151
|
Wylie BJ, Matechi E, Kishashu Y, Fawzi W, Premji Z, Coull BA, Hauser R, Ezzati M, Roberts DJ. Placental Pathology Associated with Household Air Pollution in a Cohort of Pregnant Women from Dar es Salaam, Tanzania. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:134-140. [PMID: 27286442 PMCID: PMC5226703 DOI: 10.1289/ehp256] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/28/2016] [Accepted: 05/20/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Smoke from the burning of biomass fuels has been linked with adverse pregnancy outcomes such as low birth weight, stillbirth, and prematurity. OBJECTIVE To identify potential underlying mechanisms of adverse perinatal outcomes, we explored the association of placental pathology with household air pollution in pregnant women from urban/periurban Tanzania who cook predominantly with charcoal. METHODS Between 2011 and 2013, we measured personal exposures to fine particulate matter (PM2.5) and carbon monoxide (CO) over 72 hr among a cohort of Tanzanian pregnant women. Placentas were collected after delivery for examination. Placental pathologies of inflammatory, hypoxic, ischemic/hypertensive, infectious and thrombotic etiologies were diagnosed, blinded to exposure levels. Using multiple logistic regression, we explored the association of PM2.5 and CO exposure with placental pathology. RESULTS One hundred sixteen women had personal air exposure measurements and placental histopathology available for analysis. PM2.5 and CO exposures were moderate [geometric means (GSD) were 40.5 μg/m3 (17.3) and 2.21 ppm (1.47) respectively]; 88.6% of PM2.5 measurements exceeded World Health Organization air quality guidelines. We observed an increase in the odds (per 1-unit increase in exposure on the ln-scale) of fetal thrombotic vasculopathy (FTV) both with increasing PM2.5 [adjusted odds ratio (aOR) = 5.5; 95% CI: 1.1, 26.8] and CO measurements (aOR = 2.5; 95% CI: 1.0, 6.4) in adjusted models only. FTV also was more common among pregnancies complicated by stillbirth or low birth weight. CONCLUSIONS Fetal thrombosis may contribute to the adverse outcomes associated with household air pollution from cook stoves during pregnancy. Larger studies are necessary for confirmation. Citation: Wylie BJ, Matechi E, Kishashu Y, Fawzi W, Premji Z, Coull BA, Hauser R, Ezzati M, Roberts D. 2017. Placental pathology associated with household air pollution in a cohort of pregnant women from Dar es Salaam, Tanzania. Environ Health Perspect 125:134-140; http://dx.doi.org/10.1289/EHP256.
Collapse
Affiliation(s)
- Blair J. Wylie
- Department of Obstetrics/Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Address correspondence to B.J. Wylie, Founders 4, 55 Fruit Street, Boston, MA, 02114, USA. Telephone: 617-643-4331. E-mail:
| | | | - Yahya Kishashu
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Zul Premji
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, and
| | - Russ Hauser
- Department of Obstetrics/Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Majid Ezzati
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Drucilla J. Roberts
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
152
|
Bouloudenine M, Bououdina M. Toxic Effects of Engineered Nanoparticles on Living Cells. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Measuring toxic effects of engineered nanoparticles on living cells would require a deep understanding of themselves by the mean of their composition, physical and chemical properties and exposure concentrations. Actually, high exposure concentrations are needed to generate quantifiable effects and to perceive accumulation above background. This chapter presents an overview on the assessment about the toxic effects of engineered nanoparticles on living cells. It consists of three main sections starting with a brief introduction, the current state of engineered nanoparticles in the environment, physical and chemical properties of some important engineered nanoparticles such as “Ag, Au, ZnO, TiO2” and the target organ toxicity of the engineered nanoparticles in several biological organisms.
Collapse
Affiliation(s)
- Manel Bouloudenine
- Mohamed Chérif Messaâdia University, Algeria & Badji Mokhtar University, Algeria
| | | |
Collapse
|
153
|
Cliff R, Curran J, Hirota JA, Brauer M, Feldman H, Carlsten C. Effect of diesel exhaust inhalation on blood markers of inflammation and neurotoxicity: a controlled, blinded crossover study. Inhal Toxicol 2016; 28:145-53. [PMID: 26915823 DOI: 10.3109/08958378.2016.1145770] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Epidemiological studies and animal research have suggested that air pollution may negatively impact the central nervous system (CNS). Controlled human exposure studies of the effect of air pollution on the brain have potential to enhance our understanding of this relationship and to inform potential biological mechanisms. OBJECTIVES Biomarkers of systemic and CNS inflammation may address whether air pollution exposure induces inflammation, with potential for CNS negative effects. MATERIALS AND METHODS Twenty-seven healthy adults were exposed to two conditions: filtered air (FA) and diesel exhaust (DE) (300 μg PM2.5/m(3)) for 120 min, in a double-blinded crossover study with exposures separated by four weeks. Prior to and at 0, 3, and 24 h following each exposure, serum and plasma were collected and analyzed for inflammatory cytokines interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α), the astrocytic protein S100b, the neuronal cytoplasmic enzyme neuron-specific enolase (NSE), and serum brain-derived neurotrophic factor (BDNF). We hypothesized that IL-6, TNF-α, S100b and NSE would increase, and BDNF would decrease, following DE exposure. RESULTS At no time-point following exposure to DE was a significant increase in concentration from baseline seen for IL-6, TNF-α, S100b, or NSE relative to FA exposure. Similarly, no significant decrease in BDNF concentration from baseline was seen following DE exposure, relative to FA. Furthermore, the repeated measures ANOVA considered for all time-points and biomarkers revealed no significant time-exposure interaction. DISCUSSION AND CONCLUSION These results suggest that short-term exposure to DE amongst healthy adults does not acutely affect the systemic or CNS biomarkers that we measured.
Collapse
Affiliation(s)
- Rachel Cliff
- a Department of Medicine , Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia , Vancouver , BC , Canada .,b School of Population and Public Health (SPPH), Faculty of Medicine, University of British Columbia , Vancouver , BC , Canada
| | - Jason Curran
- a Department of Medicine , Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia , Vancouver , BC , Canada .,b School of Population and Public Health (SPPH), Faculty of Medicine, University of British Columbia , Vancouver , BC , Canada
| | - Jeremy A Hirota
- a Department of Medicine , Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia , Vancouver , BC , Canada .,c Centre for Heart Lung Innovation, Institute for Heart and Lung Health, University of British Columbia , Vancouver , BC , Canada , and
| | - Michael Brauer
- b School of Population and Public Health (SPPH), Faculty of Medicine, University of British Columbia , Vancouver , BC , Canada
| | - Howard Feldman
- d Division of Neurology , University of British Columbia , Vancouver , BC , Canada
| | - Chris Carlsten
- a Department of Medicine , Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia , Vancouver , BC , Canada .,c Centre for Heart Lung Innovation, Institute for Heart and Lung Health, University of British Columbia , Vancouver , BC , Canada , and
| |
Collapse
|
154
|
Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta Gen Subj 2016; 1860:2844-55. [DOI: 10.1016/j.bbagen.2016.03.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
|
155
|
Guney M, Chapuis RP, Zagury GJ. Lung bioaccessibility of contaminants in particulate matter of geological origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24422-24434. [PMID: 27080406 DOI: 10.1007/s11356-016-6623-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Human exposure to particulate matter (PM) has been associated with adverse health effects. While inhalation exposure to airborne PM is a prominent research subject, exposure to PM of geological origin (i.e., generated from soil/soil-like material) has received less attention. This review discusses the contaminants in PM of geological origin and their relevance for human exposure and then evaluates lung bioaccessibility assessment methods and their use. PM of geological origin can contain toxic elements as well as organic contaminants. Observed/predicted PM lung clearance times are long, which may lead to prolonged contact with lung environment. Thus, certain exposure scenarios warrant the use of in vitro bioaccessibility testing to predict lung bioavailability. Limited research is available on lung bioaccessibility test development and test application to PM of geological origin. For in vitro tests, test parameter variation between different studies and concerns about physiological relevance indicate a crucial need for test method standardization and comparison with relevant animal data. Research is recommended on (1) developing robust in vitro lung bioaccessibility methods, (2) assessing bioaccessibility of various contaminants (especially polycyclic aromatic hydrocarbons (PAHs)) in PM of diverse origin (surface soils, mine tailings, etc.), and (3) risk characterization to determine relative importance of exposure to PM of geological origin.
Collapse
Affiliation(s)
- Mert Guney
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
| | - Robert P Chapuis
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada.
| |
Collapse
|
156
|
Suzuki Y, Tada-Oikawa S, Hayashi Y, Izuoka K, Kataoka M, Ichikawa S, Wu W, Zong C, Ichihara G, Ichihara S. Single- and double-walled carbon nanotubes enhance atherosclerogenesis by promoting monocyte adhesion to endothelial cells and endothelial progenitor cell dysfunction. Part Fibre Toxicol 2016; 13:54. [PMID: 27737702 PMCID: PMC5064793 DOI: 10.1186/s12989-016-0166-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of carbon nanotubes has increased lately. However, the cardiovascular effect of exposure to carbon nanotubes remains elusive. The present study investigated the effects of pulmonary exposure to single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) on atherosclerogenesis using normal human aortic endothelial cells (HAECs) and apolipoprotein E-deficient (ApoE-/-) mice, a model of human atherosclerosis. METHODS HAECs were cultured and exposed to SWCNTs or DWCNTs for 16 h. ApoE-/- mice were exposed to SWCNTs or DWCNTs (10 or 40 μg/mouse) once every other week for 10 weeks by pharyngeal aspiration. RESULTS Exposure to CNTs increased the expression level of adhesion molecule (ICAM-1) and enhanced THP-1 monocyte adhesion to HAECs. ApoE-/- mice exposed to CNTs showed increased plaque area in the aorta by oil red O staining and up-regulation of ICAM-1 expression in the aorta, compared with vehicle-treated ApoE-/- mice. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the circulation and subsequently migrate to the site of endothelial damage and repair. Exposure of ApoE-/- mice to high-dose SWCNTs or DWCNTs reduced the colony-forming units of EPCs in the bone marrow and diminished their migration function. CONCLUSION The results suggested that SWCNTs and DWCNTs enhanced atherosclerogenesis by promoting monocyte adhesion to endothelial cells and inducing EPC dysfunction.
Collapse
Affiliation(s)
- Yuka Suzuki
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Saeko Tada-Oikawa
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Misa Kataoka
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Shunsuke Ichikawa
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya Univeristy Graduate School of Medicine, Nagoya, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Nagoya Univeristy Graduate School of Medicine, Nagoya, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo Univeristy of Science, Noda, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu, 514-8507, Japan.
| |
Collapse
|
157
|
Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice. PLoS One 2016; 11:e0164434. [PMID: 27732669 PMCID: PMC5061426 DOI: 10.1371/journal.pone.0164434] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.
Collapse
Affiliation(s)
- Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jianjun Lu
- Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou Zhejiang Province, People’s Republic of China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jun Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jiaman Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| |
Collapse
|
158
|
Vieira JL, Guimaraes GV, de Andre PA, Cruz FD, Saldiva PHN, Bocchi EA. Respiratory Filter Reduces the Cardiovascular Effects Associated With Diesel Exhaust Exposure: A Randomized, Prospective, Double-Blind, Controlled Study of Heart Failure: The FILTER-HF Trial. JACC-HEART FAILURE 2016; 4:55-64. [PMID: 26738952 DOI: 10.1016/j.jchf.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The goal of this study was to test the effects of a respiratory filter intervention (filter) during controlled pollution exposure. BACKGROUND Air pollution is considered a risk factor for heart failure (HF) decompensation and mortality. METHODS This study was a double-blind, randomized to order, controlled, 3-way crossover, single-center clinical trial. It enrolled 26 patients with HF and 15 control volunteers. Participants were exposed in 3 separate sessions to clean air, unfiltered diesel exhaust exposure (DE), or filtered DE. Endpoints were endothelial function assessed by using the reactive hyperemia index (RHi), arterial stiffness, serum biomarkers, 6-min walking distance, and heart rate variability. RESULTS In patients with HF, DE was associated with a worsening in RHi from 2.17 (interquartile range [IQR]: 1.8 to 2.5) to 1.72 (IQR: 1.5 to 2.2; p = 0.002) and an increase in B-type natriuretic peptide (BNP) from 47.0 pg/ml (IQR: 17.3 to 118.0 pg/ml) to 66.5 pg/ml (IQR: 26.5 to 155.5 pg/ml; p = 0.004). Filtration reduced the particulate concentration (325 ± 31 μg/m(3) vs. 25 ± 6 μg/m(3); p < 0.001); in the group with HF, filter was associated with an improvement in RHi from 1.72 (IQR: 1.5 to 2.2) to 2.06 (IQR: 1.5 to 2.6; p = 0.019) and a decrease in BNP from 66.5 pg/ml (IQR: 26.5 to 155.5 pg/ml) to 44.0 pg/ml (IQR: 20.0 to 110.0 pg/ml; p = 0.015) compared with DE. In both groups, DE decreased the 6-min walking distance and arterial stiffness, although filter did not change these responses. DE had no effect on heart rate variability or exercise testing. CONCLUSIONS To our knowledge, this trial is the first to show that a filter can reduce both endothelial dysfunction and BNP increases in patients with HF during DE. Given these potential benefits, the widespread use of filters in patients with HF exposed to traffic-derived air pollution may have beneficial public health effects and reduce the burden of HF. (Effects of Air Pollution Exposure Reduction by Filter Mask on Heart Failure; NCT01960920).
Collapse
Affiliation(s)
- Jefferson L Vieira
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil.
| | | | - Paulo A de Andre
- Air Pollution Laboratory, University of São Paulo Medical School, São Paulo, Brazil
| | - Fátima D Cruz
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Edimar A Bocchi
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
159
|
Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid. Chem Biol Interact 2016; 258:40-51. [DOI: 10.1016/j.cbi.2016.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023]
|
160
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
161
|
Chan EAW, Buckley B, Farraj AK, Thompson LC. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. Pharmacol Ther 2016; 165:63-78. [PMID: 27222357 PMCID: PMC6390286 DOI: 10.1016/j.pharmthera.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function.
Collapse
Affiliation(s)
- Elizabeth A W Chan
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Barbara Buckley
- National Center for Environmental Assessment, U.S. EPA, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA
| | - Leslie C Thompson
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
162
|
Abstract
Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment.
Collapse
Affiliation(s)
- Yaobo Ding
- Institute for Work and Health (IST), Universities of Lausanne and Geneva;
| | - Michael Riediker
- Institute for Work and Health (IST), Universities of Lausanne and Geneva; IOM Singapore
| |
Collapse
|
163
|
Hong F, Wu N, Zhao X, Tian Y, Zhou Y, Chen T, Zhai Y, Ji L. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice. J Biomed Mater Res A 2016; 104:2917-2927. [DOI: 10.1002/jbm.a.35831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Xiangyu Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yusheng Tian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Ting Chen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yanyu Zhai
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Li Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| |
Collapse
|
164
|
Zhang X, Yin H, Li Z, Zhang T, Yang Z. Nano-TiO 2 induces autophagy to protect against cell death through antioxidative mechanism in podocytes. Cell Biol Toxicol 2016; 32:513-527. [PMID: 27430495 DOI: 10.1007/s10565-016-9352-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
Autophagy is a cellular pathway involved in degradation of damaged organelles and proteins in order to keep cellular homeostasis. It plays vital role in podocytes. Titanium dioxide nanoparticles (nano-TiO2) are known to induce autophagy in cells, but little has been reported about the mechanism of this process in podocytes and the role of autophagy in podocyte death. In the present study, we examined how nano-TiO2 induced authophagy. Besides that, whether autophagy could protect podocytes from the damage induced by nano-TiO2 and its mechanism was also investigated. Western blot assay and acridine orange staining presented that nano-TiO2 significantly enhanced autophagy flux in podocytes. In addition, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were involved in such process. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that upregulated level of autophagy induced by rapamycin in high concentration nano-TiO2-treated podocytes could significantly reduce the level of oxidative stress and alleviate podocyte death. Downregulating the level of autophagy with 3-methyladenine had the opposite effects. These findings indicate that nano-TiO2 induces autophagy through activating AMPK to inhibit mTOR in podocytes, and such autophagy plays a protecting role against oxidative stress on the cell proliferation. Changing autophagy level may become a new treatment strategy to relieve the damage induced by nano-TiO2 in podocytes.
Collapse
Affiliation(s)
- Xiaochen Zhang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hongqiang Yin
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhigui Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
165
|
Noël A, Truchon G, Cloutier Y, Charbonneau M, Maghni K, Tardif R. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Toxicol Ind Health 2016; 33:351-364. [DOI: 10.1177/0748233716651560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is currently no consensus on the best exposure metric(s) for expressing nanoparticle (NP) dose. Although surface area has been extensively studied for inflammatory responses, it has not been as thoroughly validated for cytotoxicity or oxidative stress effects. Since inhaled NPs deposit and interact with lung cells based on agglomerate size, we hypothesize that mass concentration combined with aerosol size distribution is suitable for NP risk assessment. The objective of this study was to evaluate different exposure metrics for inhaled 5 nm titanium dioxide aerosols composed of small (SA < 100 nm) or large (LA > 100 nm) agglomerates at 2, 7, and 20 mg/m3 on rat lung inflammatory, cytotoxicity, and oxidative stress responses. We found a significant positive correlation ( r = 0.98, p < 0.01) with the inflammatory reaction, measured by the number of neutrophils and the mass concentration when considering all six (SA + LA) aerosols. This correlation was similar ( r = 0.87) for total surface area. Regarding cytotoxicity and oxidative stress responses, measured by lactate dehydrogenase and 8-isoprostane, respectively, and mass or total surface area as an exposure metric, we observed significant positive correlations only with SA aerosols for both the mass concentration and size distribution ( r > 0.91, p < 0.01), as well as for the total surface area ( r > 0.97, p < 0.01). These data show that mass or total surface area concentrations alone are insufficient to adequately predict oxidant and cytotoxic pulmonary effects. Overall, our study indicates that considering NP size distribution along with mass or total surface area concentrations contributes to a more mechanistic discrimination of pulmonary responses to NP exposure.
Collapse
Affiliation(s)
- A Noël
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, Montréal, Canada
| | - G Truchon
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Canada
| | - Y Cloutier
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Canada
| | - M Charbonneau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
- Deceased
| | - K Maghni
- Centre de recherche de l’Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Canada
| | - R Tardif
- Département de santé environnementale et de santé au travail, Institut de recherche en santé publique, Université de Montréal, Montréal, Canada
| |
Collapse
|
166
|
Schwarze PE, Ovrevik J, Låg M, Refsnes M, Nafstad P, Hetland RB, Dybing E. Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol 2016; 25:559-79. [PMID: 17165623 DOI: 10.1177/096032706072520] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Identifying the ambient particulate matter (PM) fractions or constituents, critically involved in eliciting adverse health effects, is crucial to the implementation of more cost-efficient abatement strategies to improve air quality. This review focuses on the importance of different particle properties for PM-induced effects, and whether there is consistency in the results from epidemiological and experimental studies. An evident problem for such comparisons is that epidemiological and experimental data on the effects of specific components of ambient PM are limited. Despite this, some conclusions can be drawn. With respect to the importance of the PM size-fractions, experimental and epidemiological studies are somewhat conflicting, but there seems to be a certain consistency in that the coarse fraction (PM10-2.5) has an effect that should not be neglected. Better exposure characterization may improve the consistency between the results from experimental and epidemiological studies, in particular for ultrafine particles. Experimental data indicate that surface area is an important metric, but composition may play an even greater role in eliciting effects. The consistency between epidemiological and experimental findings for specific PM-components appears most convincing for metals, which seem to be important for the development of both pulmonary and cardiovascular disease. Metals may also be involved in PM-induced allergic sensitization, but the epidemiological evidence for this is scarce. Soluble organic compounds appear to be implicated in PM-induced allergy and cancer, but the data from epidemiological studies are insufficient for any conclusions. The present review suggests that there may be a need for improvements in research designs. In particular, there is a need for better exposure assessments in epidemiological investigations, whereas experimental data would benefit from an improved comparability of studies. Combined experimental and epidemiological investigations may also help answer some of the unresolved issues.
Collapse
Affiliation(s)
- P E Schwarze
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
167
|
Interaction of TiO2 nanoparticle with trypsin analyzed by kinetic and spectroscopic methods. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
168
|
Schulte PA, Roth G, Hodson LL, Murashov V, Hoover MD, Zumwalde R, Kuempel ED, Geraci CL, Stefaniak AB, Castranova V, Howard J. Taking stock of the occupational safety and health challenges of nanotechnology: 2000-2015. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:159. [PMID: 27594804 PMCID: PMC5007006 DOI: 10.1007/s11051-016-3459-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials significantly entered commerce at the beginning of the 21st century. Concerns about serious potential health effects of nanomaterials were widespread. Now, approximately 15 years later, it is worthwhile to take stock of research and efforts to protect nanomaterial workers from potential risks of adverse health effects. This article provides and examines timelines for major functional areas (toxicology, metrology, exposure assessment, engineering controls and personal protective equipment, risk assessment, risk management, medical surveillance, and epidemiology) to identify significant contributions to worker safety and health. The occupational safety and health field has responded effectively to identify gaps in knowledge and practice, but further research is warranted and is described. There is now a greater, if imperfect, understanding of the mechanisms underlying nanoparticle toxicology, hazards to workers, and appropriate controls for nanomaterials, but unified analytical standards and exposure characterization methods are still lacking. The development of control-banding and similar strategies has compensated for incomplete data on exposure and risk, but it is unknown how widely such approaches are being adopted. Although the importance of epidemiologic studies and medical surveillance is recognized, implementation has been slowed by logistical issues. Responsible development of nanotechnology requires protection of workers at all stages of the technological life cycle. In each of the functional areas assessed, progress has been made, but more is required.
Collapse
Affiliation(s)
- P. A. Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - G. Roth
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - L. L. Hodson
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - V. Murashov
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - M. D. Hoover
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - R. Zumwalde
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - E. D. Kuempel
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - C. L. Geraci
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - A. B. Stefaniak
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - V. Castranova
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - J. Howard
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
169
|
Chen A, Feng X, Sun T, Zhang Y, An S, Shao L. Evaluation of the effect of time on the distribution of zinc oxide nanoparticles in tissues of rats and mice: a systematic review. IET Nanobiotechnol 2016; 10:97-106. [PMID: 27256887 PMCID: PMC8676493 DOI: 10.1049/iet-nbt.2015.0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023] Open
Abstract
To evaluate the time effect on the distribution of zinc oxide nanoparticles (ZnO NPs) in tissues from rats and mice, a search on the PubMed, Embase, SpringerLink, Scopus, Science Direct, Cochrane, CNKI, Wanfang, and vip databases up to September 2014 was performed, followed by screening, data extraction, and quality assessment. Thirteen studies were included. At 24 h, Zn content was mainly distributed in the liver, kidney, and lung. At ≥7 days, Zn content was mainly distributed in the liver, kidney, lung, and brain. ZnO NPs are readily deposited in tissues. Furthermore, as time increases, Zn content decreases in the liver and kidney, but increases in the brain.
Collapse
Affiliation(s)
- Aijie Chen
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Ting Sun
- Medical Centre of Stomatology, The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, People's Republic of China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Shengli An
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, People's Republic of China.
| |
Collapse
|
170
|
McIntosh K, Balch C, Tiwari AK. Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells. Expert Opin Drug Metab Toxicol 2016; 12:633-44. [DOI: 10.1080/17425255.2016.1179280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kyle McIntosh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
171
|
Barrier M, Bégorre MA, Baudrimont I, Dubois M, Freund-Michel V, Marthan R, Savineau JP, Muller B, Courtois A. Involvement of Heme Oxygenase-1 in particulate matter-induced impairment of NO-dependent relaxation in rat intralobar pulmonary arteries. Toxicol In Vitro 2016; 32:205-11. [DOI: 10.1016/j.tiv.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/06/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
|
172
|
Shaw CA, Mortimer GM, Deng ZJ, Carter ES, Connell SP, Miller MR, Duffin R, Newby DE, Hadoke PWF, Minchin RF. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages. Nanotoxicology 2016; 10:981-91. [PMID: 27027807 DOI: 10.3109/17435390.2016.1155672] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In biological fluids nanoparticles bind a range of molecules, particularly proteins, on their surface. The resulting protein corona influences biological activity and fate of nanoparticle in vivo. Corona composition is often determined by the biological milieu encountered at the entry portal into the body, and, can therefore, depend on the route of exposure to the nanoparticle. For environmental nanoparticles where exposure is by inhalation, this will be lung lining fluid. This study examined plasma and bronchoalveolar fluid (BALF) protein binding to engineered and environmental nanoparticles. We hypothesized that protein corona on nanoparticles would influence nanoparticle uptake and subsequent pro-inflammatory biological response in macrophages. All nanoparticles bound plasma and BALF proteins, but the profile of bound proteins varied between nanoparticles. Focusing on diesel exhaust nanoparticles (DENP), we identified proteins bound from plasma to include fibrinogen, and those bound from BALF to include albumin and surfactant proteins A and D. The presence on DENP of a plasma-derived corona or one of purified fibrinogen failed to evoke an inflammatory response in macrophages. However, coronae formed in BALF increased DENP uptake into macrophages two fold, and increased nanoparticulate carbon black (NanoCB) uptake fivefold. Furthermore, a BALF-derived corona increased IL-8 release from macrophages in response to DENP from 1720 ± 850 pg/mL to 5560 ± 1380 pg/mL (p = 0.014). These results demonstrate that the unique protein corona formed on nanoparticles plays an important role in determining biological reactivity and fate of nanoparticle in vivo. Importantly, these findings have implications for the mechanism of detrimental properties of environmental nanoparticles since the principle route of exposure to such particles is via the lung.
Collapse
Affiliation(s)
- Catherine A Shaw
- a BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Gysell M Mortimer
- b Laboratory for Molecular and Cellular Pharmacology , School of Biomedical Sciences, University of Queensland , Brisbane , Australia
| | - Zhou J Deng
- b Laboratory for Molecular and Cellular Pharmacology , School of Biomedical Sciences, University of Queensland , Brisbane , Australia
| | - Edwin S Carter
- a BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Shea P Connell
- a BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Mark R Miller
- a BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Rodger Duffin
- c MRC/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - David E Newby
- a BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Patrick W F Hadoke
- a BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh , Edinburgh , UK
| | - Rodney F Minchin
- b Laboratory for Molecular and Cellular Pharmacology , School of Biomedical Sciences, University of Queensland , Brisbane , Australia
| |
Collapse
|
173
|
Yaqoubi S, Barzegar Jalali M, Adibkia K, Hamishehkar H. Combination of Solvent Displacement and Wet Ball Milling Techniques for Size Reduction of Celecoxib. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
174
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
175
|
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11:673-92. [PMID: 27003448 DOI: 10.2217/nnm.16.5] [Citation(s) in RCA: 1171] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed.
Collapse
Affiliation(s)
- Nazanin Hoshyar
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Samantha Gray
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA.,Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
176
|
Zhang C, Zhu R, Yang W. A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles. SENSORS 2016; 16:s16030399. [PMID: 26999156 PMCID: PMC4813974 DOI: 10.3390/s16030399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 11/21/2022]
Abstract
Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Wenming Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
177
|
Mohamed HRH, Hussien NA. Genotoxicity Studies of Titanium Dioxide Nanoparticles (TiO2NPs) in the Brain of Mice. SCIENTIFICA 2016; 2016:6710840. [PMID: 27034902 PMCID: PMC4789523 DOI: 10.1155/2016/6710840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 05/28/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are excessively used and represent one of the top five most commonly used nanoparticles worldwide. Recently, various studies referred to their toxic potential on various organs using different treatment route. Male Swiss Webster mice were orally administrated TiO2NPs (500 mg/kg b.w.) daily for five consecutive days and then animals were sacrificed at 24 h, 7 days, or 14 days after the last treatment. The present results report that exposure to TiO2NPs produces mild to moderate changes in the cytoarchitecture of brain tissue in a time dependent manner. Moreover, Comet assay revealed the apoptotic DNA fragmentation, while PCR-SSCP pattern and direct sequencing showed point mutation of Presenilin 1 gene at exon 5, gene linked to inherited forms of the Alzheimer's disease. Therefore, from these findings, the present study concluded that TiO2NPs is genotoxic and mutagenic to brain tissue which in turn might lead to Alzheimer's disease incidence.
Collapse
Affiliation(s)
| | - Nahed A. Hussien
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
178
|
Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol 2016; 13:10. [PMID: 26911867 PMCID: PMC4766714 DOI: 10.1186/s12989-016-0122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022] Open
Abstract
Background Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Methods Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m3 in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Results Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. Conclusion These data show that 10 days after a 21-day exposure to 5 mg/m3 of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.
Collapse
Affiliation(s)
- A Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Z Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - H M Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R L Rouse
- United States Food and Drug Administration, Silver Spring, MD, USA
| | - D B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - A L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
179
|
Kreyling WG. Discovery of unique and ENM- specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. Toxicol Appl Pharmacol 2016; 299:41-6. [PMID: 26861261 DOI: 10.1016/j.taap.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
The biokinetics of inhaled nanoparticles (NP) is more complex than that of larger particles since NP may NP deposited on the nasal mucosa of the upper respiratory tract (URT) may translocate to the olfactory bulb of the brain and also via the trigeminus (URT neuronal route); and (b) NP deposited in the lower respiratory tract (LRT) may cross the ABB into blood and enter the brain across the blood-brain-barrier (BBB) or take a neuronal route from enervated tracheo-bronchial epithelia via the vagus nerve. Translocation from both - the URT and the LRT - are quantified during the first 24h after a 1-hour aerosol inhalation of 20nm-sized, (192)Ir radiolabeled iridium NP by healthy adult rats using differential exposures: (I) nose-only exposure of the entire respiratory tract or (II) intratracheal (IT) inhalation of intubated and ventilated rats, thereby bypassing the URT and extrathoracic nasal passages. After nose-only exposure brain accumulation (BrAcc) is significantly nine-fold higher than after IT inhalation since the former results from both pathways (a+b) while the latter exposure comes only from pathway (b). Interestingly, there are significantly more circulating NP in blood 24h after nose-only inhalation than after IT inhalation. Distinguishing translocation from URT versus LRT estimated from the differential inhalation exposures, the former is significantly higher (8-fold) than from the LRT. Although the BrAcc fraction is rather low compared to total NP deposition after this short-term exposure, this study proofs that inhaled insoluble NP can accumulate in the brain from both - URT and LRT which may trigger and/or modulate adverse health effects in the central nervous system (CNS) during chronic exposure.
Collapse
Affiliation(s)
- Wolfgang G Kreyling
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Epidemiology 2, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Munich, Germany.
| |
Collapse
|
180
|
Oosterwijk MTT, Feber ML, Burello E. Proposal for a risk banding framework for inhaled low aspect ratio nanoparticles based on physicochemical properties. Nanotoxicology 2016; 10:780-93. [DOI: 10.3109/17435390.2015.1132344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
181
|
Yu Y, Ren W, Ren B. Nanosize titanium dioxide cause neuronal apoptosis: a potential linkage between nanoparticle exposure and neural disorder. Neurol Res 2016; 30:1115-20. [PMID: 26154883 DOI: 10.1179/0161641215z.000000000587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nanosize titanium dioxide is used in water and air decontamination and in numerous home appliances and products designed for direct human use. However, the impact of nanoparticle on biological system is not known to us. Therefore, it is our urgent and primary task to ascertain the information about safety and potential hazards of products derived from nanomaterial to the health of mankind. METHODS We made use of MTT, bromodeoxyuridine (BrdU), and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays to testify the biological impact of nanosize TiO2 on olfactory bulb neurons cultured in vitro. RESULTS In this article, we elucidate the cytotoxicity of titanium dioxide to olfactory bulb neurons on cellular and molecular level. We come to a conclusion that nanosize titanium dioxide causes neuronal apoptosis, and it also down-regulate the expression of olfactory marker protein (OMP) and tyrosine hydroxylase (TH). DISCUSSION These results show that a relationship between nanoparticle exposure and pathogeny of neurodegenerative diseases may exist.
Collapse
Affiliation(s)
- Yiqun Yu
- Research and Development Department, Jianrong Chemistry and Nanomaterial Limited Corporation, Industrial Development Zone of Eastern Juancheng County, Shandong Province, China.
| | | | | |
Collapse
|
182
|
Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, Composition, and Lung Diseases. Front Immunol 2016; 7:3. [PMID: 26834745 PMCID: PMC4719080 DOI: 10.3389/fimmu.2016.00003] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
Urban air pollution is a serious worldwide problem due to its impact on human health. In the past 60 years, growing evidence established a correlation between exposure to air pollutants and the developing of severe respiratory diseases. Recently particulate matter (PM) is drawing more public attention to various aspects including historical backgrounds, physicochemical characteristics, and its pathological role. Therefore, this review is focused on these aspects. The most famous air pollution disaster happened in London on December 1952; it has been calculated that more than 4,000 deaths occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood-air barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in the air. PM is deposited at different levels of the respiratory tract, depending on its size: coarse particles (PM10) in upper airways and fine particles (PM2.5) can be accumulated in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the composition of PM has been associated with different toxicological outcomes on clinical and epidemiological, as well as in vivo and in vitro animal and human studies. PM can be constituted by organic, inorganic, and biological compounds. All these compounds are capable of modifying several biological activities, including alterations in cytokine production, coagulation factors balance, pulmonary function, respiratory symptoms, and cardiac function. It can also generate different modifications during its passage through the airways, like inflammatory cells recruitment, with the release of cytokines and reactive oxygen species (ROS). These inflammatory mediators can activate different pathways, such as MAP kinases, NF-κB, and Stat-1, or induce DNA adducts. All these alterations can mediate obstructive or restrictive respiratory diseases like asthma, COPD, pulmonary fibrosis, and even cancer. In 2013, outdoor air pollution was classified as Group 1 by IARC based on all research studies data about air pollution effects. Therefore, it is important to understand how PM composition can generate several pulmonary pathologies.
Collapse
Affiliation(s)
- Carlos I. Falcon-Rodriguez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Isabel Sada-Ovalle
- Laboratorio de Inmunologia Integrativa, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| |
Collapse
|
183
|
Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RPF, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V. A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health--ENPRA Project--The Highlights, Limitations, and Current and Future Challenges. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:1-28. [PMID: 27030582 DOI: 10.1080/10937404.2015.1126210] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ENPRA was one of the earlier multidisciplinary European Commission FP7-funded projects aiming to evaluate the risks associated with nanomaterial (NM) exposure on human health across pulmonary, cardiovascular, hepatic, renal, and developmental systems. The outputs from this project have formed the basis of this review. A retrospective interpretation of the findings across a wide range of in vitro and in vivo studies was performed to identify the main highlights from the project. In particular, focus was placed on informing what advances were made in the hazard assessment of NM, as well as offering some suggestions on the future of "nanotoxicology research" based on these observations, shortcomings, and lessons learned from the project. A number of issues related to the hazard assessment of NM are discussed in detail and include use of appropriate NM for nanotoxicology investigations; characterization and dispersion of NM; use of appropriate doses for all related investigations; need for the correct choice of experimental models for risk assessment purposes; and full understanding of the test systems and correct interpretation of data generated from in vitro and in vivo systems. It is hoped that this review may assist in providing information in the implementation of guidelines, model systems, validation of assessment methodology, and integrated testing approaches for risk assessment of NM. It is vital to learn from ongoing and/or completed studies to avoid unnecessary duplication and offer suggestions that might improve different aspects of experimental design.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Ilse Gosens
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Laura MacCalman
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| | - Helinor Johnston
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Pernille H Danielsen
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Nicklas R Jacobsen
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Anke-Gabriele Lenz
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| | - Teresa Fernandes
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| | - Roel P F Schins
- g IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf , Germany
| | - Flemming R Cassee
- c Centre for Sustainability, Environment and Health , National Institute for Public Health and the Environment , Bilthoven , The Netherlands
| | - Håkan Wallin
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
- e National Research Centre for the Working Environment , Copenhagen , Denmark
| | - Wolfgang Kreyling
- h Helmholtz Zentrum München , Institute of Epidemiology II , Munich , Germany
| | - Tobias Stoeger
- f Comprehensive Pneumology Center , Institute of Lung Biology and Disease, Helmholtz Zentrum München , Munich , Germany
| | - Steffen Loft
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Peter Møller
- a Department of Public Health, Section of Environmental Health , University of Copenhagen , Copenhagen , Denmark
| | - Lang Tran
- d Institute of Occupational Medicine , Edinburgh , United Kingdom
| | - Vicki Stone
- b School of Life Sciences, Nano Safety Research Group , Heriot Watt University , Edinburgh , United Kingdom
| |
Collapse
|
184
|
Hofemeier P, Sznitman J. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay. J Appl Physiol (1985) 2015; 118:1375-85. [PMID: 25882387 DOI: 10.1152/japplphysiol.01117.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It is largely acknowledged that inhaled particles ranging from 0.001 to 10 m are able to reach and deposit in the alveolated regions of the lungs. To date, however, the bulk of numerical studies have focused mainly on micrometer sized particles whose transport kinematics are governed by convection and sedimentation, thereby capturing only a small fraction of the wider range of aerosols leading to acinar deposition. Too little is still known about the local acinar transport dynamics of inhaled (ultra)fine particles affected by diffusion and convection. Our study aims to fill this gap by numerically simulating the transport characteristics of particle sizes spanning three orders of magnitude (0.01-5 m) covering diffusive, convective, and gravitational aerosol motion across a multigenerational acinar network. By characterizing the deposition patterns as a function of particle size, we find that submicrometer particles [formulae see text (0.1 m)] reach deep into the acinar structure and are prone to deposit near alveolar openings; meanwhile, other particle sizes are restricted to accessing alveolar cavities in proximal generations. Our findings underline that a precise understanding of acinar aerosol transport, and ultrafine particles in particular, is contingent upon resolving the complex convective-diffusive interplay in determining their irreversible kinematics and local deposition sites.
Collapse
|
185
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
186
|
Sayers BC, Walker NJ, Roycroft JH, Germolec DR, Baker GL, Clark ML, Hayden BK, DeFord H, Dill JA, Gupta A, Stout MD. Lung deposition and clearance of microparticle and nanoparticle C60 fullerene aggregates in B6C3F1 mice and Wistar Han rats following nose-only inhalation for 13 weeks. Toxicology 2015; 339:87-96. [PMID: 26612504 DOI: 10.1016/j.tox.2015.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/25/2022]
Abstract
C60 fullerenes (C60) are spherical structures consisting of 60 carbon atoms that are generated via combustion from both natural and anthropogenic sources. C60 are also synthesized intentionally for industrial applications. Individual C60 structures have an approximate diameter of 1nm; however, C60 readily forms aggregates and typically exist as larger particles that range from nanometers to micrometers in diameter. In this report, lung and extrapulmonary tissue deposition and lung clearance of C60 nanoparticles (nano-C60, 50nm) and microparticles (micro-C60, 1μm) were examined in Wistar Han rats and B6C3F1/N mice after nose-only inhalation for 90 days. Exposure concentrations were 0.5 and 2mg/m(3) (nano-C60) and 2, 15, and 30mg/m(3) (micro-C60). For both C60 particle sizes, the C60 lung burden increased proportionally to exposure concentration. The C60 lung burden was greater in both species at all time points following exposure to nano-C60 particle exposure compared to micro-C60 exposure at the common exposure concentration 2mg/m(3). The calculated C60 particle lung retention half-times were similar for both nano-C60 and micro-C60 exposure at 2mg/m(3) in male mice (15-16 days). In contrast, in male rats, the half-time of C60 particles following nano-C60 exposure (61 days) was roughly twice as long as the half-time following micro-C60 exposure (27 days) at the same exposure concentration (2mg/m(3)) and was similar to the clearance following micro-C60 exposure at higher exposure concentrations (15 and 30mg/m(3)). C60 was detected in bronchial lymph nodes but the burden was not quantified due to the high variability in the data. C60 concentrations were below the experimental limit of quantitation (ELOQ) in liver, spleen, blood, brain and kidney tissues. These tissue burden data provide information for comparison between nanometer and micrometer sized C60 particle exposure and will aid in the interpretation of toxicity data.
Collapse
Affiliation(s)
- Brian C Sayers
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Nigel J Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Joseph H Roycroft
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Dori R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Gregory L Baker
- Battelle Toxicology Northwest, 900 Battelle Boulevard, Richland, WA 99354, USA
| | - Mark L Clark
- Battelle Toxicology Northwest, 900 Battelle Boulevard, Richland, WA 99354, USA
| | - Barry K Hayden
- Battelle Toxicology Northwest, 900 Battelle Boulevard, Richland, WA 99354, USA
| | - Henry DeFord
- Battelle Toxicology Northwest, 900 Battelle Boulevard, Richland, WA 99354, USA
| | - Jeffrey A Dill
- Battelle Toxicology Northwest, 900 Battelle Boulevard, Richland, WA 99354, USA
| | - Amit Gupta
- Battelle Toxicology Northwest, 900 Battelle Boulevard, Richland, WA 99354, USA
| | - Matthew D Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
187
|
Hong F, Wang L, Yu X, Zhou Y, Hong J, Sheng L. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice. NANOSCALE RESEARCH LETTERS 2015; 10:1029. [PMID: 26269254 PMCID: PMC4534482 DOI: 10.1186/s11671-015-1029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/30/2015] [Indexed: 05/21/2023]
Abstract
Currently, impacts of exposure to TiO2 nanoparticles (NPs) on the cardiovascular system are not well understood. The aim of this study was to investigate whether TiO2 NPs induce myocarditis and its underlying molecular mechanism in the cardiac inflammation in mice. Mice were exposed to TiO2 NPs for 6 months; biochemical parameters of serum and expression of Th1-related and Th2-related cytokines in the heart were investigated. The results showed that TiO2 NP exposure resulted in cardiac lesions coupling with pulmonary inflammation; increases of aspartate aminotransferase (AST), creatine kinase (CK), C-reaction protein (CRP), lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH), adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels; and a reduction of nitric oxide (NOx) level in the serum. These were associated with increases of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, transforming growth factor-β (TGF-β), creatine kinase, CRP, adhesion molecule-1, and monocyte chemoattractant protein-1, interferon-γ (IFN-γ), signal transducers and activators of transcription (STAT)1, STAT3, or STAT6, GATA-binding domain-3, GATA-binding domain-4, endothelin-1 expression levels, and T-box expressed in T cells expression level that is the master regulator of pro-inflammatory cytokines and transcription factors in the heart. These findings imply that TiO2 NP exposure may increase the occurrence and development of cardiovascular diseases.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China,
| | | | | | | | | | | |
Collapse
|
188
|
Ni L, Chuang CC, Zuo L. Fine particulate matter in acute exacerbation of COPD. Front Physiol 2015; 6:294. [PMID: 26557095 PMCID: PMC4617054 DOI: 10.3389/fphys.2015.00294] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.
Collapse
Affiliation(s)
- Lei Ni
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Department of Pulmonary Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China ; Shanghai Key Laboratory of Meteorology and Health, Pudong Meteorological Service Shanghai, China
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Interdisciplinary Biophysics Program, The Ohio State University Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center Columbus, OH, USA ; Interdisciplinary Biophysics Program, The Ohio State University Columbus, OH, USA
| |
Collapse
|
189
|
Adamcakova-Dodd A, Monick MM, Powers LS, Gibson-Corley KN, Thorne PS. Effects of prenatal inhalation exposure to copper nanoparticles on murine dams and offspring. Part Fibre Toxicol 2015; 12:30. [PMID: 26437892 PMCID: PMC4594905 DOI: 10.1186/s12989-015-0105-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023] Open
Abstract
Background Increasing numbers of individuals may be exposed to nanomaterials during pregnancy. The overarching goal of this investigation was to determine if prenatal inhalation exposure to copper nanoparticles (Cu NPs) has an effect on dams and offspring, including an analysis of inflammatory markers (Th1/Th2 cytokine profiles). Methods Physicochemical characterization of Cu NPs was performed. Pregnant and non-pregnant mice (C57Bl/6 J) were exposed to Cu NPs or laboratory air in the whole-body chamber for 4 hrs/day on gestation days (GD) 3–19 (3.5 mg/m3). Animals were euthanized on GD 19 (0 week) or 7 weeks later. Bronchoalveolar lavage (BAL) fluid was analyzed for total and differential cells. Cytokine/chemokine concentrations were determined in the BAL fluid and the plasma of dams/non-pregnant mice and pups. Cu content was determined in the lungs and the blood of dams/non-pregnant mice and pups, in the placentas as well as in the whole bodies of pups immediately after delivery. Lungs and placentas were evaluated for histopathological changes. Gene expression of the Th1/Th2 profiles were analyzed in spleens of pups. Results The survival rate of 7 week old pups exposed to Cu NPs was significantly lower than control pups (73 vs. 97 %). The average litter size, male/female ratio, body weight and lenght at birth were not different between Cu NP-exposed and control mice. Both pregnant and non-pregnant mice exposed to Cu NPs had significant pulmonary inflammation with increased number of neutrophils in the BAL fluid compared to controls. Perivascular lymphoplasmacytic cuffing was found in the lungs of exposed mice and was more pronounced in the non-pregnant group. Similarly, levels of inflammatory cytokines/chemokines IL-12(p40), G-CSF, GM-CSF, KC, MCP-1, MIP-1α, MIP-1β, RANTES and TNF-α in BAL fluid were significantly higher in non-pregnant than pregnant exposed mice. Histopathology evaluation of placentas did not identify any pathological changes. No translocation of Cu into the placenta or the fetus was found by inductively coupled plasma-mass spectroscopy. Expression of several Th1/Th2 or other immune response genes in pups’ spleens were found to be significantly up- or down-regulated. Conclusions Prenatal exposure to Cu NPs caused a profound pulmonary inflammation in dams and strong immunomodulatory effects in offspring. There was no clear polarization of genes expressed in pups’ spleens towards Th1 or Th2 type of response. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0105-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, College of Public Health, UI Research Park, IREH 170, Iowa City, IA, 52242, USA.
| | - Martha M Monick
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda S Powers
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, College of Public Health, UI Research Park, IREH 170, Iowa City, IA, 52242, USA
| |
Collapse
|
190
|
Luo C, Zhu X, Yao C, Hou L, Zhang J, Cao J, Wang A. Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14651-62. [PMID: 26298338 DOI: 10.1007/s11356-015-5188-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/10/2015] [Indexed: 05/20/2023]
Abstract
A growing number of studies have associated short-term exposure to ambient particulate matter air pollution (PM) and risk of specific cardiovascular events, just as myocardial infarction (MI). However, the results of the recent studies were inconsistent; therefore, a systematic review and meta-analysis was performed. To synthetically quantify the association between short-term exposure to PM and risk of MI, a meta-analysis was conducted to combine the estimates of effect for a relationship between short-term exposure to PM10, PM2.5 (particulate matter ≤ 10 μm, 2.5 μm in diameter) and risk of MI. Electronic database searches for all relevant published studies were updated in January 2015. And, a random-effects model was performed to estimate pooled relative risk (RR) and 95 % confidence intervals (95 % CI). Thirty-one published observational epidemiological studies were identified. Risk of MI was significantly associated with per 10 μg/m(3) increment in PM10 (OR = 1.005; 95 % CI 1.001-1.008) and PM2.5 (OR = 1.022; 95 % CI 1.015-1.030). The risk of PM2.5 exposure was relatively greater than PM10. In the subgroup analysis by study design, location, quality score, and lag exposure, the results were basically consistent with the former overall results in PM2.5 but slightly changed in PM10. Short-term exposure to particulate matter (PM2.5, PM10) was a risk factor for MI, and the results further confirmed the discovery in the previous meta-analysis.
Collapse
Affiliation(s)
- Chunmiao Luo
- Department of Cardiology Medical, The Second People's Hospital of Hefei, Heping Road, Hefei, Anhui, China
| | - Xiaoxia Zhu
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Cijiang Yao
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Lijuan Hou
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Jian Zhang
- Department of Occupational and Environmental, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Jiyu Cao
- The Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Meishan Road, Hefei, Anhui, China
| | - Ailing Wang
- Department of Cardiology Medical, the First Affiliated Hospital of Anhui Medical University, Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
191
|
Fagundes LS, Fleck ADS, Zanchi AC, Saldiva PHN, Rhoden CR. Direct contact with particulate matter increases oxidative stress in different brain structures. Inhal Toxicol 2015; 27:462-7. [PMID: 26327340 DOI: 10.3109/08958378.2015.1060278] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several experimental and epidemiological studies have demonstrated the neurological adverse effects caused by exposure to air pollution, specifically in relation to pollutant particulate matter (PM). The objective of this study was to investigate the direct effect of PM in increased concentrations in different brain regions, as well as the mechanisms involving its neurotoxicity, by evaluating oxidative stress parameters in vitro. METHODS Olfactory bulb, cerebral cortex, striatum, hippocampus and cerebellum of rats were homogenized and incubated with PM < 2.5 μm of diameter (PM2.5) at concentrations of 3, 5 and 10 µg/mg of tissue. The oxidative damage caused by lipid peroxidation of these structures was determined by testing the thiobarbituric acid reactive species (TBA-RS). In addition, we measured the activity of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD). RESULTS All PM concentrations were able to damage the cerebellum and hippocampus, strongly enhancing the lipid peroxidation in both structures. PM incubation also decreased the CAT activity of the hippocampus, cerebellum, striatum and olfactory bulb, though it did not generate higher levels of lipid peroxidation in either of the last two structures. PM incubation did not alter any measurement of the cerebral cortex. CONCLUSION The cerebellum and hippocampus seem to be more susceptible than other brain structures to in vitro direct PM exposure assay and the oxidative stress pathway catalyzes the neurotoxic effect of PM exposure, as evidenced by high consumption of CAT and high levels of TBA-RS. Thus, PM direct exposure seems to activate toxic neurological effects.
Collapse
Affiliation(s)
- Lucas Sagrillo Fagundes
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Alan da Silveira Fleck
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Ana Claudia Zanchi
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Paulo Hilário Nascimento Saldiva
- b Laboratório de Poluição Atmosférica Experimental, Faculdade de Medicina, Universidade de São Paulo-USP , São Paulo , SP , Brazil
| | - Cláudia Ramos Rhoden
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| |
Collapse
|
192
|
Bulcke F, Dringen R. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes. Neurochem Res 2015; 41:33-43. [DOI: 10.1007/s11064-015-1688-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022]
|
193
|
Sweeney LM, MacCalman L, Haber LT, Kuempel ED, Tran CL. Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Regul Toxicol Pharmacol 2015; 73:151-63. [PMID: 26145831 DOI: 10.1016/j.yrtph.2015.06.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 11/27/2022]
Abstract
Biomathematical modeling quantitatively describes the disposition of metal nanoparticles in lungs and other organs of rats. In a preliminary model, adjustable parameters were calibrated to each of three data sets using a deterministic approach, with optimal values varying among the different data sets. In the current effort, Bayesian population analysis using Markov chain Monte Carlo (MCMC) simulation was used to recalibrate the model while improving assessments of parameter variability and uncertainty. The previously-developed model structure and some physiological parameter values were modified to improve physiological realism. The data from one of the three previously-identified studies and from two other studies were used for model calibration. The data from the one study that adequately characterized mass balance were used to generate parameter distributions. When data from a second study of the same nanomaterial (iridium) were added, the level of agreement was still acceptable. Addition of another data set (for silver nanoparticles) led to substantially lower precision in parameter estimates and large discrepancies between the model predictions and experimental data for silver nanoparticles. Additional toxicokinetic data are needed to further evaluate the model structure and performance and to reduce uncertainty in the kinetic processes governing in vivo disposition of metal nanoparticles.
Collapse
Affiliation(s)
- Lisa M Sweeney
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Unit Dayton (NAMRU Dayton), 2729 R Street, Building 837, Wright Patterson Air Force Base, OH 45433, USA; Toxicology Excellence for Risk Assessment (TERA), 2300 Montana Avenue, Cincinnati, OH 45211, USA.
| | - Laura MacCalman
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Lynne T Haber
- Toxicology Excellence for Risk Assessment (TERA), 2300 Montana Avenue, Cincinnati, OH 45211, USA
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health (NIOSH), 4676 Columbia Parkway, M.S. C-15, Cincinnati, OH 45226-1998, USA
| | - C Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| |
Collapse
|
194
|
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 2015; 45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
195
|
Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol 2015; 12:18. [PMID: 26116549 PMCID: PMC4483206 DOI: 10.1186/s12989-015-0090-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/14/2015] [Indexed: 11/16/2022] Open
Abstract
Background The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs. Methods A novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses (i.e., 25, 50, 100, 150, 200 ng/cm2) and sizes (i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods (i.e., 0, 2, 8, 24, 48, 72 h). Results The translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm2). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP. Conclusion Our approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0090-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerald Bachler
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland. .,University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | - Sabrina Losert
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland. .,EMPA, Swiss Federal Laboratories for Material Science and Technology, 8600, Dübendorf, Switzerland.
| | - Yuki Umehara
- University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | - Natalie von Goetz
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
| | | | - Alke Petri-Fink
- University of Fribourg, Adolphe Merkle Institute, 1700, Fribourg, Switzerland.
| | | | - Konrad Hungerbuehler
- ETH Zürich, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
| |
Collapse
|
196
|
Submicron Particles during Macro- and Micro-Weldings Procedures in Industrial Indoor Environments and Health Implications for Welding Operators. METALS 2015. [DOI: 10.3390/met5021045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
197
|
Shimizu R, Umezawa M, Okamoto S, Onoda A, Uchiyama M, Tachibana K, Watanabe S, Ogawa S, Abe R, Takeda K. Effect of maternal exposure to carbon black nanoparticle during early gestation on the splenic phenotype of neonatal mouse. J Toxicol Sci 2015; 39:571-8. [PMID: 25056782 DOI: 10.2131/jts.39.571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Maternal exposure to environmental factors is implicated as a major factor in the development of the immune system in newborns. Newborns are more susceptible to microbial infection because their immune system is immature. Development of lymphocytes reflects an innate program of lymphocyte proliferation. The aim of this study was to investigate the effects of maternal exposure to carbon black nanoparticle (CB-NP) during early gestation on the development of lymphoid tissues in infantile mice. Pregnant ICR mice were treated with a suspension of CB-NP (95 μg kg(-1) time(-1)) by intranasal instillation on gestational day 5 and 9. Spleen tissues were collected from offspring mice at 1, 3, 5, and 14 days postpartum. Splenocyte phenotypes were examined by investigating the pattern of surface molecules using flow cytometry. Gene expression in the spleen was examined by quantitative RT-PCR. CD3(+) (T), CD4(+) and CD8(+) cells were decreased in the spleen of 1-5-day-old offspring in the treated group. Expression level of Il15 was significantly increased in the spleen of newborn male offspring, and Ccr7 and Ccl19 were increased in the spleen of female offspring in the CB-NP group. Splenic mRNA change profiles by CBNP were similar between male and female offspring. This article concluded that exposure of pregnant mothers to CB-NP partially suppressed the development of the immune system of offspring mice. The decrease in splenic T cells in the treated group recovered at 14 days after birth. This is the first report of developmental effect of nanoparticle on the lymphatic phenotype.
Collapse
Affiliation(s)
- Ryuhei Shimizu
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Reche C, Viana M, Brines M, Pérez N, Beddows D, Alastuey A, Querol X. Determinants of aerosol lung-deposited surface area variation in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 517:38-47. [PMID: 25710624 DOI: 10.1016/j.scitotenv.2015.02.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Ultrafine particles are characterized by a high surface area per mass. Particle surface has been reported to play a significant role in determining the toxicological activity of ultrafine particles. In light of this potential role, the time variation of lung deposited surface area (LDSA) concentrations in the alveolar region was studied at the urban background environment of Barcelona (Spain), aiming to asses which processes and sources govern this parameter. Simultaneous data on Black Carbon (BC), total particle number (N) and particle number size distribution were correlated with LDSA. Average LDSA concentrations in Barcelona were 37 ± 26 μm(2)cm(-3), levels which seem to be characteristic for urban environments under traffic influence across Europe. Results confirm the comparability between LDSA data provided by the online monitor and those calculated based on particle size distributions (by SMPS), and reveal that LDSA concentrations are mainly influenced by particles in the size range 50-200 nm. A set of representative daily cycles for LDSA concentrations was obtained by means of a k-means cluster technique. The contribution of traffic emissions to daily patterns was evidenced in all the clusters, but was quantitatively different. Traffic events under stable atmospheric conditions increased mean hourly background LDSA concentrations up to 6 times, attaining levels higher than 200 μm(2)cm(-3). However, under warm and relatively clean atmospheric conditions, the traffic rush hour contribution to the daily LDSA mean appeared to be lower and the contribution of new urban particle formation events (by photochemically induced nucleation) was detected. These nucleation events were calculated to increase average background LDSA concentrations by 15-35% (maximum LDSA levels=45-50 μm(2)cm(-3)). Thereby, it may be concluded that in the urban background of Barcelona road traffic is the main source increasing the aerosol surface area which can deposit on critical regions of the human lung, followed by nucleation episodes.
Collapse
Affiliation(s)
- Cristina Reche
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Mar Viana
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Mariola Brines
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - David Beddows
- National Centre for Atmospheric Science Division of Environmental Health & Risk Management School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| |
Collapse
|
199
|
Husain M, Wu D, Saber AT, Decan N, Jacobsen NR, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology 2015; 9:1013-22. [PMID: 25993494 PMCID: PMC4743610 DOI: 10.3109/17435390.2014.996192] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 11/13/2022]
Abstract
An estimated 1% or less of nanoparticles (NPs) deposited in the lungs translocate to systemic circulation and enter other organs; however, this estimation may not be accurate given the low sensitivity of existing in vivo NP detection methods. Moreover, the biological effects of such low levels of translocation are unclear. We employed a nano-scale hyperspectral microscope to spatially observe and spectrally profile NPs in tissues and blood following pulmonary deposition in mice. In addition, we characterized effects occurring in blood, liver and heart at the mRNA and protein level following translocation from the lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 or 162 µg of industrially relevant titanium dioxide nanoparticles (nano-TiO2) alongside vehicle controls. Using the nano-scale hyperspectral microscope, translocation to heart and liver was confirmed at both doses, and to blood at the highest dose, in mice analyzed 24 h post-exposure. Global gene expression profiling and ELISA analysis revealed activation of complement cascade and inflammatory processes in heart and specific activation of complement factor 3 in blood, suggesting activation of an early innate immune response essential for particle opsonisation and clearance. The liver showed a subtle response with changes in the expression of genes associated with acute phase response. This study characterizes the subtle systemic effects that occur in liver and heart tissues following pulmonary exposure and low levels of translocation of nano-TiO2 from lungs.
Collapse
Affiliation(s)
- Mainul Husain
- Environmental Health Science and Research Bureau, Health Canada,
Ottawa,
Ontario,
Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada,
Ottawa,
Ontario,
Canada
| | - Anne T. Saber
- The Danish NanoSafety Centre, National Research Centre for the Working Environment,
Copenhagen,
Denmark
| | - Nathalie Decan
- Environmental Health Science and Research Bureau, Health Canada,
Ottawa,
Ontario,
Canada
| | - Nicklas R. Jacobsen
- The Danish NanoSafety Centre, National Research Centre for the Working Environment,
Copenhagen,
Denmark
| | - Andrew Williams
- The Danish NanoSafety Centre, National Research Centre for the Working Environment,
Copenhagen,
Denmark
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada,
Ottawa,
Ontario,
Canada
| | - Hakan Wallin
- The Danish NanoSafety Centre, National Research Centre for the Working Environment,
Copenhagen,
Denmark
- Institute of Public Health, University of Copenhagen,
Copenhagen,
Denmark
| | - Ulla Vogel
- The Danish NanoSafety Centre, National Research Centre for the Working Environment,
Copenhagen,
Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark,
Kgs, Lyngby,
Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada,
Ottawa,
Ontario,
Canada
| |
Collapse
|
200
|
Gosens I, Kermanizadeh A, Jacobsen NR, Lenz AG, Bokkers B, de Jong WH, Krystek P, Tran L, Stone V, Wallin H, Stoeger T, Cassee FR. Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice. PLoS One 2015; 10:e0126934. [PMID: 25966284 PMCID: PMC4429007 DOI: 10.1371/journal.pone.0126934] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022] Open
Abstract
Comparative hazard identification of nanomaterials (NMs) can aid in the prioritisation for further toxicity testing. Here, we assessed the acute lung, systemic and liver responses in C57BL/6N mice for three NMs to provide a hazard ranking. A silver (Ag), non-functionalised zinc oxide (ZnO) and a triethoxycaprylylsilane functionalised ZnO NM suspended in water with 2% mouse serum were examined 24 hours following a single intratracheal instillation (I.T.). An acute pulmonary inflammation was noted (marked by a polymorphonuclear neutrophil influx) with cell damage (LDH and total protein) in broncho-alveolar lavage fluid (BALF) after administration of both non-functionalised and functionalised ZnO. The latter also induced systemic inflammation measured as an increase in blood neutrophils and a decrease in blood lymphocytes. Exposure to Ag NM was not accompanied by pulmonary inflammation or cytotoxicity, or by systemic inflammation. A decrease in glutathione levels was demonstrated in the liver following exposure to high doses of all three nanomaterials irrespective of any noticeable inflammatory or cytotoxic effects in the lung. By applying benchmark dose (BMD) modeling statistics to compare potencies of the NMs, we rank functionalised ZnO ranked the highest based on the largest number of affected endpoints, as well as the strongest responses observed after 24 hours. The non-functionalised ZnO NM gave an almost similar response, whereas Ag NM did not cause an acute response at similar doses.
Collapse
Affiliation(s)
- Ilse Gosens
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| | - Ali Kermanizadeh
- Heriot-Watt University, School of Life Sciences, Nanosafety Research Group, Edinburgh, United Kingdom
| | | | - Anke-Gabriele Lenz
- German Research Center for Environmental Health (GmbH), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bas Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Wim H. de Jong
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Petra Krystek
- Philips Innovation Services, Eindhoven, The Netherlands
| | | | - Vicki Stone
- Heriot-Watt University, School of Life Sciences, Nanosafety Research Group, Edinburgh, United Kingdom
| | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, Copenhagen University, Copenhagen, Denmark
| | - Tobias Stoeger
- German Research Center for Environmental Health (GmbH), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Flemming R. Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Studies, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|