151
|
Saeed M, Shoaib A, Kandimalla R, Javed S, Almatroudi A, Gupta R, Aqil F. Microbe-based therapies for colorectal cancer: Advantages and limitations. Semin Cancer Biol 2022; 86:652-665. [PMID: 34020027 DOI: 10.1016/j.semcancer.2021.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is one of the leading global causes of death in both men and women. Colorectal cancer (CRC) alone accounts for ∼10 % of total new global cases and poses an over 4% lifetime risk of developing cancer. Recent advancements in the field of biotechnology and microbiology concocted novel microbe-based therapies to treat various cancers, including CRC. Microbes have been explored for human use since centuries, especially for the treatment of various ailments. The utility of microbes in cancer therapeutics is widely explored, and various bacteria, fungi, and viruses are currently in use for the development of cancer therapeutics. The human gut hosts about 100 trillion microbes that release their metabolites in active, inactive, or dead conditions. Microbial secondary metabolites, proteins, immunotoxins, and enzymes are used to target cancer cells to induce cell cycle arrest, apoptosis, and death. Various approaches, such as dietary interventions, the use of prebiotics and probiotics, and fecal microbiota transplantation have been used to modulate the gut microbiota in order to prevent or treat CRC pathogenesis. The present review highlights the role of the gut microbiota in CRC precipitation, the potential mechanisms and use of microorganisms as CRC biomarkers, and strategies to modulate microbiota for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raghuram Kandimalla
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ramesh Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
152
|
Yu W, Sun S, Zhang K, Li H, Xin M, Liu Y, Yan J. Fructus ligustri lucidi suppresses inflammation and restores the microbiome profile in murine colitis models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154438. [PMID: 36108373 DOI: 10.1016/j.phymed.2022.154438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is pathologically characterized by an inappropriate immune response to the gut commensal microbes accompanied by persistent epithelial barrier dysfunction, and its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. Fructus ligustri lucidi (FLL) has a long historical application in traditional Chinese medicine due to its various pharmacological effects, including antioxidation and anti-inflammation. The present study aimed to explore the molecular and cellular mechanisms of FLL in treating colitis. METHODS A high-performance liquid chromatography (HPLC) combined with ultraviolet (UV) was performed to validate the quality of FLL; Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) based on The Cancer Genome Atlas (TCGA) database predicted the therapeutic value of FLL against UC and CAC; 2% dextran sodium sulfate (DSS) was administered to mice to establish murine models of experimental colitis, and FLL was given for the next 14 days at different concentrations; 16S rRNA sequencing and untargeted metabolomics were performed on fecal samples to delineate the alteration in microbiome profile; Western blotting, flow cytometry, and immunocytochemistry experiments were conducted to confirm the predicted cellular mechanisms. RESULTS Network pharmacology analysis and WGCNA predicted that the targets of the FLL were associated with the progression of UC and the survival of patients with colorectal cancer by regulating tumor necrosis factor (TNF) and IL-17 signaling pathways, immune cell functions, responses to bacterial and reactive oxygen species (ROS), and cell proliferation. In vivo experiments corroborated that the high dose of FLL significantly attenuated the progression of experimental colitis by reversing the weight loss and bloody stool, reconstructing the integrity of colorectal epithelium, and suppressing the concentration of pro-inflammatory cytokines. Moreover, FLL treatment reduced the transition of macrophages (Mφs) to the proinflammatory phenotype and promoted Mφs-regulated wound healing, and suppressed the production of ROS in intestinal organoids (IOs) and crypts. 16S rRNA and untargeted metabolomics showed that the administration of FLL inhibited DSS-caused colonization of the potentially pathogenic gut microorganisms and reversed DSS-influenced metabolic profile. CONCLUSION FLL is a potent anti-colitis drug by suppressing inflammation and rescuing dysbiosis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Shihong Sun
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Keer Zhang
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Huiying Li
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Mengjiao Xin
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
153
|
Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q, Rui YF. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab 2022; 40:874-889. [PMID: 36357745 PMCID: PMC9649400 DOI: 10.1007/s00774-022-01375-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Osteoporosis is a systemic metabolic bone disease characterized by the descending bone mass and destruction of bone microstructure, which tends to result in the increased bone fragility and associated fractures, as well as high disability rate and mortality. The relation between gut microbiota and bone metabolism has gradually become a research hotspot, and it has been verified that gut microbiota is closely associated with reduction of bone mass and incidence of osteoporosis recently. As a novel "organ transplantation" technique, fecal microbiota transplantation (FMT) mainly refers to the transplantation of gut microbiota from healthy donors to recipients with gut microbiota imbalance, so that the gut microbiota in recipients can be reshaped and play a normal function, and further prevent or treat the diseases related to gut microbiota disorder. Herein, based on the gut-bone axis and proven regulatory effects of gut microbiota on osteoporosis, this review expounds relevant basic researches and clinical practice of FMT on osteoporosis, thus demonstrating the potentials of FMT as a therapeutic option for osteoporosis and further providing certain reference for the future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
154
|
Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat 2022; 37:46-60. [PMID: 36196151 PMCID: PMC9520092 DOI: 10.1016/j.jot.2022.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce. Methods In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics. Results Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid). Conclusions Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future. The translational potential of this article This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.
Collapse
|
155
|
Akimbekov NS, Digel I, Yerezhepov AY, Shardarbek RS, Wu X, Zha J. Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity: A literature review. Front Nutr 2022; 9:1029324. [PMID: 36337619 PMCID: PMC9630914 DOI: 10.3389/fnut.2022.1029324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The oral cavity is a key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems. The oral microbiota is a vital part of the human microbiome. It has been developed through mutual interactions among the environment, host physiological state, and microbial community composition. Indigenious microbiota of the oral cavity is one of the factors that prevent adhesion and invasion of pathogens on the mucous membrane, i.e., the development of the infectious process and thereby participating in the implementation of one of the mechanisms of local immunity-colonization resistance. The balance between bacterial symbiosis, microbial virulence, and host resistance ensures the integrity of the oral cavity. In this review we have tried to address how nutritional factors influence integrity of the oral indigenous microbiota and its involvement in colonization resistance.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Adil Y. Yerezhepov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raiymbek S. Shardarbek
- Department of Internal Diseases, Kazakh National Medical University Named After S.D. Asfendiyarov, Almaty, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
156
|
Yu W, Zhang Y, Kang C, Zheng Y, Liu X, Liang Z, Yan J. The pharmacological evidence of the chang-yan-ning formula in the treatment of colitis. Front Pharmacol 2022; 13:1029088. [PMID: 36278202 PMCID: PMC9579319 DOI: 10.3389/fphar.2022.1029088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 12/08/2022] Open
Abstract
Ulcerative colitis (UC) is a subtype of inflammatory bowel disease (IBD) and occurs mainly in the colon. The etiology of UC is rather complex and involves various pathological factors, including genetic susceptibility, dietary intakes, environment, and microbiota. In China, the Chang-Yan-Ning (CYN) formula has been utilized in the clinic to treat gastrointestinal disorders, but its pharmacological evidence remains elusive. The investigation was designed to explore the molecular and cellular mechanisms of CYN. Liquid Chromatography with tandem mass spectrometry (LC/MS) was performed to identify the key components in the formula; Network pharmacology analysis was executed to predict the potential targets of CYN; An experimental murine colitis model was established by utilizing 2% dextran sodium sulfate (DSS), and CYN was administered for 14 days. The pharmacological mechanism of the CYN formula was corroborated by in-vivo and in-vitro experiments, and high throughput techniques including metabolomics and 16S rRNA sequencing. Results: LC/MS identified the active components in the formula, and network pharmacology analysis predicted 37 hub genes that were involved in tumor necrosis factor (TNF), interleukin (IL)-17, hypoxia-inducible factor (HIF) signaling pathways. As evidenced by in-vivo experiments, DSS administration shortened the length of the colon and led to weight loss, with a compromised structure of epithelium, and the CYN formula reversed these pathological symptoms. Moreover, CYN suppressed the levels of pro-inflammatory cytokines, including IL-4, IL-1b, and TNFαin the serum, inhibited the protein abundance of IL17 and HIF-1αand increased PPARγ and CCL2 in the colon, and facilitated the alternative activation of peritoneal macrophages. While peritoneal macrophages of colitis mice enhanced reactive oxygen species (ROS) production in murine intestinal organoids, the ROS level remained stable co-cultured with the macrophages of CYN-treated mice. Furthermore, the decreased microbiota richness and diversity and the prevalence of pathogenic taxa in colitis mice were rescued after the CYN treatment. The altered metabolic profile during colitis was also restored after the therapy. We posit that the CYN therapy attenuates the development and progression of colitis by maintaining the homeostasis of immune responses and microbiota.
Collapse
|
157
|
Zeng L, Deng Y, Yang K, Chen J, He Q, Chen H. Safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases: A systematic review and meta-analysis. Front Immunol 2022; 13:944387. [PMID: 36248877 PMCID: PMC9562921 DOI: 10.3389/fimmu.2022.944387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate the safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases. Methods Relevant literature was retrieved from the PubMed database, Embase database, Cochrane Library database, etc. The search period is from the establishment of the database to January 2022. The outcomes include clinical symptoms, improvement in biochemistry, improvement in intestinal microbiota, improvement in the immune system, and adverse events. Literature screening and data extraction were independently carried out by two researchers according to the inclusion and exclusion criteria, and RevMan 5.3 software was used for statistics and analysis. Results Overall, a total of 14 randomized controlled trials (RCTs) involving six types of autoimmune diseases were included. The results showed the following. 1) Type 1 diabetes mellitus (T1DM): compared with the autologous fecal microbiota transplantation (FMT) group (control group), the fasting plasma C peptide in the allogenic FMT group at 12 months was lower. 2) Systemic sclerosis: at week 4, compared with one of two placebo controls, three patients in the experimental group reported a major improvement in fecal incontinence. 3) Ulcerative colitis, pediatric ulcerative colitis, and Crohn's disease: FMT may increase clinical remission, clinical response, and endoscopic remission for patients with ulcerative colitis and increase clinical remission for patients with Crohn's disease. 4) Psoriatic arthritis: there was no difference in the ratio of ACR20 between the two groups. Conclusion Based on current evidence, the application of FMT in the treatment of autoimmune diseases is effective and relatively safe, and it is expected to be used as a method to induce remission of active autoimmune diseases. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235055, identifier CRD42021235055.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Junpeng Chen
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
158
|
Zhang J, Liang F, Chen Z, Chen Y, Yuan J, Xiong Q, Hou S, Huang S, Liu C, Liang J. Vitexin Protects against Dextran Sodium Sulfate-Induced Colitis in Mice and Its Potential Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12041-12054. [PMID: 36124900 DOI: 10.1021/acs.jafc.2c05177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vitexin, one of the major active components in hawthorn, has been shown to possess multiple pharmacological activities. Here, we sought to investigate the effect of vitexin on an ameliorating dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mouse model and further explored its potential mechanism. The results indicated that vitexin administration could significantly alleviate the signs of colitis via suppressing body weight loss, reducing disease activity index (DAI) score, and mitigating colonic damage. Also, vitexin treatment in colitis mice markedly inhibited the production of pro-inflammation cytokines (such as IL-1β, IL-6, and TNF-α). Meanwhile, vitexin also could markedly down-regulate the phosphorylation levels of p65, IκB, and STAT1. Moreover, vitexin also dose-dependently increased the expressions of muc-2, ZO-1, and occludin proteins in colonic tissues of colitis mice. Further studies revealed that vitexin dramatically modulated the disturbed intestinal flora in colitis mice. Vitexin is beneficial for regulating abundances of some certain bacteria, such as Bacteroides, Helicobacter, Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. Interestingly, the correlation analysis indicated that key microbes were strongly correlated with colitis features, such as pro-inflammatory cytokines and gut barrier. Collectively, these results demonstrated that vitexin treatment alleviated inflammation, intestinal barrier dysfunction, and intestinal flora dysbiosis in colitis mice. Vitexin is expected to be a promising compound for UC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feilin Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zongwen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, Guangdong 510006, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| |
Collapse
|
159
|
Functional Plasmon-Activated Water Increases Akkermansia muciniphila Abundance in Gut Microbiota to Ameliorate Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms231911422. [PMID: 36232724 PMCID: PMC9570201 DOI: 10.3390/ijms231911422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is associated with dysbiosis and intestinal barrier dysfunction, as indicated by epithelial hyperpermeability and high levels of mucosal-associated bacteria. Changes in gut microbiota may be correlated with IBD pathogenesis. Additionally, microbe-based treatments could mitigate clinical IBD symptoms. Plasmon-activated water (PAW) is known to have an anti-inflammatory potential. In this work, we studied the association between the anti-inflammatory ability of PAW and intestinal microbes, thereby improving IBD treatment. We examined the PAW-induced changes in the colonic immune activity and microbiota of mice by immunohistochemistry and next generation sequencing, determined whether drinking PAW can mitigate IBD induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) and dysbiosis through mice animal models. The effects of specific probiotic species on mice with TNBS-induced IBD were also investigated. Experimental results indicated that PAW could change the local inflammation in the intestinal microenvironment. Moreover, the abundance of Akkermansia spp. was degraded in the TNBS-treated mice but elevated in the PAW-drinking mice. Daily rectal injection of Akkermansia muciniphila, a potential probiotic species in Akkermansia spp., also improved the health of the mice. Correspondingly, both PAW consumption and increasing the intestinal abundance of Akkermansia muciniphila can mitigate IBD in mice. These findings indicate that increasing the abundance of Akkermansia muciniphila in the gut through PAW consumption or other methods may mitigate IBD in mice with clinically significant IBD.
Collapse
|
160
|
Shi MY, Liu L, Yang FY. Strategies to improve the effect of mesenchymal stem cell therapy on inflammatory bowel disease. World J Stem Cells 2022; 14:684-699. [PMID: 36188115 PMCID: PMC9516464 DOI: 10.4252/wjsc.v14.i9.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.
Collapse
Affiliation(s)
- Meng-Yue Shi
- School of Medicine, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Fu-Yuan Yang
- Health Science Center, Yangtze University, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
161
|
Encapsulation of Functional Plant Oil by Spray Drying: Physicochemical Characterization and Enhanced Anti-Colitis Activity. Foods 2022; 11:foods11192993. [PMID: 36230069 PMCID: PMC9562653 DOI: 10.3390/foods11192993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, an encapsulation system was developed for functional plant oil delivery. Through a series of orthogonal experiments and single factor experiments, the raw material compositions, emulsification conditions, and spray drying conditions for the preparation of flaxseed oil and safflower seed oil powders were optimized, and the final encapsulation efficiency was as high as 99% with approximately 50% oil loading. The storage stability experiments showed that oil powder’s stability could maintain its physicochemical properties over six months. Oral supplementation of the spray-dried flaxseed oil powder exhibited a significant and better effect than flaxseed oil on alleviating colitis in C57BL/6J mice. It suppressed the pro-inflammatory cell factors, including IL-6 and TNF-α, and repaired gut microbial dysbiosis by increasing the microbial diversity and promoting the proliferation of probiotic taxa such as Allobaculum. This work suggests that spray-dried flaxseed oil powder has great potential as a nutraceutical food, with spray drying being a good alternative technique to improve its bioactivity.
Collapse
|
162
|
Chen Y, Li D, Sun L, Qi K, Shi L. Pharmacological inhibition of toll-like receptor 4 with TLR4-IN-C34 modulates the intestinal flora homeostasis and the MyD88/NF-κB axis in ulcerative colitis. Eur J Pharmacol 2022; 934:175294. [PMID: 36152840 DOI: 10.1016/j.ejphar.2022.175294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
Toll-like receptor 4, a highly conserved protein of innate immunity, is responsible for the regulation and maintenance of homeostasis. It has been implicated in the progression of ulcerative colitis (UC) by interacting with its downstream pathway myeloid differentiation factor 88 (MyD88) and nuclear factor kappa B (NF-κB). This study aimed to evaluate the effect of a specific inhibitor of toll-like receptor 4, TLR4-IN-C34 on gut microbiota to elucidate its mechanism in UC mice. Dextran sulfate sodium significantly induced weight loss, diarrhea and rectal bleeding, and colonic damage in mice, which occurred concomitant with dysbiosis of intestinal flora. Intestinal dysbiosis were partially ameliorated by TLR4-IN-C34. Meanwhile, a reduction in inflammatory cell infiltration, enhanced antioxidant activity in colon tissues, and reconstruction of intestinal barrier were observed in mice administrated with TLR4-IN-C34. MyD88 and NF-κB were significantly reduced after TLR4-IN-C34 treatment. MyD88-/- mice were found with improved dysbiosis of intestinal flora, which was mitigated by overexpression of NF-κB. Collectively, our results suggest that TLR4-IN-C34 alleviates UC in mice by blocking the MyD88/NF-κB pathway to improve intestinal flora dysbiosis, inflammatory infiltration, oxidative stress and intestinal barrier function.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Dongyue Li
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Liying Sun
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China
| | - Kai Qi
- Department of Emergency, Ye County Hospital of Traditional Chinese Medicine, Pingdingshan, 467200, Henan, PR China
| | - Lijun Shi
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, PR China.
| |
Collapse
|
163
|
Yu W, Li Q, Shao C, Zhang Y, Kang C, Zheng Y, Liu X, Liu X, Yan J. The Cao-Xiang-Wei-Kang formula attenuates the progression of experimental colitis by restoring the homeostasis of the microbiome and suppressing inflammation. Front Pharmacol 2022; 13:946065. [PMID: 36204231 PMCID: PMC9530714 DOI: 10.3389/fphar.2022.946065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction. The Cao-Xiang-Wei-Kang (CW) formula has been utilized to treat gastrointestinal disorders in the clinic. The present study was designed to delineate the pharmacological mechanisms of this formula from different aspects of the etiology of ulcerative colitis (UC), a major subtype of IBD. Dextran sodium sulfate (DSS) was given to mice for a week at a concentration of 2%, and the CW solution was administered for 3 weeks. 16S rRNA gene sequencing and untargeted metabolomics were conducted to examine the changes in the microbiome profile, and biochemical experiments were performed to confirm the therapeutic functions predicted by system pharmacology analysis. The CW treatment hampered DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, which was corroborated by suppressed caspase 3 (Casp3) and interleukin-1b (IL-1b) and increased cleaved caspase 3 expression and casp-3 activity in the colon samples from colitis mice subjected to the CW therapy. Moreover, the CW therapy rescued the decreased richness and diversity, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the altered linoleic acid metabolism and cytochrome P450 activity in murine colitis models. In our in vitro experiments, the CW administration increased the alternative activation of macrophages (Mφs) and inhibited the tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level and subsequent death in intestinal organoids (IOs). We propose that the CW formula alleviates the progression of murine colitis by suppressing inflammation, promoting mucosal healing, and re-establishing a microbiome profile that favors re-epithelization.
Collapse
|
164
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
165
|
Marzorati M, Bubeck S, Bayne T, Krishnan K, Giusto M. Effects of combined prebiotic, probiotic, IgG and amino acid supplementation on the gut microbiome of patients with inflammatory bowel disease. Future Microbiol 2022; 17:1307-1324. [DOI: 10.2217/fmb-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The effects of the Total Gut Restoration (TGR) system supplementation on the gut microbiome were evaluated. Materials & methods: A mucosal in vitro simulation of the human gastrointestinal tract (M-SHIME®) system was inoculated with fecal samples from patients with inflammatory bowel disease. Chambers were supplemented for 5 days with the TGR system (five probiotic Bacillus strains, prebiotic mixture, immunoglobulin concentrate, amino acids and prebiotic flavonoids). Results: Compared with unsupplemented controls, supplementation was associated with a significant increase in short-chain fatty acid production, and changes to the microbiome were observed. Supernatants from supplemented chambers improved intestinal barrier function, increased IL-6 and IL-10 production and decreased MCP1 production versus control in Caco-2/THP1 coculture. Conclusion: Daily TGR supplementation facilitated changes to the gut microbiome of patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Massimo Marzorati
- Center for Microbial Ecology & Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
- ProDigest, Technologiepark 82, Zwijnaarde, 9052, Belgium
| | - Sarah Bubeck
- Bubeck Scientific Communications, 194 Rainbow Drive #9418, Livingston, TX 77399, USA
| | - Thomas Bayne
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Kiran Krishnan
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| | - Morgan Giusto
- Microbiome Labs, 101 E Town Pl, Saint Augustine, FL 92092, USA
| |
Collapse
|
166
|
Kang Y, Cai Y, Zhao Y, Yang Y. The gut microbiome and Alopecia areata: Implications for early diagnostic biomarkers and novel therapies. Front Nutr 2022; 9:979876. [PMID: 36185693 PMCID: PMC9520310 DOI: 10.3389/fnut.2022.979876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Alopecia areata (AA) accounts for the autoimmune disorder mediated by T cells, whose prognostic outcome cannot be predicted and curative treatment is unavailable at present. The AA pathogenic mechanism remains largely unclear, even though follicular attack has been suggested to result from that attack of immune privilege-losing hair follicles driven by immunity. Recently, gut microbiota is suggested to have an important effect on immunoregulation under autoimmune situations like AA. Fecal microbial transplantation (FMT) may be used to treat AA. Nonetheless, related research remains at the initial stage. To promote the rapid progress of relevant research, the present work aimed to shed more lights on gut microbiota's effect on AA, early diagnostic biomarker and FMT therapeutics.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Yongbo Kang
| | - Yue Cai
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
- *Correspondence: Ying Yang
| |
Collapse
|
167
|
Ma J, Chen S, Li Y, Wu X, Song Z. Arbutin improves gut development and serum lipids via Lactobacillus intestinalis. Front Nutr 2022; 9:948573. [PMID: 36159503 PMCID: PMC9502005 DOI: 10.3389/fnut.2022.948573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Arbutin has been widely studied in whitening, anti-inflammatory, and antioxidant. However, the interaction between arbutin and intestinal microbes has been rarely studied. Thus, mice were treated with arbutin concentrations of 0, 0.1, 0.2, 0.4, and 1 mg/ml. We found that arbutin promoted gut development such as villus length, villus areas, and villus length/crypt depth (L/D). Total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were significantly reduced by low concentrations of arbutin. Importantly, we analyzed the microbial composition in the control and 0.4 mg/ml arbutin group and found that the abundance of Lactobacillus intestinalis (L. intestinalis) was highest and enhanced in arbutin. Further, mice were fed with oral antibiotics and antibiotics + 0.4 mg/ml arbutin and then we transplanted fecal microbes from oral 0.4 mg/ml arbutin mice to mice pretreated with antibiotics. Our results showed that arbutin improves gut development, such as villus width, villus length, L/D, and villus areas. In addition, L. intestinalis monocolonization was carried out after a week of oral antibiotics and increased villus length, crypt depth, and villus areas. Finally, in vitro arbutin and L. intestinalis co-culture showed that arbutin promoted the growth and proliferation of L. intestinalis. Taken together, our results suggest that arbutin improves gut development and health of L. intestinalis. Future studies are needed to explore the function and mechanism of L. intestinalis affecting gut development.
Collapse
Affiliation(s)
- Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuai Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zehe Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Zehe Song,
| |
Collapse
|
168
|
Liu A, Wang X, Liang X, Wang W, Li C, Qian J, Zhang X. Human umbilical cord mesenchymal stem cells regulate immunoglobulin a secretion and remodel the diversification of intestinal microbiota to improve colitis. Front Cell Infect Microbiol 2022; 12:960208. [PMID: 36118029 PMCID: PMC9478446 DOI: 10.3389/fcimb.2022.960208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) therapy has emerged as a promising novel therapeutic strategy for managing inflammatory bowel disease (IBD) mainly via dampening inflammation, regulating immune disorders, and promoting mucosal tissue repair. However, in the process, the associated changes in the gut microbiota and the underlying mechanism are not yet clear. Methods In the present study, dextran sulfate sodium (DSS) was used to induce colitis in mice. Mice with colitis were treated with intraperitoneal infusions of MSCs from human umbilical cord mesenchymal stem cells (HUMSCs) and evaluated for severity of inflammation including weight reduction, diarrhea, bloody stools, histopathology, and mortality. The proportion of regulatory T cells (Tregs) and immunoglobulin A-positive (IgA+) plasmacytes in gut-associated lymphoid tissue were determined. The intestinal and fecal levels of IgA were tested, and the proportion of IgA-coated bacteria was also determined. Fecal microbiome was analyzed using 16S rRNA gene sequencing analyses. Results Treatment with HUMSCs ameliorated the clinical abnormalities and histopathologic severity of acute colitis in mice. Furthermore, the proportion of Tregs in both Peyer’s patches and lamina propria of the small intestine was significantly increased. Meanwhile, the proportion of IgA+ plasmacytes was also substantially higher in the MSCs group than that of the DSS group, resulting in elevated intestinal and fecal levels of IgA. The proportion of IgA-coated bacteria was also upregulated in the MSCs group. In addition, the microbiome alterations in mice with colitis were partially restored to resemble those of healthy mice following treatment with HUMSCs. Conclusions Therapeutically administered HUMSCs ameliorate DSS-induced colitis partially via regulating the Tregs–IgA response, promoting the secretion of IgA, and facilitating further the restoration of intestinal microbiota, which provides a potential therapeutic mechanism for HUMSCs in the treatment of IBD.
Collapse
Affiliation(s)
- Airu Liu
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xing Wang
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaonan Liang
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenxin Wang
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaming Qian
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiaolan Zhang, ; Jiaming Qian,
| | - Xiaolan Zhang
- Hebei Key Laboratory of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaolan Zhang, ; Jiaming Qian,
| |
Collapse
|
169
|
Xiong Q, Tang F, Li Y, Xie F, Yuan L, Yao C, Wu R, Wang J, Wang Q, Feng P. Association of inflammatory bowel disease with suicidal ideation, suicide attempts, and suicide: A systematic review and meta-analysis. J Psychosom Res 2022; 160:110983. [PMID: 35872532 DOI: 10.1016/j.jpsychores.2022.110983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Inflammatory bowel disease (IBD) is associated with psychiatric comorbidities. However, the association between IBD and suicidal ideation or suicide attempts has not been well established. This study aimed to perform a systematic review and meta-analysis to elucidate the relationship between IBD and suicidal ideation, suicide attempts, and suicide. METHODS We systematically searched five electronic databases - PubMed, Embase, CENTRAL, Web of Science, and PsycINFO - from their inception to January 28, 2022. Quality assessment, data synthesis, subgroup analyses, sensitivity analyses, and publication bias assessment were performed on the included studies. RESULTS We identified 28 studies with 1,047,755 patients with IBD. The pooled prevalence of suicidal ideation in patients with IBD was 17.3% (95% CI, 9.5%-25.2%). Patients with IBD were associated with an increased risk of suicide attempts (relative risk [RR], 1.39; 95% CI, 1.08-1.79) and suicide deaths (RR, 1.25; 95% CI, 1.09-1.43) than the controls without IBD. Patients with Crohn's disease subtypes, female IBD, pediatric-onset IBD, young adult IBD, and short-duration IBD had a particularly high risk for suicide. CONCLUSION Patients with IBD had a high prevalence of suicidal ideation and a significantly higher likelihood of suicide attempts and suicide. Caring for patients with IBD, including their mental health needs, may require concerted efforts among gastroenterologists and other healthcare providers.
Collapse
Affiliation(s)
- Qin Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fuyou Tang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fengjiao Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lei Yuan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chengjiao Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; Department of Geriatrics of the Affiliated Hospital, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ruike Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Juan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiuxiang Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peimin Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
170
|
Wang T, Yu R, Zhu L, Wang X, Yang B. Differences in the Intestinal Flora of Patients with Inflammatory Bowel Disease in Southwest China. Indian J Microbiol 2022; 62:384-392. [PMID: 35974916 PMCID: PMC9375786 DOI: 10.1007/s12088-022-01014-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
To study changes in the intestinal flora associated with inflammatory bowel disease (IBD) in the Han population of southwest China, 48 participants were enrolled, 18 of whom had been diagnosed with IBD. Stool samples were collected from the participants. Sequencing of 16S rRNA gene was used to measure and identify the components of the intestinal flora. Diversity analysis and multivariate statistical analysis were conducted to study differences in intestinal flora between patients with IBD and healthy controls. The goods coverage, observed species, Shannon, and Simpson indices of alpha diversity were different (p < 0.05). Beta diversity analysis yielded significant differences between groups (R = 0.5668, p = 0.001 < 0.05). Compared with the composition of the intestinal flora in healthy controls, the relative abundances of Proteobacteria (18.56% vs. 3.56%, p = 0.001) and Fusobacterium (2.08% vs. 0.35%, p = 0.005) were higher in patients with IBD. Therefore, this study provides insight into the role of the microbiome in IBD. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01014-z.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Renlin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Zhu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuean Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
171
|
Validation of the Anticolitis Efficacy of the Jian-Wei-Yu-Yang Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110704. [PMID: 36091591 PMCID: PMC9451982 DOI: 10.1155/2022/9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The investigation aimed to explore the molecular and cellular mechanisms of JW. Methods 2% dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for 5 days to establish murine models of experimental colitis, and different doses of JW solution were administered for 14 days. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of JW against experimental colitis and colitis-associated colorectal cancer (CAC). 16S rRNA sequencing and untargeted metabolomics were conducted using murine feces. Western blotting, immunocytochemistry, and wound healing experiments were performed to confirm the molecular mechanisms. Results (1) Liquid chromatography with mass spectrometry was utilized to confirm the validity of the JW formula. The high dose of JW treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis. (2) The JW targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in CRC intervention. (3) Moreover, the JW therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and increased cytochrome P450 activity in murine colitis models. (4) Our in vitro experiments confirmed that the JW treatment suppressed caspase3-dependent pyroptosis, hypoxia-inducible factor 1α (HIF1α), and interleukin-1b (IL-1b) in the colon; facilitated the alternative activation of macrophages (Mφs); and inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs). Conclusion The JW capsule attenuated the progression of murine colitis by a prompt resolution of inflammation and bloody stool and by re-establishing a microbiome profile that favors re-epithelization and prevents carcinogenesis.
Collapse
|
172
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
173
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
174
|
Qiu J, Wu C, Gao Q, Li S, Li Y. Effect of fecal microbiota transplantation on the TGF-β1/Smad signaling pathway in rats with TNBS-induced colitis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:825. [PMID: 36034975 PMCID: PMC9403912 DOI: 10.21037/atm-22-3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022]
Abstract
Background Traditional treatments for inflammatory bowel disease (IBD) have adverse side effects, and patients who receive such treatments have high recurrence rates. Fecal microbiota transplantation (FMT) has become an increasingly popular therapeutic option for patients with IBD. However, the mechanism by which FMT alleviates this disease remains unclear. Methods In this study, a rat model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis was established and used to explore whether the transforming growth factor-beta 1 (TGF-β1)/small mothers against decapentaplegic (Smad) signaling pathway plays a critical role in the FMT alleviation of IBD. Results After the FMT intervention, the disease activity index and histologic scores were significantly decreased. In addition, the TGF-β1 expression level in the FMT group was significantly decreased by approximately 0.72-fold relative to the level in the TNBS colitis group, whereas the Smad3, Smad4, and Smad7 expression levels had increased by approximately 1.21, 1.40, and 1.18 folds, respectively. Similarly, SB431542 inhibited the expression of TGF-β1 and promoted the expression of Smad3, Smad4, and Smad7. Further, the serum levels of the inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly decreased, whereas that of the interferon-gamma (IFN-γ) was not significantly changed after the FMT intervention. Conclusions These results suggest that FMT inhibits the TGF-β1/Smad signaling pathway to attenuate inflammation.
Collapse
Affiliation(s)
- Jinlang Qiu
- Department of Clinical Laboratory, Fuzhou Traditional Chinese Medicine Hospital, Fuzhou, China
| | - Caixian Wu
- Department of Anus-Intestines, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qianyu Gao
- Department of Clinical Laboratory, Fuzhou Traditional Chinese Medicine Hospital, Fuzhou, China
| | - Sheng Li
- Department of Oncology, Fuzhou Traditional Chinese Medicine Hospital, Fuzhou, China
| | - Yuhua Li
- Department of Clinical Laboratory, Fuzhou Traditional Chinese Medicine Hospital, Fuzhou, China
| |
Collapse
|
175
|
Exploring Different Effects of Exclusive Enteral Nutrition (EEN) and Corticosteroids on the Gut Microbiome in Crohn’s Disease Based on a Three-Stage Strategy. Gastroenterol Res Pract 2022; 2022:6147124. [PMID: 35935714 PMCID: PMC9348958 DOI: 10.1155/2022/6147124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to compare the efficacy of exclusive enteral nutrition (EEN) and corticosteroids on the gut microbiome in Crohn's disease. Methods. Data were collected for 16 patients newly diagnosed with CD as the test group and 10 healthy volunteers as the control group. The 16 patients were randomly divided into the EEN group and the corticosteroids group. For subsequent analysis, 6 patients in the EEN group with follow-up were enrolled to compare the 0-month, 1-month, and 3-month outcomes. We analyzed and compared gut microbiota between different groups in 3 stages. To evaluate the clinical outcome of treatment, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), hemoglobin (HB), albumin (ALB), and Crohn's disease activity (CDAI) were recorded. Results. There are significant differences in microbiota between patients with CD and healthy people, and there are intuitive differences in the main components of the microbiota. 16 patients were included in stage 2, in which both corticosteroids and EEN can induce CD remission well. However, corticosteroids have a greater impact on inflammatory indicators, while EEN has a more obvious effect on nutritional indicators. Principal component analysis suggests that there are different compositional changes in the gut microbiome after corticosteroids and EEN treatment. After 3 months of dynamic observation, we found that EEN can effectively maintain CD remission, reduce inflammatory indicators, and improve nutritional indicators. Conclusions. Both EEN and corticosteroids can increase the diversity of the microbiome in inducing CD remission, while they have different effects on the proportion of microbiome species. This trial is registered with NCT02056418.
Collapse
|
176
|
Ruan G, Chen M, Chen L, Xu F, Xiao Z, Yi A, Tian Y, Ping Y, Lv L, Cheng Y, Wei Y. Roseburia intestinalis and Its Metabolite Butyrate Inhibit Colitis and Upregulate TLR5 through the SP3 Signaling Pathway. Nutrients 2022; 14:nu14153041. [PMID: 35893896 PMCID: PMC9332583 DOI: 10.3390/nu14153041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is unclear, but it is generally believed to be closely related to an imbalance in gut microbiota. Roseburia intestinalis (R. intestinalis) might play a key role in suppressing intestinal inflammation, but the mechanism of its anti-inflammatory effect is unknown. In this study, we investigated the role of R. intestinalis and Toll-like receptor 5 (TLR5) in relieving mouse colitis. We found that R. intestinalis significantly upregulated the transcription of TLR5 in intestinal epithelial cells (IECs) and improved colonic inflammation in a colitis mouse model. The flagellin of R. intestinalis activated the release of anti-inflammatory factors (IL-10, TGF-β) and reduced inflammation in IECs. Furthermore, butyrate, the main metabolic product secreted by R. intestinalis, regulated the expression of TLR5 in IECs. Our data show that butyrate increased the binding of the transcription factor Sp3 (specificity protein 3) to the TLR5 promoter regions, upregulating TLR5 transcription. This work provides new insight into the anti-inflammatory effects of R. intestinalis in colitis and a potential target for UC prevention and treatment.
Collapse
Affiliation(s)
- Guangcong Ruan
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Minjia Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
- Department of Pathogenic Biology and Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Fenghua Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Zhifeng Xiao
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Ailin Yi
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Yuting Tian
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Yi Ping
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Linling Lv
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
| | - Yi Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
- Correspondence: (Y.C.); (Y.W.)
| | - Yanling Wei
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China; (G.R.); (M.C.); (L.C.); (F.X.); (Z.X.); (A.Y.); (Y.T.); (Y.P.); (L.L.)
- Correspondence: (Y.C.); (Y.W.)
| |
Collapse
|
177
|
Peng C, Li J, Miao Z, Wang Y, Wu S, Wang Y, Wang S, Cheng R, He F, Shen X. Early life administration of Bifidobacterium bifidum BD-1 alleviates long-term colitis by remodeling the gut microbiota and promoting intestinal barrier development. Front Microbiol 2022; 13:916824. [PMID: 35935215 PMCID: PMC9355606 DOI: 10.3389/fmicb.2022.916824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease characterized by microbiota disturbance and intestinal mucosal damage. The current study aimed to investigate the preventive effects of Bifidobacterium bifidum BD-1 (BD-1) against long-term IBD and possible mechanism by which it alters the gut microbiota, immune response, and mucosal barrier. Our study found that early treatment of BD-1 + Ceftri (ceftriaxone followed by BD-1) and BD-1 confers a certain protective effect against the occurrence of long-term Dextran sulfate sodium-induced colitis, which manifests as a decrease in inflammation scores and MPO activity levels, as well as a relatively intact intestinal epithelial structure. Moreover, compared to BD-1, Ceftri, and NS, early treatment with BD-1 + Ceftri promoted greater expression levels of mucosal barrier-related proteins [KI67, MUC2, ZO-1, secretory immunoglobulin A (slgA), Clauding-1, and Occludin], better local immune responses activation, and moderately better modulation of systemic immune responses during long-term colitis. This may be due to the fact that BD-1 + Ceftri can deliberately prolong the colonization time of some beneficial microbiota (e.g., Bifidobacterium) and reduce the relative abundance of inflammation-related microbiota (e.g., Escherichia/Shigella and Ruminococcus). Interestingly, we found that the changes in the gut barrier and immunity were already present immediately after early intervention with BD-1 + Ceftri, implying that early effects can persist with appropriate intervention. Furthermore, intervention with BD-1 alone in early life confers an anti-inflammatory effect to a certain degree in the long-term, which may be due to the interaction between BD-1 and the host’s native gut microbiota affecting intestinal metabolites. In conclusion, BD-1 was not as effective as BD-1 + Ceftri in early life, perhaps due to its failure to fully play the role of the strain itself under the influence of the host’s complex microbiota. Therefore, further research is needed to explore specific mechanisms for single strain and native microbiota or the combination between probiotics and antibiotics.
Collapse
|
178
|
Yang Z, Liu X, Wu Y, Peng J, Wei H. Effect of the Microbiome on Intestinal Innate Immune Development in Early Life and the Potential Strategy of Early Intervention. Front Immunol 2022; 13:936300. [PMID: 35928828 PMCID: PMC9344006 DOI: 10.3389/fimmu.2022.936300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early life is a vital period for mammals to be colonized with the microbiome, which profoundly influences the development of the intestinal immune function. For neonates to resist pathogen infection and avoid gastrointestinal illness, the intestinal innate immune system is critical. Thus, this review summarizes the development of the intestinal microbiome and the intestinal innate immune barrier, including the intestinal epithelium and immune cells from the fetal to the weaning period. Moreover, the impact of the intestinal microbiome on innate immune development and the two main way of early-life intervention including probiotics and fecal microbiota transplantation (FMT) also are discussed in this review. We hope to highlight the crosstalk between early microbial colonization and intestinal innate immunity development and offer some information for early intervention.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
179
|
Zhang X, Akhtar M, Chen Y, Ma Z, Liang Y, Shi D, Cheng R, Cui L, Hu Y, Nafady AA, Ansari AR, Abdel-Kafy ESM, Liu H. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. MICROBIOME 2022; 10:107. [PMID: 35836252 PMCID: PMC9284917 DOI: 10.1186/s40168-022-01299-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/05/2022] [Indexed: 12/11/2022]
Abstract
Background Intestinal inflammation is prevalent in chicken, which results in decreased growth performance and considerable economic losses. Accumulated findings established the close relationship between gut microbiota and chicken growth performance. However, whether gut microbiota impacts chicken growth performance by lessening intestinal inflammation remains elusive. Results Seven-weeks-old male and female chickens with the highest or lowest body weights were significantly different in breast and leg muscle indices and average cross-sectional area of muscle cells. 16S rRNA gene sequencing indicated Gram-positive bacteria, such as Lactobacilli, were the predominant species in high body weight chickens. Conversely, Gram-negative bacteria, such as Comamonas, Acinetobacter, Brucella, Escherichia-Shigella, Thermus, Undibacterium, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were significantly abundant in low body weight chickens. Serum lipopolysaccharide (LPS) level was significantly higher in low body weight chickens (101.58 ± 5.78 ng/mL) compared with high body weight chickens (85.12 ± 4.79 ng/mL). The expression of TLR4, NF-κB, MyD88, and related inflammatory cytokines in the jejunum was significantly upregulated in low body weight chickens, which led to the damage of gut barrier integrity. Furthermore, transferring fecal microbiota from adult chickens with high body weight into 1-day-old chicks reshaped the jejunal microbiota, mitigated inflammatory response, and improved chicken growth performance. Conclusions Our findings suggested that jejunal microbiota could affect chicken growth performance by mitigating intestinal inflammation. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s40168-022-01299-8.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ziyu Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuyun Liang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ranran Cheng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yafang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Abdallah A Nafady
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
180
|
A Systematic Review and Meta-Analysis of Randomized Controlled Trials of Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8266793. [PMID: 35795291 PMCID: PMC9251102 DOI: 10.1155/2022/8266793] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 01/30/2023]
Abstract
Objectives Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the gastrointestinal tract, and its prevalence is increasing worldwide. Fecal microbiota transplantation (FMT) is an emerging therapy that modifies the patient's gut microbiota by transplanting feces from a healthy donor to achieve disease remission. However, its efficacy and safety need to be further investigated. Methods PubMed, the Cochrane Library, Web of Science, Embase, and Google Scholar databases (up to 8th November 2021) were searched and literature was screened by title and abstract as well as full text. The primary outcome was clinical remission, with the clinical response as a secondary outcome. Risk ratios (RR) with 95% confidence intervals (CI) were reported. Results A total of 14 trials were included in this study. In terms of clinical remission, FMT had a significant effect compared to placebo (RR = 1.44, 95 CI%: 1.03 to 2.02, I2 = 38%, P=0.03), with no significant risk of study heterogeneity. Moreover, FMT led to significant results in clinical response compared to placebo with moderate between-study heterogeneity (RR = 1.34, 95 CI%: 0.92 to 1.94, I2 = 51%, P=0.12). Subgroup analysis showed a higher clinical remission for fresh fecal FMT (40.9%) than that for frozen fecal FMT (32.2%); the efficacy of gastrointestinal (GI) pretreatment, the severity of disease, route of administration, and the donor selection remain unclear and require more extensive study. Safety analysis concluded that most adverse events were mild and self-resolving. The microbiological analysis found that the patient's gut microbiota varied in favor of the donor, with increased flora diversity and species richness. Conclusion FMT is a safe, effective, and well-tolerated therapy. Studies have found that fresh fecal microbiota transplant can increase clinical remission rates. However, more randomized controlled trials and long-term follow-ups are needed to assess its long-term effectiveness and safety.
Collapse
|
181
|
Hoque MN, Rahman MS, Islam T, Sultana M, Crandall KA, Hossain MA. Induction of mastitis by cow-to-mouse fecal and milk microbiota transplantation causes microbiome dysbiosis and genomic functional perturbation in mice. Anim Microbiome 2022; 4:43. [PMID: 35794639 PMCID: PMC9258091 DOI: 10.1186/s42523-022-00193-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mastitis pathogenesis involves a wide range of opportunistic and apparently resident microorganims including bacteria, viruses and archaea. In dairy animals, microbes reside in the host, interact with environment and evade the host immune system, providing a potential for host-tropism to favor mastitis pathogenesis. To understand the host-tropism phenomena of bovine-tropic mastitis microbiomes, we developed a cow-to-mouse mastitis model. METHODS A cow-to-mouse mastitis model was established by fecal microbiota transplantation (FMT) and milk microbiota transplantation (MMT) to pregnant mice to assess microbiome dysbiosis and genomic functional perturbations through shotgun whole metagenome sequencing (WMS) along with histopathological changes in mice mammary gland and colon tissues. RESULTS The cow-to-mouse FMT and MMT from clinical mastitis (CM) cows induced mastitis syndromes in mice as evidenced by histopathological changes in mammary gland and colon tissues. The WMS of 24 samples including six milk (CM = 3, healthy; H = 3), six fecal (CM = 4, H = 2) samples from cows, and six fecal (CM = 4, H = 2) and six mammary tissue (CM = 3, H = 3) samples from mice generating 517.14 million reads (average: 21.55 million reads/sample) mapped to 2191 bacterial, 94 viral and 54 archaeal genomes. The Kruskal-Wallis test revealed significant differences (p = 0.009) in diversity, composition, and relative abundances in microbiomes between CM- and H-metagenomes. These differences in microbiome composition were mostly represented by Pseudomonas aeruginosa, Lactobacillus crispatus, Klebsiella oxytoca, Enterococcus faecalis, Pantoea dispersa in CM-cows (feces and milk), and Muribaculum spp., Duncaniella spp., Muribaculum intestinale, Bifidobacterium animalis, Escherichia coli, Staphylococcus aureus, Massilia oculi, Ralstonia pickettii in CM-mice (feces and mammary tissues). Different species of Clostridia, Bacteroida, Actinobacteria, Flavobacteriia and Betaproteobacteria had a strong co-occurrence and positive correlation as the indicator species of murine mastitis. However, both CM cows and mice shared few mastitis-associated microbial taxa (1.14%) and functional pathways regardless of conservation of mastitis syndromes, indicating the higher discrepancy in mastitis-associated microbiomes among lactating mammals. CONCLUSIONS We successfully induced mastitis by FMT and MMT that resulted in microbiome dysbiosis and genomic functional perturbations in mice. This study induced mastitis in a mouse model through FMT and MMT, which might be useful for further studies- focused on pathogen(s) involved in mastitis, their cross-talk among themselves and the host.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Keith A Crandall
- Computational Biology Institute and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
182
|
Pathological features-based targeted delivery strategies in IBD therapy: A mini review. Biomed Pharmacother 2022; 151:113079. [PMID: 35605297 DOI: 10.1016/j.biopha.2022.113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is characterized by a complex and dysfunctional immune response. Currently, IBD is incurable, and patients with IBD often need to take drugs for life. However, as the traditional systemic treatment strategies for IBD do not target the site of inflammation, only limited efficacy can be obtained from them. Moreover, the possibility of serious side effects stemming from the systemic administration or redistribution of drugs in the body is high when conventional drug formulations are used. Therefore, a targeted drug-delivery system for IBD should be considered. Based on the pathological features related to IBD, the new targeted drug-delivery strategy can directly transfer the drug to the inflammatory site, thus enhancing the accumulation of the drugs and reducing side effects. This article reviews the pathological features of IBD and the application of the IBD-targeted delivery system based on different pathological features, and discusses the challenges and new prospects in this field.
Collapse
|
183
|
Gabbiadini R, Dal Buono A, Correale C, Spinelli A, Repici A, Armuzzi A, Roda G. Ileal Pouch-Anal Anastomosis and Pouchitis: The Role of the Microbiota in the Pathogenesis and Therapy. Nutrients 2022; 14:2610. [PMID: 35807791 PMCID: PMC9268595 DOI: 10.3390/nu14132610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are life-long disorders characterized by the chronic relapsing inflammation of the gastrointestinal tract with the intermittent need for escalation treatment and, eventually, even surgery. The total proctocolectomy with ileal pouch-anal anastomosis (IPAA) is the surgical intervention of choice in subjects affected by ulcerative colitis (UC). Although IPAA provides satisfactory functional outcomes, it can be susceptible to some complications, including pouchitis as the most common. Furthermore, 10-20% of the pouchitis may develop into chronic pouchitis. The etiology of pouchitis is mostly unclear. However, the efficacy of antibiotics in pouchitis suggests that the dysbiosis of the IPAA microbiota plays an important role in its pathogenesis. We aimed to review the role of the microbiota in the pathogenesis and as a target therapy in subjects who develop pouchitis after undergoing the surgical intervention of total proctocolectomy with IPAA reconstruction.
Collapse
Affiliation(s)
- Roberto Gabbiadini
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
| | - Arianna Dal Buono
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
| | - Carmen Correale
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
| | - Antonino Spinelli
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Colon and Rectal Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessandro Repici
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Giulia Roda
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; (R.G.); (A.D.B.); (C.C.); (A.S.); (A.R.); (A.A.)
| |
Collapse
|
184
|
Huang WQ, Huang HL, Peng W, Liu YD, Zhou YL, Xu HM, Zhang LJ, Zhao C, Nie YQ. Altered Pattern of Immunoglobulin A-Targeted Microbiota in Inflammatory Bowel Disease After Fecal Transplantation. Front Microbiol 2022; 13:873018. [PMID: 35814647 PMCID: PMC9257281 DOI: 10.3389/fmicb.2022.873018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Adaptive immune response to the gut microbiota is one of the main drivers of inflammatory bowel disease (IBD). Under inflammatory conditions, immunoglobulin (Ig)-targeted bacteria are altered. However, changes in Ig-targeted bacteria in Asian patients with IBD with ulcerative colitis (UC) remain unclear. Furthermore, changes in IgA-targeted bacteria in patients with UC treated with fecal microbiota transplantation (FMT) are unclear. Here, we analyzed fecal samples of patients with IBD and patients with UC before and after FMT by flow cytometry. We found that the percentage of IgA/G-coated bacteria can be used to assess the severity of IBD. Besides oral pharyngeal bacteria such as Streptococcus, we hypothesized that Megamonas, Acinetobacter, and, especially, Staphylococcus might play an important role in IBD pathogenesis. Moreover, we evaluated the influence of FMT on IgA-coated bacteria in patients with UC. We found that IgA-bacterial interactions were re-established in human FMT recipients and resembled those in the healthy fecal donors. Additionally, the IgA targeting was not influenced by delivery methods: gastroscopy spraying and colonic transendoscopic enteral tubing (TET). Then, we established an acute dextran sulfate sodium (DSS)-induced mouse model to explore whether FMT intervention would impact IgA/G memory B cell in the intestine. We found that after FMT, both IgA/G memory B cell and the percentage of IgA/G-targeted bacteria were restored to normal levels in DSS mice.
Collapse
Affiliation(s)
- Wen-qi Huang
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hong-Li Huang
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Wu Peng
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yan-Di Liu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou, China
| | - You-Lian Zhou
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hao-Ming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou, China
| | - Liang-jie Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chong Zhao
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Chong Zhao,
| | - Yu-Qiang Nie
- Department of Gastroenterology, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
- Yu-Qiang Nie,
| |
Collapse
|
185
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
186
|
Jang HM, Kim JK, Joo MK, Shin YJ, Lee KE, Lee CK, Kim HJ, Kim DH. Enterococcus faecium and Pediococcus acidilactici deteriorate Enterobacteriaceae-induced depression and colitis in mice. Sci Rep 2022; 12:9389. [PMID: 35672451 PMCID: PMC9174183 DOI: 10.1038/s41598-022-13629-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2022] [Indexed: 01/14/2023] Open
Abstract
Gut dysbiosis is closely associated with the outbreak of inflammatory bowel disease (IBD) and psychiatric disorder. The Enterobacteriaceae population was higher in the feces of patients with inflammatory bowel disease (IBD-F) than in those of healthy control volunteers (HC-F). The Enterococcaceae and Lactobacillaceae populations were higher in the feces of IBD patients with depression (IBD/D+-F) vs. the feces of IBD patients without depression (IBD/D--F). Therefore, we examined the effects of Klebsiella oxytoca, Escherichia coli, Cronobacter sakazakii, Enterococcus faecium, and Pediococcus acidolactici overpopulated in IBD/D+-F and their byproducts LPS and exopolysaccharide (EPS) on the occurrence of depression and colitis in mice. Oral gavages of Klebsiella oxytoca, Escherichia coli, and Cronobacter sakazakii belonging to Enterobacteriaceae, singly or together, caused dose-dependently colitis and depression-like behaviors in germ-free and specific-pathogen-free mice. Although Enterococcus faecium and Pediococcus acidolactici did not significantly cause colitis and depression-like behaviors, they significantly deteriorated Klebsiella oxytoca- or Escherichia coli-induced colitis, neuroinflammation, and anxiety/depression-like behaviors and increased blood LPS, corticosterone, and IL-6 levels. The EPSs from Enterococcus faecium and Pediococcus acidolactici also worsened Klebsiella oxytoca LPS-induced colitis, neuroinflammation, and depression-like behaviors in mice and increased the translocation of fluorescein isothiocyanate-conjugated LPS into the hippocampus. However, Bifidobacterium longum, which was lower in IBD/D+-F vs. IBD/D--F, or its EPS suppressed them. In conclusion, Enterococcus faecium and Pediococcus acidolactici, known as a probiotic strain, and their EPSs may be a risk factor for the outbreak of depression and IBD.
Collapse
Affiliation(s)
- Hyo-Min Jang
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
- College of Pharmacy, Jeonbuk National University, 26, Jeonju, 54896, Korea
| | - Min-Kyung Joo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Kyung-Eon Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Chang Kyun Lee
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Hyo-Jong Kim
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
187
|
Ulcerative Colitis in Response to Fecal Microbiota Transplantation via Modulation of Gut Microbiota and Th17/Treg Cell Balance. Cells 2022; 11:cells11111851. [PMID: 35681546 PMCID: PMC9180439 DOI: 10.3390/cells11111851] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Fecal microbiota transplantation (FMT) may contribute to disease remission in ulcerative colitis (UC). We studied the microbiota change and its regulation on T cells after FMT. Methods: Patients with mild to moderately active UC were included to receive FMT. The intestinal histopathological changes and barrier function were evaluated. The fecal samples of donors and patients were analyzed by 16S rRNA gene-based microbiota analysis, and the colon Th17 and Treg cells were assessed. Results: Fifteen patients completed the 8-week-follow-up. A total of 10 patients (66.7%) were in the responders (RE) group and five in the non-responders (NR) group. The Nancy histological index and fecal calprotectin decreased (p < 0.001, p = 0.06, respectively) and Occludin and Claudin1 increased in the RE group. The abundance of Faecalibaterium increased significantly by 2.3-fold in the RE group at week 8 (p = 0.043), but it was suppressed in the NR group. Fecal calprotectin (r = −0.382, p = 0.003) and Nancy index (r = −0.497, p = 0.006) were correlated inversely with the abundance of Faecalibacterium, respectively. In the RE group the relative mRNA expression of RORγt decreased and Foxp3 increased. Significantly decreased CD4+ RORγt+ Th17 and increased CD4+ Foxp3+ Treg were also observed in the RE group. The relative abundance of Faecalibacterium correlated with CD4+ RORγt+ Th17 (r = −0.430, p = 0.018) and CD4+ Foxp3+ Treg (r = 0.571, p = 0.001). Conclusions: The long-term Faecalibaterium colonization following FMT plays a crucial role in UC remission by alleviating intestinal inflammation. This anti-inflammatory effect of Faecalibacterium may be achieved by regulating the imbalance of Th17/Treg levels in UC.
Collapse
|
188
|
Chen C, Chen L, Sun D, Li C, Xi S, Ding S, Luo R, Geng Y, Bai Y. Adverse events of intestinal microbiota transplantation in randomized controlled trials: a systematic review and meta-analysis. Gut Pathog 2022; 14:20. [PMID: 35619175 PMCID: PMC9134705 DOI: 10.1186/s13099-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 04/11/2022] [Indexed: 01/04/2025] Open
Abstract
Background Intestinal microbiota transplantation (IMT) has been recognized as an effective treatment for recurrent Clostridium difficile infection (rCDI) and a novel treatment option for other diseases. However, the safety of IMT in patients has not been established. Aims This systematic review and meta-analysis was conducted to assess the safety of IMT. Methods We systematically reviewed all randomized controlled trials (RCTs) of IMT studies published up to 28 February 2021 using databases including PubMed, EMBASE and the Cochrane Library. Studies were excluded if they did not report adverse events (AEs). Two authors independently extracted the data. The relative risk (RR) of serious adverse events (SAEs) and common adverse events (CAEs) were estimated separately, as were predefined subgroups. Publication bias was evaluated by a funnel plot and Egger’s regression test. Results Among 978 reports, 99 full‐text articles were screened, and 20 articles were included for meta-analysis, involving 1132 patients (603 in the IMT group and 529 in the control group). We found no significant difference in the incidence of SAEs between the IMT group and the control group (RR = 1.36, 95% CI 0.56–3.31, P = 0.50). Of these 20 studies, 7 described the number of patients with CAEs, involving 360 patients (195 in the IMT group and 166 in the control group). An analysis of the eight studies revealed that the incidence of CAEs was also not significantly increased in the IMT group compared with the control group (RR = 1.06, 95% CI 0.91–1.23, P = 0.43). Subgroup analysis showed that the incidence of CAEs was significantly different between subgroups of delivery methods (P(CAE) = 0.04), and the incidence of IMT-related SAEs and CAEs was not significantly different in the other predefined subgroups. Conclusion Currently, IMT is widely used in many diseases, but its associated AEs should not be ignored. To improve the safety of IMT, patients' conditions should be fully evaluated before IMT, appropriate transplantation methods should be selected, each operative step of faecal bacteria transplantation should be strictly controlled, AE management mechanisms should be improved, and a close follow-up system should be established.
Collapse
Affiliation(s)
- Chong Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Liyu Chen
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Dayong Sun
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Cailan Li
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shiheng Xi
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Shihua Ding
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518037, China
| | - Rongrong Luo
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China
| | - Yan Geng
- Department of Gastroenterology, 923Th Hospital of PLA Joint Logistics Support Force, Nanning, 530021, China.
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
189
|
Yasmin F, Najeeb H, Shaikh S, Hasanain M, Naeem U, Moeed A, Koritala T, Hasan S, Surani S. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol 2022; 28:1922-1933. [PMID: 35664964 PMCID: PMC9150062 DOI: 10.3748/wjg.v28.i18.1922] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/22/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic illness characterized by relapsing inflammation of the intestines. The disorder is stratified according to the severity and is marked by its two main phenotypical representations: Ulcerative colitis and Crohn’s disease. Pathogenesis of the disease is ambiguous and is expected to have interactivity between genetic disposition, environmental factors such as bacterial agents, and dysregulated immune response. Treatment for IBD aims to reduce symptom extent and severity and halt disease progression. The mainstay drugs have been 5-aminosalicylates (5-ASAs), corticosteroids, and immunosuppressive agents. Parenteral, oral and rectal routes are the conventional methods of drug delivery, and among all, oral administration is most widely adopted. However, problems of systematic drug reactions and low specificity in delivering drugs to the inflamed sites have emerged with these regular routes of delivery. Novel drug delivery systems have been introduced to overcome several therapeutic obstacles and for localized drug delivery to target tissues. Enteric-coated microneedle pills, various nano-drug delivery techniques, prodrug systems, lipid-based vesicular systems, hybrid drug delivery systems, and biologic drug delivery systems constitute some of these novel methods. Microneedles are painless, they dislodge their content at the affected site, and their release can be prolonged. Recombinant bacteria such as genetically engineered Lactococcus Lactis and eukaryotic cells, including GM immune cells and red blood cells as nanoparticle carriers, can be plausible delivery methods when evaluating biologic systems. Nano-particle drug delivery systems consisting of various techniques are also employed as nanoparticles can penetrate through inflamed regions and adhere to the thick mucus of the diseased site. Prodrug systems such as 5-ASAs formulations or their derivatives are effective in reducing colonic damage. Liposomes can be modified with both hydrophilic and lipophilic particles and act as lipid-based vesicular systems, while hybrid drug delivery systems containing an internal nanoparticle section for loading drugs are potential routes too. Leukosomes are also considered as possible carrier systems, and results from mouse models have revealed that they control anti- and pro-inflammatory molecules.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Hala Najeeb
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Shehryar Shaikh
- Department of Medicine, Dow OJha University Hospital, Karachi 74200, Pakistan
| | - Muhammad Hasanain
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Unaiza Naeem
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Abdul Moeed
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Thoyaja Koritala
- Department of Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Syedadeel Hasan
- Department of Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, College Station, TX 77843, United States
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55901, United States
| |
Collapse
|
190
|
Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol 2022; 7:472-484. [DOI: 10.1016/s2468-1253(21)00303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
|
191
|
Bartl M, Xylaki M, Bähr M, Weber S, Trenkwalder C, Mollenhauer B. Evidence for immune system alterations in peripheral biological fluids in Parkinson's disease. Neurobiol Dis 2022; 170:105744. [DOI: 10.1016/j.nbd.2022.105744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
|
192
|
Wu Z, Liu D, Deng F. The Role of Vitamin D in Immune System and Inflammatory Bowel Disease. J Inflamm Res 2022; 15:3167-3185. [PMID: 35662873 PMCID: PMC9160606 DOI: 10.2147/jir.s363840] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease that includes ulcerative colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is not fully understood but is most reported associated with immune dysregulation, dysbacteriosis, genetic susceptibility, and environmental risk factors. Vitamin D is an essential nutrient for the human body, and it not only regulates bone metabolism but also the immune system, the intestinal microbiota and barrier. Vitamin D insufficiency is common in IBD patients, and the abnormal low levels of vitamin D are highly correlated with disease activity, treatment response, and risk of relapse of IBD. Accumulating evidence supports the protective role of vitamin D in IBD through regulating the adaptive and innate immunity, maintaining the intestinal barrier and balancing the gut microbiota. This report aims to provide a broad overview of the role vitamin D in the immune system, especially in the pathogenesis and treatment of IBD, and its possible role in predicting relapse.
Collapse
Affiliation(s)
- Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Feihong Deng, Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Research Center of Digestive Disease, Central South University, Changsha, Hunan410011, People’s Republic of China, Email
| |
Collapse
|
193
|
Du L, Wang Q, Ji S, Sun Y, Huang W, Zhang Y, Li S, Yan S, Jin H. Metabolomic and Microbial Remodeling by Shanmei Capsule Improves Hyperlipidemia in High Fat Food-Induced Mice. Front Cell Infect Microbiol 2022; 12:729940. [PMID: 35573781 PMCID: PMC9094705 DOI: 10.3389/fcimb.2022.729940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia refers to a chronic disease caused by systemic metabolic disorder, and its pathophysiology is very complex. Shanmei capsule (SM) is a famous preparation with a long tradition of use for anti-hyperlipidemia treatment in China. However, the regulation mechanism of SM on hyperlipidemia has not been elucidated so far. In this study, a combination of UPLC-Q-TOF/MS techniques and 16S rDNA gene sequencing was performed to investigate the effects of SM treatment on plasma metabolism-mediated change and intestinal homeostasis. The results indicated that SM potently ameliorated high-fat diet-induced glucose and lipid metabolic disorders and reduced the histopathological injury. Pathway analysis indicated that alterations of differential metabolites were mainly involved in glycerophospholipid metabolism, linolenic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism. These changes were accompanied by a significant perturbation of intestinal microbiota characterized by marked increased microbial richness and changed microbiota composition. There were many genera illustrating strong correlations with hyperlipidemia-related markers (e.g., weight gains, GLU, and total cholesterol), including the Lachnospiraceae NK4A136 group and the Lachnospiraceae NK4B4 group. Overall, this study initially confirmed that hyperlipidemia is associated with metabolic disturbance and intestinal microbiota disorders, and SM can be employed to help decrease hyperlipidemia risk, including improving the abnormal metabolic profile and maintaining the gut microbial environment.
Collapse
Affiliation(s)
- Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjing Huang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiping Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| |
Collapse
|
194
|
Geng ZH, Zhu Y, Li QL, Zhao C, Zhou PH. Enteric Nervous System: The Bridge Between the Gut Microbiota and Neurological Disorders. Front Aging Neurosci 2022; 14:810483. [PMID: 35517052 PMCID: PMC9063565 DOI: 10.3389/fnagi.2022.810483] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract plays an essential role in food digestion, absorption, and the mucosal immune system; it is also inhabited by a huge range of microbes. The GI tract is densely innervated by a network of 200–600 million neurons that comprise the enteric nervous system (ENS). This system cooperates with intestinal microbes, the intestinal immune system, and endocrine systems; it forms a complex network that is required to maintain a stable intestinal microenvironment. Understanding how gut microbes influence the ENS and central nervous system (CNS) has been a significant research subject over the past decade. Moreover, accumulating evidence from animal and clinical studies has revealed that gut microbiota play important roles in various neurological diseases. However, the causal relationship between microbial changes and neurological disorders currently remains unproven. This review aims to summarize the possible contributions of GI microbiota to the ENS and CNS. It also provides new insights into furthering our current understanding of neurological disorders.
Collapse
Affiliation(s)
- Zi-Han Geng
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan-Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
- *Correspondence: Quan-Lin Li,
| | - Chao Zhao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Chao Zhao,
| | - Ping-Hong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
- Ping-Hong Zhou,
| |
Collapse
|
195
|
Bets VD, Achasova KM, Borisova MA, Kozhevnikova EN, Litvinova EA. Role of Mucin 2 Glycoprotein and L-Fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:301-318. [PMID: 35527372 DOI: 10.1134/s0006297922040010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many factors underlie the development of inflammatory bowel disease (IBD) in humans. In particular, imbalance of microbiota and thinning of the mucosal layer in the large intestine play a huge role. Pathogenic microorganisms also exacerbate the course of diseases. In this research the role of mucin 2 deficiency in the formation of intestinal microflora in the experimental model using the Muc2 gene knockout mice in the presence of Helicobacter spp. was investigated. Also, restorative and anti-inflammatory effect of the dietary L-fucose in the Muc2-/- mice on microflora and immunity was evaluated. For this purpose, bacterial diversity in feces was studied in the animals before and after antibiotic therapy and role of the dietary L-fucose in their recovery was assessed. To determine the effect of bacterial imbalance and fucose on the immune system, mRNA levels of the genes encoding pro-inflammatory cytokines (Tnf, Il1a, Il1b, Il6) and transcription factors of T cells (Foxp3 - Treg, Rorc - Th17, Tbx21 - Th1) were determined in the colon tissue of the Muc2-/- mice. Significant elimination of bacteria due to antibiotic therapy caused decrease of the fucose levels in the intestine and facilitated reduction of the regulatory T cell transcription factor (Foxp3). When the dietary L-fucose was added to antibiotics, the level of bacterial DNA of Bacteroides spp. in the feces of the Muc2-/- mice was partially restored. T regulatory cells are involved in the regulation of inflammation in the Muc2-/- mice. Antibiotics reduced the number of regulatory T cell but did not decrease the inflammatory response to infection. Fucose, as a component of mucin 2, helped to maintain the level of Bacteroides spp. during antibiotic therapy of the Muc2-/- mice and restored biochemical parameters, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Victoria D Bets
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - Kseniya M Achasova
- Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mariya A Borisova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena N Kozhevnikova
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.,Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
196
|
Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23073464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
|
197
|
Zhao Y, Chen L, Chen L, Huang J, Chen S, Yu Z. Exploration of the Potential Relationship Between Gut Microbiota Remodeling Under the Influence of High-Protein Diet and Crohn's Disease. Front Microbiol 2022; 13:831176. [PMID: 35308389 PMCID: PMC8927681 DOI: 10.3389/fmicb.2022.831176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Diet and gut microbiota are both important factors in the pathogenesis of Crohn’s disease, and changes in diet can lead to alteration in gut microbiome. However, there is still insufficient exploration on interaction within the gut microbiota under high-protein diet (HPD) intervention. We analyzed the gut microbial network and marker taxa from patients with Crohn’s disease in public database (GMrepo, https://gmrepo.humangut.info) combined with investigation of the changes of composition and function of intestinal microbiome in mice fed on HPD by metagenomic sequencing. The results showed that there was an indirect negative correlation between Escherichia coli and Lachnospiraceae in patients with Crohn’s disease, and Escherichia coli was a marker for both Crohn’s disease and HPD intervention. Besides, enriched HH_1414 (one of the orthologs in eggNOG) related to tryptophan metabolism was from Helicobacter, whereas reduced orthologs (OGs) mainly contributed by Lachnospiraceae after HPD intervention. Our research indicates that some compositional changes in gut microbiota after HPD intervention are consistent with those in patients with Crohn’s disease, providing insights into potential impact of altered gut microbes under HPD on Crohn’s disease.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lulu Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
198
|
Chen Y, Lin Y, Shan C, Li Z, Xiao B, He R, Huang X, Wang Z, Zhang J, Qiao W. Effect of Fufang Huangqi Decoction on the Gut Microbiota in Patients With Class I or II Myasthenia Gravis. Front Neurol 2022; 13:785040. [PMID: 35370890 PMCID: PMC8971287 DOI: 10.3389/fneur.2022.785040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the effect of Fufang Huangqi Decoction on the gut microbiota in patients with class I or II myasthenia gravis (MG) and to explore the correlation between gut microbiota and MG (registration number, ChiCTR2100048367; registration website, http://www.chictr.org.cn/listbycreater.aspx; NCBI: SRP338707). Methods In this study, microbial community composition and diversity analyses were carried out on fecal specimens from MG patients who did not take Fufang Huangqi Decoction (control group, n = 8) and those who took Fufang Huangqi Decoction and achieved remarkable alleviation of symptoms (medication group, n = 8). The abundance, diversity within and between habitats, taxonomic differences and corresponding discrimination markers of gut microbiota in the control group and medicated group were assessed. Results Compared with the control group, the medicated group showed a significantly decreased abundance of Bacteroidetes (P < 0.05) and significantly increased abundance of Actinobacteria at the phylum level, a significantly decreased abundance of Bacteroidaceae (P < 0.05) and significantly increased abundance of Bifidobacteriaceae at the family level and a significantly decreased abundance of Blautia and Bacteroides (P < 0.05) and significantly increased abundance of Bifidobacterium, Lactobacillus and Roseburia at the genus level. Compared to the control group, the medicated group had decreased abundance, diversity, and genetic diversity of the communities and increased coverage, but the differences were not significant (P > 0.05); the markers that differed significantly between communities at the genus level and influenced the differences between groups were Blautia, Bacteroides, Bifidobacterium and Lactobacillus. Conclusions MG patients have obvious gut microbiota-associated metabolic disorders. Fufang Huangqi Decoction regulates the gut microbiota in patients with class I or II MG by reducing the abundance of Blautia and Bacteroides and increasing the abundance of Bifidobacterium and Lactobacillus. The correlation between gut microbiota and MG may be related to cell-mediated immunity.
Collapse
Affiliation(s)
- Yanghong Chen
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yi Lin
- Department of General Surgery, The First People's Hospital of Shenyang, Shenyang, China
| | - Caifeng Shan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhaoqing Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Bo Xiao
- Zhejiang Jiuru Pharmaceutical Technology Co., Ltd., Hangzhou, China
| | - Rencai He
- Zhejiang Jiuru Pharmaceutical Technology Co., Ltd., Hangzhou, China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Jingsheng Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Jingsheng Zhang
| | - Wenjun Qiao
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Liaoning Provincial Key Laboratory for Diagnosis and Treatment of Myasthenia Gravis, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Wenjun Qiao
| |
Collapse
|
199
|
Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022; 10:microorganisms10030522. [PMID: 35336098 PMCID: PMC8953724 DOI: 10.3390/microorganisms10030522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Limosilactobacillus reuteri is a microorganism with valuable probiotic qualities that has been widely employed in humans to promote health. It is a well-studied probiotic bacterium that exerts beneficial health effects due to several metabolic mechanisms that enhance the production of anti-inflammatory cytochines and modulate the gut microbiota by the production of antimicrobial molecules, including reuterin. This review provides an overview of the data that support the role of probiotic properties, and the antimicrobial and immunomodulatory effects of some L. reuteri strains in relation to their metabolite production profile on the amelioration of many diseases and disorders. Although the results discussed in this paper are strain dependent, they show that L. reuteri, by different mechanisms and various metabolites, may control body weight and obesity, improve insulin sensitivity and glucose homeostasis, increase gut integrity and immunomodulation, and attenuate hepatic disorders. Gut microbiota modulation by ingesting probiotic L. reuteri strains could be a promising preventative and therapeutic approach against many diseases and disorders.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539452
| |
Collapse
|
200
|
Wang T, Shi C, Wang S, Zhang Y, Wang S, Ismael M, Zhang J, Wang X, Lü X. Protective Effects of Companilactobacillus crustorum MN047 against Dextran Sulfate Sodium-Induced Ulcerative Colitis: A Fecal Microbiota Transplantation Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1547-1561. [PMID: 35077172 DOI: 10.1021/acs.jafc.1c07316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gut microbiota dysbiosis could aggravate the development of ulcerative colitis (UC). Companilactobacillus crustorum MN047 (CCMN) is a potential gut microbiota-regulating probiotic that could produce multiple novel bacteriocins. In this study, fecal microbiota transplantation (FMT) was used to verify whether CCMN could alleviate dextran sulfate sodium-induced UC by regulating gut microbiota. Results showed that both CCMN and FMT ameliorated the symptoms of UC, including attenuating the increased disease activity index, shortened colon length, gut barrier damage, and inflammation. Briefly, CCMN and FMT upregulated the expressions of MUCs and tight junctions, downregulated the expressions of proinflammatory cytokines and chemokines, increased fecal short-chain fatty acids, and lowered serum lipopolysaccharides, which were associated with the regulation of gut microbiota (e.g., increased Akkermansia, Blautia, and Ruminococcus levels). These results demonstrated that CCMN could ameliorate UC by modulating gut microbiota and inhibiting the TLR4/NF-κB pathway. Therefore, CCMN could be considered as a potential probiotic supplement for ameliorating UC.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Caihong Shi
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuxuan Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yu Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Shuang Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Mohamedelfaieh Ismael
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Jing Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| |
Collapse
|