151
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
152
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
153
|
He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020; 41:405-416. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.
Collapse
Affiliation(s)
- Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
154
|
Knatko EV, Tatham MH, Zhang Y, Castro C, Higgins M, Dayalan Naidu S, Leonardi C, de la Vega L, Honda T, Griffin JL, Hay RT, Dinkova-Kostova AT. Downregulation of Keap1 Confers Features of a Fasted Metabolic State. iScience 2020; 23:101638. [PMID: 33103077 PMCID: PMC7575887 DOI: 10.1016/j.isci.2020.101638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH-associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism, allowing adaptation and survival under conditions of oxidative, inflammatory, and metabolic stress. Nrf2 is the principal determinant of redox homeostasis, and contributes to mitochondrial function and integrity and cellular bioenergetics. Using proteomics and lipidomics, we show that genetic downregulation of Keap1 in mice, and the consequent Nrf2 activation to pharmacologically relevant levels, leads to upregulation of carboxylesterase 1 (Ces1) and acyl-CoA oxidase 2 (Acox2), decreases triglyceride levels, and alters the lipidome. This is accompanied by downregulation of hepatic ATP-citrate lyase (Acly) and decreased levels of acetyl-CoA, a trigger for autophagy. These findings suggest that downregulation of Keap1 confers features of a fasted metabolic state, which is an important consideration in the drug development of Keap1-targeting pharmacologic Nrf2 activators.
Collapse
Affiliation(s)
- Elena V. Knatko
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Cecilia Castro
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Chiara Leonardi
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Julian L. Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1QW, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
155
|
Robledinos-Antón N, Escoll M, Guan KL, Cuadrado A. TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells 2020; 9:cells9102230. [PMID: 33023162 PMCID: PMC7600930 DOI: 10.3390/cells9102230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms involved in regulation of quiescence, proliferation, and reprogramming of Neural Stem Progenitor Cells (NSPCs) of the mammalian brain are still poorly defined. Here, we studied the role of the transcriptional co-factor TAZ, regulated by the WNT and Hippo pathways, in the homeostasis of NSPCs. We found that, in the murine neurogenic niches of the striatal subventricular zone and the dentate gyrus granular zone, TAZ is highly expressed in NSPCs and declines with ageing. Moreover, TAZ expression is lost in immature neurons of both neurogenic regions. To characterize mechanistically the role of TAZ in neuronal differentiation, we used the midbrain-derived NSPC line ReNcell VM to replicate in a non-animal model the factors influencing NSPC differentiation to the neuronal lineage. TAZ knock-down and forced expression in NSPCs led to increased and reduced neuronal differentiation, respectively. TEADs-knockdown indicated that these TAZ co-partners are required for the suppression of NSPCs commitment to neuronal differentiation. Genetic manipulation of the TAZ/TEAD system showed its participation in transcriptional repression of SOX2 and the proneuronal genes ASCL1, NEUROG2, and NEUROD1, leading to impediment of neurogenesis. TAZ is usually considered a transcriptional co-activator promoting stem cell proliferation, but our study indicates an additional function as a repressor of neuronal differentiation.
Collapse
Affiliation(s)
- Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Maribel Escoll
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-383; Fax: +34-915-854-401
| |
Collapse
|
156
|
Wu J, Ni Y, Yang Q, Mao J, Zhu X, Tao S, Kato K, Zhang J, Wang D, Yamanaka K, An Y. Long-term arsenite exposure decreases autophagy by increased release of Nrf2 in transformed human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139425. [PMID: 32450402 DOI: 10.1016/j.scitotenv.2020.139425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Autophagy dysfunction in arsenite toxicity plays critical roles in cancer development and progression. However, the precise mechanisms of arsenite-induced skin cancer by blocking autophagy remain uncertain. Herein, this study investigated molecular mechanisms of arsenite-induced autophagy dysfunction mediated by nuclear factor erythroid-2 related factor 2 (Nrf2) in human keratinocyte (HaCaT) cells. The effects of long-term arsenite exposure on Nrf2 activation and autophagy were established using a siRNA interference assay and western blots. A specific siRNA of Nrf2 was used to verify that autophagy induced by arsenite can be influenced by Nrf2. Specific inhibitors of PI3K (LY294002) and mTOR (Rapamycin) and siRNA of Nrf2 were employed to verify that upregulation of Nrf2 correlated with activating the PI3K/Akt pathway. Downstream mTOR and Bcl2 were upregulated by Nrf2 signaling, inhibiting autophagy initiation in arsenite-exposed HaCaT cells. In conclusion, our data suggest that long-term exposure to arsenite promotes Nrf2 upregulation via the PI3K/Akt pathway and, along with upregulation of downstream mTOR and Bcl2, contributes to autophagy dysfunction in transformed HaCaT cells. This work provides new insights into the mechanisms underlying arsenite-induced autophagy dysfunction in cancer promotion and malignancy progression.
Collapse
Affiliation(s)
- Jing Wu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yiping Ni
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Xuerui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang 550025, China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
157
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
158
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
159
|
Hosaka Y, Araya J, Fujita Y, Kadota T, Tsubouchi K, Yoshida M, Minagawa S, Hara H, Kawamoto H, Watanabe N, Ito A, Ichikawa A, Saito N, Okuda K, Watanabe J, Takekoshi D, Utsumi H, Hashimoto M, Wakui H, Ito S, Numata T, Mori S, Matsudaira H, Hirano J, Ohtsuka T, Nakayama K, Kuwano K. Chaperone-Mediated Autophagy Suppresses Apoptosis via Regulation of the Unfolded Protein Response during Chronic Obstructive Pulmonary Disease Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1256-1267. [PMID: 32699159 DOI: 10.4049/jimmunol.2000132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Cigarette smoke (CS) induces accumulation of misfolded proteins with concomitantly enhanced unfolded protein response (UPR). Increased apoptosis linked to UPR has been demonstrated in chronic obstructive pulmonary disease (COPD) pathogenesis. Chaperone-mediated autophagy (CMA) is a type of selective autophagy for lysosomal degradation of proteins with the KFERQ peptide motif. CMA has been implicated in not only maintaining nutritional homeostasis but also adapting the cell to stressed conditions. Although recent papers have shown functional cross-talk between UPR and CMA, mechanistic implications for CMA in COPD pathogenesis, especially in association with CS-evoked UPR, remain obscure. In this study, we sought to examine the role of CMA in regulating CS-induced apoptosis linked to UPR during COPD pathogenesis using human bronchial epithelial cells (HBEC) and lung tissues. CS extract (CSE) induced LAMP2A expression and CMA activation through a Nrf2-dependent manner in HBEC. LAMP2A knockdown and the subsequent CMA inhibition enhanced UPR, including CHOP expression, and was accompanied by increased apoptosis during CSE exposure, which was reversed by LAMP2A overexpression. Immunohistochemistry showed that Nrf2 and LAMP2A levels were reduced in small airway epithelial cells in COPD compared with non-COPD lungs. Both Nrf2 and LAMP2A levels were significantly reduced in HBEC isolated from COPD, whereas LAMP2A levels in HBEC were positively correlated with pulmonary function tests. These findings suggest the existence of functional cross-talk between CMA and UPR during CSE exposure and also that impaired CMA may be causally associated with COPD pathogenesis through enhanced UPR-mediated apoptosis in epithelial cells.
Collapse
Affiliation(s)
- Yusuke Hosaka
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan;
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Kazuya Tsubouchi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Masahiro Yoshida
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Shunsuke Minagawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Hiromichi Hara
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Hironori Kawamoto
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Naoaki Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Akihiko Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Akihiro Ichikawa
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Nayuta Saito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Keitaro Okuda
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Junko Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Daisuke Takekoshi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Mitsuo Hashimoto
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Takanori Numata
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| | - Shohei Mori
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 104-8461, Japan; and
| | - Hideki Matsudaira
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 104-8461, Japan; and
| | - Jun Hirano
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 104-8461, Japan; and
| | - Takashi Ohtsuka
- Division of Chest Diseases, Department of Surgery, Jikei University School of Medicine, Tokyo 104-8461, Japan; and
| | - Katsutoshi Nakayama
- Department of Respiratory Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 104-8461, Japan
| |
Collapse
|
160
|
Gunderson JT, Peppriell AE, Vorojeikina D, Rand MD. Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development. Arch Toxicol 2020; 94:4007-4022. [PMID: 32816092 DOI: 10.1007/s00204-020-02879-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Methylmercury (MeHg) can elicit cognitive and motor deficits due to its developmental neuro- and myotoxic properties. While previous work has demonstrated that Nrf2 antioxidant signaling protects from MeHg toxicity, in vivo tissue-specific studies are lacking. In Drosophila, MeHg exposure shows greatest developmental toxicity in the pupal stage resulting in failed eclosion (emergence of adults) and an accompanying 'myosphere' phenotype in indirect flight muscles (IFMs). To delineate tissue-specific contributions to MeHg-induced motor deficits, we investigated the potential of Nrf2 signaling in either muscles or neurons to moderate MeHg toxicity. Larva were exposed to various concentrations of MeHg (0-20 µM in food) in combination with genetic modulation of the Nrf2 homolog cap-n-collar C (CncC), or its negative regulator Keap1. Eclosion behavior was evaluated in parallel with the morphology of two muscle groups, the thoracic IFMs and the abdominal dorsal internal oblique muscles (DIOMs). CncC signaling activity was reported with an antioxidant response element construct (ARE-GFP). We observed that DIOMs are distinguished by elevated endogenous ARE-GFP expression, which is only transiently seen in the IFMs. Dose-dependent MeHg reductions in eclosion behavior parallel formation of myospheres in the DIOMs and IFMs, while also increasing ARE-GFP expression in the DIOMs. Modulating CncC signaling via muscle-specific Keap1 knockdown and upregulation gives a rescue and exacerbation, respectively, of MeHg effects on eclosion and myospheres. Interestingly, muscle-specific CncC upregulation and knockdown both induce lethality. In contrast, neuron-specific upregulation of CncC, as well as Keap1 knockdown, rescued MeHg effects on eclosion and myospheres. Our findings indicate that enhanced CncC signaling localized to either muscles or neurons is sufficient to rescue muscle development and neuromuscular function from a MeHg insult. Additionally, there may be distinct roles for CncC signaling in myo-morphogenesis.
Collapse
Affiliation(s)
- Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
161
|
Escoll M, Lastra D, Robledinos-Antón N, Wandosell F, Antón IM, Cuadrado A. WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells. Antioxidants (Basel) 2020; 9:E773. [PMID: 32825452 PMCID: PMC7555221 DOI: 10.3390/antiox9090773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.
Collapse
Affiliation(s)
- Maribel Escoll
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Diego Lastra
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Natalia Robledinos-Antón
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Inés María Antón
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Cellular and Molecular Biology, Darwin 3, 28049 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| |
Collapse
|
162
|
Michalska P, León R. When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9080740. [PMID: 32806679 PMCID: PMC7463521 DOI: 10.3390/antiox9080740] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons in the brain or spinal cord that leads to a loss of function of the affected areas. The lack of effective treatments and the ever-increasing life expectancy is raising the number of individuals affected, having a tremendous social and economic impact. The brain is particularly vulnerable to oxidative damage given the high energy demand, low levels of antioxidant defenses, and high levels of metal ions. Driven by age-related changes, neurodegeneration is characterized by increased oxidative stress leading to irreversible neuronal damage, followed by cell death. Nevertheless, neurodegenerative diseases are known as complex pathologies where several mechanisms drive neuronal death. Herein we discuss the interplay among oxidative stress, proteinopathy, and neuroinflammation at the early stages of neurodegenerative diseases. Finally, we discuss the use of the Nrf2-ARE pathway as a potential therapeutic strategy based on these molecular mechanisms to develop transformative medicines.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), 28006 Madrid, Spain
- Correspondence: (P.M.); (R.L.); Tel.: +34-91-497-27-66 (P.M. & R.L.)
| |
Collapse
|
163
|
Xia D, Zhang XR, Ma YL, Zhao ZJ, Zhao R, Wang YY. Nrf2 promotes esophageal squamous cell carcinoma (ESCC) resistance to radiotherapy through the CaMKIIα-associated activation of autophagy. Cell Biosci 2020; 10:90. [PMID: 32760495 PMCID: PMC7392680 DOI: 10.1186/s13578-020-00456-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND NF-E2-related factor 2 (Nrf2) is involved in the radiation resistance of esophageal squamous cell carcinoma (ESCC), but the underlying molecular mechanism is unclear. The purpose of our study was to explore the role of Nrf2 in the radiation resistance of ESCC and the potential molecular mechanism. RESULTS Nrf2 expression was introduced into Ec109 and KYSE-30 ESCC cells with lentivirus. CCK-8 and colony formation assays were used to evaluate the effect of Nrf2 on radioresistance in culture. The autophagy level was assessed by western blotting, flow cytometry, and confocal fluorescence microscopy. The effect of Nrf2 on the transcription of Ca2 +/calmodulin-dependent protein kinase II α (CaMKIIα) was studied by chromatin immunoprecipitation. We found that the overexpression of Nrf2 increased the radiation resistance of ESCC cells. Mechanistically, Nrf2 triggered the radiation resistance of ESCC cells by targeting CaMKIIα and subsequently activating autophagy. In addition, we found that Nrf2 directly regulated the transcription of CaMKIIα by binding to its promoter region. The effect of Nrf2 on radiation resistance was also explored in both a xenograft mouse model and ESCC patient samples. Consistent with the results of the in vitro study, high Nrf2 expression level resulted in in vivo radioresistance in an Ec109-derived xenograft mouse model. Furthermore, we also demonstrated that upregulations of both Nrf2 and CaMKIIα was closely related to lower survival rates of ESCC patients. CONCLUSIONS Our study reveals that Nrf2 promotes the radiation resistance of ESCC by targeting CaMKIIα and subsequently activating autophagy, which is characterized by the suppression of phosphorylated mTOR and p62, activation of Beclin 1, and transformation of LC3-I to LC3-II.
Collapse
Affiliation(s)
- Di Xia
- Graduate School, Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023 Hubei China
| | - Xiao-Ran Zhang
- Graduate School, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Yan-Li Ma
- Graduate School, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Zhi-Jun Zhao
- Dept. of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Cancer Institute, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004 Ningxia China
- Cancer Institute, Ningxia Medical University, Yinchuan, 750004 Ningxia China
| |
Collapse
|
164
|
Wang H, Zhang K, Ruan Z, Sun D, Zhang H, Lin G, Hu L, Zhao S, Fu Q. Probucol enhances the therapeutic efficiency of mesenchymal stem cells in the treatment of erectile dysfunction in diabetic rats by prolonging their survival time via Nrf2 pathway. Stem Cell Res Ther 2020; 11:302. [PMID: 32693824 PMCID: PMC7374958 DOI: 10.1186/s13287-020-01788-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Intracavernous injection of mesenchymal stem cells (MSCs) is a promising method for diabetic mellitus-induced erectile dysfunction (DMED), but short survival time of MSCs in cavernous is a fatal defect for therapy. This study investigated therapeutic efficiency and potential mechanism of probucol combined with MSCs. METHODS In vivo study, a total of forty-eight 10-week-old male Sprague-Dawley (SD) rats were used. Twelve rats received intraperitoneal injection of PBS as the sham group; the rest received intraperitoneal injection of 60 mg/kg streptozotocin to establish DM models. DM rats were randomly divided into three groups: received intracavernosal (IC) injection of either PBS (DM group), MSCs (M group), or administrated probucol after intracavernosal injection of MSCs (P + M group). Erectile function was assessed by electrical stimulation of the cavernous nerves with real-time intracavernous pressure measurement. After euthanasia, penile tissue was investigated for histologic examination and Western blotting. In in vitro experiment, H2O2 was used to create oxidative stress environment to detect changes in cell viability. CCK8 was used to measure cell viability of MSCs treated with or without probucol. Intracellular ROS changes were detected by flow cytometry. Autophagy and apoptosis were detected by Western blotting and confocal microscopy. RESULTS Recovery of erectile function was observed in the P + M group. The combination therapy decreased fibrosis and increased endothelial function compared with MSC therapy alone. Western blotting results confirmed the increased expression of Nrf2 and HO-1 in cavernous body. H2O2 induced high oxidative stress and reduced cell viability in vitro, which was gradually reversed with increased concentration of probucol. H2O2 reduced Nrf2 expression, which was reversed by probucol's intervention. Furthermore, the expression of Bax, Caspase3, and Cleaved-Caspase3 decreased, and the expression of Bcl-2 increased in a dose-dependent manner because of probucol's intervention. In addition, Beclin1 and LC3II both increased in a dose-dependent manner. Meanwhile, the expression of P62 decreased. In the study of autophagy flux, we found probucol did not block it. CONCLUSION Probucol enhanced therapeutic efficiency of MSCs in DMED by prolonging their survival time, which mediated through improving the transplanted microenvironment of MSCs, increasing self-antioxidant ability of MSCs, strengthening protective autophagy, and inhibiting apoptosis of MSCs via Nrf2 pathway. Schematic model showing combined probucol and MSCs to improve DMED. Probucol increases self-antioxidant ability of MSCs, strengthening protective autophagy and inhibiting apoptosis via Nrf2/HO-1 and Nrf2/autophagy pathways.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Tai'an City Central Hospital, Tai'an, 271000, People's Republic of China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Liangliang Hu
- Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, 277000, People's Republic of China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
165
|
Bento-Pereira C, Dinkova-Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson's disease. Med Res Rev 2020; 41:785-802. [PMID: 32681666 DOI: 10.1002/med.21714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, for which no disease-modifying therapies are available to date. Although understanding of the precise aetiology of PD is incomplete, it is clear that age, genetic predisposition and environmental stressors increase the risk. At the cellular level, oxidative stress, chronic neuroinflammation, mitochondrial dysfunction and aberrant protein aggregation have been implicated as contributing factors. These detrimental processes are counteracted by elaborate networks of cellular defence mechanisms, one of which is orchestrated by transcription factor nuclear factor-erythroid 2 p45-related factor 2 (Nrf2; gene name NFE2L2). A wealth of preclinical evidence suggests that Nrf2 activation is beneficial in cellular and animal models of PD. In this review, we summarise the current understanding of mitochondrial dysfunction in PD, the role of Nrf2 in mitochondrial function and explore the potential of Nrf2 as a therapeutic target for mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Claudia Bento-Pereira
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK.,Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
166
|
NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020; 21:ijms21134777. [PMID: 32640524 PMCID: PMC7369905 DOI: 10.3390/ijms21134777] [Citation(s) in RCA: 743] [Impact Index Per Article: 185.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that regulates the cellular defense against toxic and oxidative insults through the expression of genes involved in oxidative stress response and drug detoxification. NRF2 activation renders cells resistant to chemical carcinogens and inflammatory challenges. In addition to antioxidant responses, NRF2 is involved in many other cellular processes, including metabolism and inflammation, and its functions are beyond the originally envisioned. NRF2 activity is tightly regulated through a complex transcriptional and post-translational network that enables it to orchestrate the cell’s response and adaptation to various pathological stressors for the homeostasis maintenance. Elevated or decreased NRF2 activity by pharmacological and genetic manipulations of NRF2 activation is associated with many metabolism- or inflammation-related diseases. Emerging evidence shows that NRF2 lies at the center of a complex regulatory network and establishes NRF2 as a truly pleiotropic transcription factor. Here we summarize the complex regulatory network of NRF2 activity and its roles in metabolic reprogramming, unfolded protein response, proteostasis, autophagy, mitochondrial biogenesis, inflammation, and immunity.
Collapse
|
167
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
168
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
169
|
Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020; 10:E904. [PMID: 32545924 PMCID: PMC7356958 DOI: 10.3390/biom10060904] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 acts by controlling gene expression, being the master regulator of the Phase II antioxidant response, and also being key to the control of neuroinflammation. NRF2 activity is regulated at several levels, including protein degradation by the proteasome, transcription, and post-transcription. The purpose of this review is to offer a concise and critical overview of the main mechanisms of NRF2 regulation and their actual or potential use as targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Marta Piquero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (Á.C.); (M.P.); (M.V.)
| |
Collapse
|
170
|
Catanzaro M, Lanni C, Basagni F, Rosini M, Govoni S, Amadio M. Eye-Light on Age-Related Macular Degeneration: Targeting Nrf2-Pathway as a Novel Therapeutic Strategy for Retinal Pigment Epithelium. Front Pharmacol 2020; 11:844. [PMID: 32581803 PMCID: PMC7291861 DOI: 10.3389/fphar.2020.00844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common disease with a multifactorial aetiology, still lacking effective and curative therapies. Among the early events triggering AMD is the deterioration of the retinal pigment epithelium (RPE), whose fundamental functions assure good health of the retina. RPE is physiologically exposed to high levels of oxidative stress during its lifespan; thus, the integrity and well-functioning of its antioxidant systems are crucial to maintain RPE homeostasis. Among these defensive systems, the Nrf2-pathway plays a primary role. Literature evidence suggests that, in aged and especially in AMD RPE, there is an imbalance between the increased pro-oxidant stress, and the impaired endogenous detoxifying systems, finally reverberating on RPE functions and survival. In this in vitro study on wild type (WT) and Nrf2-silenced (siNrf2) ARPE-19 cells exposed to various AMD-related noxae (H2O2, 4-HNE, MG132 + Bafilomycin), we show that the Nrf2-pathway activation is a physiological protective stress response, leading downstream to an up-regulation of the Nrf2-targets HO1 and p62, and that a Nrf2 impairment predisposes the cells to a higher vulnerability to stress. In search of new pharmacologically active compounds potentially useful for AMD, four nature-inspired hybrids (NIH) were individually characterized as Nrf2 activators, and their pharmacological activity was investigated in ARPE-19 cells. The Nrf2 activator dimethyl-fumarate (DMF; 10 μM) was used as a positive control. Three out of the four tested NIH (5 μM) display both direct and indirect antioxidant properties, in addition to cytoprotective effects in ARPE-19 cells under pro-oxidant stimuli. The observed pro-survival effects require the presence of Nrf2, with the exception of the lead compound NIH1, able to exert a still significant, albeit lower, protection even in siNrf2 cells, supporting the concept of the existence of both Nrf2-dependent and independent pathways mediating pro-survival effects. In conclusion, by using some pharmacological tools as well as a reference compound, we dissected the role of the Nrf2-pathway in ARPE-19 stress response, suggesting that the Nrf2 induction represents an efficient defensive strategy to prevent the stress-induced damage.
Collapse
Affiliation(s)
- Michele Catanzaro
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cristina Lanni
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Govoni
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
171
|
Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020; 9:antiox9060475. [PMID: 32498260 PMCID: PMC7346227 DOI: 10.3390/antiox9060475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
When not dividing, many cell types target their centrosome to the plasma membrane, where it nucleates assembly of a primary cilium, an antenna-like signaling structure consisting of nine concentric microtubule pairs surrounded by membrane. Primary cilia play important pathophysiological roles in many tissues, their dysfunction being associated with cancer and ciliopathies, a diverse group of congenital human diseases. Several recent studies have unveiled functional connections between primary cilia and NRF2 (nuclear factor erythroid 2-related factor 2), the master transcription factor orchestrating cytoprotective responses to oxidative and other cellular stresses. These NRF2-cilia relationships are reciprocal: primary cilia, by promoting autophagy, downregulate NRF2 activity. In turn, NRF2 transcriptionally regulates genes involved in ciliogenesis and Hedgehog (Hh) signaling, a cilia-dependent pathway with major roles in embryogenesis, stem cell function and tumorigenesis. Nevertheless, while we found that NRF2 stimulates ciliogenesis and Hh signaling, a more recent study reported that NRF2 negatively affects these processes. Herein, we review the available evidence linking NRF2 to primary cilia, suggest possible explanations to reconcile seemingly contradictory data, and discuss what the emerging interplay between primary cilia and NRF2 may mean for human health and disease.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Correspondence:
| |
Collapse
|
172
|
Yang X, Ji J, Liu C, Zhou M, Li H, Ye S, Hu Q. HJ22, a Novel derivative of piperine, Attenuates ibotenic acid-induced cognitive impairment, oxidativestress, apoptosis and inflammation via inhibiting the protein-protein interaction of Keap1-Nrf2. Int Immunopharmacol 2020; 83:106383. [PMID: 32193099 DOI: 10.1016/j.intimp.2020.106383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Kelch-like ECH-associated protein (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) protein-protein interaction has become an important drug target for the treatment of Alzheimer's disease. In this study, we found a novel piperine derivative (HJ22) synthesized by our group with great ability to bind to Keap-1 and activate Keap1-Nrf2-ARE signaling pathway in vitro, driving us to investigate the beneficial effects of HJ22 on ibotenic acid (IBO)-induced neurological disorders in rats and underlying mechanisms. Interestingly, HJ22 significantly ameliorated IBO-induced cognitive impairment in Morris water maze, Y-maze and passive avoidance tests. Moreover, HJ22 significantly attenuated cholinergic dysfunction and neuronal morphological changes via inhibiting apoptotic cell death induced by IBO. Notably, HJ22 inhibited the interaction between Keap1 and Nrf2, and subsequently up-regulated nuclear Nrf2 expression, thereby inhibiting oxidative stress and Thioredoxin-interacting protein (TXNIP)-mediated Nod-like receptor protein 3 (NLRP3) inflammasome activation. These findings demonstrated that HJ22 exhibited potent therapeutic effects against IBO-induced cognitive impairment by alleviating cholinergic damage, oxidative stress, apoptosis and neuroinflammation, which might be partly attributed to its inhibitory activity on Keap1-Nrf2 protein-protein interaction.
Collapse
Affiliation(s)
- Xiping Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Chunxiao Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Huanqiu Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Shumin Ye
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
173
|
Apigenin Protects Mouse Retina against Oxidative Damage by Regulating the Nrf2 Pathway and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9420704. [PMID: 32509154 PMCID: PMC7244986 DOI: 10.1155/2020/9420704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a critical factor in the pathology of age-related macular degeneration (AMD). Apigenin (AP) is a flavonoid with an outstanding antioxidant activity. We had previously observed that AP protected APRE-19 cells against oxidative injury in vitro. However, AP has poor water and fat solubility, which determines its low oral bioavailability. In this study, we prepared the solid dispersion of apigenin (AP-SD). The solubility and dissolution of AP-SD was significantly better than that of the original drug, so the oral bioavailability in rats was better than that of the original drug. Then, the effects of AP-SD on the retina of a model mouse with dry AMD were assessed by fundus autofluorescence (FAF), optical coherence tomography (OCT), and electron microscopy; the results revealed that AP-SD alleviated retinopathy. Further research found that AP-SD promoted the nuclear translocation of Nrf2 and increased expression levels of the Nrf2 and target genes HO-1 and NQO-1. AP-SD enhanced the activities of SOD and GSH-Px and decreased the levels of ROS and MDA. Furthermore, AP-SD upregulated the expressions of p62 and LC3II in an Nrf2-dependent manner. However, these effects of AP-SD were observed only in the retina of Nrf2 WT mice, not in Nrf2 KO mice. In addition, the therapeutic effect of AP-SD was dose dependent, and AP did not work. In conclusion, AP-SD significantly enhanced the bioavailability of the original drug and reduced retinal oxidative injury in the model mouse of dry AMD in vivo. The results of the underlying mechanism showed that AP-SD upregulated the expression of antioxidant enzymes through the Nrf2 pathway and upregulated autophagy, thus inhibiting retinal oxidative damage. AP-SD may be a potential compound for the treatment of dry AMD.
Collapse
|
174
|
Nrf2 Ablation Promotes Alzheimer's Disease-Like Pathology in APP/PS1 Transgenic Mice: The Role of Neuroinflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3050971. [PMID: 32454936 PMCID: PMC7238335 DOI: 10.1155/2020/3050971] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Accumulating evidence has revealed that the slow progressive deterioration of AD is associated with oxidative stress and chronic inflammation in the brain. Nuclear factor erythroid 2- (NF-E2-) related factor 2 (Nrf2), which acts through the Nrf2/ARE pathway, is a key regulator of the antioxidant and anti-inflammatory response. Although recent data show a link between Nrf2 and AD-related cognitive decline, the mechanism is still unknown. Thus, we explored how Nrf2 protects brain cells against the oxidative stress and inflammation of AD in a mouse model of AD (APP/PS1 transgenic (AT) mice) with genetic removal of Nrf2. Methods The spatial learning and memory abilities of 12-month-old transgenic mice were evaluated using a Morris water maze test. Hippocampal levels of Nrf2, Aβ, and p-tauS404 and of astrocytes and microglia were determined by immunostaining. Inflammatory cytokines were determined by ELISA and quantitative real-time polymerase chain reaction (qRT-PCR). Oxidative stress was measured by 8-hydroxydeoxyguanosine immunohistochemistry, and the antioxidant response was determined by qRT-PCR. Results The spatial learning and memory abilities of AT mice were impaired after Nrf2 deletion. Aβ and p-tauS404 accumulation was increased in the hippocampus of AT/Nrf2-KO mice. Astroglial and microglial activation was exacerbated, followed by upregulation of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. Conclusion Our present results show that Nrf2 deficiency aggravates AD-like pathology in AT mice. This phenotype was associated with increased levels of oxidative and proinflammatory markers, which suggests that the Nrf2 pathway may be a promising therapeutic target for AD.
Collapse
|
175
|
Niacin Alleviates Dairy Cow Mastitis by Regulating the GPR109A/AMPK/NRF2 Signaling Pathway. Int J Mol Sci 2020; 21:ijms21093321. [PMID: 32397071 PMCID: PMC7246865 DOI: 10.3390/ijms21093321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Mastitis is one of three bovine diseases recognized as a cause of substantial economic losses every year throughout the world. Niacin is an important feed additive that is used extensively for dairy cow nutrition. However, the mechanism by which niacin acts on mastitis is not clear. The aim of this study is to investigate the mechanism of niacin in alleviating the inflammatory response of mammary epithelial cells and in anti-mastitis. Mammary glands, milk, and blood samples were collected from mastitis cows not treated with niacin (n = 3) and treated with niacin (30 g/d, n = 3) and healthy cows (n = 3). The expression of GPR109A, IL-6, IL-1β, and TNF-α in the mammary glands of the dairy cows with mastitis was significantly higher than it was in the glands of the healthy dairy cows. We also conducted animal experiments in vivo by feeding rumen-bypassed niacin. Compared with those in the untreated mastitis group, the somatic cell counts (SCCs) and the expression of IL-6, IL-1β, and TNF-α in the blood and milk were lower. In vitro, we isolated the primary bovine mammary epithelial cells (BMECs) from the mammary glands of the healthy cows. The mRNA levels of IL-6, IL-1β, TNF-α, and autophagy-related genes were detected after adding niacin, shRNA, compound C, trans retinoic acid, 3-methyladenine to BMECs. Then GPR109A, AMPK, NRF-2, and autophagy-related proteins were detected by Western blot. We found that niacin can activate GPR109A and phosphorylate AMPK, and promote NRF-2 nuclear import and autophagy to alleviate LPS-induced inflammatory response in BMECs. In summary, we found that niacin can reduce the inflammatory response of BMECs through GPR109A/AMPK/NRF-2/autophagy. We also preliminarily explored the alleviative effect of niacin on mastitis in dairy cows.
Collapse
|
176
|
Functional Genetic Variant in ATG5 Gene Promoter in Acute Myocardial Infarction. Cardiol Res Pract 2020; 2020:9898301. [PMID: 32377431 PMCID: PMC7191428 DOI: 10.1155/2020/9898301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Coronary artery disease (CAD) including acute myocardial infarction (AMI) is an inflammatory and metabolic disease mainly caused by atherosclerosis. Dysfunctional autophagy has been associated with abnormal lipid metabolism and inflammation. In previous studies, we have reported altered autophagic activity in AMI patients. As autophagy-related protein 5 (ATG5) is a core protein in autophagy, we speculated that altered ATG5 level may contribute to CAD and AMI development. In this study, the promoter of the ATG5 gene was genetically and functionally investigated in large groups of AMI patients (n = 378) and ethnic-matched healthy controls (n = 386). The results showed that a total of 15 genetic variants including 6 single-nucleotide polymorphisms (SNPs) in the ATG5 gene promoter were found in this study population. A novel deletion variant (g.106326168_70delTCT) and an SNP [g.106325757C > G (rs190825454)] were found in one 66-year-old male patient with non-ST-segment elevated AMI, but in none of controls. In cultured HEK-293 and H9c2 cells, the deletion variant significantly decreased the transcriptional activity of the ATG5 gene promoter (P < 0.01). In contrast, the genetic variants either identified only in controls or found in both AMI patients and controls did not affect the transcriptional activity of the ATG5 gene promoter (P > 0.05). Furthermore, an electrophoretic mobility shift assay showed that the deletion variant evidently affected the binding of a transcription factor. Therefore, the genetic variant identified in AMI may affect the activity of the ATG5 gene promoter and change the ATG5 level, contributing to AMI as a rare risk factor.
Collapse
|
177
|
Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis. Cell Chem Biol 2020; 27:436-447. [PMID: 32275864 PMCID: PMC7597851 DOI: 10.1016/j.chembiol.2020.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a non-apoptotic mode of regulated cell death that is iron and lipid peroxidation dependent. As new mechanistic insight into ferroptotic effectors and how they are regulated in different disease contexts is uncovered, our understanding of the physiological and pathological relevance of this mode of cell death continues to grow. Along these lines, a host of pharmacological modulators of this pathway have been identified, targeting proteins involved in iron homeostasis; the generation and reduction of lipid peroxides; or cystine import and glutathione metabolism. Also, of note, many components of the ferroptosis cascade are target genes of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), indicating its critical role in mediating the ferroptotic response. In this review, we discuss the in vitro, in vivo, and clinical evidence of ferroptosis in disease, including a brief discussion of targeting upstream mediators of this cascade, including NRF2, to treat ferroptosis-driven diseases.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
178
|
Fernblock® Upregulates NRF2 Antioxidant Pathway and Protects Keratinocytes from PM 2.5-Induced Xenotoxic Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2908108. [PMID: 32377294 PMCID: PMC7181013 DOI: 10.1155/2020/2908108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Humans in modern industrial and postindustrial societies face sustained challenges from environmental pollutants, which can trigger tissue damage from xenotoxic stress through different mechanisms. Thus, the identification and characterization of compounds capable of conferring antioxidant effects and protection against these xenotoxins are warranted. Here, we report that the natural extract of Polypodium leucotomos named Fernblock®, known to reduce aging and oxidative stress induced by solar radiations, upregulates the NRF2 transcription factor and its downstream antioxidant targets, and this correlates with its ability to reduce inflammation, melanogenesis, and general cell damage in cultured keratinocytes upon exposure to an experimental model of fine pollutant particles (PM2.5). Our results provide evidence for a specific molecular mechanism underpinning the protective activity of Fernblock® against environmental pollutants and potentially other sources of oxidative stress and damage-induced aging.
Collapse
|
179
|
Huang DD, Yan XL, Fan SD, Chen XY, Yan JY, Dong QT, Chen WZ, Liu NX, Chen XL, Yu Z. Nrf2 deficiency promotes the increasing trend of autophagy during aging in skeletal muscle: a potential mechanism for the development of sarcopenia. Aging (Albany NY) 2020; 12:5977-5991. [PMID: 32244226 PMCID: PMC7185110 DOI: 10.18632/aging.102990] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
This study aims to explore the impact of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on skeletal muscle autophagy and the development of sarcopenia. LC3b, P62, Bnip3, Lamp-1, and AMPK protein levels were measured in muscle from young, middle-aged, old Nrf2-/- (knockout, KO) mice and age-matched wild-type (WT) C57/BL6 mice. Autophagy flux was measured in young WT, young KO, old WT, old KO mice, using colchicine as autophagy inhibitor. There was a trend of higher accumulation of LC3b-II, P62, Bnip3, Lamp-1 induced by colchicine in old WT mice compared with young WT mice. Colchicine induced a significantly higher accumulation of LC3b-II, P62, Bnip3, Lamp-1 in KO mice compared with WT mice, both in the young and old groups. AMPK and reactive oxygen species (ROS) were unregulated following Nrf2 KO and increasing age, which was consistent with the increasing trend of autophagy flux following Nrf2 KO and increasing age. Nrf2 KO and increasing age caused decreased cross-sectional area of extensor digitorum longus and soleus muscles. We concluded that Nrf2 deficiency and increasing age may activate AMPK and ROS signals to cause excessive autophagy activation in skeletal muscle, which can be a potential mechanism for the development of sarcopenia.
Collapse
Affiliation(s)
- Dong-Dong Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xia-Lin Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | | | - Xi-Yi Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing-Yi Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian-Tong Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Zhe Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na-Xin Liu
- Department of Pancreatitis Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Lei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
180
|
Rowan S, Jiang S, Chang ML, Volkin J, Cassalman C, Smith KM, Streeter MD, Spiegel DA, Moreira-Neto C, Rabbani N, Thornalley PJ, Smith DE, Waheed NK, Taylor A. A low glycemic diet protects disease-prone Nrf2-deficient mice against age-related macular degeneration. Free Radic Biol Med 2020; 150:75-86. [PMID: 32068111 PMCID: PMC7747150 DOI: 10.1016/j.freeradbiomed.2020.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a major blinding disease, affecting over 14% of the elderly. Risk for AMD is related to age, diet, environment, and genetics. Dietary modulation of AMD risk is a promising treatment modality, but requires appropriate animal models to demonstrate advantages of diet. Mice lacking the antioxidant transcription factor Nrf2 (Nfe2l2) develop age-related retinopathy relevant to human AMD. Here we evaluated the effect of consuming high glycemic (HG) or low glycemic (LG) diets until 18-months of age on development of features relevant to AMD in Nrf2-null mice. Nrf2-null mice that consumed HG diets developed atrophic AMD, characterized by photoreceptor degeneration, retinal pigment epithelium (RPE) atrophy and pigmentary abnormalities, basal laminar deposits, and loss of the choriocapillaris. In contrast, Nrf2-null-mice that consumed LG diets did not develop retinal disease phenotypes. Consumption of HG diets was associated with accumulation of advanced glycation end-products in the RPE and systemically, whereas consumption of the LG diet was associated with increased levels of anti-glycative and anti-oxidative detoxification machinery. Together our data indicate that the Nrf2-null HG mouse is a good model for atrophic AMD studies and that the LG diet can activate protective pathways to prevent AMD, even in a genetically predisposed animal.
Collapse
Affiliation(s)
- Sheldon Rowan
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Shuhong Jiang
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA; Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, 010017, China
| | - Min-Lee Chang
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Jonathan Volkin
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Christa Cassalman
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Kelsey M Smith
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, 02111, USA
| | | | - David A Spiegel
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Carlos Moreira-Neto
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Naila Rabbani
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Donald E Smith
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Nadia K Waheed
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
181
|
Wei C, Fan J, Sun X, Yao J, Guo Y, Zhou B, Shang Y. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic Biol Med 2020; 150:96-108. [PMID: 32109514 DOI: 10.1016/j.freeradbiomed.2020.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a complex disease involved oxidative stress and inflammation in its pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid compound from extracts of Boswellia serrata, which has been widely used as an antioxidant and anti-inflammatory agent. The present study was to determine whether AKBA, a novel candidate, could protect against cognitive and neuropathological impairments in AD. We found that AKBA treatment resulted in a significant improvement of learning and memory deficits, a dramatic decrease in cerebral amyloid-β (Aβ) levels and plaque burden, a profound alleviation in oxidative stress and inflammation, and a marked reduction in activated glial cells and synaptic defects in the APPswe/PS1dE9 mice. Furthermore, amyloid precursor protein (APP) processing was remarkably suppressed with AKBA treatment by inhibiting beta-site APP cleaving enzyme 1 (BACE1) protein expression to produce Aβ in the APPswe/PS1dE9 mice brains. Mechanistically, AKBA modulated antioxidant and anti-inflammatory pathways via increasing nuclear erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression, and via declining phosphorylation of inhibitor of nuclear factor-kappa B alpha (IκBα) and p65. Collectively, our findings provide evidence that AKBA protects neurons against oxidative stress and inflammation in AD, and this neuroprotective effect involves the Nrf2/HO-1 and nuclear factor-kappa B (NF-κB) signaling pathways.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xuan Sun
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiarui Yao
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yane Guo
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanchang Shang
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
182
|
Ischemic Postconditioning Alleviates Intestinal Ischemia-Reperfusion Injury by Enhancing Autophagy and Suppressing Oxidative Stress through the Akt/GSK-3 β/Nrf2 Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6954764. [PMID: 32256957 PMCID: PMC7102478 DOI: 10.1155/2020/6954764] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Aims Ischemic postconditioning (IPO) has a strong protective effect against intestinal ischemia-reperfusion (IIR) injury that is partly related to autophagy. However, the precise mechanisms involved are unknown. Methods C57BL/6J mice were subjected to unilateral IIR with or without IPO. After 45 min ischemia and 120 min reperfusion, intestinal tissues and blood were collected for examination. HE staining and Chiu's score were used to evaluate pathologic injury. We test markers of intestinal barrier function and oxidative stress. Finally, we used WB to detect the expression of key proteins of autophagy and the Akt/GSK-3β/Nrf2 pathway. Results IPO significantly attenuated IIR injury. Expression levels of LC3 II/I, Beclin-1, and p62 were altered during IIR, indicating that IPO enhanced autophagy. IPO also activated Akt, inhibited GSK-3β/Nrf2 pathway. Conclusion Our study indicates that IPO can ameliorate IIR injury by evoking autophagy, activating Akt, inactivating GSK-3β, and activating Nrf2. These findings may provide novel insights for the alleviation of IIR injury.β/Nrf2 pathway.
Collapse
|
183
|
Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, Mathew B, Abdel-Daim MM, Aleya L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135624. [PMID: 31784171 DOI: 10.1016/j.scitotenv.2019.135624] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Neurological disorders represent a great challenge and are the leading cause of death and disability globally. Although numerous complicated mechanisms are involved in the progressions of chronic and acute neurodegenerative disorders, most of the diseases share mutual pathogenic features such as oxidative stress, mitochondrial dysfunction, neuroinflammation, protein misfolding, excitotoxicity, and neuronal damage, all of these are the common targets of nuclear factor erythroid 2 related factor 2 (Nrf2) signaling cascade. No cure has yet been discovered to tackle these disorders, so, intervention approaches targeting phytochemicals have been recommended as an alternative form of treatment. Sulforaphane is a sulfur-rich dietary phytochemical which has several activities such as antioxidant, anti-inflammatory, and anti-tumor via multiple targets and various mechanisms. Given its numerous actions, sulforaphane has drawn considerable attention for neurological disorders in recent years. Nrf2 is one of the most crucial targets of sulforaphane which has potential in regulating the series of cytoprotective enzyme expressions that have neuroprotective, antioxidative, and detoxification actions. Neurological disorders are auspicious candidates for Nrf2-targeted treatment strategy. Sulforaphane protects various neurological disorders by regulating the Nrf2 pathway. In this article, we recapitulate current studies of sulforaphane-mediated Nrf2 activation in the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
184
|
Wu WL, Papagiannakopoulos T. The Pleiotropic Role of the KEAP1/NRF2 Pathway in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030518-055627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unregulated proliferative capacity of many tumors is dependent on dysfunctional nutrient utilization and ROS (reactive oxygen species) signaling to sustain a deranged metabolic state. Although it is clear that cancers broadly rely on these survival and signaling pathways, how they achieve these aims varies dramatically. Mutations in the KEAP1/NRF2 pathway represent a potent cancer adaptation to exploit native cytoprotective pathways that involve both nutrient metabolism and ROS regulation. Despite activating these advantageous processes, mutations within KEAP1/ NRF2 are not universally selected for across cancers and instead appear to interact with particular tumor driver mutations and tissues of origin. Here, we highlight the relationship between the KEAP1/NRF2 signaling axis and tumor biology with a focus on genetic mutation, metabolism, immune regulation, and treatment implications and opportunities. Understanding the dysregulation of KEAP1 and NRF2 provides not only insight into a commonly mutated tumor suppressor pathway but also a window into the factors dictating the development and evolution of many cancers.
Collapse
Affiliation(s)
- Warren L. Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
185
|
Nrf2 positively regulates autophagy antioxidant response in human bronchial epithelial cells exposed to diesel exhaust particles. Sci Rep 2020; 10:3704. [PMID: 32111854 PMCID: PMC7048799 DOI: 10.1038/s41598-020-59930-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Diesel exhaust particles (DEP) are known to generate reactive oxygen species in the respiratory system, triggering cells to activate antioxidant defence mechanisms, such as Keap1-Nrf2 signalling and autophagy. The aim of this study was to investigate the relationship between the Keap1-Nrf2 signalling and autophagy pathways after DEP exposure. BEAS-2B cells were transfected with silencing RNA (siRNA) specific to Nrf2 and exposed to DEP. The relative levels of mRNA for Nrf2, NQO1, HO-1, LC3B, p62 and Atg5 were determined using RT-PCR, while the levels of LCB3, Nrf2, and p62 protein were determined using Western blotting. The autophagy inhibitor bafilomycin caused a significant decrease in the production of Nrf2, HO-1 and NQO1 compared to DEPs treatment, whereas the Nrf2 activator sulforaphane increased the LC3B (p = 0.020) levels. BEAS-2B cells exposed to DEP at a concentration of 50 μg/mL for 2 h showed a significant increase in the expression of LC3B (p = 0.001), p62 (p = 0.008), Nrf2 (p = 0.003), HO-1 (p = 0.001) and NQO1 (p = 0.015) genes compared to control. In siRNA-transfected cells, the LC3B (p < 0.001), p62 (p = 0.001) and Atg5 (p = 0.024) mRNA levels and the p62 and LC3II protein levels were decreased, indicating that Nrf2 modulated the expression of autophagy markers (R < 1). These results imply that, in bronchial cells exposed to DEP, the Nrf2 system positively regulates autophagy to maintain cellular homeostasis.
Collapse
|
186
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
187
|
An Y, Zhang H, Huang S, Pei G. PL201, a Reported Rhamnoside Against Alzheimer's Disease Pathology, Alleviates Neuroinflammation and Stimulates Nrf2 Signaling. Front Immunol 2020; 11:162. [PMID: 32174909 PMCID: PMC7056876 DOI: 10.3389/fimmu.2020.00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Neuroinflammation induced by overactivated glia cells is believed to be a major hallmark of Alzheimer's disease (AD) and a hopeful target against AD. A rhamnoside PL201 was previously reported to promote neurogenesis and ameliorate AD, and in this study, we revealed that PL201 also significantly reduced accumulation of the activated microglia and proinflammatory cytokines in APP/PS1 mice. In vitro, PL201 consistently suppressed the microglia induction of proinflammatory cytokines after stimulation with lipopolysaccharides and Aβ42. Further mechanistic studies demonstrated that PL201 considerably enhanced the expression level and the nuclear translocation of Nrf2, a key regulator of neuroinflammation. Moreover, PL201 effectively stimulated Nrf2 signaling cascade, including upregulation of HO-1 and downregulation of NF-κB pathway. Thus, our findings indicated the anti-neuroinflammatory effect by PL201 in vivo and suggested that PL201 or the like, with multiple functions such as neurogenesis, mitochondria maintenance, and anti-neuroinflammation, could be a promising candidate in AD treatment.
Collapse
Affiliation(s)
- Yuqian An
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
188
|
Michaličková D, Šíma M, Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol Res 2020; 69:1-19. [PMID: 31852206 DOI: 10.33549/physiolres.934276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination and axonal damage and resulting in a range of physical, mental or even psychiatric symptoms. Key role of oxidative stress (OS) in the pathogenesis of MS has been suggested, as indicated by the biochemical analysis of cerebrospinal fluid and blood samples, tissue homogenates, and animal models of multiple sclerosis. OS causes demyelination and neurodegeneration directly, by oxidation of lipids, proteins and DNA but also indirectly, by inducing a dysregulation of the immunity and favoring the state of pro-inflammatory response. In this review, we discuss the interrelated mechanisms of the impaired redox signaling, of which the most important are inflammation-induced production of free radicals by activated immune cells and growth factors, release of iron from myelin sheath during demyelination and mitochondrial dysfunction and consequent energy failure and impaired oxidative phosphorylation. Review also provides an overview of the interplay between inflammation, immunity and OS in MS. Finally, this review also points out new potential targets in MS regarding attenuation of OS and inflammatory response in MS.
Collapse
Affiliation(s)
- D Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
189
|
Liu P, Dodson M, Fang D, Chapman E, Zhang DD. NRF2 negatively regulates primary ciliogenesis and hedgehog signaling. PLoS Biol 2020; 18:e3000620. [PMID: 32053600 PMCID: PMC7043785 DOI: 10.1371/journal.pbio.3000620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/26/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Primary cilia are lost during cancer development, but the mechanism regulating cilia degeneration is not determined. While transcription factor nuclear factor-erythroid 2-like 2 (NRF2) protects cells from oxidative, proteotoxic, and metabolic stress in normal cells, hyperactivation of NRF2 is oncogenic, although the detailed molecular mechanisms by which uncontrolled NRF2 activation promotes cancer progression remain unclear. Here, we report that NRF2 suppresses hedgehog (Hh) signaling through Patched 1 (PTCH1) and primary ciliogenesis via p62/sequestosome 1 (SQSTM1). PTCH1, a negative regulator of Hh signaling, is an NRF2 target gene, and as such, hyperactivation of NRF2 impairs Hh signaling. NRF2 also suppresses primary cilia formation through p62-dependent inclusion body formation and blockage of Bardet–Biedl syndrome 4 (BBS4) entrance into cilia. Simultaneous ablation of PTCH1 and p62 completely abolishes NRF2-mediated inhibition of both primary ciliogenesis and Hh signaling. Our findings reveal a previously unidentified role of NRF2 in controlling a cellular organelle, the primary cilium, and its associated Hh signaling pathway and also uncover a mechanism by which NRF2 hyperactivation promotes tumor progression via primary cilia degeneration and aberrant Hh signaling. A better understanding of the crosstalk between NRF2 and primary cilia/Hh signaling could not only open new avenues for cancer therapeutic discovery but could also have significant implications regarding pathologies other than cancer, including developmental disorders, in which improper primary ciliogenesis and Hh signaling play a major role. This study reveals a novel role for the transcription factor NRF2 in controlling the primary cilium and its associated Hedgehog signaling pathway and also uncovers a mechanism by which NRF2 hyperactivation promotes tumor progression.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America.,The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
190
|
Kuang H, Tan C, Tian H, Liu L, Yang M, Hong F, Yang S. Exploring the bi-directional relationship between autophagy and Alzheimer's disease. CNS Neurosci Ther 2020; 26:155-166. [PMID: 31503421 PMCID: PMC6978262 DOI: 10.1111/cns.13216] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) deposition and Tau phosphorylation, in which its pathogenesis has not been cleared so far. The metabolism of Aβ and Tau is critically affected by the autophagy. Abnormal autophagy is thought to be involved in the pathogenesis of AD, regulating autophagy may become a new strategy for AD treatment. In the early stage of AD, the presence of Aβ and Tau can induce autophagy to promote their clearance by means of mTOR-dependent and independent manners. As AD progress, the autophagy goes aberrant. As a result, Aβ and Tau generate continually, which aggravates both autophagy dysfunction and AD. Besides, several related genes and proteins of AD can also adapt autophagy to make an effect on the AD development. There seems to be a bi-directional relationship between AD pathology and autophagy. At present, this article reviews this relationship from these aspects: (a) the signaling pathways of regulating autophagy; (b) the relationships between the autophagy and the processing of Aβ; (c) Aβ and Tau cause autophagy dysfunction; (d) normal autophagy promotes the clearance of Aβ and Tau; (e) the relationships between the autophagy and both genes and proteins related to AD: TFEB, miRNAs, Beclin-1, Presenilin, and Nrf2; and (f) the small molecules regulating autophagy on AD therapy. All of the above may help to further elucidate the pathogenesis of AD and provide a theoretical basis for clinical treatment of AD.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Cheng‐Yong Tan
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Hui‐Zhen Tian
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Li‐Hua Liu
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| | - Mei‐Wen Yang
- Department of NurseNanchang University HospitalNanchangChina
| | - Fen‐Fang Hong
- Department of Experimental Teaching CenterNanchang UniversityNanchangChina
| | - Shu‐Long Yang
- Department of Physiology, College of MedicineNanchang UniversityNanchangChina
| |
Collapse
|
191
|
Escoll M, Lastra D, Pajares M, Robledinos-Antón N, Rojo AI, Fernández-Ginés R, Mendiola M, Martínez-Marín V, Esteban I, López-Larrubia P, Gargini R, Cuadrado A. Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol 2020; 30:101425. [PMID: 31918259 PMCID: PMC7016245 DOI: 10.1016/j.redox.2019.101425] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Transcription factor NRF2 orchestrates a cellular defense against oxidative stress and, so far, has been involved in tumor progression by providing a metabolic adaptation to tumorigenic demands and resistance to chemotherapeutics. In this study, we discover that NRF2 also propels tumorigenesis in gliomas and glioblastomas by inducing the expression of the transcriptional co-activator TAZ, a protein of the Hippo signaling pathway that promotes tumor growth. The expression of the genes encoding NRF2 (NFE2L2) and TAZ (WWTR1) showed a positive correlation in 721 gliomas from The Cancer Genome Atlas database. Moreover, NRF2 and TAZ protein levels also correlated in immunohistochemical tissue arrays of glioblastomas. Genetic knock-down of NRF2 decreased, while NRF2 overexpression or chemical activation with sulforaphane, increased TAZ transcript and protein levels. Mechanistically, we identified several NRF2-regulated functional enhancers in the regulatory region of WWTR1. The relevance of the new NRF2/TAZ axis in tumorigenesis was demonstrated in subcutaneous and intracranial grafts. Thus, intracranial inoculation of NRF2-depleted glioma stem cells did not develop tumors as determined by magnetic resonance imaging. Forced TAZ overexpression partly rescued both stem cell growth in neurospheres and tumorigenicity. Hence, NRF2 not only enables tumor cells to be competent to proliferate but it also propels tumorigenesis by activating the TAZ-mediated Hippo transcriptional program. Expression of NRF2 and TAZ positively correlate in gliomas and glioblastomas. NRF2 regulates the expression of WWTR1 encoding the transcription co-activator TAZ in glioma stem cells. TAZ provides a redox-independent mechanism of NRF2 induction of glioblastomas. Downregulation of the new NRF2/TAZ axis may provide a novel therapy for glioblastomas.
Collapse
Affiliation(s)
- Maribel Escoll
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Diego Lastra
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Marta Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ana I Rojo
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Marta Mendiola
- Laboratory of Pathology and Translational Oncology, Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Virginia Martínez-Marín
- Department of Pathology, Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Isabel Esteban
- Department of Pathology, Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain
| | - Ricardo Gargini
- Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Autonomous University of Madrid, Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Spain; Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
192
|
Sánchez-Martín P, Komatsu M. Physiological Stress Response by Selective Autophagy. J Mol Biol 2020; 432:53-62. [DOI: 10.1016/j.jmb.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
193
|
Zhao Y, Zhang Y, Zhang J, Zhang X, Yang G. Molecular Mechanism of Autophagy: Its Role in the Therapy of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:720-739. [PMID: 31934838 PMCID: PMC7536828 DOI: 10.2174/1570159x18666200114163636] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of progressive dementia that is characterized by the accumulation of beta-amyloid (Aβ)-containing neuritic plaques and intracellular Tau protein tangles. This distinctive pathology indicates that the protein quality control is compromised in AD. Autophagy functions as a "neuronal housekeeper" that eliminates aberrant protein aggregates by wrapping then into autophagosomes and delivering them to lysosomes for degradation. Several studies have suggested that autophagy deficits in autophagy participate in the accumulation and propagation of misfolded proteins (including Aβ and Tau). In this review, we summarize current knowledge of autophagy in the pathogenesis of AD, as well as some pathways targeting the restoration of autophagy. Moreover, we discuss how these aspects can contribute to the development of disease-modifying therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | - Guofeng Yang
- Address correspondence to this author at the Department of Geriatrics, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, China; Tel: +86-311-66636243; E-mail:
| |
Collapse
|
194
|
Galán-Ganga M, Del Río R, Jiménez-Moreno N, Díaz-Guerra M, Lastres-Becker I. Cannabinoid CB 2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells. Cell Mol Neurobiol 2020; 40:167-177. [PMID: 31385133 DOI: 10.1007/s10571-019-00719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.
Collapse
Affiliation(s)
- M Galán-Ganga
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC, C/Arturo Duperier, 4, 28029, Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - R Del Río
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - N Jiménez-Moreno
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, UK
| | - M Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - I Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols", UAM-CSIC, C/Arturo Duperier, 4, 28029, Madrid, Spain.
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
195
|
Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8135985. [PMID: 31915514 PMCID: PMC6930764 DOI: 10.1155/2019/8135985] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is an essential cellular process that maintains balanced cell life. Restriction in autophagy may induce degenerative changes in humans. Natural or pathological aging of susceptible tissues has been linked with reduced autophagic activity. Skin photoaging is an example of such pathological condition caused by ambient solar UV radiation exposure. The UV-induced production of reaction oxygen species (ROS) has been linked to the promotion and progression of the photoaging process in exposed tissues. Accordingly, it has been suggested that autophagy is capable of delaying the skin photoaging process caused by solar ultraviolet (UV), although the underlying mechanism is still under debate. This review highlights several plausible mechanisms by which UV-induced ROS activates the cellular signaling pathways and modulates the autophagy. More specifically, the UV-mediated regulation of autophagy and age-related transcription factors is discussed to pinpoint the contribution of autophagy to antiphotoaging effects in the skin. The outcome of this review will provide insights into design intervention strategies for delaying the phenomenon of sunlight-induced photodamage, photoaging, and other aging-related chronic diseases based on factors that activate the autophagy process in the skin.
Collapse
|
196
|
FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Protects against Oxidative Stress-Mediated Neuronal Cell Apoptosis and Scopolamine-Induced Cognitive Impairment by Activating Nrf2/HO-1 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8239642. [PMID: 31885818 PMCID: PMC6914945 DOI: 10.1155/2019/8239642] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder with cognitive deficits, which is becoming markedly more common in the world. Currently, the exact cause of AD is still unclear, and no curative therapy is available for preventing or mitigating the disease progression. Caffeic acid phenethyl ester (CAPE), a natural phenolic compound derived from honeybee hive propolis, has been reported as a potential therapeutic agent against AD, while its application is limited due to the low water solubility and poor bioavailability. Here, caffeic acid phenethyl ester 4-O-glucoside (FA-97) is synthesized. We validate that FA-97 attenuates H2O2-induced apoptosis in SH-SY5Y and PC12 cells and suppresses H2O2-induced oxidative stress by inhibiting the ROS level, malondialdehyde (MDA) level, and protein carbonylation level, as well as induces cellular glutathione (GSH) and superoxide dismutase (SOD). Mechanistically, FA-97 promotes the nuclear translocation and transcriptional activity of Nrf2 associated with the upregulated expression of HO-1 and NQO-1. The prime importance of Nrf2 activation in the neuroprotective and antioxidant effects of FA-97 is verified by Nrf2 siRNA transfection. In addition, FA-97 prevents scopolamine- (SCOP-) induced learning and memory impairments in vivo via reducing neuronal apoptosis and protecting against cholinergic system dysfunction in the hippocampus and cortex. Moreover, the increased MDA level and low total antioxidant capacity in SCOP-treated mouse brains are reversed by FA-97, with the increased expression of HO-1, NQO-1, and nuclear Nrf2. In conclusion, FA-97 protects against oxidative stress-mediated neuronal cell apoptosis and SCOP-induced cognitive impairment by activating Nrf2/HO-1 signaling, which might be developed as a therapeutic drug for AD.
Collapse
|
197
|
Xu D, Liu J, Ma H, Guo W, Wang J, Kan X, Li Y, Gong Q, Cao Y, Cheng J, Fu S. Schisandrin A protects against lipopolysaccharide-induced mastitis through activating Nrf2 signaling pathway and inducing autophagy. Int Immunopharmacol 2019; 78:105983. [PMID: 31767544 DOI: 10.1016/j.intimp.2019.105983] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Schisandrin A (Sch A), a dibenzocyclooctadiene lignan extracted from Schisandra chinensis (Turcz.) Baill., has anti-oxidant and anti-inflammatory effects, but the effect on masitits has not been studied. Therefore, we investigated the effect of Sch A in cell and mouse models of lipopolysaccharide (LPS)-induced mastitis. Studies in vivo showed that Sch A reduced LPS-induced mammary injury and the production of pro-inflammatory mediators. Sch A also decreased the levels of pro-inflammatory mediators and activated nuclear factor-E2 associated factor 2 (Nrf2) signaling pathway in mouse mammary epithelial cells (mMECs). The Nrf2 inhibitor partially abrogated the downregulation of Sch A on LPS-induced inflammatory response. In addition, LPS stimulation suppressed autophagy, while both Sch A and the autophagy inducer rapamycin activated autophagy in mMECs, which down-regulated inflammatory response. Sch A also restrained LPS-induced phosphorylation of mammalian target of rapamycin (mTOR) and activated AMP-activated protein kinase (AMPK) and unc-51 like kinase 1 (ULK1). In summary, these results suggest that Sch A exerts protective effects in LPS-induced mastitis models by activating Nrf2 signaling pathway and inducing autophagy and the autophagy is initiated by suppressing mTOR signaling pathway and activating AMPK-ULK1 signaling pathway.
Collapse
Affiliation(s)
- Dianwen Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - He Ma
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Jiaxin Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Xingchi Kan
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Yanwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Qian Gong
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Yu Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Ji Cheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
198
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
199
|
Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res 2019; 43:286-296. [DOI: 10.1007/s12272-019-01188-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
|
200
|
TFEB activates Nrf2 by repressing its E3 ubiquitin ligase DCAF11 and promoting phosphorylation of p62. Sci Rep 2019; 9:14354. [PMID: 31586112 PMCID: PMC6778067 DOI: 10.1038/s41598-019-50877-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
Transcriptional factor EB (TFEB) and nuclear factor E2-related factor 2 (Nrf2) play crucial roles in the biological response against cellular stressors; however, their relationship has not yet been investigated. Here, we constructed human neuroglioma cell lines stably expressing TFEB. The expression of Nrf2-response genes, including heme oxygenase (HO)-1, glutathione-s-transferase-mu1 (GSTM1), and p62, was induced in the cell line, independent of oxidative stress. Of note, the protein level of Nrf2 was significantly increased, and its ubiquitinated fraction was reduced in stable cells compared to that in the control cells. Among E3 ubiquitin ligases known to be involved in the ubiquitination of Nrf2, DDB1 and Cullin4 associated factor 11 (DCAF11) was down-regulated at both protein and mRNA levels in stable cells, indicating that the repression of DCAF11 by TFEB may be mainly involved in the stabilization of Nrf2. In addition, the level of phosphorylated p62 at S349 was highly increased in stable cells compared to that in control cells, which could allow it to interfere with the association of Keap1 and Nrf2, thus stabilizing Nrf2. We suggest for the first time that TFEB could activate Nrf2 by increasing its stability under conditions devoid of oxidative stress.
Collapse
|