151
|
Higuchi M, Mekuchi M, Hano T, Imaizumi H. Trans-omics analyses revealed differences in hormonal and nutritional status between wild and cultured female Japanese eel (Anguilla japonica). PLoS One 2019; 14:e0209063. [PMID: 31071082 PMCID: PMC6508692 DOI: 10.1371/journal.pone.0209063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Long-term stock decline in the Japanese eel (Anguilla japonica) is a serious issue. To reduce natural resource utilization in Japan, artificial hormonal induction of maturation and fertilization in the Japanese eel has been intensively studied. Recent experiment on feminized (by feeding a commercial diet containing estradiol-17β for first half year) cultured female eels have shown ovulation problems, which is seldom observed in captured wild female eels. Therefore, the aim of this study is to try to investigate causes of ovulation problem frequently seen in cultured female eels by comparative trans-omics analyses. The omics data showed low growth hormone and luteinizing hormone transcription levels in the brain and low sex hormone–binding globulin transcription levels in the liver of the cultured female eels. In addition, it was found that high accumulation of glucose-6-phosphate and, maltose in the liver of the cultured female eel. It was also found that docosahexaenoic (DHA) acid, eicosapentaenoic acid (EPA) and arachidonic acid (ARA) ratios in cultured female eels were quite different from wild female eels. The data suggested that ovulation problem in cultured female eels was possibly resulted from prolonged intake of a high-carbohydrate diet and/or suboptimal DHA/EPA/ARA ratios in a diet.
Collapse
Affiliation(s)
- Masato Higuchi
- Shibushi Station, National Research Institute of Aquaculture, Fishery Research and Education Agency, Shibushi-cho, Shibushi, Japan
- * E-mail:
| | - Miyuki Mekuchi
- National Research Institute of Fishery Science, Fishery Research and Education Agency, Fukuura, Kanazawa-ku, Yokohama, Japan
| | - Takeshi Hano
- National Research Institute of Fisheries and Environmental of Inland Sea, Fishery Research and Education Agency, Hatsukaichi, Hiroshima, Japan
| | - Hitoshi Imaizumi
- Shibushi Station, National Research Institute of Aquaculture, Fishery Research and Education Agency, Shibushi-cho, Shibushi, Japan
| |
Collapse
|
152
|
Novel exc Genes Involved in Formation of the Tubular Excretory Canals of Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:1339-1353. [PMID: 30885922 PMCID: PMC6505153 DOI: 10.1534/g3.119.200626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regulation of luminal diameter is critical to the function of small single-celled tubes, of which the seamless tubular excretory canals of Caenorhabditis elegans provide a tractable genetic model. Mutations in several sets of genes exhibit the Exc phenotype, in which canal luminal growth is visibly altered. Here, a focused reverse genomic screen of genes highly expressed in the canals found 18 genes that significantly affect luminal outgrowth or diameter. These genes encode novel proteins as well as highly conserved proteins involved in processes including gene expression, cytoskeletal regulation, and vesicular and transmembrane transport. In addition, two genes act as suppressors on a pathway of conserved genes whose products mediate vesicle movement from early to recycling endosomes. The results provide new tools for understanding the integration of cytoplasmic structure and physiology in forming and maintaining the narrow diameter of single-cell tubules.
Collapse
|
153
|
Giménez-Dejoz J, Weber S, Fernández-Pardo Á, Möller G, Adamski J, Porté S, Parés X, Farrés J. Engineering aldo-keto reductase 1B10 to mimic the distinct 1B15 topology and specificity towards inhibitors and substrates, including retinoids and steroids. Chem Biol Interact 2019; 307:186-194. [PMID: 31028727 DOI: 10.1016/j.cbi.2019.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
The aldo-keto reductase (AKR) superfamily comprises NAD(P)H-dependent enzymes that catalyze the reduction of a variety of carbonyl compounds. AKRs are classified in families and subfamilies. Humans exhibit three members of the AKR1B subfamily: AKR1B1 (aldose reductase, participates in diabetes complications), AKR1B10 (overexpressed in several cancer types), and the recently described AKR1B15. AKR1B10 and AKR1B15 share 92% sequence identity, as well as the capability of being active towards retinaldehyde. However, AKR1B10 and AKR1B15 exhibit strong differences in substrate specificity and inhibitor selectivity. Remarkably, their substrate-binding sites are the most divergent parts between them. Out of 27 residue substitutions, six are changes to Phe residues in AKR1B15. To investigate the participation of these structural changes, especially the Phe substitutions, in the functional features of each enzyme, we prepared two AKR1B10 mutants. The AKR1B10 m mutant carries a segment of six AKR1B15 residues (299-304, including three Phe residues) in the respective AKR1B10 region. An additional substitution (Val48Phe) was incorporated in the second mutant, AKR1B10mF48. This resulted in structures with smaller and more hydrophobic binding pockets, more similar to that of AKR1B15. In general, the AKR1B10 mutants mirrored well the specific functional features of AKR1B15, i.e., the different preferences towards the retinaldehyde isomers, the much higher activity with steroids and ketones, and the unique behavior with inhibitors. It can be concluded that the Phe residues of loop C (299-304) contouring the substrate-binding site, in addition to Phe at position 48, strongly contribute to a narrower and more hydrophobic site in AKR1B15, which would account for its functional uniqueness. In addition, we have investigated the AKR1B10 and AKR1B15 activity toward steroids. While AKR1B10 only exhibits residual activity, AKR1B15 is an efficient 17-ketosteroid reductase. Finally, the functional role of AKR1B15 in steroid and retinaldehyde metabolism is discussed.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Susanne Weber
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Álvaro Fernández-Pardo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85356, Freising-Weihenstephan, Germany; German Center for Diabetes Research, 85764, Neuherberg, Germany
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
154
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
155
|
Diagnostic and Prognostic Potential of AKR1B10 in Human Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11040486. [PMID: 30959792 PMCID: PMC6521254 DOI: 10.3390/cancers11040486] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Although diagnostic measures and surgical interventions have improved in recent years, the five-year survival rate for patients with advanced HCC remains bleak-a reality that is largely attributable to an absence of early stage symptoms, lack of adequate diagnostic and prognostic biomarkers, and the common occurrence of acquired resistance to chemotherapeutic agents during HCC treatment. A limited understanding of the molecular mechanisms underlying HCC pathogenesis also presents a challenge for the development of specific and efficacious pharmacological strategies to treat, halt, or prevent progression to advanced stages. Over the past decade, aldo-keto reductase family 1 member 10 (AKR1B10) has emerged as a potential biomarker for the diagnosis and prognosis of HCC, and experimental studies have demonstrated roles for this enzyme in biological pathways underlying the development and progression of HCC and acquired resistance to chemotherapeutic agents used in the treatment of HCC. Here we provide an overview of studies supporting the diagnostic and prognostic utility of AKR1B10, summarize the experimental evidence linking AKR1B10 with HCC and the induction of chemoresistance, and discuss the clinical value of AKR1B10 as a potential target for HCC-directed drug development. We conclude that AKR1B10-based therapies in the clinical management of specific HCC subtypes warrant further investigation.
Collapse
|
156
|
Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 2019; 30:1331-1351. [PMID: 29130312 PMCID: PMC6391618 DOI: 10.1089/ars.2017.7403] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and protein-protein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. CRITICAL ISSUES The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. FUTURE DIRECTIONS The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria.
Collapse
Affiliation(s)
- Colin T Stomberski
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Douglas T Hess
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan S Stamler
- 2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio.,4 Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
157
|
Penning TM, Wangtrakuldee P, Auchus RJ. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr Rev 2019; 40:447-475. [PMID: 30137266 PMCID: PMC6405412 DOI: 10.1210/er.2018-00089] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Aldo-keto reductases (AKRs) are monomeric NAD(P)(H)-dependent oxidoreductases that play pivotal roles in the biosynthesis and metabolism of steroids in humans. AKR1C enzymes acting as 3-ketosteroid, 17-ketosteroid, and 20-ketosteroid reductases are involved in the prereceptor regulation of ligands for the androgen, estrogen, and progesterone receptors and are considered drug targets to treat steroid hormone-dependent malignancies and endocrine disorders. In contrast, AKR1D1 is the only known steroid 5β-reductase and is essential for bile-acid biosynthesis, the generation of ligands for the farnesoid X receptor, and the 5β-dihydrosteroids that have their own biological activity. In this review we discuss the crystal structures of these AKRs, their kinetic and catalytic mechanisms, AKR genomics (gene expression, splice variants, polymorphic variants, and inherited genetic deficiencies), distribution in steroid target tissues, roles in steroid hormone action and disease, and inhibitor design.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phumvadee Wangtrakuldee
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine and Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
158
|
Raph SM, Bhatnagar A, Nystoriak MA. Biochemical and physiological properties of K + channel-associated AKR6A (Kvβ) proteins. Chem Biol Interact 2019; 305:21-27. [PMID: 30926318 DOI: 10.1016/j.cbi.2019.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
Voltage-gated potassium (Kv) channels play an essential role in the regulation of membrane excitability and thereby control physiological processes such as cardiac excitability, neural communication, muscle contraction, and hormone secretion. Members of the Kv1 and Kv4 families are known to associate with auxiliary intracellular Kvβ subunits, which belong to the aldo-keto reductase superfamily. Electrophysiological studies have shown that these proteins regulate the gating properties of Kv channels. Although the three gene products encoding Kvβ proteins are functional enzymes in that they catalyze the nicotinamide adenine dinucleotide phosphate (NAD[P]H)-dependent reduction of a wide range of aldehyde and ketone substrates, the physiological role for these proteins and how each subtype may perform unique roles in coupling membrane excitability with cellular metabolic processes remains unclear. Here, we discuss current knowledge of the enzymatic properties of Kvβ proteins from biochemical studies with their described and purported physiological and pathophysiological influences.
Collapse
Affiliation(s)
- Sean M Raph
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA
| | - Matthew A Nystoriak
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
159
|
Li D, Gu Z, Zhang J, Ma S. Protective effect of inducible aldo-keto reductases on 4-hydroxynonenal- induced hepatotoxicity. Chem Biol Interact 2019; 304:124-130. [PMID: 30849339 DOI: 10.1016/j.cbi.2019.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
4-Hydroxynonenal (HNE), an end-product of lipid peroxidation generated in response to oxidative stress, has been implicated in the pathophysiology of chronic liver diseases. HNE is very reactive that forms Michael adducts with nucleophilic sites in DNA, lipids and proteins. At high concentrations, HNE causes rapid cell death associated with depletion of sulfhydryl groups and inhibition of key metabolic enzymes. At low concentrations, HNE stimulates expression of genes that are part of an adaptive response. In this study, we show that sub-lethal concentrations of HNE induce mRNA expression levels of heme oxygenase-1 (HO-1) (2.5-fold), NADPH:quinone oxidoreductase (NQO1) (4.5-fold), AKR1C3 (2-fold) and AKR7A2 (3-fold) enzymes. Protein expression levels of AKR1C and AKR7A2 are induced by 2- and 1.5-fold following exposure to HNE. The role of AKR1C3 and AKR7A2 in protecting HepG2 cells against HNE toxicity was investigated through using RNAi. Results show that AKR7A2, but not AKR1C3 contributes to the protection against HNE toxicity in HepG2 cells. Moreover, transcriptional factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is activated by HNE through translocation to the nucleus. Overexpressing AKR7A2 could rescue the effect of knocking down Nrf2 on HNE-induced cytotoxicity. Furthermore, a natural compound 7-hydroxycoumain, an AKR7A2 inducer, shows hepatoprotection against HNE via AKR7A2 induction. Hence, the inducible AKR7A2 has provided a new therapeutic target to treat chronic liver disease.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhuoliang Gu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingdong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, China Medical University, Shenyang, 110001, China
| | - Shuren Ma
- Department of Endoscope, The General Hospital of Shenyang Military Region, Shenyang, 110016, China
| |
Collapse
|
160
|
Chen H, Anand D, Zhou L. Photoredox Defluorinative Alkylation of 1‐Trifluoromethyl Alkenes and 1,3‐Butadienes with 1,4‐Dihydropyridines as Alkylation Reagents. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haoguo Chen
- School of ChemistrySun Yat-Sen University 135 Xingang West Road Guangzhou 510275 China
| | - Devireddy Anand
- School of ChemistrySun Yat-Sen University 135 Xingang West Road Guangzhou 510275 China
| | - Lei Zhou
- School of ChemistrySun Yat-Sen University 135 Xingang West Road Guangzhou 510275 China
| |
Collapse
|
161
|
Cho SJ, Kang KA, Piao MJ, Ryu YS, Fernando PDSM, Zhen AX, Hyun YJ, Ahn MJ, Kang HK, Hyun JW. 7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress. Biomol Ther (Seoul) 2019; 27:85-91. [PMID: 30481956 PMCID: PMC6319554 DOI: 10.4062/biomolther.2018.202] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Suk Ju Cho
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | | | - Ao Xuan Zhen
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Mee Jung Ahn
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee Kyoung Kang
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine and Jeju Research Center for Natural Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
162
|
Stomberski CT, Zhou HL, Wang L, van den Akker F, Stamler JS. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J Biol Chem 2018; 294:1568-1578. [PMID: 30538128 DOI: 10.1074/jbc.ra118.004947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127A versus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.
Collapse
Affiliation(s)
- Colin T Stomberski
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hua-Lin Zhou
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106.
| |
Collapse
|
163
|
Seliger JM, Misuri L, Maser E, Hintzpeter J. The hop-derived compounds xanthohumol, isoxanthohumol and 8-prenylnaringenin are tight-binding inhibitors of human aldo-keto reductases 1B1 and 1B10. J Enzyme Inhib Med Chem 2018; 33:607-614. [PMID: 29532688 PMCID: PMC6010053 DOI: 10.1080/14756366.2018.1437728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/25/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023] Open
Abstract
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki = 15.08 μM, 0.34 μM, 0.71 μM) and of human AKR1B10 (Ki = 20.11 μM, 2.25 μM, 1.95 μM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure?activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.
Collapse
Affiliation(s)
- Jan Moritz Seliger
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Livia Misuri
- Department of Biology, Tuscany Region PhD School in Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
164
|
Schumacher D, Morgenstern J, Oguchi Y, Volk N, Kopf S, Groener JB, Nawroth PP, Fleming T, Freichel M. Compensatory mechanisms for methylglyoxal detoxification in experimental & clinical diabetes. Mol Metab 2018; 18:143-152. [PMID: 30287091 PMCID: PMC6308908 DOI: 10.1016/j.molmet.2018.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. METHODS CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1-/-) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. RESULTS Glo1-/- mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1-/- mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. CONCLUSIONS These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.
Collapse
Affiliation(s)
- Dagmar Schumacher
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Yoko Oguchi
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Nadine Volk
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Stefan Kopf
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Benedikt Groener
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter Paul Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg Center for Molecular Biology (ZMBH), Heidelberg, Germany; University Hospital Heidelberg University, Heidelberg, Germany; Germany Institute for Diabetes, Neuherberg, Germany; Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
165
|
Xiao MB, Jin DD, Jiao YJ, Ni WK, Liu JX, Qu LS, Lu CH, Ni RZ, Jiang F, Chen WC. β2-AR regulates the expression of AKR1B1 in human pancreatic cancer cells and promotes their proliferation via the ERK1/2 pathway. Mol Biol Rep 2018; 45:1863-1871. [PMID: 30306507 DOI: 10.1007/s11033-018-4332-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
Psychological stress has been recognized as a well-documented risk factor associated with β2-adrenergic receptor (β2-AR) in the development of pancreatic cancer. Aldo-keto reductase 1 member B1 (AKR1B1) is a potential interacting partner of β2-AR, but the effect of their interaction on pancreatic cancer cells is not known at present. We found a positive correlation between AKR1B1 and β2-AR expression in pancreatic cancer tissue samples, and co-localization of these proteins in the human pancreatic cancer BXPC-3 cell line. Compared to the controls, the CFPAC-1 and PANC-1 pancreatic cancer cells overexpressing β2-AR and AKR1B1 respectively showed significantly higher proliferation rates, which is attributed to higher proportion of cells in the S phase and decreased percentage of early apoptotic cells. Furthermore, overexpression of β2-AR led to a significant increase in the expression of AKR1B1 and phosphorylated extracellular signal-regulated kinase (p-ERK1/2). Overexpression of AKR1B1 significantly decreased β2-AR levels and increased that of p-ERK1/2. Taken together, β2-AR directly interacted with and up-regulated AKR1B1 in pancreatic cancer cells, and promoted their proliferation and inhibited apoptosis via the ERK1/2 pathway. Our findings also highlight the β2-AR-AKR1B1 axis as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Bing Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dan-Dan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Clinical Medicine, Medical College, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Yu-Jie Jiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Clinical Medicine, Medical College, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Wen-Kai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jin-Xia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Li-Shuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Run-Zhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Wei-Chang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Road, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
166
|
Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 2018; 565:96-100. [PMID: 30487609 PMCID: PMC6318002 DOI: 10.1038/s41586-018-0749-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.
Collapse
|
167
|
Seliger JM, Cicek SS, Witt LT, Martin HJ, Maser E, Hintzpeter J. Selective Inhibition of Human AKR1B10 by n-Humulone, Adhumulone and Cohumulone Isolated from Humulus lupulus Extract. Molecules 2018; 23:E3041. [PMID: 30469331 PMCID: PMC6278539 DOI: 10.3390/molecules23113041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Hop-derived compounds have been subjected to numerous biomedical studies investigating their impact on a wide range of pathologies. Isomerised bitter acids (isoadhumulone, isocohumulone and isohumulone) from hops, used in the brewing process of beer, are known to inhibit members of the aldo-keto-reductase superfamily. Aldo-keto-reductase 1B10 (AKR1B10) is upregulated in various types of cancer and has been reported to promote carcinogenesis. Inhibition of AKR1B10 appears to be an attractive means to specifically treat RAS-dependent malignancies. However, the closely related reductases AKR1A1 and AKR1B1, which fulfil important roles in the detoxification of endogenous and xenobiotic carbonyl compounds oftentimes crossreact with inhibitors designed to target AKR1B10. Accordingly, there is an ongoing search for selective AKR1B10 inhibitors that do not interact with endogeneous AKR1A1 and AKR1B1-driven detoxification systems. In this study, unisomerised α-acids (adhumulone, cohumulone and n-humulone) were separated and tested for their inhibitory potential on AKR1A1, AKR1B1 and AKR1B10. Also AKR1B10-mediated farnesal reduction was effectively inhibited by α-acid congeners with Ki-values ranging from 16.79 ± 1.33 µM (adhumulone) to 3.94 ± 0.33 µM (n-humulone). Overall, α-acids showed a strong inhibition with selectivity (115⁻137 fold) for AKR1B10. The results presented herein characterise hop-derived α-acids as a promising basis for the development of novel and selective AKR1B10-inhibitors.
Collapse
Affiliation(s)
- Jan Moritz Seliger
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| | - Serhat Sezai Cicek
- Department of Pharmaceutical Biology, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, D-24118 Kiel, Germany.
| | - Lydia T Witt
- Department of Pharmaceutical Chemistry, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, D-24118 Kiel, Germany.
| | - Hans-Jörg Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| | - Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| |
Collapse
|
168
|
Ahmed SMU, Jiang ZN, Zheng ZH, Li Y, Wang XJ, Tang X. AKR1B10 expression predicts response of gastric cancer to neoadjuvant chemotherapy. Oncol Lett 2018; 17:773-780. [PMID: 30655829 PMCID: PMC6313001 DOI: 10.3892/ol.2018.9705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/14/2018] [Indexed: 12/16/2022] Open
Abstract
Effective methods for predicting tumor response to preoperative chemotherapy are required. Aldo-ketoreductase family 1 member B10 (AKR1B10) is predominantly expressed in the gastrointestinal tract and serves an important function in cancer development and progression. The present study investigated whether AKR1B10 expression may predict the therapeutic response of locally advanced gastric cancer. A total of 53 patients with gastric cancer underwent neoadjuvant chemotherapy followed by surgery between January 2006 and December 2015. The protein expression level of AKR1B10 was determined in paraffin-embedded biopsy specimens using immunohistochemistry. Western blotting confirmed that the AKR1B10 protein is primarily localized to the cytoplasm. χ2 and Fisher's exact tests were used to determine the association of AKR1B10 with a number of clinic opathological features. Univariate and multivariate analyses were used to identify the prognostic factors. Survival rates were compared using Kaplan-Meier curves with a log-rank test. The positive rate of AKR1B10 protein expression was 58.5%, whereas 41.5% samples exhibited negative expression. The frequency of AKR1B10-positive gastric cancer samples was increased in patients with lymph node metastasis and decreased in those exhibiting tumor regression. The 5-years overall survival rate for the AKR1B10-positive group was significantly poorer than that for the AKR1B10-negative group. AKR1B10 expression was associated with lymph node metastasis and a poorer prognosis, along with a poor response to neoadjuvant chemotherapy suggesting that AKR1B10 may be a potential predictor for the therapeutic response of locally-advanced gastric cancer.
Collapse
Affiliation(s)
- Syed Minhaj Uddin Ahmed
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Zi Nong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Zhao Hong Zheng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Yulong Li
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiuwen Tang
- Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
169
|
Keenan J, O'Sullivan F, Henry M, Breen L, Doolan P, Sinkunaite I, Meleady P, Clynes M, Horgan K, Murphy R. Acute exposure to organic and inorganic sources of copper: Differential response in intestinal cell lines. Food Sci Nutr 2018; 6:2499-2514. [PMID: 30510751 PMCID: PMC6261202 DOI: 10.1002/fsn3.857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
SCOPE Copper supplementation in nutrition has evolved from using inorganic mineral salts to organically chelated minerals but with limited knowledge of the impact at the cellular level. METHODS Here, the impact of inorganic and organic nutrient forms (glycinate, organic acid, and proteinate) of copper on the cellular level is investigated on intestinal cell lines, HT29 and Caco-2, after a 2-hr acute exposure to copper compounds and following a 10-hr recovery. RESULTS Following the 10-hr recovery, increases were observed in proteins involved in metal binding (metallothioneins) and antioxidant response (sulfiredoxin 1 and heme oxygenase 1), and global proteomic analysis suggested recruitment of the unfolded protein response and proteosomal overloading. Copper organic acid chelate, the only treatment to show striking and sustained reactive oxygen species generation, had the greatest impact on ubiquitinated proteins, reduced autophagy, and increased aggresome formation, reducing growth in both cell lines. The least effect was noted in copper proteinate with negligible impact on aggresome formation or extended growth for either cell line. CONCLUSION The type and source of copper can impact significantly at the cellular level.
Collapse
Affiliation(s)
- Joanne Keenan
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | - Finbarr O'Sullivan
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | - Michael Henry
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | - Laura Breen
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | - Padraig Doolan
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | | | - Paula Meleady
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | - Martin Clynes
- National Institute for Cellular BiotechnologyDublin City UniversityDublinIreland
| | | | | |
Collapse
|
170
|
Baik LS, Recinos Y, Chevez JA, Holmes TC. Circadian modulation of light-evoked avoidance/attraction behavior in Drosophila. PLoS One 2018; 13:e0201927. [PMID: 30106957 PMCID: PMC6091921 DOI: 10.1371/journal.pone.0201927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Many insects show strong behavioral responses to short wavelength light. Drosophila melanogaster exhibit Cryptochrome- and Hyperkinetic-dependent blue and ultraviolet (UV) light avoidance responses that vary by time-of-day, suggesting that these key sensory behaviors are circadian regulated. Here we show mutant flies lacking core clock genes exhibit defects in both time-of-day responses and valence of UV light avoidance/attraction behavior. Non-genetic environmental disruption of the circadian clock by constant UV light exposure leads to complete loss of rhythmic UV light avoidance/attraction behavior. Flies with ablated or electrically silenced circadian lateral ventral neurons have attenuated avoidance response to UV light. We conclude that circadian clock proteins and the circadian lateral ventral neurons regulate both the timing and the valence of UV light avoidance/attraction. These results provide mechanistic support for Pittendrigh's "escape from light" hypothesis regarding the co-evolution of phototransduction and circadian systems.
Collapse
Affiliation(s)
- Lisa Soyeon Baik
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Yocelyn Recinos
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Joshua A. Chevez
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California, United States of America
| |
Collapse
|
171
|
Horiyama S, Hatai M, Ichikawa A, Yoshikawa N, Nakamura K, Kunitomo M. Detoxification Mechanism of α,β-Unsaturated Carbonyl Compounds in Cigarette Smoke Observed in Sheep Erythrocytes. Chem Pharm Bull (Tokyo) 2018; 66:721-726. [PMID: 29962455 DOI: 10.1248/cpb.c18-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Highly reactive α,β-unsaturated carbonyl compounds, such as acrolein (ACR), crotonaldehyde (CA) and methyl vinyl ketone (MVK), are environmental pollutants present in high concentrations in cigarette smoke. We have previously found that these carbonyl compounds in cigarette smoke extract (CSE) react with intracellular glutathione (GSH) to produce the corresponding GSH-ACR, GSH-CA and GSH-MVK adducts via Michael addition reaction. These adducts are then further reduced to the corresponding alcohol forms by intracellular aldo-keto reductases in highly metastatic mouse melanoma (B16-BL6) cells and then excreted into the extracellular fluid. This time, we conducted a similar study using sheep erythrocytes and found analogous changes in the sheep erythrocytes after exposure to CSE as those with B16-BL6 cells. This indicates similarity of the detoxification pathways of the α,β-unsaturated carbonyl compounds in sheep blood cells and B16-BL6 cells. Also, we found that the GSH-MVK adduct was reduced by aldose reductase in a cell-free solution to generate its alcohol form, and its reduction reaction was completely suppressed by pretreatment with epalrestat, an aldose reductase inhibitor, a member of the aldo-keto reductase family. In the presence of sheep blood cells, however, reduction of the GSH-MVK adduct was partially inhibited by epalrestat. This revealed that some member of the aldo-keto reductase superfamily other than aldose reductase is involved in reduction of the GSH-MVK adduct in sheep blood. These results suggest that blood cells, mainly erythrocytes are involved in reducing the inhalation toxicity of cigarette smoke via an aldo-keto reductase pathway other than that of aldose reductase.
Collapse
Affiliation(s)
- Shizuyo Horiyama
- Mukogawa Women's University, Institute for Bioscience.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Mayuko Hatai
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Atsushi Ichikawa
- Mukogawa Women's University, Institute for Bioscience.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Noriko Yoshikawa
- Mukogawa Women's University, Institute for Bioscience.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Kazuki Nakamura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Masaru Kunitomo
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
172
|
Zhan JY, Ma K, Zheng QC, Yang GH, Zhang HX. Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid through molecular dynamics simulations. J Biomol Struct Dyn 2018; 37:1724-1735. [PMID: 29671687 DOI: 10.1080/07391102.2018.1465851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aldose reductase (AKR1B1) has been considered as a significant target for designing drugs to counteract the development of diabetic complications. In the present study, molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to make sure which tautomer is the preferred one among three tautomeric forms (Mtia1, Mtia2, and Mtia3) of 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (Mtia) for binding to AKR1B1. The overall structural features and the results of calculated binding free energies indicate that Mtia1 and Mtia2 have more superiority than Mtia3 in terms of binding to AKR1B1. Furtherly, the local active site conformational characteristics and non-covalent interaction analysis were identified. The results indicate that the combination of Mtia2 and AKR1B1 is more stable than that of Mtia1. Furthermore, two extra hydrogen bonds between AKR1B1 and Mtia2 are found with respect to Mtia1. In addition, Mtia2 makes slightly stronger electrostatic interaction with the positively charged nicotinamide group of NADP+ than Mtia1. Based on the results above, Mtia2 is the preferred tautomeric form among the three tautomers. Our study can provide an insight into the details of the interaction between AKR1B1 and Mtia at the atomic level, and will be helpful for the further design of AKR1B1 inhibitors.
Collapse
Key Words
- AKR1B1, Aldose Reductase
- ARI, aldose reductase inhibitor
- FEL, free energy landscape
- MD, molecular dynamics
- MM-GB/SA calculation
- MM-GB/SA, molecular mechanics generalized Born surface area
- Mtia, 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid
- PCA, principal component analysis
- Three AKR1B1-Mtia complex systems: AKR1B1-Mtia1, AKR1B1-Mtia2, and AKR1B1-Mtia3
- Three tautomeric forms of Mtia: Mtia1, Mtia2, and Mtia3
- aldose reductase
- inhibitor
- molecular dynamics
- tautomer
Collapse
Affiliation(s)
- Jiu-Yu Zhan
- b International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Ke Ma
- c Department of Pediatric Outpatient , The First Hospital of Jilin University , Changchun 130021 , People's Republic of China
| | - Qing-Chuan Zheng
- a Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , Changchun 130023 , People's Republic of China.,b International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Guang-Hui Yang
- d Jilin Provincial Institute of Education , Changchun 130022 , People's Republic of China
| | - Hong-Xing Zhang
- b International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| |
Collapse
|
173
|
Frau R, Bortolato M. Repurposing steroidogenesis inhibitors for the therapy of neuropsychiatric disorders: Promises and caveats. Neuropharmacology 2018; 147:55-65. [PMID: 29907425 DOI: 10.1016/j.neuropharm.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022]
Abstract
Steroids exert a profound influence on behavioral reactivity, by modulating the functions of most neurotransmitters and shaping the impact of stress and sex-related variables on neural processes. This background - as well as the observation that most neuroactive steroids (including sex hormones, glucocorticoids and neurosteroids) are synthetized and metabolized by overlapping enzymatic machineries - points to steroidogenic pathways as a powerful source of targets for neuropsychiatric disorders. Inhibitors of steroidogenic enzymes have been developed and approved for a broad range of genitourinary and endocrine dysfunctions, opening to new opportunities to repurpose these drugs for the treatment of mental problems. In line with this idea, preliminary clinical and preclinical results from our group have shown that inhibitors of key steroidogenic enzymes, such as 5α-reductase and 17,20 desmolase-lyase, may have therapeutic efficacy in specific behavioral disorders associated with dopaminergic hyperfunction. While the lack of specificity of these effects raises potential concerns about endocrine adverse events, these initial findings suggest that steroidogenesis modulators with greater brain specificity may hold significant potential for the development of alternative therapies for psychiatric problems. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato CA, Italy; Tourette Syndrome Center, University of Cagliari, Monserrato CA, Italy; Sleep Medicine Center, University of Cagliari, Monserrato CA, Italy; National Institute of Neuroscience (INN), University of Cagliari, Monserrato CA, Italy.
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
174
|
Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, Zhao J, Schmidtke VK, Brittian KR, Merchant ML, Conklin DJ, Jones SP, Bhatnagar A. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol 2018; 118:183-192. [PMID: 29627295 PMCID: PMC6205513 DOI: 10.1016/j.yjmcc.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Pathological cardiac hypertrophy is associated with the accumulation of lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein in the heart. These aldehydes are metabolized via several pathways, of which aldose reductase (AR) represents a broad-specificity route for their elimination. We tested the hypothesis that by preventing aldehyde removal, AR deficiency accentuates the pathological effects of transverse aortic constriction (TAC). We found that the levels of AR in the heart were increased in mice subjected to TAC for 2 weeks. In comparison with wild-type (WT), AR-null mice showed lower ejection fraction, which was exacerbated 2 weeks after TAC. Levels of atrial natriuretic peptide and myosin heavy chain were higher in AR-null than in WT TAC hearts. Deficiency of AR decreased urinary levels of the acrolein metabolite, 3-hydroxypropylmercapturic acid. Deletion of AR did not affect the levels of the other aldehyde-metabolizing enzyme - aldehyde dehydrogenase 2 in the heart, or its urinary product - (N-Acetyl-S-(2-carboxyethyl)-l-cystiene). AR-null hearts subjected to TAC showed increased accumulation of HNE- and acrolein-modified proteins, as well as increased AMPK phosphorylation and autophagy. Superfusion with HNE led to a greater increase in p62, LC3II formation, and GFP-LC3-II punctae formation in AR-null than WT cardiac myocytes. Pharmacological inactivation of JNK decreased HNE-induced autophagy in AR-null cardiac myocytes. Collectively, these results suggest that during hypertrophy the accumulation of lipid peroxidation derived aldehydes promotes pathological remodeling via excessive autophagy, and that metabolic detoxification of these aldehydes by AR may be essential for maintaining cardiac function during early stages of pressure overload.
Collapse
Affiliation(s)
- Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States.
| | - Deqing Zhang
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Mahavir Singh
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Sujith Dassanayaka
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Zhengzhi Xie
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Ganapathy Jagatheesan
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Jingjing Zhao
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Virginia K Schmidtke
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Michael L Merchant
- Divisions of Nephrology and Hypertension and the Institute of Molecular Cardiology, University of Louisville, Louisville, KY, United States
| | - Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
175
|
Thai YC, Szekrenyi A, Qi Y, Black GW, Charnock SJ, Fessner WD. Fluorogenic kinetic assay for high-throughput discovery of stereoselective ketoreductases relevant to pharmaceutical synthesis. Bioorg Med Chem 2018; 26:1320-1326. [DOI: 10.1016/j.bmc.2017.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022]
|
176
|
Abstract
A well-regulated redox state is essential for normal physiological function and cellular metabolism. In most eukaryotic cells, protein cysteine thiols are most sensitive to fluctuations in the cellular redox state. Under normal physiological conditions, the cytosol has a highly reducing environment, which is due to high levels of reduced glutathione and complex system of redox enzymes that maintain glutathione in the reduced state. The reducing environment of the cytosol maintains most protein thiols in the reduced state; although some non-exposed cysteine could be present as disulfides. Upon physiological increase in cellular oxidants, such as due to growth factors, cytokines and thiol-disulfide exchange reactions, specific proteins could act as redox switches that regulate the conformation and activity of different proteins. This reversible post translational modification enables redox-sensitive dynamic changes in cell signaling and function. Physiological oxidative stress could lead to the formation of sulfenic acids, which are usually intermediate states of thiol oxidation that are converted to higher order oxidation states, intramolecular disulfides or mixed disulfides with glutathione. Such glutathiolation reactions have been found to regulate the function of several proteins involved in intracellular metabolism, signal transduction and cell structure. Excessive oxidative stress results in indiscriminate and irreversible oxidation of protein thiols, depletion of glutathione and cell death. Further elucidation of the relationship between changes in cell redox and thiol reactivity could provide a better understanding of how redox changes regulate cell function and how disruption of these relationships lead to tissue injury and dysfunction and the development of chronic diseases such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Shahid P Baba
- Diabetes and Obesity Center, University of Louisville, Louisville KY, 40202.,Institute of Molecular Cardiology, University of Louisville, Louisville KY, 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville KY, 40202.,Institute of Molecular Cardiology, University of Louisville, Louisville KY, 40202
| |
Collapse
|
177
|
Activity of the mitochondrial isoenzymes of endogenous aldehydes catabolism under the conditions of acetaminophen-induced hepatitis. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
178
|
Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu. Parasitol Res 2018; 117:947-957. [PMID: 29435719 DOI: 10.1007/s00436-018-5758-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, broadly employed to study the host-dependent mechanisms that govern the evolution of intestinal helminth infections. Resistance against E. caproni homologous secondary infections has been reported in mice and appears to be related to the generation of a local Th2 response, whereas Th1 responses promote the development of chronic primary infections. Herein, the ability of E. caproni to modulate its secretome according to the host environment is investigated. A two-dimensional differential in gel electrophoresis (2D-DIGE) analysis was performed to elucidate changes in the excretory/secretory products of E. caproni adults after primary and secondary infections in mice. A total of 16 protein spots showed significant differences between groups, and 7 of them were successfully identified by mass spectrometry. Adult worms exposed to a primary infection appear to upregulate proteins involved in detoxification (aldo-keto reductase), stress response (GroEL), and enhancement of parasite survival (acetyl-CoA A-acetyltransferase and UTP-glucose-1-phosphate urydyltransferase). In contrast, any protein was found to be significantly upregulated after secondary infection. Upregulation of such proteins may serve to withstand the hostile Th1 environment generated in primary infections in mice. These results provide new insights into the resistance mechanisms developed by the parasites to ensure their long-term survival.
Collapse
|
179
|
Wang H, He Z, Luo L, Zhao X, Lu Z, Luo T, Li M, Zhang Y. An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana. Fungal Genet Biol 2018; 111:7-15. [DOI: 10.1016/j.fgb.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
|
180
|
|
181
|
Li W, Hou G, Zhou D, Lou X, Xu Y, Liu S, Zhao X. The roles of AKR1C1 and AKR1C2 in ethyl-3,4-dihydroxybenzoate induced esophageal squamous cell carcinoma cell death. Oncotarget 2017; 7:21542-55. [PMID: 26934124 PMCID: PMC5008304 DOI: 10.18632/oncotarget.7775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/20/2016] [Indexed: 12/11/2022] Open
Abstract
The aldo-keto reductase (AKR) superfamily of enzymes is critical for the detoxification of drugs and toxins in the human body; these enzymes are involved not only in the development of drug resistance in cancer cells but also in the metabolism of polycyclic aromatic hydrocarbons. Here, we demonstrated that AKR1C1/C2 increased the metabolism of ethyl-3,4-dihydroxybenzoate (EDHB) in esophageal squamous cell carcinoma (ESCC) cells. Previous studies have shown that EDHB can effectively induce esophageal cancer cell autophagy and apoptosis, and the AKR1C family represents one set of highly expressed genes after EDHB treatment. To explore the cytotoxic effects of EDHB, esophageal cancer cells with higher (KYSE180) or lower (KYSE510) AKR1C expression levels were evaluated in this study. The proliferation of KYSE180 cells was inhibited more effectively than that of KYSE510 cells by EDHB treatment. Furthermore, the effective subunits of the AKR superfamily, AKR1C1/C2, were quantitatively identified using multiple reaction monitoring (MRM) assays. The sensitivity of esophageal cancer cells to EDHB was significantly attenuated by the siRNA knockdown of AKR1C1/C2. Moreover, the expression of autophagy inducers (Beclin, LC3II and BNIP3) and NDRG1 was significantly elevated in KYSE180 cells, but not in KYSE510 cells, after EDHB treatment. When autophagy was inhibited by 3-methyladenine, KYSE180 cells exhibited an increased sensitivity to EDHB, which may be a metabolic substrate of AKR1C1/C2. These results indicated that ESCC patients with high AKR1C1/C2 expression may be more sensitive to EDHB, and AKR1C1/C2 may facilitate EDHB-induced autophagy and apoptosis, thus providing potential guidance for the chemoprevention of ESCC.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Guixue Hou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Proteomics Division, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Dianrong Zhou
- Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Proteomics Division, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
182
|
Lang SB, Wiles RJ, Kelly CB, Molander GA. Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. Angew Chem Int Ed Engl 2017; 56:15073-15077. [PMID: 28960656 PMCID: PMC5688010 DOI: 10.1002/anie.201709487] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/08/2022]
Abstract
Described is a facile, scalable route to access functional-group-rich gem-difluoroalkenes. Using visible-light-activated catalysts in conjunction with an arsenal of carbon-radical precursors, an array of trifluoromethyl-substituted alkenes undergoes radical defluorinative alkylation. Nonstabilized primary, secondary, and tertiary radicals can be used to install functional groups in a convergent manner, which would otherwise be challenging by two-electron pathways. The process readily extends to other perfluoroalkyl-substituted alkenes. In addition, we report the development of an organotrifluoroborate reagent to expedite the synthesis of the requisite trifluoromethyl-substituted alkene starting materials.
Collapse
Affiliation(s)
- Simon B Lang
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Rebecca J Wiles
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Christopher B Kelly
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
183
|
Gu J, Sui Z, Fang C, Tan Q. Stereochemical considerations in pharmacokinetic processes of representative antineoplastic agents. Drug Metab Rev 2017; 49:438-450. [PMID: 29078726 DOI: 10.1080/03602532.2017.1394322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The vast majority of chemical drugs or drug candidates contain stereocenter(s) in their molecular structures. In these molecules, stereochemical properties are vital properties that influence or even determine their drug actions. Therefore, studying the stereochemical issues of drugs (or drug candidates) is necessary for rational drug use. These stereochemical issues are usually involved with the stereoselectivity in pharmacokinetic processes, especially in the metabolism process. Thus, the investigation of the stereochemical issues in drug metabolism process deserves great attention, especially in those chiral/prochiral antineoplastic agents exhibiting pharmacodynamics and toxicologic differences between stereoisomers. Published reviews concerning this certain issue are inspiring, however they were covering all drug types and only limited antineoplastic drugs were discussed. Here in this review, the research on stereochemical issues in pharmacokinetic processes of some representative antineoplastic agents were described, especially focusing on some newly developed compounds. We highlight the chemical transformations in pharmacokinetic processes of these chiral/prochiral compounds and discuss their different behaviors with metabolic enzymes or transporter proteins, to explicate the observed stereoselectivity intrinsically.
Collapse
Affiliation(s)
- Jing Gu
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Zheng Sui
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Chunshu Fang
- b The Health Team of 77133th Troops , Chinese People's Liberation Army , Chongqing , China
| | - Qunyou Tan
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
184
|
Lang SB, Wiles RJ, Kelly CB, Molander GA. Photoredox Generation of Carbon-Centered Radicals Enables the Construction of 1,1-Difluoroalkene Carbonyl Mimics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709487] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon B. Lang
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Rebecca J. Wiles
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Christopher B. Kelly
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Gary A. Molander
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; 231 S. 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
185
|
Silva-Brandão KL, Horikoshi RJ, Bernardi D, Omoto C, Figueira A, Brandão MM. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genomics 2017; 18:792. [PMID: 29037161 PMCID: PMC5644112 DOI: 10.1186/s12864-017-4170-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Our main purpose was to evaluate the expression of plastic and evolved genes involved in ecological speciation in the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW); and to demonstrate how host plants might influence lineage differentiation in this polyphagous insect. FAW is an important pest of several crops worldwide, and it is differentiated into host plant-related strains, corn (CS) and rice strains (RS). RNA-Seq and transcriptome characterization were applied to evaluate unbiased genetic expression differences in larvae from the two strains, fed on primary (corn) and alternative (rice) host plants. We consider that genes that are differently regulated by the same FAW strain, as a response to different hosts, are "plastic". Otherwise, differences in gene expression between the two strains fed on the same host are considered constitutive differences. RESULTS Individual performance parameters (larval and pupal weight) varied among conditions (strains vs. hosts). A total of 3657 contigs was related to plastic response, and 2395 contigs were differentially regulated in the two strains feeding on preferential and alternative hosts (constitutive contigs). Three molecular functions were present in all comparisons, both down- and up-regulated: oxidoreductase activity, metal-ion binding, and hydrolase activity. CONCLUSIONS Metabolization of foreign chemicals is among the key functions involved in the phenotypic variation of FAW strains. From an agricultural perspective, high plasticity in families of detoxifying genes indicates the capacity for a rapid response to control compounds such as insecticides.
Collapse
Affiliation(s)
- Karina Lucas Silva-Brandão
- Laboratório de Melhoramento de Plantas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus “Luiz de Queiroz”, Av. Centenário, 303, Piracicaba, SP 13400-970 Brazil
- Present address: Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - Renato Jun Horikoshi
- Programa de Pós-graduação em Entomologia, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900 Brazil
| | - Daniel Bernardi
- Programa de Pós-graduação em Entomologia, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900 Brazil
| | - Celso Omoto
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP 13418-900 Brazil
| | - Antonio Figueira
- Laboratório de Melhoramento de Plantas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus “Luiz de Queiroz”, Av. Centenário, 303, Piracicaba, SP 13400-970 Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| |
Collapse
|
186
|
González L, García-Huertas P, Triana-Chávez O, García GA, Murta SMF, Mejía-Jaramillo AM. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Mol Microbiol 2017; 106:704-718. [PMID: 28884498 DOI: 10.1111/mmi.13830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole.
Collapse
Affiliation(s)
- Laura González
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Paola García-Huertas
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Gabriela Andrea García
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"- ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Ana M Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
187
|
Endo S, Takada S, Honda RP, Müller K, Weishaupt JH, Andersen PM, Ludolph AC, Kamatari YO, Matsunaga T, Kuwata K, El-Kabbani O, Ikari A. Instability of C154Y variant of aldo-keto reductase 1C3. Chem Biol Interact 2017; 276:194-202. [DOI: 10.1016/j.cbi.2016.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
|
188
|
Kinetic features of carbonyl reductase 1 acting on glutathionylated aldehydes. Chem Biol Interact 2017; 276:127-132. [DOI: 10.1016/j.cbi.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/20/2022]
|
189
|
Alshogran OY. Pharmacogenetics of aldo-keto reductase 1C (AKR1C) enzymes. Expert Opin Drug Metab Toxicol 2017; 13:1063-1073. [PMID: 28871815 DOI: 10.1080/17425255.2017.1376648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Osama Y. Alshogran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
190
|
Wu X, Zhang Q, Guo J, Jia Y, Zhang Z, Zhao M, Yang Y, Wang B, Hu J, Sheng L, Li Y. Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol. Front Pharmacol 2017; 8:479. [PMID: 28769808 PMCID: PMC5515859 DOI: 10.3389/fphar.2017.00479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/04/2017] [Indexed: 12/02/2022] Open
Abstract
10-Chloromethyl-11-demethyl-12-oxo-calanolide (F18), an analog of calanolide A, is a novel potent nonnucleoside reverse transcriptase inhibitor against HIV-1. Here, we report the metabolic profile and the results of associated biochemical studies of F18 in vitro and in vivo. The metabolites of F18 were identified based on liquid chromatography-electrospray ionization mass spectrometry and/or nuclear magnetic resonance. Twenty-three metabolites of F18 were observed in liver microsomes in vitro. The metabolism of F18 involved 4-propyl chain oxidation, 10-chloromethyl oxidative dechlorination and 12-carbonyl reduction. Three metabolites (M1, M3-1, and M3-2) were also found in rat blood after oral administration of F18 and the reduction metabolites M3-1 and M3-2 were found to exhibit high potency for the inhibition of HIV-1 in vitro. The oxidative metabolism of F18 was mainly catalyzed by cytochrome P450 3A4 in human microsomes, whereas flavin-containing monooxygenases and 11β-hydroxysteroid dehydrogenase were found to be involved in its carbonyl reduction. In human cytosol, multiple carbonyl reductases, including aldo-keto reductase 1C, short-chain dehydrogenases/reductases and quinone oxidoreductase 1, were demonstrated to be responsible for F18 carbonyl reduction. In conclusion, the in vitro metabolism of F18 involves multiple drug metabolizing enzymes, and several metabolites exhibited anti-HIV-1 activities. Notably, the described results provide the first demonstration of the capability of FMOs for carbonyl reduction.
Collapse
Affiliation(s)
- Xiangmeng Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Qinghao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Jiamei Guo
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yufei Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Ziqian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Manman Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yakun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing, China
| |
Collapse
|
191
|
Janek T, Dobrowolski A, Biegalska A, Mirończuk AM. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Microb Cell Fact 2017; 16:118. [PMID: 28693571 PMCID: PMC5504726 DOI: 10.1186/s12934-017-0733-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Erythritol is a natural sweetener that is used in the food industry. It is produced as an osmoprotectant by bacteria and yeast. Due to its chemical properties, it does not change the insulin level in the blood, and therefore it can be safely used by diabetics. Previously, it has been shown that erythrose reductase (ER), which catalyzes the final step, plays a crucial role in erythritol synthesis. ER reduces erythrose to erythritol with NAD(P)H as a cofactor. Despite many studies on erythritol synthesis by Yarrowia lipolytica, the enzymes involved in this metabolic pathway have ever been described. RESULTS The gene YALI0F18590g encoding the predicted erythrose reductase from Y. lipolytica was overexpressed, and its influence on erythritol synthesis was studied. The amino acid sequence of the Y. lipolytica ER showed a high degree of similarity to the previously described erythrose reductases from known erythritol producers, such as Candida magnoliae and Moniliella megachiliensis. Here, we found that the gene overexpression results in an enhanced titer of erythritol of 44.44 g/L (20% over the control), a yield of 0.44 g/g and productivity of 0.77 g/L/h. Moreover, on purification and characterization of the enzyme we found that it displays the highest activity at 37 °C and pH 3.0. The effects of various metal ions (Zn2+, Cu2+, Mn2+, Fe2+) on erythrose reductase were investigated. The addition of Zn2+ ions at 0.25 mM had a positive effect on the activity of erythrose reductase from Y. lipolytica, as well as on the erythritol production. CONCLUSIONS In this study we identified, overexpressed and characterized a native erythrose reductase in Y. lipolytica. Further optimizations of this strain via metabolic pathway engineering and media optimization strategies enabled 54 g/L to be produced in a shake-flask experiment. To date, this is the first reported study employing metabolic engineering of the native gene involved in the erythritol pathway to result in a high titer of the polyol. Moreover, it indicates the importance of environmental conditions for genetic targets in metabolic engineering.
Collapse
Affiliation(s)
- Tomasz Janek
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Anna Biegalska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland.
| |
Collapse
|
192
|
Hara A, Endo S, Matsunaga T, Soda M, Yashiro K, El-Kabbani O. Long-chain fatty acids inhibit human members of the aldo-keto reductase 1C subfamily. J Biochem 2017; 162:371-379. [DOI: 10.1093/jb/mvx041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
|
193
|
Ward CC, Kleinman JI, Nomura DK. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots. ACS Chem Biol 2017; 12:1478-1483. [PMID: 28445029 DOI: 10.1021/acschembio.7b00125] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.
Collapse
Affiliation(s)
- Carl C. Ward
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jordan I. Kleinman
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments of Chemistry,
Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
194
|
Miláčková I, Meščanová M, Ševčíková V, Mučaji P. Water leaves extracts of Cornus mas and Cornus kousa as aldose reductase inhibitors: the potential therapeutic agents. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0227-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
195
|
Fleck SC, Churchwell MI, Doerge DR. Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food Chem Toxicol 2017; 106:193-201. [PMID: 28552786 DOI: 10.1016/j.fct.2017.05.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
Zearalenone (ZEN) is a well-studied mycotoxin whose potent estrogenic properties have been used by international regulatory bodies to set health-based guidance values for ZEN exposure in grain-based foods from changes in hormonally responsive tissues of juvenile female pigs. The role of metabolism in determining estrogenic responses in vivo is a major uncertainty in inter-species extrapolation to humans and in assessing the potential for added susceptibility in sensitive subpopulations. This study evaluated the metabolism of ZEN and pharmacokinetics in ∼2 month-old female pigs using oral and intravenous dosing. The absolute bioavailability (AUCoral/AUCIV) of receptor-active ZEN aglycone was 1.8 ± 0.80%, consistent with extensive pre-systemic Phase II conjugation. Reductive metabolism to α-zearalenol (α-ZEL) was extensive, with smaller amounts of β-ZEL. When combined with its higher binding affinity, relative to ZEN and β-ZEL, α-ZEL was the predominant contributor to total estrogen receptor ligand activity (∼90%) after oral dosing with ZEN. The apparent similarities of reductive and Phase II conjugation metabolism of ZEN between pigs and humans support the use of juvenile female pigs as a sensitive model for risk assessments of estrogenic effects from dietary ZEN.
Collapse
Affiliation(s)
- Stefanie C Fleck
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States.
| |
Collapse
|
196
|
Ktari A, Gueddou A, Nouioui I, Miotello G, Sarkar I, Ghodhbane-Gtari F, Sen A, Armengaud J, Gtari M. Host Plant Compatibility Shapes the Proteogenome of Frankia coriariae. Front Microbiol 2017; 8:720. [PMID: 28512450 PMCID: PMC5411423 DOI: 10.3389/fmicb.2017.00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023] Open
Abstract
Molecular signaling networks in the actinorhizal rhizosphere select host-compatible Frankia strains, trigger the infection process and eventually the genesis of nitrogen-fixing nodules. The molecular triggers involved remain difficult to ascertain. Root exudates (RE) are highly dynamic substrates that play key roles in establishing the rhizosphere microbiome. RE are known to induce the secretion by rhizobia of Nod factors, polysaccharides, and other proteins in the case of legume symbiosis. Next-generation proteomic approach was here used to decipher the key bacterial signals matching the first-step recognition of host plant stimuli upon treatment of Frankia coriariae strain BMG5.1 with RE derived from compatible (Coriaria myrtifolia), incompatible (Alnus glutinosa), and non-actinorhizal (Cucumis melo) host plants. The Frankia proteome dynamics were mainly driven by host compatibility. Both metabolism and signal transduction were the dominant activities for BMG5.1 under the different RE conditions tested. A second set of proteins that were solely induced by C. myrtifolia RE and were mainly linked to cell wall remodeling, signal transduction and host signal processing activities. These proteins may footprint early steps in receptive recognition of host stimuli before subsequent events of symbiotic recruitment.
Collapse
Affiliation(s)
- Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Abdellatif Gueddou
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Guylaine Miotello
- CEA, DRF, Joliot, Lab Innovative Technologies for Detection and DiagnosticBagnols-sur-Cèze, France
| | - Indrani Sarkar
- Department of Botany, NBU Bioinformatics Facility, University of North BengalSiliguri, India
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Arnab Sen
- Department of Botany, NBU Bioinformatics Facility, University of North BengalSiliguri, India
| | - Jean Armengaud
- CEA, DRF, Joliot, Lab Innovative Technologies for Detection and DiagnosticBagnols-sur-Cèze, France
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| |
Collapse
|
197
|
Zhao JX, Yuan YW, Cai CF, Shen DY, Chen ML, Ye F, Mi YJ, Luo QC, Cai WY, Zhang W, Long Y, Zeng Y, Ye GD, Yang SY. Aldose reductase interacts with AKT1 to augment hepatic AKT/mTOR signaling and promote hepatocarcinogenesis. Oncotarget 2017; 8:66987-67000. [PMID: 28978011 PMCID: PMC5620151 DOI: 10.18632/oncotarget.17791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/25/2017] [Indexed: 02/07/2023] Open
Abstract
Marked up-regulation of aldose reductase (AR) is reportedly associated with the development of hepatocellular carcinoma (HCC). We investigated how aberrantly overexpressed AR might promote oncogenic transformation in liver cells and tissues. We found that overexpressed AR interacted with the kinase domain of AKT1 to increase AKT/mTOR signaling. In both cultured liver cancer cells and liver tissues in DEN-induced transgenic HCC model mice, we observed that AR overexpression-induced AKT/mTOR signaling tended to enhance lactate formation and hepatic inflammation to enhance hepatocarcinogenesis. Conversely, AR knockdown suppressed lactate formation and inflammation. Using cultured liver cancer cells, we also demonstrated that AKT1 was essential for AR-induced dysregulation of AKT/mTOR signaling, metabolic reprogramming, antioxidant defense, and inflammatory responses. These findings suggest that aberrantly overexpressed/over-activated hepatic AR promotes HCC development at least in part by interacting with oncogenic AKT1 to augment AKT/mTOR signaling. Inhibition of AR and/or AKT1 might serve as an effective strategy for the prevention and therapy of liver cancer.
Collapse
Affiliation(s)
- Jia-Xing Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, China
| | - Ya-Wei Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361002, China
| | - Cheng-Fu Cai
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Dong-Yan Shen
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Mao-Li Chen
- School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361003, China
| | - Feng Ye
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Yan-Jun Mi
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Qi-Cong Luo
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Wang-Yu Cai
- Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Wei Zhang
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Guo-Dong Ye
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Shu-Yu Yang
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| |
Collapse
|
198
|
Hara A, Endo S, Matsunaga T, El-Kabbani O, Miura T, Nishinaka T, Terada T. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Biochem Pharmacol 2017; 138:185-192. [PMID: 28450226 DOI: 10.1016/j.bcp.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the Ki values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids.
Collapse
Affiliation(s)
- Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Satoshi Endo
- Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | | | - Ossama El-Kabbani
- Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Miura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Toru Nishinaka
- Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Tomoyuki Terada
- Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| |
Collapse
|
199
|
Špičáková A, Szotáková B, Dimunová D, Myslivečková Z, Kubíček V, Ambrož M, Lněničková K, Krasulová K, Anzenbacher P, Skálová L. Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions. Molecules 2017; 22:molecules22040509. [PMID: 28338641 PMCID: PMC6154719 DOI: 10.3390/molecules22040509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Sesquiterpenes, 15-carbon compounds formed from three isoprenoid units, are the main components of plant essential oils. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. The aim of our study was to test and compare the potential inhibitory effect of acyclic sesquiterpenes, trans-nerolidol, cis-nerolidol and farnesol, on the activities of the main xenobiotic-metabolizing enzymes in rat and human liver in vitro. Rat and human subcellular fractions, relatively specific substrates, corresponding coenzymes and HPLC, spectrophotometric or spectrofluorometric analysis of product formation were used. The results showed significant inhibition of cytochromes P450 (namely CYP1A, CYP2B and CYP3A subfamilies) activities by all tested sesquiterpenes in rat as well as in human hepatic microsomes. On the other hand, all tested sesquiterpenes did not significantly affect the activities of carbonyl-reducing enzymes and conjugation enzymes. The results indicate that acyclic sesquiterpenes might affect CYP1A, CYP2B and CYP3A mediated metabolism of concurrently administered drugs and other xenobiotics. The possible drug-sesquiterpene interactions should be verified in in vivo experiments.
Collapse
Affiliation(s)
- Alena Špičáková
- Department of Pharmacology and Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacky University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Diana Dimunová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Zuzana Myslivečková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Vladimír Kubíček
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Martin Ambrož
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Kateřina Lněničková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Kristýna Krasulová
- Department of Pharmacology and Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacky University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Pavel Anzenbacher
- Department of Pharmacology and Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacky University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
200
|
Giménez-Dejoz J, Weber S, Barski OA, Möller G, Adamski J, Parés X, Porté S, Farrés J. Characterization of AKR1B16, a novel mouse aldo-keto reductase. Chem Biol Interact 2017; 276:182-193. [PMID: 28322781 DOI: 10.1016/j.cbi.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
Abstract
Aldo-keto reductases (AKRs) are distributed in three families and multiple subfamilies in mammals. The mouse Akr1b3 gene is clearly orthologous to human AKR1B1, both coding for aldose reductase, and their gene products show similar tissue distribution, regulation by osmotic stress and kinetic properties. In contrast, no unambiguous orthologs of human AKR1B10 and AKR1B15.1 have been identified in rodents. Although two more AKRs, AKR1B7 and AKR1B8, have been identified and characterized in mouse, none of them seems to exhibit properties similar to the human AKRs. Recently, a novel mouse AKR gene, Akr1b16, was annotated and the respective gene product, AKR1B16 (sharing 83% and 80% amino acid sequence identity with AKR1B10 and AKR1B15.1, respectively), was expressed as insoluble and inactive protein in a bacterial expression system. Here we describe the expression and purification of a soluble and enzymatically active AKR1B16 from E. coli using three chaperone systems. A structural model of AKR1B16 allowed the estimation of its active-site pocket volume, which was much wider (402 Å3) than those of AKR1B10 (279 Å3) and AKR1B15.1 (60 Å3). AKR1B16 reduced aliphatic and aromatic carbonyl compounds, using NADPH as a cofactor, with moderate or low activity (highest kcat values around 5 min-1). The best substrate for the enzyme was pyridine-3-aldehyde. AKR1B16 showed poor inhibition with classical AKR inhibitors, tolrestat being the most potent. Kinetics and inhibition properties resemble those of rat AKR1B17 but differ from those of the human enzymes. In addition, AKR1B16 catalyzed the oxidation of 17β-hydroxysteroids in a NADP+-dependent manner. These results, together with a phylogenetic analysis, suggest that mouse AKR1B16 is an ortholog of rat AKR1B17, but not of human AKR1B10 or AKR1B15.1. These human enzymes have no counterpart in the murine species, which is evidenced by forming a separate cluster in the phylogenetic tree and by their unique activity with retinaldehyde.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Susanne Weber
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, USA
| | - Gabriele Möller
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|