatively involved in neurotransmitter biosynthesis, packaging, and recycling/degradation. A total of 54,411 unigenes were obtained from the transcriptome analysis. Among these unigenes, we have identified 32 unigenes (31 are full length genes), which encode 21 enzymes and 11 transporters putatively associated with biogenic aminergic signaling, acetylcholinergic signaling, glutamatergic signaling and GABAergic signaling. RT-PCR and qRT-PCR results indicated that 12 enzymes were highly expressed in the central nervous system and all the transporters were expressed at significantly high levels in the central nervous system. In addition, the transcript abundances of enzymes and transporters in the central nervous system were validated by qRT-PCR. The high expression levels of these genes suggest their important roles in the central nervous system. Conclusions Our study identified genes potentially involved in neurotransmitter biosynthesis and transport in C. suppressalis and these genes could serve as targets to interfere with neurotransmitter production. This study presents an opportunity for the development of specific and environmentally safe insecticides for pest control. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1742-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China. .,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ya-Su Wu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
157
|
Murayama T, Maruyama IN. Alkaline pH sensor molecules. J Neurosci Res 2015; 93:1623-30. [PMID: 26154399 DOI: 10.1002/jnr.23621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022]
Abstract
Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.
Collapse
Affiliation(s)
- Takashi Murayama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ichiro N Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
158
|
The emergence of macrocyclic lactone resistance in the canine heartworm, Dirofilaria immitis. Parasitology 2015; 142:1249-59. [PMID: 26040450 DOI: 10.1017/s003118201500061x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prevention of heartworm disease caused by Dirofilaria immitis in domestic dogs and cats relies on a single drug class, the macrocyclic lactones (MLs). Recently, it has been demonstrated that ML-resistant D. immitis are circulating in the Mississippi Delta region of the USA, but the prevalence and impact of these resistant parasites remains unknown. We review published studies that demonstrated resistance in D.immitis, along with our current understanding of its mechanisms. Efforts to develop in vitro tests for resistance have not yet yielded a suitable assay, so testing infected animals for microfilariae that persist in the face of ML treatment may be the best current option. Since the vast majority of D. immitis populations continue to be drug-sensitive, protected dogs are likely to be infected with only a few parasites and experience relatively mild disease. In cats, infection with small numbers of worms can cause severe disease and so the clinical consequences of drug resistance may be more severe. Since melarsomine dihydrochloride, the drug used to remove adult worms, is not an ML, the ML-resistance should have no impact on our ability to treat diseased animals. A large refugium of heartworms that are not exposed to drugs exists in unprotected dogs and in wild canids, which may limit the development and spread of resistance alleles.
Collapse
|
159
|
Giannelli A, Brianti E, Varcasia A, Colella V, Tamponi C, Di Paola G, Knaus M, Halos L, Beugnet F, Otranto D. Efficacy of Broadline® spot-on against Aelurostrongylus abstrusus and Troglostrongylus brevior lungworms in naturally infected cats from Italy. Vet Parasitol 2015; 209:273-7. [PMID: 25819917 DOI: 10.1016/j.vetpar.2015.02.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/24/2022]
Abstract
The increasing reports of Aelurostrongylus abstrusus infection and the new information on Troglostrongylus brevior have spurred the interest of the scientific community towards the research of pharmaceutical compounds effective against both pathogens. A novel topical combination of fipronil, (S)-methoprene, eprinomectin and praziquantel (Broadline®, Merial) has been released for the treatment of a variety of feline parasitic infections. The present study reports the efficacy of this spot-on in treating cats naturally infected by feline lungworms. Client owned cats (n=191) were enrolled from three geographical areas of Italy and faecal samples were examined by floatation and Baermann techniques. Twenty-three individuals were positive for L1 of A. abstrusus (n=18) or T. brevior (n=3) or for both species (n=2) and they were topically treated with Broadline®. Seventeen of them were also concomitantly infected by other parasites. Four weeks after treatment, faecal samples were collected and examined to assess the efficacy of a single administration of the product. Based on lungworm larvae counts, the efficacy of the treatment was 90.5% or 100% for A. abstrusus or T. brevior, respectively. Cats released significantly lower amounts of lungworm larvae after treatment compared to pre-treatment (p<0.0001). All but three cats were negative for other nematodes after treatment and all cats recovered from respiratory signs. Results of this study indicate that a single administration of the topical combination fipronil, (S)-methoprene, eprinomectin and praziquantel is effective and safe for the treatment of A. abstrusus and/or T. brevior infections in cats living under field conditions.
Collapse
Affiliation(s)
- Alessio Giannelli
- Dipartimento di Medicina Veterinaria, University of Bari, Bari, Italy
| | - Emanuele Brianti
- Dipartimento di Scienze Veterinarie, University of Messina, Italy
| | - Antonio Varcasia
- Dipartimento di Medicina Veterinaria, University of Sassari, Italy
| | - Vito Colella
- Dipartimento di Medicina Veterinaria, University of Bari, Bari, Italy
| | - Claudia Tamponi
- Dipartimento di Medicina Veterinaria, University of Sassari, Italy
| | | | - Martin Knaus
- Merial GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - Lénaïg Halos
- Merial SAS, Sanofi Pasteur Confluence, Lyon, France
| | | | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, University of Bari, Bari, Italy.
| |
Collapse
|
160
|
Kulke D, von Samson-Himmelstjerna G, Miltsch SM, Wolstenholme AJ, Jex AR, Gasser RB, Ballesteros C, Geary TG, Keiser J, Townson S, Harder A, Krücken J. Characterization of the Ca2+-gated and voltage-dependent K+-channel Slo-1 of nematodes and its interaction with emodepside. PLoS Negl Trop Dis 2014; 8:e3401. [PMID: 25521608 PMCID: PMC4270693 DOI: 10.1371/journal.pntd.0003401] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
The cyclooctadepsipeptide emodepside and its parent compound PF1022A are broad-spectrum nematicidal drugs which are able to eliminate nematodes resistant to other anthelmintics. The mode of action of cyclooctadepsipeptides is only partially understood, but involves the latrophilin Lat-1 receptor and the voltage- and calcium-activated potassium channel Slo-1. Genetic evidence suggests that emodepside exerts its anthelmintic activity predominantly through Slo-1. Indeed, slo-1 deficient Caenorhabditis elegans strains are completely emodepside resistant. However, direct effects of emodepside on Slo-1 have not been reported and these channels have only been characterized for C. elegans and related Strongylida. Molecular and bioinformatic analyses identified full-length Slo-1 cDNAs of Ascaris suum, Parascaris equorum, Toxocara canis, Dirofilaria immitis, Brugia malayi, Onchocerca gutturosa and Strongyloides ratti. Two paralogs were identified in the trichocephalids Trichuris muris, Trichuris suis and Trichinella spiralis. Several splice variants encoding truncated channels were identified in Trichuris spp. Slo-1 channels of trichocephalids form a monophyletic group, showing that duplication occurred after the divergence of Enoplea and Chromadorea. To explore the function of a representative protein, C. elegans Slo-1a was expressed in Xenopus laevis oocytes and studied in electrophysiological (voltage-clamp) experiments. Incubation of oocytes with 1-10 µM emodepside caused significantly increased currents over a wide range of step potentials in the absence of experimentally increased intracellular Ca2+, suggesting that emodepside directly opens C. elegans Slo-1a. Emodepside wash-out did not reverse the effect and the Slo-1 inhibitor verruculogen was only effective when applied before, but not after, emodepside. The identification of several splice variants and paralogs in some parasitic nematodes suggests that there are substantial differences in channel properties among species. Most importantly, this study showed for the first time that emodepside directly opens a Slo-1 channel, significantly improving the understanding of the mode of action of this drug class.
Collapse
Affiliation(s)
- Daniel Kulke
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Global Drug Discovery, Animal Health, Parasiticides, Bayer HealthCare, Leverkusen, Germany
| | | | - Sandra M. Miltsch
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Aaron R. Jex
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Cristina Ballesteros
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Simon Townson
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Harrow, Middlesex, United Kingdom
| | - Achim Harder
- WE Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
161
|
Greenberg RM. Ion channels and drug transporters as targets for anthelmintics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014; 1:51-60. [PMID: 25554739 PMCID: PMC4278637 DOI: 10.1007/s40588-014-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology School of Veterinary Medicine University of Pennsylvania 3800 Spruce Street Philadelphia PA 19104 Tel: 215-898-5678
| |
Collapse
|
162
|
Zemkova H, Tvrdonova V, Bhattacharya A, Jindrichova M. Allosteric modulation of ligand gated ion channels by ivermectin. Physiol Res 2014; 63 Suppl 1:S215-24. [PMID: 24564661 DOI: 10.33549/physiolres.932711] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ivermectin acts as a positive allosteric regulator of several ligand-gated channels including the glutamate-gated chloride channel (GluCl), gamma aminobutyric acid type-A receptor, glycine receptor, neuronal alpha7-nicotinic receptor and purinergic P2X4 receptor. In most of the ivermectin-sensitive channels, the effects of ivermectin include the potentiation of agonist-induced currents at low concentrations and channel opening at higher concentrations. Based on mutagenesis, electrophysiological recordings and functional analysis of chimeras between ivermectin-sensitive and ivermectin-insensitive receptors, it has been concluded that ivermectin acts by insertion between transmembrane helices. The three-dimensional structure of C. elegans GluCl complexed with ivermectin has revealed the details of the ivermectin-binding site, however, no generic motif of amino acids could accurately predict ivermectin binding site for other ligand gated channels. Here, we will review what is currently known about ivermectin binding and modulation of Cys-loop receptor family of ligand-gated ion channels and what are the critical structural determinants underlying potentiation of the P2X4 receptor channel.
Collapse
Affiliation(s)
- H Zemkova
- Department of Cellular and Molecular Neuroendocrinology and Biocev, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
163
|
Furutani S, Ihara M, Nishino Y, Akamatsu M, Jones AK, Sattelle DB, Matsuda K. Exon 3 splicing and mutagenesis identify residues influencing cell surface density of heterologously expressed silkworm (Bombyx mori) glutamate-gated chloride channels. Mol Pharmacol 2014; 86:686-95. [PMID: 25261427 DOI: 10.1124/mol.114.095869] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems. Insect GluCls show alternative splicing, and, to determine its impact on channel function and pharmacology, we isolated GluCl cDNAs from larvae of the silkworm (Bombyx mori). We show that six B. mori glutamate-gated chloride channel variants are generated by splicing in exons 3 and 9 and that exons 3b and 3c are common in the brain and third thoracic ganglion. When expressed in Xenopus laevis oocytes, the three functional exon 3 variants (3a, b, c) all had similar EC50 values for l-glutamate and ivermectin (IVM); however, Imax (the maximum l-glutamate- and IVM-induced response of the channels at saturating concentrations) differed strikingly between variants, with the 3c variant showing the largest l-glutamate- and IVM-induced responses. By contrast, a partial deletion detected in exon 9 had a much smaller impact on l-glutamate and IVM actions. Binding assays using [(3)H]IVM indicate that diversity in IVM responses among the GluCl variants is mainly due to the impact on channel assembly, altering receptor cell surface numbers. GluCl variants expressed in HEK293 cells show that structural differences influenced Bmax but not Kd values of [(3)H]IVM. Domain swapping and site-directed mutagenesis identified four amino acids in exon 3c as hot spots determining the highest amplitude of the l-glutamate and IVM responses. Modeling the GluCl 3a and 3c variants suggested that three of the four amino acids contribute to intersubunit contacts, whereas the other interacts with the TM2-TM3 linker, influencing the receptor response.
Collapse
Affiliation(s)
- Shogo Furutani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| | - Yuri Nishino
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| | - Miki Akamatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| | - Andrew K Jones
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| | - David B Sattelle
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)
| |
Collapse
|
164
|
Molecular determinants of agonist selectivity in glutamate-gated chloride channels which likely explain the agonist selectivity of the vertebrate glycine and GABAA-ρ receptors. PLoS One 2014; 9:e108458. [PMID: 25259865 PMCID: PMC4178172 DOI: 10.1371/journal.pone.0108458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/11/2014] [Indexed: 11/29/2022] Open
Abstract
Orthologous Cys-loop glutamate-gated chloride channels (GluClR’s) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR’s from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia receptor also explain the agonist profile seen in the glycine and GABAA-ρ receptors.
Collapse
|
165
|
Cornejo I, Andrini O, Niemeyer MI, Marabolí V, González-Nilo FD, Teulon J, Sepúlveda FV, Cid LP. Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish. PLoS Pathog 2014; 10:e1004402. [PMID: 25255455 PMCID: PMC4177951 DOI: 10.1371/journal.ppat.1004402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 08/15/2014] [Indexed: 12/02/2022] Open
Abstract
Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC50 value of around 200 nM, being cooperative (nH = 2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy. Sea lice are the main parasites affecting farmed salmon and trout in the world. Caligus rogercresseyi is the principal sea louse species infesting farmed fish in the southern hemisphere. Successful control of these parasites has been achieved using macrocyclic lactones (MLs), but resistance has emerged over time. In other invertebrates, MLs target membrane receptors regulating synaptic transmission in the parasite nervous system. Here we identify and study the function of such a receptor from Caligus rogercresseyi, and gain an idea about how two MLs, ivermectin and emamectin, interact with the receptor to produce their effects. Our molecular modeling of the protein in complex with the drugs suggests a novel way in which ivermectin and emamectin exert their effects on CrGluCl due to a lack of conservation at interaction sites identified in the crystal structure of the receptor from C. elegans. We believe that the identification of a ML target in sea louse will aid the study of drug-resistance mechanisms and could help in the design of new, more efficient antiparasitic drugs.
Collapse
Affiliation(s)
| | - Olga Andrini
- UPMC Université Paris 06, UMR_S 1138, Team 3, Paris, France
- INSERM, UMR_S 872, Paris, France
| | | | - Vanessa Marabolí
- Universidad Andrés Bello, Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Santiago, Chile
| | - F. Danilo González-Nilo
- Universidad Andrés Bello, Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Jacques Teulon
- UPMC Université Paris 06, UMR_S 1138, Team 3, Paris, France
- INSERM, UMR_S 872, Paris, France
| | | | - L. Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
166
|
GluCl a target of indole alkaloid okaramines: a 25 year enigma solved. Sci Rep 2014; 4:6190. [PMID: 25155752 PMCID: PMC4143795 DOI: 10.1038/srep06190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022] Open
Abstract
In 1989, indole alkaloid okaramines isolated from the fermentation products of Penicillium simplicissimum were shown to be insecticidal, yet the mechanism of their toxicity to insects remains unknown. We therefore examined the action of okaramine B on silkworm larval neurons using patch-clamp electrophysiology. Okaramine B induced inward currents which reversed close to the chloride equilibrium potential and were blocked by fipronil. Thus it was tested on the silkworm RDL (resistant-to-dieldrin) γ-aminobutyric-acid-gated chloride channel (GABACl) and a silkworm L-glutamate-gated chloride channel (GluCl) expressed in Xenopus laevis oocytes. Okaramine B activated GluCl, but not RDL. GluCl activation by okaramines correlated with their insecticidal activity, offering a solution to a long-standing enigma concerning their insecticidal actions. Also, unlike ivermectin, okaramine B was inactive at 10 μM on human α1β2γ2 GABACl and α1β glycine-gated chloride channels and provides a new lead for the development of safe insect control chemicals.
Collapse
|
167
|
Lynagh T, Cromer BA, Dufour V, Laube B. Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:244-55. [PMID: 25516835 PMCID: PMC4266781 DOI: 10.1016/j.ijpddr.2014.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Flatworm and roundworm glutamate-gated chloride channels (GluCls) were compared. Several glutamate analogues activated both GluCls in the millimolar range. Quisqualate selectively activated the flatworm GluCl. Propofol and thymol inhibited both GluCls in the micromolar range.
Pharmacological targeting of glutamate-gated chloride channels (GluCls) is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs against schistosomiasis, flatworm GluCls should be evaluated as potential anthelmintic targets. This study sought to identify agonists or modulators of one such GluCl, SmGluCl-2 from the parasitic flatworm Schistosoma mansoni. The effects of nine glutamate-like compounds and three monoterpenoid ion channel modulators were measured by electrophysiology at SmGluCl-2 recombinantly expressed in Xenopus laevis oocytes. For comparison with an established anthelmintic target, experiments were also performed on the AVR-14B GluCl from the parasitic roundworm Haemonchus contortus. l-Glutamate was the most potent agonist at both GluCls, but l-2-aminoadipate, d-glutamate and d-2-aminoadipate activated SmGluCl-2 (EC50 1.0 ± 0.1 mM, 2.4 ± 0.4 mM, 3.6 ± 0.7 mM, respectively) more potently than AVR-14B. Quisqualate activated only SmGluCl-2 whereas l-aspartate activated only AVR-14B GluCls. Regarding the monoterpenoids, both GluCls were inhibited by propofol, thymol and menthol, SmGluCl-2 most potently by thymol (IC50 484 ± 85 μM) and least potently by menthol (IC50 > 3 mM). Computational docking suggested that agonist and inhibitor potency is attributable to particular interactions with extracellular or membrane-spanning amino acid residues. These results reveal that flatworm GluCls are pharmacologically susceptible to numerous agonists and modulators and indicate that changes to the glutamate γ-carboxyl or to the propofol 6-isopropyl group can alter the differential pharmacology at flatworm and roundworm GluCls. This should inform the development of more potent compounds and in turn lead to novel anthelmintics.
Collapse
Key Words
- Anthelmintic
- Binding site
- ECD, extracellular domain
- GABA, γ-aminobutyric acid
- GABAAR, type A γ-aminobutyric acid receptor
- GluCl
- GluCl, glutamate-gated chloride channel
- GlyR, glycine receptor
- Propofol
- Schistosomiasis
- TMD, transmembrane domain
- Thymol
- cis-ACBD, cis-1-aminocyclobutane-1,3-dicarboxylate
- iGluR, (tetrameric) ionotropic glutamate receptor
- pLGIC, pentameric ligand-gated ion channel (or Cys-loop receptor)
Collapse
Affiliation(s)
- Timothy Lynagh
- Neurophysiology and Neurosensory Systems, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Brett A Cromer
- Health Innovations Research Institute and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Vanessa Dufour
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University - MacDonald Campus, Sainte-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Bodo Laube
- Neurophysiology and Neurosensory Systems, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
168
|
Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 2014; 98:7747-59. [DOI: 10.1007/s00253-014-5926-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022]
|
169
|
Kvaternick V, Kellermann M, Knaus M, Rehbein S, Rosentel J. Pharmacokinetics and metabolism of eprinomectin in cats when administered in a novel topical combination of fipronil, (S)-methoprene, eprinomectin and praziquantel. Vet Parasitol 2014; 202:2-9. [PMID: 24703069 DOI: 10.1016/j.vetpar.2014.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four studies were conducted to determine the pharmacokinetic characteristics and in vitro metabolism of eprinomectin, a semi-synthetic avermectin, in cats. Pharmacokinetic parameters including bioavailability of eprinomectin were determined in a parallel study design comprised of one group of eight cats which were treated once topically at 0.12 mL/kg bodyweight with BROADLINE(®), a novel combination product (fipronil 8.3% (w/v), (S)-methoprene 10% (w/v), eprinomectin 0.4% (w/v) and praziquantel 8.3% (w/v)), delivering a dose of 0.5mg eprinomectin per kg body weight, and a group of six cats which received 0.4% (w/v) eprinomectin at 0.4 mg/kg bodyweight once by intravenous injection. For cats treated by topical application, the average eprinomectin (B1a component) maximum plasma concentration (Cmax) was 20 ng/mL. The maximum concentrations were reached 24h after dosing in the majority of the animals (six of eight cats). The average terminal half-life was 114 h due to slow absorption ('flip-flop' kinetics). Following intravenous administration the average Cmax was 503 ng/mL at 5 min post-dose, and the mean elimination half-life was 23 h. Eprinomectin was widely distributed with a mean volume of distribution of 2,390 mL/kg, and the clearance rate was 81 mL/h/kg. Mean areas under the plasma concentration versus time curves extrapolated to infinity were 2,100 ngh/mL and 5,160 ngh/mL for the topical and intravenous doses, respectively. Topical eprinomectin was absorbed with an average absolute bioavailability of 31%. In a second parallel design study, the dose proportionality of eprinomectin after single topical administration of BROADLINE(®) was studied. Four groups of eight cats each were treated once topically with 0.5, 1, 2 or 5 times the minimum recommended dose of the combination, 0.12 mL/kg bodyweight. Based on comparison of areas under the plasma concentration versus time curves from the time of dosing to the last time point at which eprinomectin B1a was quantified, and Cmax, dose proportionality was established. In addition, the metabolic pathway of eprinomectin using cat liver microsomes, and plasma protein binding using cat, rat, and dog plasma were studied in vitro. Results of the analyses of eprinomectin B1a described here showed that it is metabolically stable and highly protein bound (>99%), and thus likely to be, as with other species, excreted mainly as unchanged parent drug in the feces of cats.
Collapse
Affiliation(s)
- Valerie Kvaternick
- Merial Limited, Pharmacokinetics and Drug Metabolism, North Brunswick, NJ 08902, USA.
| | | | - Martin Knaus
- Merial GmbH, Kathrinenhof Research Center, 83101 Rohrdorf, Germany
| | - Steffen Rehbein
- Merial GmbH, Kathrinenhof Research Center, 83101 Rohrdorf, Germany
| | - Joseph Rosentel
- Merial Limited, Pharmaceutical Research and Development, Duluth, GA 30096, USA
| |
Collapse
|
170
|
Démares F, Drouard F, Massou I, Crattelet C, Lœuillet A, Bettiol C, Raymond V, Armengaud C. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera. Pharmacol Biochem Behav 2014; 124:137-44. [PMID: 24911646 DOI: 10.1016/j.pbb.2014.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 11/16/2022]
Abstract
Glutamate-gated chloride channels (GluCl) belong to the cys-loop ligand-gated ion channel superfamily and their expression had been described in several invertebrate nervous systems. In the honeybee, a unique gene amel_glucl encodes two alternatively spliced subunits, Amel_GluCl A and Amel_GluCl B. The expression and differential localization of those variants in the honeybee brain had been previously reported. Here we characterized the involvement of each variant in olfactory learning and memory processes, using specific small-interfering RNA (siRNA) targeting each variant. Firstly, the efficacy of the two siRNAs to decrease their targets' expression was tested, both at mRNA and protein levels. The two proteins showed a decrease of their respective expression 24h after injection. Secondly, each siRNA was injected into the brain to test whether or not it affected olfactory memory by using a classical paradigm of conditioning the proboscis extension reflex (PER). Amel_GluCl A was found to be involved only in retrieval of 1-nonanol, whereas Amel_GluCl B was involved in the PER response to 2-hexanol used as a conditioned stimulus or as new odorant. Here for the first time, a differential behavioral involvement of two highly similar GluCl subunits has been characterized in an invertebrate species.
Collapse
Affiliation(s)
- Fabien Démares
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Florian Drouard
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Isabelle Massou
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Cindy Crattelet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Aurore Lœuillet
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Célia Bettiol
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Valérie Raymond
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES-EA2647 USC INRA 1330 SFR 4207 QUASAV, LUNAM Université d'Angers, 2 blvd Lavoisier, F-49045 Angers Cedex 01, France
| | - Catherine Armengaud
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
171
|
Lees K, Musgaard M, Suwanmanee S, Buckingham SD, Biggin P, Sattelle D. Actions of agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V) of the Drosophila GABA receptor expressed in Xenopus laevis oocytes. PLoS One 2014; 9:e97468. [PMID: 24823815 PMCID: PMC4019635 DOI: 10.1371/journal.pone.0097468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/20/2014] [Indexed: 11/18/2022] Open
Abstract
Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides.
Collapse
Affiliation(s)
- Kristin Lees
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Maria Musgaard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Siros Suwanmanee
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Steven David Buckingham
- Wolfson Institute for Biomedical Research, Department of Medicine, University College London, London, United Kingdom
| | - Philip Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Sattelle
- Wolfson Institute for Biomedical Research, Department of Medicine, University College London, London, United Kingdom
| |
Collapse
|
172
|
Vatta AF, Dzimianski M, Storey BE, Camus MS, Moorhead AR, Kaplan RM, Wolstenholme AJ. Ivermectin-dependent attachment of neutrophils and peripheral blood mononuclear cells to Dirofilaria immitis microfilariae in vitro. Vet Parasitol 2014; 206:38-42. [PMID: 24594213 DOI: 10.1016/j.vetpar.2014.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
The macrocyclic lactones are the only anthelmintics used to prevent heartworm disease, but it is very difficult to reproduce their in vivo efficacy against Dirofilaria immitis larvae in experiments in vitro. These assays typically measure motility, suggesting that paralysis is not the mode of action of the macrocyclic lactones against D. immitis. We isolated peripheral blood mononuclear cells (PBMC) and neutrophils from uninfected dogs and measured their adherence to D. immitis microfilariae in the presence of varying concentrations of ivermectin. We found that adherence of PBMC to the microfilariae was increased in the presence of ivermectin concentrations ≥100 nM and adherence of neutrophils was increased in drug concentrations ≥10 nM. Up to 50% of microfilariae had adherent PBMC in the presence of the drug, and binding was maximal after 40 h incubation. Neutrophil adherence was maximal after 16 h, with approximately 20% of the microfilariae having at least one cell adhered to them. Adherent neutrophils showed morphological evidence of activation. These results are consistent with a model in which the macrocyclic lactones interfere with the parasites ability to evade the host's innate immune system.
Collapse
Affiliation(s)
- Adriano F Vatta
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Michael Dzimianski
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Bob E Storey
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Melinda S Camus
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Andrew R Moorhead
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Ray M Kaplan
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
173
|
Gassel M, Wolf C, Noack S, Williams H, Ilg T. The novel isoxazoline ectoparasiticide fluralaner: selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:111-24. [PMID: 24365472 DOI: 10.1016/j.ibmb.2013.11.009] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 05/13/2023]
Abstract
Isoxazolines are a novel class of parasiticides that are potent inhibitors of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its parasiticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.) microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The generation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with the development of a membrane potential fluorescence dye assay allowed the comparison of ion channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a novel ectoparasiticide.
Collapse
Affiliation(s)
- Michael Gassel
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Christian Wolf
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Sandra Noack
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Heike Williams
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Thomas Ilg
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany.
| |
Collapse
|
174
|
Carland JE, Cooper MA, Livesey MR, Hales TG, Peters JA, Lambert JJ. Mutagenic analysis of the intracellular portals of the human 5-HT3A receptor. J Biol Chem 2013; 288:31592-601. [PMID: 24030822 PMCID: PMC3814755 DOI: 10.1074/jbc.m113.503300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/11/2013] [Indexed: 11/15/2022] Open
Abstract
Structural models of Cys-loop receptors based on homology with the Torpedo marmorata nicotinic acetylcholine receptor infer the existence of cytoplasmic portals within the conduction pathway framed by helical amphipathic regions (termed membrane-associated (MA) helices) of adjacent intracellular M3-M4 loops. Consistent with these models, two arginine residues (Arg(436) and Arg(440)) within the MA helix of 5-hydroxytryptamine type 3A (5-HT3A) receptors act singularly as rate-limiting determinants of single-channel conductance (γ). However, there is little conservation in primary amino acid sequences across the cytoplasmic loops of Cys-loop receptors, limiting confidence in the fidelity of this particular aspect of the 5-HT3A receptor model. We probed the majority of residues within the MA helix of the human 5-HT3A subunit using alanine- and arginine-scanning mutagenesis and the substituted cysteine accessibility method to determine their relative influences upon γ. Numerous residues, prominently those at the 435, 436, 439, and 440 positions, were found to markedly influence γ. This approach yielded a functional map of the 5-HT3A receptor portals, which agrees well with the homology model.
Collapse
MESH Headings
- Animals
- Cell Line
- Humans
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Structural Homology, Protein
- Torpedo
Collapse
Affiliation(s)
- Jane E. Carland
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Michelle A. Cooper
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Matthew R. Livesey
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Tim G. Hales
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - John A. Peters
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Jeremy J. Lambert
- From the Division of Neuroscience, Medical Research and Medical Education Institutes, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
175
|
Cwiklinski K, Merga JY, Lake SL, Hartley C, Matthews JB, Paterson S, Hodgkinson JE. Transcriptome analysis of a parasitic clade V nematode: comparative analysis of potential molecular anthelmintic targets in Cylicostephanus goldi. Int J Parasitol 2013; 43:917-27. [PMID: 23911309 DOI: 10.1016/j.ijpara.2013.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 02/08/2023]
Abstract
Clade V nematodes comprise several parasitic species that include the cyathostomins, primary helminth pathogens of horses. Next generation transcriptome datasets are available for eight parasitic clade V nematodes, although no equine parasites are included in this group. Here, we report next generation transcriptome sequencing analysis for the common cyathostomin species, Cylicostephanus goldi. A cDNA library was generated from RNA extracted from 17 C. goldi male and female adult parasites. Following sequencing using a 454 GS FLX pyrosequencer, a total of 475,215 sequencing reads were generated, which were assembled into 26,910 contigs. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, 27% of the transcriptome was annotated. Further in-depth analysis was carried out by comparing the C. goldi dataset with the next generation transcriptomes and genomes of other clade V nematodes, with the Oesophagostomum dentatum transcriptome and the Haemonchus contortus genome showing the highest levels of sequence identity with the cyathostomin dataset (45%). The C. goldi transcriptome was mined for genes associated with anthelmintic mode of action and/or resistance. Sequences encoding proteins previously associated with the three major anthelmintic classes used in horses were identified, with the exception of the P-glycoprotein group. Targeted resequencing of the glutamate gated chloride channel α4 subunit (glc-3), one of the primary targets of the macrocyclic lactone anthelmintics, was performed for several cyathostomin species. We believe this study reports the first transcriptome dataset for an equine helminth parasite, providing the opportunity for in-depth analysis of these important parasites at the molecular level. Sequences encoding enzymes involved in key processes and genes associated with levamisole/pyrantel and macrocyclic lactone resistance, in particular the glutamate gated chloride channels, were identified. This novel data will inform cyathostomin biology and anthelmintic resistance studies in future.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|