151
|
Shin SK, Bang DI, Choi WH, Kim SH, Oh DC, Lee MJ. Salinosporamides A and B Inhibit Proteasome Activity and Delay the Degradation of N-end Rule Model Substrates. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.5.1425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
152
|
Chen YJ, Ma YS, Fang Y, Wang Y, Fu D, Shen XZ. Power and Promise of Ubiquitin Carboxyl-terminal Hydrolase 37 as a Target of Cancer Therapy. Asian Pac J Cancer Prev 2013; 14:2173-9. [DOI: 10.7314/apjcp.2013.14.4.2173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
153
|
Mialki RK, Zhao J, Wei J, Mallampalli DF, Zhao Y. Overexpression of USP14 protease reduces I-κB protein levels and increases cytokine release in lung epithelial cells. J Biol Chem 2013; 288:15437-41. [PMID: 23615914 DOI: 10.1074/jbc.c112.446682] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is the major pathway of non-lysosomal intracellular protein degradation, playing an important role in a variety of cellular responses including cell division, proliferation, and apoptosis. Ubiquitin-specific protease 14 (USP14) is a component of proteasome regulatory subunit 19 S that regulates deubiquitinated proteins entering inside the proteasome core 20 S. The role of USP14 in protein degradation is still controversial. Several studies suggest that USP14 plays an inhibitory role in protein degradation. Here, in contrast, overexpression of USP14 induced I-κB degradation, which increased cytokine release in lung epithelial cells. Overexpression of HA-tagged USP14 (HA-USP14) reduced I-κB protein levels by increasing the I-κB degradation rate in mouse lung epithelial cells (MLE12). I-κB polyubiquitination was reduced in HA-USP14-overexpressed MLE12 cells, suggesting that USP14 regulates I-κB degradation by removing its ubiquitin chain, thus promoting the deubiquitinated I-κB degradation within the proteasome. Interestingly, we found that USP14 was associated with RelA, a binding partner of I-κB, suggesting that RelA is the linker between USP14 and I-κB. Lipopolysaccharide (LPS) treatment induced serine phosphorylation of USP14 as well as further reducing I-κB levels in HA-USP14-overexpressed MLE12 cells as compared with empty vector transfected cells. Further, overexpression of HA-USP14 increased the LPS-, TNFα-, or Escherichia coli-induced IL-8 release in human lung epithelial cells. This study suggests that USP14 removes the ubiquitin chain of I-κB, therefore inducing I-κB degradation and increasing cytokine release in lung epithelial cells.
Collapse
Affiliation(s)
- Rachel K Mialki
- Department of Medicine and the Acute Lung Injury Center of Excellence, the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
154
|
Nakasone MA, Livnat-Levanon N, Glickman MH, Cohen RE, Fushman D. Mixed-linkage ubiquitin chains send mixed messages. Structure 2013; 21:727-40. [PMID: 23562397 DOI: 10.1016/j.str.2013.02.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 02/02/2023]
Abstract
Research on ubiquitin (Ub) signaling has focused primarily on homogeneously linked polyUb. Although polyUb containing different linkages within the same chain exist, their structures and signaling properties are unknown. These mixed-linkage chains could be unbranched (i.e., no more than one lysine or methionine linkage per Ub) or branched. Here, we examined the structure, dynamics, receptor selectivity, and disassembly of branched and unbranched tri-Ub containing both K48 and K63 linkages. Each linkage was virtually indistinguishable from its counterpart in homogeneously linked polyUb. Linkage-selective receptors from hHR23A and Rap80 preferentially bound to the K48 or K63 linkages in the branched trimer. Linkage-selective deubiquitinases specifically cleaved their cognate Ub-Ub linkages in mixed-linkage chains, and the 26S proteasome recognized and processed branched tri-Ub. We conclude that mixed-linkage chains retain the distinctive signaling properties of their K48 and K63 components and that these multiple signals can be recognized by multiple linkage-specific receptors. Finally, we propose a new, comprehensive notation for Ub and Ub-like polymers.
Collapse
Affiliation(s)
- Mark A Nakasone
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
155
|
Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105:49-59. [PMID: 23528736 DOI: 10.1016/j.pneurobio.2013.03.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) and the autophagy-lysosome system are two major protein quality control mechanisms in eukaryotic cells. While the UPS has been considered for decades as the critical regulator in the degradation of various aggregate-prone proteins, autophagy has more recently been shown to be an important pathway implicated in neuronal health and disease. The two hallmark lesions of Alzheimer's disease (AD) are extracellular β-amyloid plaques and intracellular tau tangles. It has been suggested that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than β-amyloid plaques. Here, we review the UPS and autophagy-mediated tau clearance mechanisms and outline the biochemical connections between these two processes. In addition, we discuss pharmacological methods that target these degradation systems for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | | | | |
Collapse
|
156
|
Jarvius M, Fryknäs M, D'Arcy P, Sun C, Rickardson L, Gullbo J, Haglund C, Nygren P, Linder S, Larsson R. Piperlongumine induces inhibition of the ubiquitin-proteasome system in cancer cells. Biochem Biophys Res Commun 2013; 431:117-23. [PMID: 23318177 DOI: 10.1016/j.bbrc.2013.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/04/2013] [Indexed: 11/26/2022]
Abstract
Piperlongumine, a natural product from the plant Piperlongum, has demonstrated selective cytotoxicity to tumor cells and to show anti-tumor activity in animal models [1]. Cytotoxicity of piperlongumine has been attributed to increase in reactive oxygen species (ROS) in cancer cells. We here report that piperlongumine is an inhibitor of the ubiquitin-proteasome system (UPS). Exposure of tumor cells to piperlongumine resulted in accumulation of a reporter substrate known to be rapidly degraded by the proteasome, and of accumulation of ubiquitin conjugated proteins. However, no inhibition of 20S proteolytic activity or 19S deubiquitinating activity was observed at concentrations inducing cytotoxicity. Consistent with previous reports, piperlongumine induced strong ROS activation which correlated closely with UPS inhibition and cytotoxicity. Proteasomal blocking could not be mimicked by agents that induce oxidative stress. Our results suggest that the anti-cancer activity of piperlongumine involves inhibition of the UPS at a pre-proteasomal step, prior to deubiquitination of malfolded protein substrates at the proteasome, and that the previously reported induction of ROS is a consequence of this inhibition.
Collapse
Affiliation(s)
- Malin Jarvius
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Liu Y, Ye Y. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Curr Protein Pept Sci 2013; 13:436-46. [PMID: 22812527 DOI: 10.2174/138920312802430608] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/06/2011] [Accepted: 06/11/2012] [Indexed: 11/22/2022]
Abstract
To maintain protein homeostasis in the ER, an ER protein quality control system retains unfolded polypeptides and misassembled membrane proteins, allowing only properly folded proteins to exit the ER. Misfolded proteins held in the ER are retrotranslocated into the cytosol, ubiquitinated, and degraded by the proteasome through the ER-associated degradation pathway (ERAD). By timely eliminating misfolded proteins, the ERAD system alleviates cytotoxic stress imposed by protein misfolding. It is well established that ER-associated ubiquitin ligases play pivotal roles in ERAD by assembling ubiquitin conjugates on retrotranslocation substrates, which serve as degradation signals for the proteasome. Surprisingly, recent studies have revealed an equally important function for deubiquitinases (DUBs), enzymes that disassemble ubiquitin chains, in ERAD. Intriguingly, many ERAD specific DUBs are physically associated with the retrotranslocation- driving ATPase p97. Here we discuss the potential functions of p97-associated DUBs including ataxin-3 and YOD1. Our goal is to integrate the emerging evidence into models that may explain how protein quality control could benefit from deubiquitination, a process previously deemed destructive for proteasomal degradation.
Collapse
Affiliation(s)
- Yanfen Liu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
158
|
Ponnappan S, Palmieri M, Sullivan DH, Ponnappan U. Compensatory increase in USP14 activity accompanies impaired proteasomal proteolysis during aging. Mech Ageing Dev 2013; 134:53-9. [PMID: 23291607 DOI: 10.1016/j.mad.2012.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/17/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
The deubiquitinating enzyme, USP14, found in association with the proteasome is essential in mediating ubiquitin trimming and in ensuring ubiquitin-homeostasis. As aging is accompanied by a significant decline in proteasomal proteolysis in primary human T lymphocytes, we evaluated the contributory role of USP14 in this decline. Our studies for the first time demonstrate that enzymatic activity of proteasome-associated USP14 is significantly higher in T cells obtained from elderly donors. Additionally, such an increase in USP14 activity could be mimicked by chemically inhibiting the proteasome, using lactacystin. Thus, USP14 activity appears to be reciprocally regulated by the catalytic function of the 26S proteasome. To determine whether the inhibition of USP14 activity counter regulates proteasomal proteolysis, T cells pretreated with a small molecule inhibitor of USP14, IU1, were activated and assessed for IκBα degradation as a measure of proteasomal proteolysis. While T cells obtained from young donors demonstrated increased degradation of IκBα, those from the elderly remained unaffected by IU1 pretreatment. Taken together, these results demonstrate that the decrease in proteolysis of proteasomal substrates during aging is independent of the increased USP14 activity and that the reciprocal regulation of USP14 and proteasomal catalytic activity may be necessary to maintain cellular ubiquitin homeostasis.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
159
|
Abstract
The Wnt/β-catenin pathway is highly regulated to insure the correct temporal and spatial activation of its target genes. In the absence of a Wnt stimulus, the transcriptional coactivator β-catenin is degraded by a multiprotein "destruction complex" that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase β-TrCP. The complex generates a β-TrCP recognition site by phosphorylation of a conserved Ser/Thr-rich sequence near the β-catenin amino terminus, a process that requires scaffolding of the kinases and β-catenin by Axin. Ubiquitinated β-catenin is degraded by the proteasome. The molecular mechanisms that underlie several aspects of destruction complex function are poorly understood, particularly the role of APC. Here we review the molecular mechanisms of destruction complex function and discuss several potential roles of APC in β-catenin destruction.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
160
|
Trang VH, Valkevich EM, Minami S, Chen YC, Ge Y, Strieter ER. Nonenzymatic polymerization of ubiquitin: single-step synthesis and isolation of discrete ubiquitin oligomers. Angew Chem Int Ed Engl 2012; 51:13085-8. [PMID: 23161800 PMCID: PMC4083817 DOI: 10.1002/anie.201207171] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/26/2012] [Indexed: 11/05/2022]
Abstract
Linked: a method based on thiol-ene chemistry enables the synthesis and purification of ubiquitin oligomers with ≥4 units. This approach, which employs free-radical polymerization, can be applied towards the synthesis of homogeneous Lys6-linked ubiquitin oligomers currently inaccessible by enzymatic methods. By using these chains, one can study their roles in the ubiquitin proteasome system and the DNA damage response pathway.
Collapse
Affiliation(s)
- Vivian H. Trang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wi 53706
| | - Ellen M. Valkevich
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wi 53706
| | - Shoko Minami
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wi 53706
| | - Yi-Chen Chen
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Ave. Madison, WI 53706
| | - Ying Ge
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Ave. Madison, WI 53706
| | - Eric R. Strieter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wi 53706
| |
Collapse
|
161
|
Lee BH, Finley D, King RW. A High-Throughput Screening Method for Identification of Inhibitors of the Deubiquitinating Enzyme USP14. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2012; 4:311-30. [PMID: 23788557 PMCID: PMC3690187 DOI: 10.1002/9780470559277.ch120078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deubiquitinating enzymes (DUBs) reverse the process of ubiquitination, and number nearly 100 in humans. In principle, DUBs represent promising drug targets, as several of the enzymes have been implicated in human diseases. The isopeptidase activity of DUBs can be selectively inhibited by targeting the catalytic site with drug-like compounds. Notably, the mammalian 26S proteasome is associated with three major DUBs: RPN11, UCH37, and USP14. Because the ubiquitin 'chain-trimming' activity of USP14 can inhibit proteasome function, inhibitors of USP14 can stimulate proteasomal degradation. We recently established a high-throughput screening (HTS) method to identify small-molecule inhibitors specific for USP14. The protocols in this article cover the necessary procedures for preparing assay reagents, performing HTS for USP14 inhibitors, and carrying out post-HTS analysis. Curr. Protoc. Chem. Biol. 4:311-330 © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
162
|
Jin YN, Chen PC, Watson JA, Walters BJ, Phillips SE, Green K, Schmidt R, Wilson JA, Johnson GV, Roberson ED, Dobrunz LE, Wilson SM. Usp14 deficiency increases tau phosphorylation without altering tau degradation or causing tau-dependent deficits. PLoS One 2012; 7:e47884. [PMID: 23144711 PMCID: PMC3483306 DOI: 10.1371/journal.pone.0047884] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023] Open
Abstract
Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3. Using Usp14-deficient axJ mice, we investigated if loss of Usp14 results in decreased levels of endogenous tau and ataxin-3 in the nervous system of mice. Although loss of Usp14 did not alter the overall neuronal levels of tau and ataxin-3, we found increased levels of phosphorylated tau that correlated with the onset of axonal varicosities in the Usp14-deficient mice. These changes in tau phosphorylation were accompanied by increased levels of activated phospho-Akt, phosphorylated MAPKs, and inactivated phospho-GSK3β. However, genetic ablation of tau did not alter any of the neurological deficits in the Usp14-deficient mice, demonstrating that increased levels of phosphorylated tau do not necessarily lead to neurological disease. Due to the widespread activation of intracellular signaling pathways induced by the loss of Usp14, a better understanding of the cellular pathways regulated by the proteasome is required before effective proteasomal-based therapies can be used to treat chronic neurological diseases.
Collapse
Affiliation(s)
- Youngnam N. Jin
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ping-Chung Chen
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer A. Watson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brandon J. Walters
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen Green
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Robert Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gail V. Johnson
- Department of Anesthesiology, University of Rochester, Rochester, New York, United States of America
| | - Erik D. Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lynn E. Dobrunz
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
163
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
164
|
Singh RK, Zerath S, Kleifeld O, Scheffner M, Glickman MH, Fushman D. Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 2012; 11:1595-611. [PMID: 23105008 DOI: 10.1074/mcp.m112.022467] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Of all ubiquitin-like proteins, Rub1 (Nedd8 in mammals) is the closest kin of ubiquitin. We show via NMR that structurally, Rub1 and ubiquitin are fundamentally similar as well. Despite these profound similarities, the prevalence of Rub1/Nedd8 and of ubiquitin as modifiers of the proteome is starkly different, and their attachments to specific substrates perform different functions. Recently, some proteins, including p53, p73, EGFR, caspase-7, and Parkin, have been shown to be modified by both Rub1/Nedd8 and ubiquitin within cells. To understand whether and how it might be possible to distinguish among the same target protein modified by Rub1 or ubiquitin or both, we examined whether ubiquitin receptors can differentiate between Rub1 and ubiquitin. Surprisingly, Rub1 interacts with proteasome ubiquitin-shuttle proteins comparably to ubiquitin but binds more weakly to a proteasomal ubiquitin receptor Rpn10. We identified Rub1-ubiquitin heteromers in yeast and Nedd8-Ub heteromers in human cells. We validate that in human cells and in vitro, human Rub1 (Nedd8) forms chains with ubiquitin where it acts as a chain terminator. Interestingly, enzymatically assembled K48-linked Rub1-ubiquitin heterodimers are recognized by various proteasomal ubiquitin shuttles and receptors comparably to K48-linked ubiquitin homodimers. Furthermore, these heterologous chains are cleaved by COP9 signalosome or 26S proteasome. A derubylation function of the proteasome expands the repertoire of its enzymatic activities. In contrast, Rub1 conjugates may be somewhat resilient to the actions of other canonical deubiquitinating enzymes. Taken together, these findings suggest that once Rub1/Nedd8 is channeled into ubiquitin pathways, it is recognized essentially like ubiquitin.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
165
|
Zhao B, Velasco K, Sompallae R, Pfirrmann T, Masucci MG, Lindsten K. The ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the proteasome. Biochem Biophys Res Commun 2012; 427:490-6. [PMID: 23022198 DOI: 10.1016/j.bbrc.2012.09.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022]
Abstract
The proteasome is the major non-lysosomal proteolytic machine in cells that, through degradation of ubiquitylated substrates, regulates virtually all cellular functions. Numerous accessory proteins influence the activity of the proteasome by recruiting or deubiquitylating proteasomal substrates, or by maintaining the integrity of the complex. Here we show that the ubiquitin specific protease (USP)-4, a deubiquitylating enzyme with specificity for both Lys48 and Lys63 ubiquitin chains, interacts with the S9/Rpn6 subunit of the proteasome via an internal ubiquitin-like (UBL) domain. S9/Rpn6 acts as a molecular clamp that holds together the proteasomal core and regulatory sub-complexes. Thus, the interaction with USP4 may regulate the structure and function of the proteasome or the turnover of specific proteasomal substrates.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
166
|
Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 2012; 43:1049-60. [PMID: 22821265 DOI: 10.1007/s00726-012-1286-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.
Collapse
|
167
|
D'Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 2012; 44:1729-38. [PMID: 22819849 DOI: 10.1016/j.biocel.2012.07.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a conserved pathway regulating numerous biological processes including protein turnover, DNA repair, and intracellular trafficking. Tumor cells are dependent on a functioning UPS, making it an ideal target for the development of novel anti-cancer therapies. The development of bortezomib (Velcade(®)) as a treatment for multiple myeloma and mantle cell lymphoma has verified this and suggests that targeting other components of the UPS may be a viable strategy for the treatment for cancer. We recently described a novel class of proteasome inhibitors that function by an alternative mechanism of action (D'Arcy et al., 2011). The small molecule b-AP15 blocks the deubiquitinase (DUB) activity of the 19S regulatory particle (19S RP) without inhibiting the proteolytic activities of the 20S core particle (20S CP). b-AP15 inhibits two proteasome-associated DUBs, USP14 and UCHL5, resulting in a rapid accumulation of high molecular weight ubiquitin conjugates and a functional proteasome shutdown. Interestingly, b-AP15 displays several differences to bortezomib including insensitivity to over-expression of the anti-apoptotic mediator Bcl-2 and anti-tumor activity in solid tumor models. In this review we will discuss the potential of proteasome deubiquitinase inhibitors as additions to the therapeutic arsenal against cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Institute for Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 17176 Stockholm, Sweden.
| | | |
Collapse
|
168
|
Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response. PLoS Pathog 2012; 8:e1002783. [PMID: 22792064 PMCID: PMC3390402 DOI: 10.1371/journal.ppat.1002783] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/16/2012] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies. Deubiquitinases (DUBs) are enzymes, which are implicated in many cellular processes but their functions during virus infection are not well understood. We used WP1130, a small molecule inhibitor of a subset of DUBs, as a probe to unravel the functions of DUBs during norovirus infections. We identified USP14 as a cellular DUB target of WP1130 that is required for optimal norovirus infection. Furthermore, we demonstrated that chemical induction of the unfolded protein response can significantly inhibit viral progeny production of several RNA viruses, including noroviruses. These results suggest that chemical inhibition of cellular DUBs and/or modulation of the unfolded protein response could represent novel targets for therapy against a variety of viral pathogens.
Collapse
|
169
|
Min M, Lindon C. Substrate targeting by the ubiquitin-proteasome system in mitosis. Semin Cell Dev Biol 2012; 23:482-91. [PMID: 22326960 DOI: 10.1016/j.semcdb.2012.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/11/2012] [Accepted: 01/23/2012] [Indexed: 12/15/2022]
Abstract
Both cell cycle progression and the ubiquitin-proteasome system (UPS) that drives it are precisely regulated. Enzymatically, many ubiquitylation and degradation reactions have been characterized in in vitro systems, providing insights into the fundamental mechanisms of the UPS. Biologically, a range of degradation events depending on a ubiquitin ligase called the Anaphase-Promoting Complex (APC/C), have been shown to control mitotic progression through removal of key substrates with extreme temporal precision. However we are only just beginning to understand how the different enzymatic activities of the UPS act collectively - and in cooperation with other cellular factors - for accurate temporal and spatial control of mitotic substrate levels in vivo.
Collapse
Affiliation(s)
- Mingwei Min
- University of Cambridge, Department of Genetics, Downing St., Cambridge CB2 3EH, UK
| | | |
Collapse
|
170
|
Coppinger JA, Hutt DM, Razvi A, Koulov AV, Pankow S, Yates JR, Balch WE. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 2012; 7:e37682. [PMID: 22701530 PMCID: PMC3365120 DOI: 10.1371/journal.pone.0037682] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 04/26/2012] [Indexed: 12/29/2022] Open
Abstract
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF.
Collapse
Affiliation(s)
- Judith A Coppinger
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
171
|
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. ACTA ACUST UNITED AC 2012; 19:99-115. [PMID: 22284358 DOI: 10.1016/j.chembiol.2012.01.003] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
172
|
Mattern MR, Wu J, Nicholson B. Ubiquitin-based anticancer therapy: carpet bombing with proteasome inhibitors vs surgical strikes with E1, E2, E3, or DUB inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2014-21. [PMID: 22610084 PMCID: PMC7127515 DOI: 10.1016/j.bbamcr.2012.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/30/2022]
Abstract
The proteasome inhibitor bortezomib remains the only ubiquitin pathway effector to become a drug (VELCADE®) and has become a successful treatment for hematological malignancies. While producing a global cellular effect, proteasome inhibitors have not triggered the catastrophe articulated initially in terms such as “buildup of cellular garbage”. Proteasome inhibitors, in fact, do have a therapeutic window, although in the case of the prototype bortezomib it is small owing to peripheral neuropathy, myelosuppression and, as recently reported, cardiotoxicity [1]. Currently, several second-generation molecules are undergoing clinical evaluation to increase this window. An alternative strategy is to target ubiquitin pathway enzymes acting at non-proteasomal sites—E1, E2, and E3, associated with ubiquitin conjugation, and deubiquitylating enzymes (“DUBs”)—that act locally on selected targets rather than on the whole cell. Inhibitors (or activators, in some cases) of these enzymes should be developable as selective antitumor agents with toxicity profiles superior to that of bortezomib. Various therapeutic hypotheses follow from known cellular mechanisms of these target enzymes; most hypotheses relate to cancer, reminiscent of the FDA-approved protein kinase inhibitors now marketed. Since ubiquitin tagging controls the cellular content, activity, or compartmentation of proteins associated with disease, inhibitors or activators of ubiquitin conjugation or deconjugation are predicted to have an impact on disease. For practical and empirical reasons, inhibitors of ubiquitin pathway enzymes have been the favored therapeutic avenue. In approximately the time that has elapsed since the approval of bortezomib in 2003, there has been some progress in developing potential anticancer drugs that target various ubiquitin pathway enzymes. An E1 inhibitor and inhibitors of E3 are now in clinical trial, with some objective responses reported. Appropriate assays and/or rational design may uncover improved inhibitors of these enzymes, as well as E2 and DUBs, for further development. Presently, it should become clear whether one or both of the two general strategies for ubiquitin-based drug discovery will lead to truly superior new medicines for cancer and other diseases. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.
Collapse
|
173
|
The emerging role of proteolysis in mitochondrial quality control and the etiology of Parkinson's disease. PARKINSONS DISEASE 2012; 2012:382175. [PMID: 22666630 PMCID: PMC3359724 DOI: 10.1155/2012/382175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/19/2012] [Indexed: 12/15/2022]
Abstract
Mitochondria are highly dynamic organelles that are important for many diverse cellular processes, such as energy metabolism, calcium buffering, and apoptosis. Mitochondrial biology and dysfunction have recently been linked to different types of cancers and neurodegenerative diseases, most notably Parkinson's disease. Thus, a better understanding of the quality control systems that maintain a healthy mitochondrial network can facilitate the development of effective treatments for these diseases. In this perspective, we will discuss recent advances on two mitochondrial quality control pathways: the UPS and mitophagy, highlight how new players may be contributing to regulate these pathways. We believe the proteases involved will be key and novel regulators of mitochondrial quality control, and this knowledge will provide insights into future studies aimed to combat neurodegenerative diseases.
Collapse
|
174
|
Taillebourg E, Gregoire I, Viargues P, Jacomin AC, Thevenon D, Faure M, Fauvarque MO. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins. Autophagy 2012; 8:767-79. [PMID: 22622177 DOI: 10.4161/auto.19381] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.
Collapse
Affiliation(s)
- Emmanuel Taillebourg
- CEA/Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
175
|
Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling. Arch Pharm Res 2012; 35:397-407. [DOI: 10.1007/s12272-012-0301-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
|
176
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
177
|
Abstract
The ubiquitin-proteasome system (UPS) controls protein abundance and is essential for many aspects of neuronal function. In ataxia (ax(J)) mice, profound neurological and synaptic defects result from a loss-of-function mutation in the proteasome-associated deubiquitinating enzyme Usp14, which is required for recycling ubiquitin from proteasomal substrates. Here, we show that transgenic complementation of ax(J) mice with neuronally expressed ubiquitin prevents early postnatal lethality, restores muscle mass, and corrects developmental and functional deficits resulting from the loss of Usp14, demonstrating that ubiquitin deficiency is a major cause of the neurological defects observed in the ax(J) mice. We also show that proteasome components are normally induced during the first 2 weeks of postnatal development, which coincides with dramatic alterations in polyubiquitin chain formation. These data demonstrate a critical role for ubiquitin homeostasis in synaptic development and function, and show that ubiquitin deficiency may contribute to diseases characterized by synaptic dysfunction.
Collapse
|
178
|
Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 2012; 287:14659-71. [PMID: 22318722 DOI: 10.1074/jbc.m111.316323] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates tagged with (poly)ubiquitin for degradation can be targeted directly to the 26 S proteasome where they are proteolyzed. Independently, ubiquitin conjugates may also be delivered by bivalent shuttles. The majority of shuttles attach to the proteasome through a ubiquitin-like domain (UBL) while anchoring cargo at a C-terminal polyubiquitin-binding domain(s). We found that two shuttles of this class, Rad23 and Dsk2, dock at two different receptor sites embedded within a single subunit of the 19 S proteasome regulatory particle, Rpn1. Their association/dissociation constants and affinities for Rpn1 are similar. In contrast, another UBL-containing protein, the deubiquitinase Ubp6, is also anchored by Rpn1, yet it dissociates slower, thus behaving as an occasional proteasome subunit that is distinct from the transiently associated shuttles. Two neighboring subunits, Rpn10 and Rpn13, show a marked preference for polyubiquitin over UBLs. Rpn10 attaches to the central solenoid portion of Rpn1, although this association is stabilized by the presence of a third subunit, Rpn2. Rpn13 binds directly to Rpn2. These intrinsic polyubiquitin receptors may compete with substrate shuttles for their polyubiquitin-conjugate cargos, thereby aiding release of the emptied shuttles. By binding multiple ubiquitin-processing factors simultaneously, Rpn1 is uniquely suited to coordinate substrate recruitment, deubiquitination, and movement toward the catalytic core. The broad range of affinities for ubiquitin, ubiquitin-like, and non-ubiquitin signals by adjacent yet nonoverlapping sites all within the base represents a hub of activity that coordinates the intricate relay of substrates within the proteasome, and consequently it influences substrate residency time and commitment to degradation.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Biology, Technion Institute of Technology, 32000 Haifa, Israel
| | | | | | | | | |
Collapse
|
179
|
Sanchez-Bel P, Egea I, Sanchez-Ballesta MT, Sevillano L, Del Carmen Bolarin M, Flores FB. Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. PLANT & CELL PHYSIOLOGY 2012; 53:470-84. [PMID: 22227396 DOI: 10.1093/pcp/pcr191] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A comparative proteomic analysis between tomato fruits stored at chilling and non-chilling temperatures was carried out just before the appearance of visible symptoms of chilling injury. At this stage of the stress period it was possible to discriminate between proteins involved in symptoms and proteins implicated in response. To investigate the changes in the tomato fruit proteome under this specific stressful condition, two-dimensional differential in-gel electrophoresis coupled with spot identification by mass spectrometry was applied. This proteomic approach allowed the identification of differentially expressed proteins which are involved in two main biological functions: (i) defensive mechanisms represented by small heat shock and late embryogenesis proteins; and (ii) reaction to the uncoupling of photosynthetic processes and the protein degradation machinery. One of the first changes observed in chilled fruits is the down-regulation of ATP synthase, 26S proteasome subunit RPN11 and aspartic proteinase, whereas the first responses in order to deal with the stress are mainly multifunctional proteins involved not only in metabolism but also in stress regulation such as glyceraldehyde phosphate dehydrogenase, 2-oxoglutarate dehydrogenase and invertase. In addition, our data seem to indicate a possible candidate to be used as a protein marker for further studies on cold stress: aldose-1-epimerase, which seems to have an important role in low temperature tolerance.
Collapse
Affiliation(s)
- Paloma Sanchez-Bel
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, PO Box 164, E-30100 Espinardo-Murcia, Spain
| | | | | | | | | | | |
Collapse
|
180
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
181
|
Abstract
Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.
Collapse
Affiliation(s)
- Julie Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA.
| |
Collapse
|
182
|
Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J 2011; 278:4917-26. [PMID: 21995438 PMCID: PMC3336103 DOI: 10.1111/j.1742-4658.2011.08393.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun 390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.
Collapse
Affiliation(s)
| | | | - David A. Boudreaux
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Christina Mahanic
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Sarah Mauney
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN-47907, USA
| |
Collapse
|
183
|
Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 2011; 15:2265-99. [PMID: 21314436 DOI: 10.1089/ars.2010.3590] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
184
|
Weissman AM, Shabek N, Ciechanover A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 2011; 12:605-20. [PMID: 21860393 PMCID: PMC3545438 DOI: 10.1038/nrm3173] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ubiquitylation (also known as ubiquitination) regulates essentially all of the intracellular processes in eukaryotes through highly specific modification of numerous cellular proteins, which is often tightly regulated in a spatial and temporal manner. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology.
Collapse
Affiliation(s)
- Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Nitzan Shabek
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
185
|
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:67-82. [PMID: 21820014 DOI: 10.1016/j.bbamcr.2011.07.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.
Collapse
Affiliation(s)
- Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
186
|
Todi SV, Paulson HL. Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 2011; 34:370-82. [PMID: 21704388 DOI: 10.1016/j.tins.2011.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/03/2023]
Abstract
Many pathways important to the nervous system are regulated by the post-translational conjugation of ubiquitin to target proteins. The reversal of ubiquitination, or deubiquitination, is equally critical to neuronal function. By countering protein ubiquitination, deubiquitinating enzymes (DUBs) help control neuronal fate determination, axonal pathfinding and synaptic communication and plasticity. The significance of DUBs to the nervous system is underscored by links to various neurological diseases. Owing to cell type or substrate specificity, certain DUBs might also represent therapeutic targets for neurodegeneration. Here, we review recent findings that have shaped our current understanding of emerging functions for DUBs in the nervous system.
Collapse
Affiliation(s)
- Sokol V Todi
- Wayne State University School of Medicine, Department of Pharmacology and Department of Neurology, 540 E Canfield, Scott Hall Room 6105, Detroit, Michigan 48201, USA
| | | |
Collapse
|
187
|
Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 2011; 12:439-52. [PMID: 21697901 DOI: 10.1038/nrm3143] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proper regulation of apoptosis is essential for the survival of multicellular organisms. Furthermore, excessive apoptosis can contribute to neurodegenerative diseases, anaemia and graft rejection, and diminished apoptosis can lead to autoimmune diseases and cancer. It has become clear that the post-translational modification of apoptotic proteins by ubiquitylation regulates key components in cell death signalling cascades. For example, ubiquitin E3 ligases, such as MDM2 (which ubiquitylates p53) and inhibitor of apoptosis (IAP) proteins, and deubiquitinases, such as A20 and ubiquitin-specific protease 9X (USP9X) (which regulate the ubiquitylation and degradation of receptor-interacting protein 1 (RIP1) and myeloid leukaemia cell differentiation 1 (MCL1), respectively), have important roles in apoptosis. Therapeutic agents that target apoptotic regulatory proteins, including those that are part of the ubiquitin-proteasome system, might afford clinical benefits.
Collapse
Affiliation(s)
- Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
188
|
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 2011; 12:295-307. [PMID: 21448225 DOI: 10.1038/nrm3099] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms.
Collapse
Affiliation(s)
- Caroline Grabbe
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|