151
|
Peschiaroli A, Figliola R, Coltella L, Strom A, Valentini A, D'Agnano I, Maione R. MyoD induces apoptosis in the absence of RB function through a p21(WAF1)-dependent re-localization of cyclin/cdk complexes to the nucleus. Oncogene 2002; 21:8114-27. [PMID: 12444547 DOI: 10.1038/sj.onc.1206010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 08/30/2002] [Accepted: 09/03/2002] [Indexed: 01/12/2023]
Abstract
During differentiation of skeletal myoblasts, MyoD promotes growth arrest through the induction of the cdk inhibitor p21 and the accumulation of hypophosphorylated RB protein. Myoblasts lacking RB function fail to accomplish full differentiation and undergo apoptosis. Here we show that exogenous MyoD induces apoptosis in several cell backgrounds sharing RB inactivation. This process is associated with increased levels of cell cycle-driving proteins and aberrant cell cycle progression. The inability of MyoD to induce apoptosis in a p21-null background, highlights a requirement of p21 in RB-regulated apoptosis during myogenesis. This pro-apoptotic function of p21 cannot be exerted by simple p21 over-expression, but requires the co-operation of MyoD. We also suggest that the essential aspect of p21 activity involved in such a process is related to its ability to induce the nuclear accumulation and aberrant activity of cyclin/cdk complexes. These results establish a novel link between MyoD, p21 and RB during myogenesis, providing new insights into the antagonism between muscle differentiation and loss of RB function.
Collapse
Affiliation(s)
- Angelo Peschiaroli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
152
|
Garner AP, Weston CR, Todd DE, Balmanno K, Cook SJ. Delta MEKK3:ER* activation induces a p38 alpha/beta 2-dependent cell cycle arrest at the G2 checkpoint. Oncogene 2002; 21:8089-104. [PMID: 12444545 DOI: 10.1038/sj.onc.1206000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2002] [Revised: 08/27/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
Whilst many studies have examined the role of the MAP Kinases in regulating the G1-->S transition, much less is known about the function of these pathways in regulating other cell cycle transitions. Stimulation of the conditional mutant Delta MEKK3:ER* in asynchronous hamster (CCl39) and rat (Rat-1) fibroblasts resulted in the strong activation of endogenous JNK and p38 but only a weak activation of ERK. Activation of Delta MEKK3:ER* inhibited cell proliferation through a combination of an initial G1 and G2 cell cycle arrest, followed by a delayed onset of apoptosis. When cells were synchronized in S phase with aphidicolin and then released, activation of Delta MEKK3:ER* resulted in the up-regulation of p21(CIP1) and a pronounced inhibition of cyclin A/CDK2 and cyclin B1/CDK1 kinase activity. Analysis of mitotic figures indicated that cells failed to enter mitosis, arresting late in G2. Delta MEKK3:ER*-mediated CDK inhibition and G2 arrest did not absolutely require p21(CIP1), since both events were observed in Rat-1 cells in which p21(CIP1) is transcriptionally silenced due to promoter methylation. Rather, CDK inhibition was associated with a down-regulation of cyclin A and B1 expression. Finally, application of the p38 inhibitor SB203580 partially restored cyclin B associated kinase activity and allowed cells to proceed through mitosis into the next G1 phase, suggesting that activation of the p38 alpha/beta 2 pathway can promote a G2 cell cycle arrest.
Collapse
Affiliation(s)
- Andrew P Garner
- Inositide Laboratory, Signalling Programme, The Babraham Institute, Babraham Hall, Cambridge CB2 4AT, UK
| | | | | | | | | |
Collapse
|
153
|
Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N, Kimura M, Okano Y, Saya H. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 2002; 7:1173-82. [PMID: 12390251 DOI: 10.1046/j.1365-2443.2002.00592.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Various mitotic events are controlled by Cdc2-cyclin B and other mitotic kinases. Aurora/Ipl1-related mitotic kinases were proved to play key roles in mitotic progression in diverse lower organisms. Aurora-A is a mammalian counterpart of aurora/Ipl1-related kinases and is thought to be a potential oncogene. However, the regulation of aurora-A activation and the commitment of aurora-A in the progression of G2-M phase are largely unknown in mammalian cells. RESULTS We demonstrated that aurora-A is activated depending on the activation of Cdc2-cyclin B in mammalian cells. Since Cdc2-cyclin B does not directly phosphorylate aurora-A, indirect pathways such as the inhibition of PP1 by Cdc2-cyclin B may act for the activation of aurora-A kinase. Microinjection of anti-aurora-A antibodies into HeLa cells at late G2 phase caused a significant delay in mitotic entry. Furthermore, aurora-A activation at G2-M transition was inhibited by DNA damage, and the over-expression of aurora-A induced the abrogation of the DNA damage-induced G2 checkpoint. CONCLUSIONS Aurora-A is activated downstream of Cdc2-cyclin B and plays crucial roles in proper mitotic entry and G2 checkpoint control. Dysregulation of aurora-A induces abnormal G2-M transition in mammalian cells and may lead to chromosome instability, which results in the development and progression of malignant tumours.
Collapse
Affiliation(s)
- Tomotoshi Marumoto
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Andrecht S, Kolbus A, Hartenstein B, Angel P, Schorpp-Kistner M. Cell cycle promoting activity of JunB through cyclin A activation. J Biol Chem 2002; 277:35961-8. [PMID: 12121977 DOI: 10.1074/jbc.m202847200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
JunB, a major component of the AP-1 transcription factor, is known to act antagonistically to c-Jun in transcriptional regulation and is proposed to be a negative regulator of cell proliferation. Employing fibroblasts derived from E9.5 junB(-/-) mouse embryos we provide evidence for a novel cell cycle promoting role of JunB. Despite a normal proliferation rate, primary and immortalized junB(-/-) fibroblasts exhibited an altered cell cycle profile, which was characterized by an increase in the population of S-phase cells, while that of cells in G(2)/M-phase was diminished. This delay in G(2)/M-transition is caused by impaired cyclin A-CDK2 and cyclin B-CDC2 kinase activities and counteracts the accelerated S-phase entry. Cells lacking JunB show severely delayed kinetics of cyclin A mRNA expression due to the loss of proper transcriptional activation mediated via binding of JunB to the CRE element in the cyclin A promoter. Upon reintroduction of an inducible JunB-ER(TM) expression vector the cell cycle distribution and the cell cycle-associated cyclin A-CDK2 kinase activity could be restored. Thus, cyclin A is a direct transcriptional target of JunB driving cell proliferation.
Collapse
Affiliation(s)
- Sven Andrecht
- Division for Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
155
|
Hagting A, Den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J Cell Biol 2002; 157:1125-37. [PMID: 12070128 PMCID: PMC2173548 DOI: 10.1083/jcb.200111001] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied. Furthermore, reimposing the checkpoint rapidly inactivates securin destruction. Thus, securin and cyclin B1 destruction have very similar properties. Moreover, we find that both cyclin B1 and securin have to be degraded before sister chromatids can separate. A mutant form of securin that lacks its destruction box (D-box) is still degraded in mitosis, but now this is in anaphase. This destruction requires a KEN box in the NH2 terminus of securin and may indicate the time in mitosis when ubiquitination switches from APCCdc20 to APCCdh1. Lastly, a D-box mutant of securin that cannot be degraded in metaphase inhibits sister chromatid separation, generating a cut phenotype where one cell can inherit both copies of the genome. Thus, defects in securin destruction alter chromosome segregation and may be relevant to the development of aneuploidy in cancer.
Collapse
Affiliation(s)
- Anja Hagting
- Wellcome/Cancer Research UK Institute, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | |
Collapse
|
156
|
Abstract
Cells in early stages of chromosome condensation are very vulnerable, and many stresses that do not damage DNA induce a transient return to late G2 phase. Such stresses include the drug-induced disassembly of microtubules, which triggers an ATM-independent G2 checkpoint pathway involving a novel ubiquitin ligase.
Collapse
Affiliation(s)
- Alexei Mikhailov
- Division of Molecular Medicine, Wadsworth Center, New York State Dept. of Health, Albany, NY 12201-0509, USA
| | | |
Collapse
|
157
|
Neitzel H, Neumann LM, Schindler D, Wirges A, Tönnies H, Trimborn M, Krebsova A, Richter R, Sperling K. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am J Hum Genet 2002; 70:1015-22. [PMID: 11857108 PMCID: PMC379095 DOI: 10.1086/339518] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2001] [Accepted: 01/07/2002] [Indexed: 11/03/2022] Open
Abstract
We report a novel autosomal recessive disorder characterized by premature chromosome condensation in the early G2 phase. It was observed in two siblings, from consanguineous parents, affected with microcephaly, growth retardation, and severe mental retardation. Chromosome analysis showed a high frequency of prophase-like cells (>10%) in lymphocytes, fibroblasts, and lymphoblast cell lines with an otherwise normal karyotype. (3)H-thymidine-pulse labeling and autoradiography showed that, 2 h after the pulse, 28%-35% of the prophases were labeled, compared with 9%-11% in healthy control subjects, indicating that the phenomenon is due to premature chromosome condensation. Flow cytometry studies demonstrate that the entire cell cycle is not prolonged, compared with that in healthy control subjects, and compartment sizes did not differ from those in healthy control subjects. No increased reaction of the cells to X-irradiation or treatments with the clastogens bleomycin and mitomycin C was observed, in contrast to results in the cell-cycle mutants ataxia telangiectasia and Fanconi anemia. The rates of sister chromatid exchanges and the mitotic nondisjunction rates were inconspicuous. Premature entry of cells into mitosis suggests that a gene involved in cell-cycle regulation is mutated in these siblings.
Collapse
Affiliation(s)
- Heidemarie Neitzel
- Institute of Human Genetics, Charité, Campus Virchow, Humboldt University-Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Hiromura K, Pippin JW, Blonski MJ, Roberts JM, Shankland SJ. The subcellular localization of cyclin dependent kinase 2 determines the fate of mesangial cells: role in apoptosis and proliferation. Oncogene 2002; 21:1750-8. [PMID: 11896606 DOI: 10.1038/sj.onc.1205238] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 11/30/2001] [Accepted: 12/06/2001] [Indexed: 01/01/2023]
Abstract
Apoptosis is closely linked to proliferation. In this study we showed that inducing apoptosis in mouse mesangial cells with ultraviolet (UV) irradiation was associated with increased cyclin A-cyclin dependent kinase (CDK) 2 activity. Inhibiting CDK2 activity with Roscovitine or dominant negative mutant reduced apoptosis. Because apoptosis typically begins in the cytoplasm, we tested the hypothesis that the subcellular localization of CDK2 determines the proliferative or apoptotic fate of the cell. Our results showed that cyclin A-CDK2 was nuclear in proliferating cells. However, inducing apoptosis in proliferating cells with UV irradiation was associated with a decrease in nuclear cyclin A and CDK2 protein levels. This coincided with an increase in protein and kinase activity for cyclin A-CDK2 in the cytoplasm. Translocation of cyclin A-CDK2 also occurred in p53-/- mesangial cells. Finally, we showed that caspase-3 activity was significantly reduced by inhibiting CDK2 activity with Roscovitine. In summary, our results show that apoptosis is associated with an increase in cytoplasmic cyclin A-CDK2 activity, which is p53 independent and upstream of caspase-3. We propose that the subcellular localization of CDK2 determines the proliferative or apoptotic fate of the cell.
Collapse
Affiliation(s)
- K Hiromura
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, WA 98195-6521, USA
| | | | | | | | | |
Collapse
|
159
|
Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Jessus C, Bréchot C, Sobczak-Thépot J. Centrosome overduplication, increased ploidy and transformation in cells expressing endoplasmic reticulum-associated cyclin A2. Oncogene 2002; 21:1493-500. [PMID: 11896577 DOI: 10.1038/sj.onc.1205215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/21/2001] [Accepted: 11/28/2001] [Indexed: 11/09/2022]
Abstract
Cyclin A2 is predominantly, but not exclusively, localized in the nucleus from G1/S transition onwards. It is degraded when cells enter mitosis after nuclear envelope breakdown. We previously showed that a fusion protein (S2A) between the hepatitis B virus (HBV) surface antigen protein and a non-degradable fragment of human cyclin A2 (Delta152) resides in the endoplasmic reticulum membranes, escapes degradation and transforms normal rat fibroblasts. The present study investigates whether cytoplasmic cyclin A2 may play a role in oncogenesis. We show that the sequestration of non-degradable cyclin A2-Delta152 by a cellular ER targeting domain (PRL-A2) leads to cell transformation when coexpressed with activated Ha-ras. REF52 cells constitutively expressing PRL-A2 are found to have a high incidence of multinucleate giant cells, polyploidy and abnormal centrosome numbers, giving rise to the nucleation of multipolar spindles. Injection of these cells into athymic nude mice causes tumors, even in the absence of a cooperating Ha-ras oncogene. These results demonstrate that, independently of any viral context, an intracellular redistribution of non-degradable cyclin A2 is capable of deregulating the normal cell cycle to the point where it promotes aneuploidy and cancer.
Collapse
Affiliation(s)
- Jamila Faivre
- INSERM U370, Institut Pasteur/Necker, Faculté de Médecine Necker, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
160
|
Xia H, Qi H, Li Y, Pei J, Barton J, Blackstad M, Xu T, Tao W. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene 2002; 21:1233-41. [PMID: 11850843 DOI: 10.1038/sj.onc.1205174] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Revised: 11/02/2001] [Accepted: 11/07/2001] [Indexed: 11/09/2022]
Abstract
The LATS1 gene is a mammalian member of the novel lats tumor suppressor family. Both lats mosaic flies and LATS1 deficient mice spontaneously develop tumors. Our previous studies have shown that inactivation of Drosophila lats leads to up-regulation of cyclin A in the fly, and the human LATS1 protein associates with CDC2 in early mitosis in HeLa cells, suggesting that the lats gene family may negatively regulate cell proliferation by modulating CDC2/Cyclin A activity. We demonstrate here that transduction of the human breast cancer cell MCF-7 with recombinant LATS1 adenovirus (Ad-LATS1), but not with EGFP adenovirus (Ad-EGFP), inhibits in vitro cell proliferation. Ectopic expression of LATS1 in MCF-7 cells specifically down-regulates Cyclin A and Cyclin B protein levels and dramatically reduces CDC2 kinase activity, leading to a G2/M blockade. Furthermore, Ad-LATS1 suppresses anchorage-independent growth of MCF-7 cells in soft agar and tumor formation in athymic nude mice. We also demonstrate that ectopic expression of LATS1 in MCF-7 cells and human lung cancer cell H460 up-regulates the level of BAX proteins and induces apoptosis. Finally, we show that LATS1 kinase activity is required for its ability to inhibit cell growth and induce apoptosis. The results indicate that the LATS1 tumor suppressor may play an important role in the control of human tumor development and that LATS1 suppresses tumorigenesis by negatively regulating cell proliferation and modulating cell survival.
Collapse
Affiliation(s)
- Hong Xia
- Stem Cell Institute, Cancer Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Op De Beeck A, Sobczak-Thepot J, Sirma H, Bourgain F, Brechot C, Caillet-Fauquet P. NS1- and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21(cip1). J Virol 2001; 75:11071-8. [PMID: 11602746 PMCID: PMC114686 DOI: 10.1128/jvi.75.22.11071-11078.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonstructural protein NS1 of the autonomous parvovirus minute virus of mice (MVMp) is cytolytic when expressed in transformed cells. Before causing extensive cell lysis, NS1 induces a multistep cell cycle arrest in G(1), S, and G(2), well reproducing the arrest in S and G(2) observed upon MVMp infection. In this work we investigated the molecular mechanisms of growth inhibition mediated by NS1 and MVMp. We show that NS1-mediated cell cycle arrest correlates with the accumulation of the cyclin-dependent kinase (Cdk) inhibitor p21(cip1) associated with both the cyclin A/Cdk and cyclin E/Cdk2 complexes but in the absence of accumulation of p53, a potent transcriptional activator of p21(cip1). By comparison, MVMp infection induced the accumulation of both p53 and p21(cip1). We demonstrate that p53 plays an essential role in the MVMp-induced cell cycle arrest in both S and G(2) by using p53 wild-type (+/+) and null (-/-) cells. Furthermore, only the G(2) arrest was abrogated in p21(cip1) null (-/-) cells. Together these results show that the MVMp-induced cell cycle arrest in S is p53 dependent but p21(cip1) independent, whereas the arrest in G(2) depends on both p53 and its downstream effector p21(cip1). They also suggest that induction of p21(cip1) by the viral protein NS1 arrests cells in G(2) through inhibition of cyclin A-dependent kinase activity.
Collapse
Affiliation(s)
- A Op De Beeck
- Unité Hépatite C, CNRS-FRE 2369, Institut de Biologie de Lille et Institut Pasteur de Lille, 59021 Lille cedex, France.
| | | | | | | | | | | |
Collapse
|
162
|
Kaufmann H, Marone R, Olayioye MA, Bailey JE, Fussenegger M. Characterization of an N-terminally truncated cyclin A isoform in mammalian cells. J Biol Chem 2001; 276:29987-93. [PMID: 11402021 DOI: 10.1074/jbc.m005452200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclin A is essential for regulating key transitions in the eukaryotic cell cycle including initiation of DNA replication and mitosis. This paper describes the characterization of a truncated cyclin A isoform (cyclin A(t)) in vitro in cultured mammalian cells and in mouse tissues. The presence of cyclin A(t) in specific cell types correlates with the ability of cell extracts to cleave in vitro translated cyclin A. In CHO-K1 cells, cyclin A processing to cyclin A(t) occurs at the N terminus; it does not involve the 26 S proteasome, nor could it be induced by conditional overexpression of the cyclin-dependent kinase inhibitor p27(Kip1). However, high cell densities lead to increased cyclin A(t) levels. Unlike full-length cyclin A, cyclin A(t) localizes to the cytoplasm, where it binds Cdk2. The data suggest that cyclin A processing occurs in vivo to yield an N-terminally truncated isoform by an unknown mechanism that is regulated by cell density. Differential subcellular localization may provide the first insights into the physiological role of cyclin A(t).
Collapse
Affiliation(s)
- H Kaufmann
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Hönggerberg HPT, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
163
|
Abstract
The product of the MDM2 gene interacts with and regulates a number of proteins, in particular the tumor suppressor p53. The MDM2 protein is likely to be extensively modified in vivo, and such modification may regulate its functions in cells. We identified a potential cyclin-dependent kinase (CDK) site in murine MDM2, and found the protein to be efficiently phosphorylated in vitro by cyclin A-containing complexes (cyclin A-CDK2 and cyclin A-CDK1), but MDM2 was either weakly or not phosphorylated by other cyclin-containing complexes. Moreover, a peptide containing a putative MDM2 cyclin recognition motif specifically inhibited phosphorylation by cyclin A-CDK2. The site of cyclin A-CDK2 phosphorylation was identified as Thr-216 by two-dimensional phosphopeptide mapping and mutational analysis. Phosphorylation of MDM2 at Thr-216 both weakens its interaction with p53 and modestly augments its binding to p19(ARF). Interestingly, an MDM2-specific monoclonal antibody, SMP14, cannot recognize MDM2 phosphorylated at Thr-216. Changes in SMP14 reactivity of MDM2 in staged cell extracts indicate that phosphorylation of MDM2 at Thr-216 in vivo is most prevalent at the onset of S phase when cyclin A first becomes detectable.
Collapse
Affiliation(s)
- T Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
164
|
Jacobs HW, Keidel E, Lehner CF. A complex degradation signal in Cyclin A required for G1 arrest, and a C-terminal region for mitosis. EMBO J 2001; 20:2376-86. [PMID: 11350926 PMCID: PMC125467 DOI: 10.1093/emboj/20.10.2376] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.
Collapse
Affiliation(s)
| | - Eva Keidel
- Department of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany
Present address: Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| | - Christian F. Lehner
- Department of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany
Present address: Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany Corresponding author e-mail:
| |
Collapse
|
165
|
Schüchner S, Nemethova M, Belisova A, Klucky B, Holnthoner W, Wintersberger E. Transactivation of murine cyclin A by polyomavirus large and small T antigens. J Virol 2001; 75:6498-507. [PMID: 11413317 PMCID: PMC114373 DOI: 10.1128/jvi.75.14.6498-6507.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyomavirus large and small T antigens cooperate in the induction of S phase in serum-deprived Swiss 3T3 cells. While the large T antigen is able to induce S phase-specific enzymes, we have recently shown that both T antigens contribute to the production of the cyclins E and A and that the small T antigen is essential for the induction of cyclin A-dependent cdk2 activity (S. Schüchner and E. Wintersberger, J. Virol. 73:9266-9273, 1999). Here we present our attempts to elucidate the mechanisms by which the large and the small T antigens transactivate the murine cyclin A gene. Using Swiss 3T3 cells carrying the T antigens and various mutants thereof under the hormone-inducible mouse mammary tumor virus promoter, as well as transient-cotransfection experiments with the T antigens and cyclin A promoter-luciferase reporter constructs, we found the following. The large T antigen activates the cyclin A promoter via two transcription factor binding sites, a cyclic AMP responsive element (CRE), and the major negative regulatory site called CDE-CHR. While an intact binding site for pocket proteins is required for the function of this T antigen at the CDE-CHR, its activity at the CRE is largely independent thereof. In contrast, an intact J domain and an intact zinc finger are required at both sites. The small T antigen also appears to have an influence on the cyclin A promoter through the CRE as well as the CDE-CHR. For this an interaction with protein phosphatase 2A is essential; mutation of the J domain does not totally eliminate but greatly reduces the transactivating ability.
Collapse
Affiliation(s)
- S Schüchner
- Department of Medical Biochemistry, Division of Molecular Biology, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
166
|
Goda T, Funakoshi M, Suhara H, Nishimoto T, Kobayashi H. The N-terminal helix of Xenopus cyclins A and B contributes to binding specificity of the cyclin-CDK complex. J Biol Chem 2001; 276:15415-22. [PMID: 11278837 DOI: 10.1074/jbc.m011101200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic cyclins A and B contain a conserved N-terminal helix upstream of the cyclin box fold that contributes to a significant interface between cyclin and cyclin-dependent kinase (CDK). To address its contribution on cyclin-CDK interaction, we have constructed mutants in conserved residues of the N-terminal helix of Xenopus cyclins B2 and A1. The mutants showed altered binding affinities to Cdc2 and/or Cdk2. We also screened for mutations in the C-terminal lobe of CDK that exhibited different binding affinities for the cyclin-CDK complex. These mutations were at residues that interact with the cyclin N-terminal helix motif. The cyclin N-terminal helix mutations have a significant effect on the interaction between the cyclin-CDK complex and specific substrates, Xenopus Cdc6 and Cdc25C. These results suggest that the N-terminal helix of mitotic cyclins is required for specific interactions with CDKs and that to interact with CDK, specific substrates Cdc6 and Cdc25C require the CDK to be associated with a cyclin. The interaction between the cyclin N-terminal helix and the CDK C-terminal lobe may contribute to binding specificity of the cyclin-CDK complex.
Collapse
Affiliation(s)
- T Goda
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
167
|
S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol 2001. [PMID: 11283255 DOI: 10.1128/mcb.21.8.27-55-2766.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cyclin-dependent kinase 2 (Cdk2) is essential for initiation of DNA synthesis in higher eukaryotes. Biochemical studies in Xenopus egg extracts and microinjection studies in human cells have suggested an additional function for Cdk2 in activation of Cdk1 and entry into mitosis. To further examine the role of Cdk2 in human cells, we generated stable clones with inducible expression of wild-type and dominant-negative forms of the enzyme (Cdk2-wt and Cdk2-dn, respectively). Both exogenous proteins associated efficiently with endogenous cyclins. Cdk2-wt had no apparent effect on the cell division cycle, whereas Cdk2-dn inhibited progression through several distinct stages. Cdk2-dn induction could arrest cells at the G1/S transition, as previously observed in transient expression studies. However, under normal culture conditions, Cdk2-dn induction primarily arrested cells with S and G2/M DNA contents. Several observations suggested that the latter cells were in G2 phase, prior to the onset of mitosis: these cells contained uncondensed chromosomes, low levels of cyclin B-associated kinase activity, and high levels of tyrosine-phosphorylated Cdk1. Furthermore, Cdk2-dn did not delay progression through mitosis upon release of cells from a nocodazole block. Although the G2 arrest imposed by Cdk2-dn was similar to that imposed by the DNA damage checkpoint, the former was distinguished by its resistance to caffeine. These findings provide evidence for essential functions of Cdk2 during S and G2 phases of the mammalian cell cycle.
Collapse
|
168
|
Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 2001; 153:137-48. [PMID: 11285280 PMCID: PMC2185534 DOI: 10.1083/jcb.153.1.137] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2000] [Accepted: 02/07/2001] [Indexed: 11/22/2022] Open
Abstract
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.
Collapse
Affiliation(s)
- Stephan Geley
- Imperial Cancer Research Fund Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | - Edgar Kramer
- Institute for Molecular Pathology, A-1030 Vienna, Austria
| | | | - Julian Gannon
- Imperial Cancer Research Fund Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | - Tim Hunt
- Imperial Cancer Research Fund Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| |
Collapse
|
169
|
Abstract
Mitosis is controlled by the specific and timely degradation of key regulatory proteins, notably the mitotic cyclins that bind and activate the cyclin-dependent kinases (Cdks). In animal cells, cyclin A is always degraded before cyclin B, but the exact timing and the mechanism underlying this are not known. Here we use live cell imaging to show that cyclin A begins to be degraded just after nuclear envelope breakdown. This degradation requires the 26S proteasome, but is not affected by the spindle checkpoint. Neither deletion of its destruction box nor disrupting Cdk binding prevents cyclin A proteolysis, but Cdk binding is necessary for degradation at the correct time. We also show that increasing the levels of cyclin A delays chromosome alignment and sister chromatid segregation. This delay depends on the proteolysis of cyclin A and is not caused by a lag in the bipolar attachment of chromosomes to the mitotic spindle, nor is it mediated via the spindle checkpoint. Thus, proteolysis that is not under the control of the spindle checkpoint is required for chromosome alignment and anaphase.
Collapse
Affiliation(s)
- Nicole den Elzen
- Wellcome/Cancer Research Campaign Institute, Cambridge CB2 1QR, United Kingdom
| | - Jonathon Pines
- Wellcome/Cancer Research Campaign Institute, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
170
|
Hu B, Mitra J, van den Heuvel S, Enders GH. S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol 2001; 21:2755-66. [PMID: 11283255 PMCID: PMC86906 DOI: 10.1128/mcb.21.8.2755-2766.2001] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase 2 (Cdk2) is essential for initiation of DNA synthesis in higher eukaryotes. Biochemical studies in Xenopus egg extracts and microinjection studies in human cells have suggested an additional function for Cdk2 in activation of Cdk1 and entry into mitosis. To further examine the role of Cdk2 in human cells, we generated stable clones with inducible expression of wild-type and dominant-negative forms of the enzyme (Cdk2-wt and Cdk2-dn, respectively). Both exogenous proteins associated efficiently with endogenous cyclins. Cdk2-wt had no apparent effect on the cell division cycle, whereas Cdk2-dn inhibited progression through several distinct stages. Cdk2-dn induction could arrest cells at the G1/S transition, as previously observed in transient expression studies. However, under normal culture conditions, Cdk2-dn induction primarily arrested cells with S and G2/M DNA contents. Several observations suggested that the latter cells were in G2 phase, prior to the onset of mitosis: these cells contained uncondensed chromosomes, low levels of cyclin B-associated kinase activity, and high levels of tyrosine-phosphorylated Cdk1. Furthermore, Cdk2-dn did not delay progression through mitosis upon release of cells from a nocodazole block. Although the G2 arrest imposed by Cdk2-dn was similar to that imposed by the DNA damage checkpoint, the former was distinguished by its resistance to caffeine. These findings provide evidence for essential functions of Cdk2 during S and G2 phases of the mammalian cell cycle.
Collapse
Affiliation(s)
- B Hu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
171
|
Draviam VM, Orrechia S, Lowe M, Pardi R, Pines J. The localization of human cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires MEK to disassemble the Golgi apparatus. J Cell Biol 2001; 152:945-58. [PMID: 11238451 PMCID: PMC2198800 DOI: 10.1083/jcb.152.5.945] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this paper, we show that substrate specificity is primarily conferred on human mitotic cyclin-dependent kinases (CDKs) by their subcellular localization. The difference in localization of the B-type cyclin-CDKs underlies the ability of cyclin B1-CDK1 to cause chromosome condensation, reorganization of the microtubules, and disassembly of the nuclear lamina and of the Golgi apparatus, while it restricts cyclin B2-CDK1 to disassembly of the Golgi apparatus. We identify the region of cyclin B2 responsible for its localization and show that this will direct cyclin B1 to the Golgi apparatus and confer upon it the more limited properties of cyclin B2. Equally, directing cyclin B2 to the cytoplasm with the NH(2) terminus of cyclin B1 confers the broader properties of cyclin B1. Furthermore, we show that the disassembly of the Golgi apparatus initiated by either mitotic cyclin-CDK complex does not require mitogen-activated protein kinase kinase (MEK) activity.
Collapse
Affiliation(s)
- Viji Mythily Draviam
- Wellcome/Cancer Research Campaign Institute and Department of Zoology, Cambridge CB2 1QR, United Kingdom
| | - Simona Orrechia
- Vita Salute University School of Medicine, Scientific Institute San Raffaele, Milan I-20132, Italy
| | - Martin Lowe
- Division of Biochemistry, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ruggero Pardi
- Vita Salute University School of Medicine, Scientific Institute San Raffaele, Milan I-20132, Italy
| | - Jonathon Pines
- Wellcome/Cancer Research Campaign Institute and Department of Zoology, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
172
|
Audic Y, Anderson C, Bhatty R, Hartley RS. Zygotic regulation of maternal cyclin A1 and B2 mRNAs. Mol Cell Biol 2001; 21:1662-71. [PMID: 11238903 PMCID: PMC86712 DOI: 10.1128/mcb.21.5.1662-1671.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the midblastula transition, the Xenopus laevis embryonic cell cycle is remodeled from rapid alternations between S and M phases to become the complex adult cell cycle. Cell cycle remodeling occurs after zygotic transcription initiates and is accompanied by terminal downregulation of maternal cyclins A1 and B2. We report here that the disappearance of both cyclin A1 and B2 proteins is preceded by the rapid deadenylation of their mRNAs. A specific mechanism triggers this deadenylation. This mechanism depends upon discrete regions of the 3' untranslated regions and requires zygotic transcription. Together, these results strongly suggest that zygote-dependent deadenylation of cyclin A1 and cyclin B2 mRNAs is responsible for the downregulation of these proteins. These studies also raise the possibility that zygotic control of maternal cyclins plays a role in establishing the adult cell cycle.
Collapse
Affiliation(s)
- Y Audic
- Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
173
|
Goldstone S, Pavey S, Forrest A, Sinnamon J, Gabrielli B. Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene 2001; 20:921-32. [PMID: 11314027 DOI: 10.1038/sj.onc.1204177] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2000] [Revised: 12/06/2000] [Accepted: 12/15/2000] [Indexed: 11/08/2022]
Abstract
Cyclin A/cdk2 is active during S and G2 phases of the cell cycle, but its regulation and function during G2 phase is poorly understood. In this study we have examined the regulation of cyclin A/cdk2 activity during normal G2 phase progression and in genotoxin-induced G2 arrest. We show that cyclin A/cdk2 is activated in early G2 phase by a cdc25 activity. In the G2 phase checkpoint arrest initiated in response to various forms of DNA damage, the cdc25-dependent activation of both cyclin A/cdk2 and cyclin B1/cdc2 is blocked. Ectopic expression of cdc25B, but not cdc25C, in G2 phase arrested cells efficiently activated both cyclin A/cdk2 and cyclin B1/cdc2. Finally, we demonstrate that the block in cyclin A/cdk2 activation in the G2 checkpoint arrest is independent of ATM/ATR. We speculate that the ATM/ATR-independent block in G2 phase cyclin A/cdk2 activation may act as a further layer of checkpoint control, and that blocking G2 phase cyclin A/cdk2 activation contributes to the G2 phase checkpoint arrest.
Collapse
Affiliation(s)
- S Goldstone
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, and Joint Experimental Oncology Program, Department of Pathology, University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | |
Collapse
|
174
|
Zeitlin SG, Barber CM, Allis CD, Sullivan KF, Sullivan K. Differential regulation of CENP-A and histone H3 phosphorylation in G2/M. J Cell Sci 2001; 114:653-61. [PMID: 11171370 DOI: 10.1242/jcs.114.4.653] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After DNA replication, cells condense their chromosomes in order to segregate them during mitosis. The condensation process as well as subsequent segregation requires phosphorylation of histone H3 at serine 10. Histone H3 phosphorylation initiates during G2 in pericentric foci prior to H3 phosphorylation in the chromosome arms. Centromere protein A (CENP-A), a histone H3-like protein found uniquely at centromeres, contains a sequence motif similar to that around H3 Ser10, suggesting that CENP-A phosphorylation might be linked to pericentric initiation of histone H3 phosphorylation. To test this hypothesis, we generated peptide antibodies against the putative phosphorylation site of CENP-A. ELISA, western blot and immunocytochemical analyses show that CENP-A is phosphorylated at the shared motif. Simultaneous co-detection demonstrates that phosphorylation of CENP-A and histone H3 are separate events in G2/M. CENP-A phosphorylation occurs after both pericentric initiation and genome-wide stages of histone H3 phosphorylation. Quantitative immunocytochemistry reveals that CENP-A phosphorylation begins in prophase and reaches maximal levels in prometaphase. CENP-A phosphoepitope reactivity is lost during anaphase and becomes undetectable in telophase cells. Duplication of prekinetochores, detected as the doubling of CENP-A foci, occurs prior to complete histone H3 phosphorylation in G2. Mitotic phosphorylation of histone H3-family proteins shows tight spatial and temporal control, occurring in three phases: (1) pericentric H3 phosphorylation, (2) chromosome arm H3 phosphorylation and (3) CENP-A phosphorylation at kinetochores. These observations reveal new cytological landmarks characteristic of G2 progression.
Collapse
Affiliation(s)
- S G Zeitlin
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
175
|
Minemoto Y, Gannon J, Masutani M, Nakagama H, Sasagawa T, Inoue M, Masamune Y, Yamashita K. Characterization of adriamycin-induced G2 arrest and its abrogation by caffeine in FL-amnion cells with or without p53. Exp Cell Res 2001; 262:37-48. [PMID: 11120603 DOI: 10.1006/excr.2000.5072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated the effect of Adriamycin on FL-amnion (FL) cells. After treatment with the drug, the cells arrested at G2, but we did not detect an increase in the p21 levels. We established a p53-deficient derivative of these cells, in which G2 arrest also occurred after treatment with Adriamycin, suggesting that the arrest we observed in these cells is independent of the p53 pathway. Low doses of Adriamycin (100-200 ng/ml) induced G2 arrest, while late S-phase arrest was observed at high doses (500-1000 ng/ml) in both FL and p53-deficient FL cells. Accumulation of cyclin B1 was detected only in cells arrested at G2, and not in those arrested at S phase, suggesting that the S-phase checkpoint functioned efficiently even in p53-deficient FL cells. In both cell lines, caffeine-induced activation of CDC2 kinase was detected only in cells arrested at G2 and CDC2 kinase-activated cells died exhibiting features of apoptosis. CDC2 kinase activation was inhibited by cycloheximide. Furthermore, cycloheximide inhibited activation of CDK2:cyclin A, which normally precedes CDC2 kinase activation in caffeine-treated cells. These results suggest that p53 and p21 do not have special roles in the S- and G2-phase checkpoints and that CDK2:cyclin A could be the target of the G2-phase DNA damage checkpoint.
Collapse
Affiliation(s)
- Y Minemoto
- Department of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
The process of cell division, or mitosis, has fascinated biologists since its discovery in the late 1870s. Progress through mitosis is traditionally divided into stages that were defined over 100 years ago from analyses of fixed material from higher plants and animals. However, this terminology often leads to ambiguity, especially when comparing different systems. We therefore suggest that mitosis can be re-staged to reflect more accurately the molecular pathways that underlie key transitions.
Collapse
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | | |
Collapse
|
177
|
Takizawa CG, Morgan DO. Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 2000; 12:658-65. [PMID: 11063929 DOI: 10.1016/s0955-0674(00)00149-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nuclear events of mitosis are initiated when the protein kinase cyclin-B1-Cdk1 is translocated into the nucleus during prophase. Recent work has unveiled many of the mechanisms that govern the localization of cyclin-B1-Cdk1 and its regulator Cdc25C. Phosphorylation-dependent changes in the rate of nuclear import and export of these proteins help to control the onset of mitosis both in normal cells and in cells delayed before mitosis by DNA damage.
Collapse
Affiliation(s)
- C G Takizawa
- Department of Physiology, University of California, San Francisco, CA 94143-0444, USA
| | | |
Collapse
|
178
|
Keller C, Krude T. Requirement of Cyclin/Cdk2 and protein phosphatase 1 activity for chromatin assembly factor 1-dependent chromatin assembly during DNA synthesis. J Biol Chem 2000; 275:35512-21. [PMID: 10938080 DOI: 10.1074/jbc.m003073200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The influence of reversible protein phosphorylation on nucleosome assembly during DNA replication was analyzed in extracts from human cells. Inhibitor studies and add-back experiments indicated requirements of cyclin A/Cdk2, cyclin E/Cdk2, and protein phosphatase type 1 (PP1) activities for nucleosome assembly during DNA synthesis by chromatin assembly factor 1 (CAF-1). The p60 subunit of CAF-1 is a molecular target for reversible phosphorylation by cyclin/Cdk complexes and PP1 during nucleosome assembly and DNA synthesis in vitro. Purified p60 can be directly phosphorylated by purified cyclin A/Cdk2, cyclin E/Cdk2, and cyclin B1/Cdk1, but not by cyclin D/Cdk4 complexes in vitro. Cyclin B1/Cdk1 triggers hyperphosphorylation of p60 in the presence of additional cytosolic factors. CAF-1 containing hyperphosphorylated p60 prepared from mitotic cells is inactive in nucleosome assembly and becomes activated by dephosphorylation in vitro. These data provide functional evidence for a requirement of the cell cycle machinery for nucleosome assembly by CAF-1 during DNA replication.
Collapse
Affiliation(s)
- C Keller
- Wellcome/Cancer Research Campaign Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | |
Collapse
|
179
|
Simbulan-Rosenthal CM, Ly DH, Rosenthal DS, Konopka G, Luo R, Wang ZQ, Schultz PG, Smulson ME. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A 2000; 97:11274-9. [PMID: 11016956 PMCID: PMC17190 DOI: 10.1073/pnas.200285797] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is implicated in the maintenance of genomic integrity, given that inhibition or depletion of this enzyme increases genomic instability in cells exposed to genotoxic agents. We previously showed that immortalized fibroblasts derived from PARP(-/-) mice exhibit an unstable tetraploid population, and partial chromosomal gains and losses in PARP(-/-) mice and immortalized fibroblasts are accompanied by changes in the expression of p53, Rb, and c-Jun, as well as other proteins. A tetraploid population has also now been detected in primary fibroblasts derived from PARP(-/-) mice. Oligonucleotide microarray analysis was applied to characterize more comprehensively the differences in gene expression between asynchronously dividing primary fibroblasts derived from PARP(-/-) mice and their wild-type littermates. Of the 11,000 genes monitored, 91 differentially expressed genes were identified. The loss of PARP results in down-regulation of the expression of several genes involved in regulation of cell cycle progression or mitosis, DNA replication, or chromosomal processing or assembly. PARP deficiency also up-regulates genes that encode extracellular matrix or cytoskeletal proteins that are implicated in cancer initiation or progression or in normal or premature aging. These results provide insight into the mechanism by which PARP deficiency impairs mitotic function, thereby resulting in the genomic alterations and chromosomal abnormalities as well as in altered expression of genes that may contribute to genomic instability, cancer, and aging.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
When cell cultures in growth are treated with drugs that cause microtubules to disassemble, the mitotic index (MI) progressively increases as the cells accumulate in a C-mitosis. For many cell types, however, including rat kangaroo kidney PtK(1) cells, the MI does not increase during the first several hours of treatment [1-3] (Figure 1). This 'lag' implies either that cells are entering mitosis but rapidly escaping the block, or that they are delayed from entering division. To differentiate between these possibilities, we fixed PtK(1) cultures 0, 90 and 270 minutes after treatment with nocodazole, colcemid, lumi-colcemid, taxol or cytochalasin D. After 90 minutes, we found that the numbers of prophase cells in cultures treated with nocodazole or colcemid were reduced by approximately 80% relative to cultures treated with lumi-colcemid, cytochalasin D or taxol. Thus, destroying microtubules delays late G(2 )cells from entering prophase and, as the MI does not increase during this time, existing prophase cells do not enter prometaphase. When mid-prophase cells were treated with nocodazole, the majority (70%) decondensed their chromosomes and returned to G(2) before re-entering and completing prophase 3-10 hours later. Thus, a pathway exists in vertebrates that delays the G(2)-M transition when microtubules are disassembled during the terminal stages of G(2). As this pathway induces mid-prophase cells to transiently decondense their chromosomes, it is likely that it downregulates the cyclin A-cyclin-dependent kinase 2 (CDK2) complex, which is required in vertebrates for the early stages of prophase [4].
Collapse
Affiliation(s)
- C L Rieder
- Laboratory of Cell Regulation, Division of Molecular Medicine, The Wadsworth Center, New York State Department of Health, Albany, 12201-0509, USA.
| | | |
Collapse
|
181
|
Erlandsson F, Linnman C, Ekholm S, Bengtsson E, Zetterberg A. A detailed analysis of cyclin A accumulation at the G(1)/S border in normal and transformed cells. Exp Cell Res 2000; 259:86-95. [PMID: 10942581 DOI: 10.1006/excr.2000.4889] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The temporal relationship between cyclin A accumulation and the onset of DNA replication was analyzed in detail. Five untransformed and nine transformed asynchronously growing cell cultures were investigated using a triple immunofluorescence staining protocol combined with computerized evaluation of staining intensities in individual cells. The simultaneous staining of BrdU, cyclin A, and cyclin E made it possible to determine the cell cycle position of each cell investigated. Cells at the G(1)/S border were identified on the basis of cyclin E content and were further analyzed with respect to cyclin A and BrdU content. A method was developed to calculate objective thresholds defining the highest staining intensity found in the negative cells in the population. Using the thresholds we could distinguish cells with minute amounts of cyclin A and BrdU from truly negative cells. We show that the onset of cyclin A accumulation and the start of DNA replication occurs at the same time, or deviating by a few minutes at the most. We also show that cyclin A accumulates continuously during S. This study clearly demonstrates that nuclear cyclin A can be used as a reliable marker for the S and G(2) phases in both normal and transformed interphase cells.
Collapse
Affiliation(s)
- F Erlandsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
182
|
Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 2000; 406:430-5. [PMID: 10935642 DOI: 10.1038/35019108] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.
Collapse
Affiliation(s)
- D M Scolnick
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | |
Collapse
|
183
|
Winston N, Bourgain-Guglielmetti F, Ciemerych MA, Kubiak JZ, Senamaud-Beaufort C, Carrington M, Bréchot C, Sobczak-Thépot J. Early development of mouse embryos null mutant for the cyclin A2 gene occurs in the absence of maternally derived cyclin A2 gene products. Dev Biol 2000; 223:139-53. [PMID: 10864467 DOI: 10.1006/dbio.2000.9721] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Progression through the mammalian cell cycle is regulated by the sequential activation and inactivation of the cyclin-dependent kinases. In adult cells, cyclin A2-dependent kinases are required for entry into S and M phases, completion of S phase, and centrosome duplication. However, mouse embryos lacking the cyclin A2 gene nonetheless complete preimplantation development, but die soon after implantation. In this report, we investigated whether a contribution of maternal cyclin A2 mRNA and protein to early embryonic cell cycles might explain these conflicting observations. Our data show that a maternal stock of cyclin A2 mRNA is present in the oocyte and persists after fertilization until the second mitotic cell cycle, when it is degraded to undetectable levels coincident with transcriptional activation of the zygotic genome. A portion of maternally derived cyclin A2 protein is stable during the first mitosis and persists in the cytoplasm, but is completely degraded at the second mitosis. The ability of cyclin A2-null mutants to develop normally from the four-cell to the postimplantation stage in the absence of detectable cyclin A2 gene product indicates therefore that cyclin A2 is dispensable for cellular progression during the preimplantation nongrowth period of mouse embryo development.
Collapse
Affiliation(s)
- N Winston
- Unité 370, Faculté Necker, Institut National de la Santé et de la Recherche Médicale, 156 Rue de Vaugirard, Paris, 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The cis-Golgi matrix protein GM130 is phosphorylated in mitosis on serine 25. Phosphorylation inhibits binding to p115, a vesicle-tethering protein, and has been implicated as an important step in the mitotic Golgi fragmentation process. We have generated an antibody that specifically recognizes GM130 phosphorylated on serine 25, and used this antibody to study the temporal regulation of phosphorylation in vivo. GM130 is phosphorylated in prophase as the Golgi complex starts to break down, and remains phosphorylated during further breakdown and partitioning of the Golgi fragments in metaphase and anaphase. In telophase, GM130 is dephosphorylated as the Golgi fragments start to reassemble. The timing of phosphorylation and dephosphorylation correlates with the dissociation and reassociation of p115 with Golgi membranes. GM130 phosphorylation and p115 dissociation appear specific to mitosis, since they are not induced by several drugs that trigger nonmitotic Golgi fragmentation. The phosphatase responsible for dephosphorylation of mitotic GM130 was identified as PP2A. The active species was identified as heterotrimeric phosphatase containing the Balpha regulatory subunit, suggesting a role for this isoform in the reassembly of mitotic Golgi membranes at the end of mitosis.
Collapse
Affiliation(s)
- M Lowe
- Cell Biology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom.
| | | | | |
Collapse
|
185
|
Fulka J, Tesarík J, Loi P, Moor RM. Manipulating the Human Embryo: Cell Cycle Checkpoint Controls. ACTA ACUST UNITED AC 2000; 2:1-7. [PMID: 16218841 DOI: 10.1089/15204550050145085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Micromanipulation techniques are widely used in assisted human reproduction and it is logical to assume that successes with recent animal cloning will invariably raise the question of human cloning along with its related ethical problems. However, it is often overlooked that even in animals many complications are still associated with this technique. The purpose of our article is to highlight and discuss some of these problems in the context of the eventual use of nuclear and/or cytoplasmic transfer techniques in assisted human reproduction.
Collapse
Affiliation(s)
- J Fulka
- Institute of Animal Production, POB 1, ISCARE, CS-104 01 Prague 10, Czech Republic.
| | | | | | | |
Collapse
|
186
|
Ohtoshi A, Maeda T, Higashi H, Ashizawa S, Hatakeyama M. Human p55(CDC)/Cdc20 associates with cyclin A and is phosphorylated by the cyclin A-Cdk2 complex. Biochem Biophys Res Commun 2000; 268:530-4. [PMID: 10679238 DOI: 10.1006/bbrc.2000.2167] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The initiation of anaphase and exit from mitosis depend on the activation of the anaphase-promoting complex/cyclosome (APC/C), a multicomponent, ubiquitin-protein ligase. The WD-repeat protein called p55(CDC)(Cdc20) directly binds to and activates APC/C. By using yeast two-hybrid screening, we found that cyclin A, a critical cell cycle regulator in the S and G2/M phases, specifically interacts with p55(CDC). Ectopically expressed p55(CDC) and cyclin A form a stable protein complex in mammalian cells. The p55(CDC)-cyclin A interaction occurs through the region containing the WD repeats of p55(CDC) and the region between the destruction box and the cyclin box of cyclin A. In addition to the physical interaction, p55(CDC) is phosphorylated by cyclin A-associated kinase. These findings suggest that the function of p55(CDC) is mediated or regulated by its complex formation with cyclin A.
Collapse
Affiliation(s)
- A Ohtoshi
- Department of Viral Oncology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 170-8455, Japan
| | | | | | | | | |
Collapse
|