151
|
Abstract
The folding pathway of the heavy meromyosin subfragment (HMM) of a skeletal muscle myosin has been investigated by in vitro synthesis of the myosin heavy and light chains in a coupled transcription and translation assay. Analysis of the nascent translation products for folding intermediates has identified a major intermediate that contains all three myosin subunits in a complex with the eukaryotic cytosolic chaperonin. Partially folded HMM is released from this complex in an ATP-dependent manner. However, biochemical and functional assays reveal incomplete folding of the myosin motor domain. Dimerization of myosin heavy chains and association of heavy and light chains are accomplished early in the folding pathway. To test for other factors necessary for the complete folding of myosin, a cytoplasmic extract was prepared from myotubes produced by a mouse myogenic cell line. This extract dramatically enhanced the folding of HMM, suggesting a role for muscle-specific factors in the folding pathway. We conclude that the molecular assembly of myosin is mediated by the eukaryotic cytosolic chaperonin with folding of the motor domain as the slow step in the pathway.
Collapse
Affiliation(s)
- R Srikakulam
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
152
|
Karata K, Inagawa T, Wilkinson AJ, Tatsuta T, Ogura T. Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH. J Biol Chem 1999; 274:26225-32. [PMID: 10473576 DOI: 10.1074/jbc.274.37.26225] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli FtsH is an ATP-dependent protease that belongs to the AAA protein family. The second region of homology (SRH) is a highly conserved motif among AAA family members and distinguishes these proteins in part from the wider family of Walker-type ATPases. Despite its conservation across the AAA family of proteins, very little is known concerning the function of the SRH. To address this question, we introduced point mutations systematically into the SRH of FtsH and studied the activities of the mutant proteins. Highly conserved amino acid residues within the SRH were found to be critical for the function of FtsH, with mutations at these positions leading to decreased or abolished ATPase activity. The effects of the mutations on the protease activity of FtsH correlated strikingly with their effects on the ATPase activity. The ATPase-deficient SRH mutants underwent an ATP-induced conformational change similar to wild type FtsH, suggesting an important role for the SRH in ATP hydrolysis but not ATP binding. Analysis of the data in the light of the crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein suggests a plausible mechanism of ATP hydrolysis by the AAA ATPases, which invokes an intermolecular catalytic role for the SRH.
Collapse
Affiliation(s)
- K Karata
- Department of Molecular Cell Biology, Institute of Molecular Embryology, Kumamoto University School of Medicine, Kumamoto 862-0976, Japan
| | | | | | | | | |
Collapse
|
153
|
Furch M, Fujita-Becker S, Geeves MA, Holmes KC, Manstein DJ. Role of the salt-bridge between switch-1 and switch-2 of Dictyostelium myosin. J Mol Biol 1999; 290:797-809. [PMID: 10395830 DOI: 10.1006/jmbi.1999.2921] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motifs N2 and N3, also referred to as switch-1 and switch-2, form part of the active site of molecular motors such as myosins and kinesins. In the case of myosin, N3 is thought to act as a gamma-phosphate sensor and moves almost 6 A relative to N2 during the catalysed turnover of ATP, opening and closing the active site surrounding the gamma-phosphate. The closed form seems to be necessary for hydrolysis and is stabilised by the formation of a salt-bridge between an arginine residue in N2 and a glutamate residue in N3. We examined the role of this salt-bridge in Dictyostelium discoideum myosin. Myosin motor domains with mutations E459R or R238E, that block salt-bridge formation, show defects in nucleotide-binding, reduced rates of ATP hydrolysis and a tenfold reduction in actin affinity. Inversion of the salt-bridge in double-mutant M765-IS eliminates most of the defects observed for the single mutants. With the exception of a 2,500-fold higher KMvalue for ATP, the double-mutant displayed enzymatic and functional properties very similar to those of the wild-type protein. Our results reveal that, independent of its orientation, the salt-bridge is required to support efficient ATP hydrolysis, normal communication between different functional regions of the myosin head, and motor function.
Collapse
Affiliation(s)
- M Furch
- Max-Planck-Institut für Medizinische Forschung, Jahnstr. 29, Heidelberg, D-69120, Germany
| | | | | | | | | |
Collapse
|
154
|
Kirchner J, Woehlke G, Schliwa M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Biol Chem 1999; 380:915-21. [PMID: 10494842 DOI: 10.1515/bc.1999.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kinesins are microtubule motors that use the energy derived from the hydrolysis of ATP to move unidirectionally along microtubules. The founding member of this still growing superfamily is conventional kinesin, a dimeric motor that moves processively towards the plus end of microtubules. Within the family of conventional kinesins, two groups can be distinguished to date, one derived from animal species, and one originating from filamentous fungi. So far no conventional kinesin has been reported from plant cells. Fungal and animal conventional kinesins differ in several respects, both in terms of their primary sequence and their physiological properties. Thus all fungal conventional kinesins move at velocities that are 4-5 times higher than those of animal conventional kinesins, and all of them appear to lack associated light chains. Both groups of motors are characterized by a number of group-specific sequence features which are considered here with respect to their functional importance. Animal and fungal conventional kinesins also share a number of sequence characteristics which point to common principles of motor function. The overall domain organization is remarkably similar. A C-terminal sequence motif common to all kinesins, which constitutes the only region of high homology outside the motor domain, suggests common principles of cargo association in both groups of motors. Consideration of the differences of, and similarities between, fungal and animal kinesins offers novel possibilities for experimentation (e. g., by constructing chimeras) that can be expected to contribute to our understanding of motor function.
Collapse
Affiliation(s)
- J Kirchner
- Adolf-Butenandt-Institut, Zellbiologie, Universität München, Germany
| | | | | |
Collapse
|
155
|
Rodnina MV, Savelsbergh A, Wintermeyer W. Dynamics of translation on the ribosome: molecular mechanics of translocation. FEMS Microbiol Rev 1999; 23:317-33. [PMID: 10371036 DOI: 10.1111/j.1574-6976.1999.tb00402.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The translocation step of protein elongation entails a large-scale rearrangement of the tRNA-mRNA-ribosome complex. Recent years have seen major advances in unraveling the mechanism of the process on the molecular level. A number of intermediate states have been defined and, in part, characterized structurally. The article reviews the recent evidence that suggests a dynamic role of the ribosome and its ligands during translocation. The focus is on dynamic aspects of tRNA movement and on the role of elongation factor G and GTP hydrolysis in translocation catalysis. The significance of structural changes of the ribosome induced by elongation factor G as well the role of ribosomal RNA are addressed. A functional model of elongation factor G as a motor protein driven by GTP hydrolysis is discussed.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University of Witten/Herdecke, Germany
| | | | | |
Collapse
|
156
|
Smirnova E, Shurland DL, Newman-Smith ED, Pishvaee B, van der Bliek AM. A model for dynamin self-assembly based on binding between three different protein domains. J Biol Chem 1999; 274:14942-7. [PMID: 10329695 DOI: 10.1074/jbc.274.21.14942] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamin is a 100-kDa GTPase that assembles into multimeric spirals at the necks of budding clathrin-coated vesicles. We describe three different intramolecular binding interactions that may account for the process of dynamin self-assembly. The first binding interaction is the dimerization of a 100-amino acid segment in the C-terminal half of dynamin. We call this segment the assembly domain, because it appears to be critical for multimerization. The second binding interaction occurs between the assembly domain and the N-terminal GTPase domain. The strength of this interaction is controlled by the nucleotide-bound state of the GTPase domain, as shown with mutations in GTP binding motifs and in vitro binding experiments. The third binding interaction occurs between the assembly domain and a segment that we call the middle domain. This is the segment between the N-terminal GTPase domain and the pleckstrin homology domain. The three different binding interactions suggest a model in which dynamin molecules first dimerize. The dimers are then linked into a chain by a second binding reaction. The third binding interaction might connect adjacent rungs of the spiral.
Collapse
Affiliation(s)
- E Smirnova
- Department of Biological Chemistry, University of California, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
157
|
Houdusse A, Kalabokis VN, Himmel D, Szent-Györgyi AG, Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 1999; 97:459-70. [PMID: 10338210 DOI: 10.1016/s0092-8674(00)80756-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a proteolytic subfragment from scallop striated muscle myosin, complexed with MgADP, has been solved at 2.5 A resolution and reveals an unusual conformation of the myosin head. The converter and the lever arm are in very different positions from those in either the pre-power stroke or near-rigor state structures; moreover, in contrast to these structures, the SH1 helix is seen to be unwound. Here we compare the overall organization of the myosin head in these three states and show how the conformation of three flexible "joints" produces rearrangements of the four major subdomains in the myosin head with different bound nucleotides. We believe that this novel structure represents one of the prehydrolysis ("ATP") states of the contractile cycle in which the myosin heads stay detached from actin.
Collapse
Affiliation(s)
- A Houdusse
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | | | |
Collapse
|
158
|
Sack S, Kull FJ, Mandelkow E. Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:1-11. [PMID: 10231357 DOI: 10.1046/j.1432-1327.1999.00341.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microtubule-dependent motors of the kinesin family convert the energy from ATP hydrolysis into mechanical work in order to transport vesicles and organelles along microtubules. The motor domains of several kinesins have been solved by X-ray diffraction, but the conformational changes associated with force development remain unknown. Here we describe conformational properties of kinesin that might be related to the mechanism of action. First, we have evaluated the conformational variability among all known kinesin structures and find they are concentrated in six areas, most of which are functionally important either in microtubule binding or in linking the core motor to the stalk. Secondly, we show that there is an important difference between kinesins when compared with myosins or GTPases (with which kinesin motor domains bear structural and catalytic similarities); in the diphosphate-state (with bound ADP), all kinesins show a 'tight' nucleotide-binding pocket, comparable with myosin or GTPases in the triphosphate state, whose nucleotide-binding pockets become open, or 'loose', following nucleotide hydrolysis. Thus, kinesin-ADP appears to be in a tense state, resembling that observed in myosin-ATP or p21ras-GTP.
Collapse
Affiliation(s)
- S Sack
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | |
Collapse
|
159
|
Abstract
The MutL DNA mismatch repair protein has recently been shown to be an ATPase and to belong to an emerging ATPase superfamily that includes DNA topoisomerase II and Hsp90. We report here the crystal structures of a 40 kDa ATPase fragment of E. coli MutL (LN40) complexed with a substrate analog, ADPnP, and with product ADP. More than 60 residues that are disordered in the apoprotein structure become ordered and contribute to both ADPnP binding and dimerization of LN40. Hydrolysis of ATP, signified by subsequent release of the gamma-phosphate, releases two key loops and leads to dissociation of the LN40 dimer. Dimerization of the LN40 region is required for and is the rate-limiting step in ATP hydrolysis by MutL. The ATPase activity of MutL is stimulated by DNA and likely acts as a switch to coordinate DNA mismatch repair.
Collapse
Affiliation(s)
- C Ban
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
160
|
Abstract
The function of the GTPase dynamin has been discussed for several years. It clearly plays a role in vesicle budding, but, despite recent insights, precisely how it functions in this process is still a matter of debate. In addition, it is now clear that dynamin is a member of a large protein family, present in a variety of cellular locations where members apparently perform a range of functions. This article describes current understanding of the structure and function of the various dynamin family members.
Collapse
Affiliation(s)
- A M van der Bliek
- Dept of Biological Chemistry, UCLA School of Medicine 90095-1737, USA.
| |
Collapse
|
161
|
Park S, Ajtai K, Burghardt TP. Inhibition of myosin ATPase by metal fluoride complexes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:127-40. [PMID: 10082941 DOI: 10.1016/s0167-4838(98)00262-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Magnesium (Mg2+) is the physiological divalent cation stabilizing nucleotide or nucleotide analog in the active site of myosin subfragment 1 (S1). In the presence of fluoride, Mg2+ and MgADP form a complex that traps the active site of S1 and inhibits myosin ATPase. The ATPase inactivation rate of the magnesium trapped S1 is comparable but smaller than the other known gamma-phosphate analogs at 1.2 M-1 s-1 with 1 mM MgCl2. The observed molar ratio of Mg/S1 in this complex of 1.58 suggests that magnesium occupies the gamma-phosphate position in the ATP binding site of S1 (S1-MgADP-MgFx). The stability of S1-MgADP-MgFx at 4 degrees C was studied by EDTA chase experiments but decomposition was not observed. However, removal of excess fluoride causes full recovery of the K+-EDTA ATPase activity indicating that free fluoride is necessary for maintaining a stable trap and suggesting that the magnesium fluoride complex is bonded to the bridging oxygen of beta-phosphate more loosely than the other known phosphate analogs. The structure of S1 in S1-MgADP-MgFx was studied with near ultraviolet circular dichroism, total tryptophan fluorescence, and tryptophan residue 510 quenching measurements. These data suggest that S1-MgADP-MgFx resembles the M**.ADP.Pi steady-state intermediate of myosin ATPase. Gallium fluoride was found to compete with MgFx for the gamma-phosphate site in S1-MgADP-MgFx. The ionic radius and coordination geometry of magnesium, gallium and other known gamma-phosphate analogs were compared and identified as important in determining which myosin ATPase intermediate the analog mimics.
Collapse
Affiliation(s)
- S Park
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First Street Southwest, Rochester, MN 55905, USA
| | | | | |
Collapse
|
162
|
Abstract
Several X-ray crystal structures of kinesin motor domains have recently been solved at high resolution ( approximately 0.2-0.3 nm), in both their monomeric and dimeric states. They show the folding of the polypeptide chain and different arrangements of subunits in the dimer. In addition, cryo-electron microscopy and image reconstruction have revealed microtubules decorated with kinesin at intermediate resolution ( approximately 2 nm), showing the distribution and orientation of kinesin heads on the microtubule surface. The comparison of the X-ray and electron microscopy results yields a model of how monomeric motor domains bind to the microtubule but the binding of dimeric motors, their stoichiometry, or the influence of nucleotides remains a matter of debate.
Collapse
Affiliation(s)
- E Mandelkow
- Max-Planck-Unit for Structural Molecular Biology Notkestrasse 85 D-22607 Hamburg Germany.
| | | |
Collapse
|
163
|
Belmont LD, Orlova A, Drubin DG, Egelman EH. A change in actin conformation associated with filament instability after Pi release. Proc Natl Acad Sci U S A 1999; 96:29-34. [PMID: 9874766 PMCID: PMC15087 DOI: 10.1073/pnas.96.1.29] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of actin to both polymerize into filaments and to depolymerize permits the rapid rearrangements of actin structures that are essential for actin's function in most cellular processes. Filament polarity and dynamic properties are conferred by the hydrolysis of ATP on actin filaments. Release of inorganic phosphate (Pi) from filaments after ATP hydrolysis promotes depolymerization. We identify a yeast actin mutation, Val-159 to Asn, which uncouples Pi release from the conformational change that results in filament destabilization. Three-dimensional reconstructions of electron micrographs reveal a conformational difference between ADP-Pi filaments and ADP filaments and show that ADP V159N filaments resemble ADP-Pi wild-type filaments. Crystal structures of mammalian beta-actin in which the nucleotide binding cleft is in the "open" and "closed" states can be used to model actin filaments in the ADP and ADP-Pi conformations, respectively. We propose that these two conformations of G-actin may be related to two functional states of F-actin.
Collapse
Affiliation(s)
- L D Belmont
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | |
Collapse
|
164
|
Roopnarine O, Leinwand LA. Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Biophys J 1998; 75:3023-30. [PMID: 9826622 PMCID: PMC1299973 DOI: 10.1016/s0006-3495(98)77743-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have studied the actin-activated ATPase activities of three mutations in the motor domain of the myosin heavy chain that cause familial hypertrophic cardiomyopathy. We placed these mutations in rodent alpha-cardiac myosin to establish the relevance of using rodent systems for studying the biochemical mechanisms of the human disease. We also wished to determine whether the biochemical defects in these mutant alleles correlate with the severity of the clinical phenotype of patients with these alleles. We expressed histidine-tagged rat cardiac myosin motor domains along with rat ventricular light chain 1 in mammalian COS cells. Those myosins studied were wild-type alpha-cardiac and three mutations in the alpha-cardiac myosin heavy chain head (Arg249Gln, Arg403Gln, and Val606Met). These mutations in human beta-cardiac myosin heavy chain have predominantly moderate, severe, and mild clinical phenotypes, respectively. The crystal structure of the skeletal myosin head shows that the Arg249Gln mutation is near the ATP-binding site and the Arg403Gln and Val606Met mutations are in the actin-binding region. Expressed histidine-tagged alpha-motor domains retain physiological ATPase properties similar to those derived from cardiac tissue. All three myosin mutants show defects in the ATPase activity, with the degree of enzymatic impairment of the mutant myosins correlated with the clinical phenotype of patients with the disease caused by the corresponding mutation.
Collapse
Affiliation(s)
- O Roopnarine
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | |
Collapse
|
165
|
Abstract
MutL and its homologs are essential for DNA mismatch repair. Mutations in genes encoding human homologs of MutL cause multiorgan cancer susceptibility. We have determined the crystal structure of a 40 kDa N-terminal fragment of E. coli MutL that retains all of the conserved residues in the MutL family. The structure of MutL is homologous to that of an ATPase-containing fragment of DNA gyrase. We have demonstrated that MutL binds and hydrolyzes ATP to ADP and Pi. Mutations in the MutL family that cause deficiencies in DNA mismatch repair and a predisposition to cancer mainly occur in the putative ATP-binding site. We provide evidence that the flexible, yet conserved, loops surrounding this ATP-binding site undergo conformational changes upon ATP hydrolysis thereby modulating interactions between MutL and other components of the repair machinery.
Collapse
Affiliation(s)
- C Ban
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
166
|
Langford GM, Molyneaux BJ. Myosin V in the brain: mutations lead to neurological defects. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:1-8. [PMID: 9795099 DOI: 10.1016/s0165-0173(98)00020-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- G M Langford
- Department of Biological Sciences, Dartmouth College, 6044 Gilman Laboratory, Hanover, NH 03755-3576, USA.
| | | |
Collapse
|
167
|
Tabb JS, Molyneaux BJ, Cohen DL, Kuznetsov SA, Langford GM. Transport of ER vesicles on actin filaments in neurons by myosin V. J Cell Sci 1998; 111 ( Pt 21):3221-34. [PMID: 9763516 DOI: 10.1242/jcs.111.21.3221] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isolate endoplasmic reticulum (ER) from extruded axoplasm and to reconstitute its movement in vitro. The isolated ER vesicles moved on exogenous actin filaments adsorbed to coverslips in an ATP-dependent manner without the addition of soluble factors. Therefore myosin was tightly bound and not extracted during isolation. These vesicles were identified as smooth ER by use of an antibody to an ER-resident protein, ERcalcistorin/protein disulfide isomerase (EcaSt/PDI). Furthermore, an antibody to squid myosin V was used in immunogold EM studies to show that myosin V localized to these vesicles. The antibody was generated to a squid brain myosin (p196) that was classified as myosin V based on comparisons of amino acid sequences of tryptic peptides of this myosin with those of other known members of the myosin V family. Dual labeling with the squid myosin V antibody and a kinesin heavy chain antibody showed that the two motors colocalized on the same vesicles. Finally, antibody inhibition experiments were performed with two myosin V-specific antibodies to show that myosin V motor activity is required for transport of vesicles on actin filaments in axoplasm. One antibody was made to a peptide in the globular tail domain and the other to the globular head fragment of myosin V. Both antibodies inhibited vesicle transport on actin filaments by greater than 90% compared to controls. These studies provide the first direct evidence that ER vesicles are transported on actin filaments by myosin V. These data confirm the role of actin filaments in fast axonal transport and provide support for the dual filament model of vesicle transport.
Collapse
Affiliation(s)
- J S Tabb
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755-3576, USA
| | | | | | | | | |
Collapse
|
168
|
Kull FJ, Vale RD, Fletterick RJ. The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil 1998; 19:877-86. [PMID: 10047987 DOI: 10.1023/a:1005489907021] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies have shown surprising structural and functional similarities between the motor domains of kinesin and myosin. Common features have also been described for motor proteins and G proteins. Despite these similarities, the evolutionary relationships between these proteins, even among the motor proteins, has not been obvious, since the topological connectivities of the core overlapping structural elements in these transducing proteins are not identical to one another. Using secondary structure topology, comparison of functional domains and active site chemistry as criteria for relatedness, we propose a set of rules for determining potential evolutionary relationships between proteins showing little or no sequence identity. These rules were used to explore the evolutionary relationship between kinesin and myosin, as well as between motor proteins and other phosphate-loop (P-loop) containing nucleotide-binding proteins. We demonstrate that kinesin and myosin show significant chemical conservations within and outside of the active site, and present an evolutionary scheme that produce their respective topologies from a hypothetical ancestral protein. We also show that, when compared with various other P-loop-containing proteins, the cytoskeletal motors are most similar to G proteins with respect to topology and active site chemistry. We conclude that kinesin and myosin, and possibly G proteins, are probably directly related via divergent evolution from a common core nucleotide-binding motif, and describe the likely topology of this ancestor. These proteins use similar chemical and physical mechanisms to both sense the state of the nucleotide bound in the active site, and then transmit these changes to protein partners. The different topologies can be accounted for by unique genetic insertions that add to the edge of a progenitor protein structure and do not disrupt the hydrophobic core.
Collapse
Affiliation(s)
- F J Kull
- Howard Hughes Medical Institute, University of California, San Francisco, USA.
| | | | | |
Collapse
|
169
|
Dominguez R, Freyzon Y, Trybus KM, Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 1998; 94:559-71. [PMID: 9741621 DOI: 10.1016/s0092-8674(00)81598-6] [Citation(s) in RCA: 508] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The crystal structures of an expressed vertebrate smooth muscle myosin motor domain (MD) and a motor domain-essential light chain (ELC) complex (MDE), both with a transition state analog (MgADP x AIF4-) in the active site, have been determined to 2.9 A and 3.5 A resolution, respectively. The MDE structure with an ATP analog (MgADP x BeFx) was also determined to 3.6 A resolution. In all three structures, a domain of the C-terminal region, the "converter," is rotated approximately 70 degrees from that in nucleotide-free skeletal subfragment 1 (S1). We have found that the MDE-BeFx and MDE-AIF4- structures are almost identical, consistent with the fact that they both bind weakly to actin. A comparison of the lever arm positions in MDE-AIF4- and in nucleotide-free skeletal S1 shows that a potential displacement of approximately 10 nm can be achieved during the power stroke.
Collapse
Affiliation(s)
- R Dominguez
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | |
Collapse
|
170
|
Abstract
The kinesin motor protein family members move along microtubules with characteristic polarity. Chimeric motors containing the stalk and neck of the minus-end-directed motor, Ncd, fused to the motor domain of plus-end-directed kinesin were analyzed. The Ncd stalk and neck reversed kinesin motor polarity, but mutation of the Ncd neck reverted the chimeric motor to plus-end movement. Thus, residues or regions contributing to motor polarity must be present in both the Ncd neck and the kinesin motor core. The neck-motor junction was critical for Ncd minus-end movement; attachment of the neck to the stalk may also play a role.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
171
|
Dorner C, Ciossek T, Müller S, Møller PH, Ullrich A, Lammers R. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 1998; 273:20267-75. [PMID: 9685376 DOI: 10.1074/jbc.273.32.20267] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinesins comprise a large family of microtubule-based motor proteins, of which individual members mediate specific types of motile processes. Using the ezrin domain of the protein-tyrosine phosphatase PTPD1 as a bait in a yeast two-hybrid screen, we identified a new kinesin-like protein, KIF1C. KIF1C represents a member of the Unc104 subfamily of kinesin-like proteins that are involved in the transport of mitochondria or synaptic vesicles in axons. Like its homologues, the 1103-amino acid protein KIF1C consists of an amino-terminal motor domain followed by a U104 domain and probably binds to target membranes through carboxyl-terminal sequences. Interestingly, KIF1C was tyrosine-phosphorylated after peroxovanadate stimulation when overexpressed in 293 or NIH3T3 fibroblasts or in native C2C12 cells. Using immunofluorescence, we found that KIF1C is localized primarily at the Golgi apparatus. In brefeldin A-treated cells, the Golgi membranes and KIF1C redistributed to the endoplasmic reticulum (ER). This brefeldin A-induced flow of Golgi membranes into the ER was inhibited in cells transiently overexpressing catalytically inactive KIF1C. In conclusion, our data suggest an involvement of tyrosine phosphorylation in the regulation of the Golgi to ER membrane flow and describe a new kinesin-like motor protein responsible for this transport.
Collapse
Affiliation(s)
- C Dorner
- Department of Molecular Biology, Max-Planck Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
172
|
Wriggers W, Schulten K. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing. Biophys J 1998; 75:646-61. [PMID: 9675167 PMCID: PMC1299740 DOI: 10.1016/s0006-3495(98)77555-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The structure of an ATP-bound kinesin motor domain is predicted and conformational differences relative to the known ADP-bound form of the protein are identified. The differences should be attributed to force-producing ATP hydrolysis. Candidate ATP-kinesin structures were obtained by simulated annealing, by placement of the ATP gamma-phosphate in the crystal structure of ADP-kinesin, and by interatomic distance constraints. The choice of such constraints was based on mutagenesis experiments, which identified Gly-234 as one of the gamma-phosphate sensing residues, as well as on structural comparison of kinesin with the homologous nonclaret disjunctional (ncd) motor and with G-proteins. The prediction of nucleotide-dependent conformational differences reveals an allosteric coupling between the nucleotide pocket and the microtubule binding site of kinesin. Interactions of ATP with Gly-234 and Ser-202 trigger structural changes in the motor domain, the nucleotide acting as an allosteric modifier of kinesin's microtubule-binding state. We suggest that in the presence of ATP kinesin's putative microtubule binding regions L8, L12, L11, alpha4, alpha5, and alpha6 form a face complementary in shape to the microtubule surface; in the presence of ADP, the microtubule binding face adopts a more convex shape relative to the ATP-bound form, reducing kinesin's affinity to the microtubule.
Collapse
Affiliation(s)
- W Wriggers
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | | |
Collapse
|
173
|
Affiliation(s)
- K Kinosita
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | | | |
Collapse
|
174
|
Affiliation(s)
- S M Block
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| |
Collapse
|
175
|
Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:213-320. [PMID: 9522458 DOI: 10.1016/s0074-7696(08)60419-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromaffin cell has been used as a model to characterize releasable components present in secretory granules and to understand the cellular mechanisms involved in catecholamine release. Recent physiological and biochemical developments have revealed that molecular mechanisms implicated in granule trafficking are conserved in all eukaryotic species: a rise in intracellular calcium triggers regulated exocytosis, and highly conserved proteins are essential elements which interact with each other to form a molecular scaffolding, ensuring the docking of granules at the plasma membrane, and perhaps membrane fusion. However, the mechanisms regulating secretion are multiple and cell specific. They operate at different steps along the life of a granule, from the time of granule biosynthesis up to the last step of exocytosis. With regard to cell specificity, noradrenaline and adrenaline chromaffin cells display different receptor and signaling characteristics that may be important to exocytosis. Characterization of regulated exocytosis in chromaffin cells provides not only fundamental knowledge of neurosecretion but is of additional importance as these cells are used for therapeutic purposes.
Collapse
Affiliation(s)
- D Aunis
- Biologie de la Communication Cellulaire, Unité INSERM U-338, Strasbourg, France
| |
Collapse
|
176
|
Romberg L, Pierce DW, Vale RD. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol 1998; 140:1407-16. [PMID: 9508773 PMCID: PMC2132664 DOI: 10.1083/jcb.140.6.1407] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Revised: 01/07/1998] [Indexed: 02/06/2023] Open
Abstract
Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin-GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.
Collapse
Affiliation(s)
- L Romberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
177
|
Abstract
Smooth muscle cells are capable of generating forces comparable to those of skeletal muscle cells but with far less myosin, the molecular motor that powers muscle contraction. This unique capability may be inherent to the myosin molecule. We have directly characterized the molecular mechanics of smooth muscle myosin using new technologies developed to measure the forces generated by these proteins. The data help explain the differences in force and velocity in whole smooth and skeletal muscles.
Collapse
Affiliation(s)
- W H Guilford
- University of Vermont, Department of Molecular Physiology and Biophysics, College of Medicine, Burlington 05405, USA
| | | |
Collapse
|
178
|
Muresan V, Abramson T, Lyass A, Winter D, Porro E, Hong F, Chamberlin NL, Schnapp BJ. KIF3C and KIF3A form a novel neuronal heteromeric kinesin that associates with membrane vesicles. Mol Biol Cell 1998; 9:637-52. [PMID: 9487132 PMCID: PMC25292 DOI: 10.1091/mbc.9.3.637] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have cloned from rat brain the cDNA encoding an 89,828-Da kinesin-related polypeptide KIF3C that is enriched in brain, retina, and lung. Immunocytochemistry of hippocampal neurons in culture shows that KIF3C is localized to cell bodies, dendrites, and, in lesser amounts, to axons. In subcellular fractionation experiments, KIF3C cofractionates with a distinct population of membrane vesicles. Native KIF3C binds to microtubules in a kinesin-like, nucleotide-dependent manner. KIF3C is most similar to mouse KIF3B and KIF3A, two closely related kinesins that are normally present as a heteromer. In sucrose density gradients, KIF3C sediments at two distinct densities, suggesting that it may be part of two different multimolecular complexes. Immunoprecipitation experiments show that KIF3C is in part associated with KIF3A, but not with KIF3B. Unlike KIF3B, a significant portion of KIF3C is not associated with KIF3A. Consistent with these biochemical properties, the distribution of KIF3C in the CNS has both similarities and differences compared with KIF3A and KIF3B. These results suggest that KIF3C is a vesicle-associated motor that functions both independently and in association with KIF3A.
Collapse
Affiliation(s)
- V Muresan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Alonso MC, van Damme J, Vandekerckhove J, Cross RA. Proteolytic mapping of kinesin/ncd-microtubule interface: nucleotide-dependent conformational changes in the loops L8 and L12. EMBO J 1998; 17:945-51. [PMID: 9463373 PMCID: PMC1170444 DOI: 10.1093/emboj/17.4.945] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We used a battery of proteases to probe the footprint of microtubules on kinesin and ncd, and to search for nucleotide-induced conformational changes in these two oppositely-directed yet homologous molecular motors. Proteolytic cleavage sites were identified by N-terminal microsequencing and electrospray mass spectrometry, and then mapped onto the recently-determined atomic structures of ncd and kinesin. In both kinesin and ncd, microtubule binding shields a set of cleavage sites within or immediately flanking the loops L12, L8 and L11 and, in ncd, the loop L2. Even in the absence of microtubules, exchange of ADP for AMPPNP in the motor active site drives conformational shifts involving these loops. In ncd, a chymotryptic cleavage at Y622 in L12 is protected in the strong binding AMPPNP conformation, but cleaved in the weak binding ADP conformation. In kinesin, a thermolysin cleavage at L154 in L8 is protected in AMPPNP but cleaved in ADP. We speculate that ATP turnover in the active site governs microtubule binding by cyclically retracting or displaying the loops L8 and L12. Curiously, the retracted state of the loops corresponds to microtubule strong binding. Conceivably, nucleotide-dependent display of loops works as a reversible block on strong binding.
Collapse
Affiliation(s)
- M C Alonso
- Molecular Motors Group, Marie Curie Research Institute, Surrey, UK
| | | | | | | |
Collapse
|
180
|
Kozielski F, Arnal I, Wade RH. A model of the microtubule-kinesin complex based on electron cryomicroscopy and X-ray crystallography. Curr Biol 1998; 8:191-8. [PMID: 9501981 DOI: 10.1016/s0960-9822(98)70083-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Motor proteins of the kinesin superfamily play an organising role in eukaryotic cells and participate in many crucial phases of the cell cycle by moving along microtubules and thereby changing the position of attached organelles. In their 'standard' form, kinesin motors are elongated heterotetrameric protein complexes composed of two identical heavy chains and two light chains; the central regions of the heavy chains intertwine, forming a coiled coil, with the globular 'heads' of the microtubule-interacting motor domains at one end. In order to understand how kinesin motors interact with and move along microtubules, we have combined electron cryomicroscopy and X-ray crystallographic data to build a model of the complex. RESULTS Using electron cryomicroscopy and image reconstruction, we have obtained three-dimensional maps of complexes of kinesin motor domain dimers and microtubules. Motor domain dimers interact one to one with tubulin dimers, with one head attached--lying along the microtubule protofilament--and the other unattached--pointing sideways and upwards towards the microtubule plus end. Using currently available crystallographic data, we have built an atomic resolution model of the motor domain dimer, which can be successfully 'docked' into the three-dimensional framework of the maps from electron cryomicroscopy. CONCLUSIONS Docking the atomic resolution model into the map of the microtubule-kinesin complex with the coiled coil of kinesin pointing away from the microtubule surface shows that the attached and unattached heads have similar relative positions on the microtubule and in the crystal. Three regions of the attached head appear likely to interact with the microtubule.
Collapse
Affiliation(s)
- F Kozielski
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale (CEA et CNRS), Grenoble, France
| | | | | |
Collapse
|
181
|
Hirokawa N, Noda Y, Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 1998; 10:60-73. [PMID: 9484596 DOI: 10.1016/s0955-0674(98)80087-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microtubule-associated motor proteins of the kinesin and dynein superfamilies play important roles in cellular mechanisms such as organelle transport and mitosis. Identification and characterization of new family members (in particular KIFC2, 16 new KIFs, XKlp2 and XKCM1 of the kinesin superfamily, and DHC2 and DHC3 of the dynein superfamily) and further characterization of known family members have improved our understanding of these cellular mechanisms. Sophisticated biophysical and structural analyses of monomeric and dimeric motor proteins have contributed to elucidating the mechanisms behind motor protein motility and polarity.
Collapse
Affiliation(s)
- N Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Japan.
| | | | | |
Collapse
|
182
|
Abstract
The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review, we first describe progress toward understanding the mechanism of dynamic instability of pure tubulin and then discuss the function and regulation of microtubule dynamic instability in living cells.
Collapse
Affiliation(s)
- A Desai
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
183
|
Abstract
The kinesin superfamily comprises a large and structurally diverse group of microtubule-based motor proteins that produce a variety of force-generating activities within cells. This review addresses how the structures of kinesin proteins provide clues as to their biological functions and motile properties. We discuss structural features common to all kinesin motors, as well as specialized features that enable subfamilies of related motors to carry out specialized activities. We also discuss how the kinesin motor domain uses chemical energy from ATP hydrolysis to move along microtubules.
Collapse
Affiliation(s)
- R D Vale
- Howard Hughes Medical Institute, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
184
|
Kozielski F, Sack S, Marx A, Thormählen M, Schönbrunn E, Biou V, Thompson A, Mandelkow EM, Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 1997; 91:985-94. [PMID: 9428521 DOI: 10.1016/s0092-8674(00)80489-4] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dimeric form of the kinesin motor and neck domain from rat brain with bound ADP has been solved by X-ray crystallography. The two heads of the dimer are connected via a coiled-coil alpha-helical interaction of their necks. They are broadly similar to one another; differences are most apparent in the head-neck junction and in a moderate reorientation of the neck helices in order to adopt to the coiled-coil conformation. The heads show a rotational symmetry (approximately 120 degrees) about an axis close to that of the coiled-coil. This arrangement is unexpected since it is not compatible with the microtubule lattice. In this arrangement, the two heads of a kinesin dimer could not have equivalent interactions with microtubules.
Collapse
Affiliation(s)
- F Kozielski
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
RhoA, RhoB and RhoC are three closely related proteins, and are members of the Ras super-family of small GTP-binding proteins. They bind and hydrolyse GTP, and are active in the GTP-bound form. Their activity in cells is regulated by exchange factors, GTPase activating proteins and guanine nucleotide dissociation inhibitors. Several potential downstream target proteins for Rho proteins have been identified, including protein kinases and adaptor-type proteins. Rho proteins regulate actin cytoskeletal organization; for example in fibroblasts RhoA induces the formation of actin stress fibres. Rho proteins are also involved in regulating secretion, pinocytosis and clathrin coat-mediated endocytosis, transcriptional activation and stimulation of DNA synthesis. In addition, there is evidence that Rho proteins can play a role in cell transformation, and thus Rho proteins or components of their signalling pathways may be potential targets for the development of anti-cancer therapies.
Collapse
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research, London, U.K
| |
Collapse
|
186
|
Abstract
Kinesin is a molecular-scale walking machine. New analyses of its mechanism indicate that each step along a microtubule consumes one ATP molecule, and that the binding and cleavage of ATP precede detachment of the molecule's 'feet'. Directional walking ensues if ATP processing occurs preferentially on one foot.
Collapse
Affiliation(s)
- R A Cross
- Molecular Motors Group, Marie Curie Research Institute, Oxted, Surrey, UK
| |
Collapse
|
187
|
Case RB, Pierce DW, Hom-Booher N, Hart CL, Vale RD. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 1997; 90:959-66. [PMID: 9298907 DOI: 10.1016/s0092-8674(00)80360-8] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Members of the kinesin superfamily share a similar motor catalytic domain yet move either toward the plus end (e.g., conventional kinesin) or the minus end (e.g., Ncd) of microtubules. The structural features that determine the polarity of movement have remained enigmatic. Here, we show that kinesin's catalytic domain (316 residues) in a dimeric construct (560 residues) can be replaced with the catalytic domain of Ncd and that the resultant motor moves in the kinesin direction. We also demonstrate that this chimera does not move processively over many tubulin subunits, which is similar to Ncd but differs from the highly processive motion of conventional kinesin. These findings reveal that the catalytic domain contributes to motor processivity but does not control the polarity of movement. We propose that a region adjacent to the catalytic domain serves as a mechanical transducer that determines directionality.
Collapse
Affiliation(s)
- R B Case
- Department of Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
188
|
Koonce MP. Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J Biol Chem 1997; 272:19714-8. [PMID: 9242627 DOI: 10.1074/jbc.272.32.19714] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182-3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended alpha-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.
Collapse
Affiliation(s)
- M P Koonce
- Division of Molecular Medicine, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA.
| |
Collapse
|
189
|
Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Thérond PP. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 1997; 90:225-34. [PMID: 9244297 DOI: 10.1016/s0092-8674(00)80331-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hedgehog gene of Drosophila melanogaster encodes a secreted protein (HH) that plays a vital role in cell fate and patterning. Here we describe a protein complex that mediates signal transduction from HH. The complex includes the products of at least three genes: fused (a protein-serine/threonine kinase), cubitus interruptus (a transcription factor), and costal2 (a kinesin-like protein). The complex binds with great affinity to microtubules in the absence of HH, but binding is reversed by HH. Mutations in the extracatalytic domain of FU abolish both the biological function of the protein and its association with COS2. We conclude that the complex may facilitate signaling from HH by governing access of the cubitus interruptus protein to the nucleus.
Collapse
Affiliation(s)
- D J Robbins
- G.W. Hooper Foundation and Department of Microbiology and Immunology, University of California, San Francisco, 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
190
|
Sisson JC, Ho KS, Suyama K, Scott MP. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 1997; 90:235-45. [PMID: 9244298 DOI: 10.1016/s0092-8674(00)80332-3] [Citation(s) in RCA: 286] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Hedgehog (HH) signaling proteins control cell fates and patterning during animal development. In Drosophila, HH protein induces the transcription of target genes encoding secondary signals such as DPP and WG proteins by opposing a repressor system. The repressors include Costal2, protein kinase A, and the HH receptor Patched. Like HH, the kinase Fused and the transcription factor Cubitus interruptus (CI) act positively upon targets. Here we show that costal2 encodes a kinesin-related protein that accumulates preferentially in cells capable of responding to HH. COS2 is cytoplasmic and binds microtubules. We find that CI associates with COS2 in a large protein complex, suggesting that COS2 directly controls the activity of CI.
Collapse
Affiliation(s)
- J C Sisson
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427, USA
| | | | | | | |
Collapse
|
191
|
Abstract
Kinesin and myosin are motor proteins that share a common structural core and bind to microtubules and actin filaments, respectively. While the actomyosin interface has been well studied, the location of the microtubule-binding site on kinesin has not been identified. Using alanine-scanning mutagenesis, we have found that microtubule-interacting kinesin residues are located in three loops that cluster in a patch on the motor surface. The critical residues are primarily positively charged, which is consistent with a primarily electrostatic interaction with the negatively charged tubulin molecule. The core of the microtubule-binding interface resides in a highly conserved loop and helix (L12/alpha5) that corresponds topologically to the major actin-binding domain of myosin. Thus, kinesin and myosin have developed distinct polymer-binding domains in a similar region with respect to their common catalytic cores.
Collapse
Affiliation(s)
- G Woehlke
- Howard Hughes Medical Institute, Department of Pharmacology, University of California, San Francisco, 94143, USA
| | | | | | | | | | | |
Collapse
|
192
|
Gulick AM, Rayment I. Structural studies on myosin II: communication between distant protein domains. Bioessays 1997; 19:561-9. [PMID: 9230689 DOI: 10.1002/bies.950190707] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding how chemical energy is converted into directed movement is a fundamental problem in biology. In higher organisms this is accomplished through the hydrolysis of ATP by three families of motor proteins: myosin, dynein and kinesin. The most abundant of these is myosin, which operates against actin and plays a central role in muscle contraction. As summarized here, great progress has been made towards understanding the molecular basis of movement through the determination of the three-dimensional structures of myosin and actin and through the establishment of systems for site-directed mutagenesis of this motor protein. It now appears that the generation of movement is coupled to ATP hydrolysis by a series of domain movements within myosin.
Collapse
Affiliation(s)
- A M Gulick
- Institute for Enzyme Research, University of Wisconsin, Madison 53705, USA
| | | |
Collapse
|
193
|
Abstract
The structures of the oppositely directed microtubule motors kinesin and ncd have been solved to atomic resolution. The two structures are very similar and are also homologous to myosin. Myosins and kinesins differ kinetically but, tantalizingly, cryoelectron microscopy has recently revealed that both structures may tilt during ADP release. Such evidence suggests that the two motor families use common structural mechanisms.
Collapse
Affiliation(s)
- L A Amos
- MRC Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge, CB2 2QH, UK.
| | | |
Collapse
|
194
|
|