151
|
Huang YS, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Front Immunol 2020; 11:388. [PMID: 32194572 PMCID: PMC7066259 DOI: 10.3389/fimmu.2020.00388] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
152
|
Lanser L, Kink P, Egger EM, Willenbacher W, Fuchs D, Weiss G, Kurz K. Inflammation-Induced Tryptophan Breakdown is Related With Anemia, Fatigue, and Depression in Cancer. Front Immunol 2020; 11:249. [PMID: 32153576 PMCID: PMC7047328 DOI: 10.3389/fimmu.2020.00249] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many patients with cancer suffer from anemia, depression, and an impaired quality of life (QoL). These patients often also show decreased plasma tryptophan levels and increased kynurenine concentrations in parallel with elevated concentrations of Th1 type immune activation marker neopterin. In the course of anti-tumor immune response, the pro-inflammatory cytokine interferon gamma (IFN-γ) induces both, the enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme GTP-cyclohydrolase I to form neopterin. High neopterin concentrations as well as an increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along the kynurenine pathway is related to fatigue and anemia as well as to depression and a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown might greatly contribute to the development of anemia, fatigue, and depression in cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune regulatory mechanisms, which may impair anti-tumor immune responses. In addition, tumor cells can degrade tryptophan to weaken immune responses directed against them. High IDO expression in the tumor tissue is associated with a poor prognosis of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently tested in combination with established chemotherapies and with immune checkpoint inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on the development and persistence of anemia, fatigue, and depression in cancer patients are discussed.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Patricia Kink
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Maria Egger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol Centre for Personalized Cancer Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
153
|
Microbiota composition modulates inflammation and neointimal hyperplasia after arterial angioplasty. J Vasc Surg 2020; 71:1378-1389.e3. [PMID: 32035769 DOI: 10.1016/j.jvs.2019.06.208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neointimal hyperplasia is a major contributor to restenosis after arterial interventions, but the genetic and environmental mechanisms underlying the variable propensity for neointimal hyperplasia between individuals, including the role of commensal microbiota, are not well understood. We sought to characterize how shifting the microbiome using cage sharing and bedding mixing between rats with differing restenosis phenotypes after carotid artery balloon angioplasty could alter arterial remodeling. METHODS We co-housed and mixed bedding between genetically distinct rats (Lewis [LE] and Sprague-Dawley [SD]) that harbor different commensal microbes and that are known to have different neointimal hyperplasia responses to carotid artery balloon angioplasty. Sequencing of the 16S ribosomal RNA gene was used to monitor changes in the gut microbiome. RESULTS There were significant differences in neointimal hyperplasia between non-co-housed LE and SD rats 14 days after carotid artery angioplasty (mean intima + media [I + M] area, 0.117 ± 0.014 mm2 LE vs 0.275 ± 0.021 mm2 SD; P < .001) that were diminished by co-housing. Co-housing also altered local adventitial Ki67 immunoreactivity, local accumulation of leukocytes and macrophages (total and M2), and interleukin 17A concentration 3 days after surgery in each strain. Non-co-housed SD and LE rats had microbiomes distinguished by both weighted (P = .012) and unweighted (P < .001) UniFrac beta diversity distances, although without significant differences in alpha diversity. The difference in unweighted beta diversity between the fecal microbiota of SD and LE rats was significantly reduced by co-housing. Operational taxonomic units that significantly correlated with average I + M area include Parabacteroides distasonis, Desulfovibrio, Methanosphaera, Peptococcus, and Prevotella. Finally, serum concentrations of microbe-derived metabolites hydroxyanthranilic acid and kynurenine/tryptophan ratio were significantly associated with I + M area in both rat strains independent of co-housing. CONCLUSIONS We describe a novel mechanism for how microbiome manipulations affect arterial remodeling and the inflammatory response after arterial injury. A greater understanding of the host inflammatory-microbe axis could uncover novel therapeutic targets for the prevention and treatment of restenosis.
Collapse
|
154
|
Inhibition of antigen-specific immune responses by co-application of an indoleamine 2,3-dioxygenase (IDO)-encoding vector requires antigen transgene expression focused on dendritic cells. Amino Acids 2020; 52:411-424. [PMID: 32008091 DOI: 10.1007/s00726-020-02817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
We have previously shown that particle-mediated epidermal delivery (PMED) of plasmids encoding β-galactosidase (βGal) under control of the fascin-1 promoter (pFascin-βGal) yielded selective production of the protein in skin dendritic cells (DCs), and suppressed Th2 responses in a mouse model of type I allergy by inducing Th1/Tc1 cells. However, intranasal challenge of mice immunized with pFascin-βGal induced airway hyperreactivity (AHR) and neutrophilic inflammation in the lung. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. Here we investigated the consequences of co-application of an IDO-encoding vector on the modulatory effect of DNA vaccination by PMED using pFascin-βGal in models of eosinophilic allergic and non-eosinophilic intrinsic airway inflammation. IDO-encoding plasmids and pFascin-βGal or pCMV-βGal were co-applied to abdominal skin of BALB/c mice without, before or after sensitization with βGal protein. Immune responses in the lung were analysed after intranasal provocation and airway reactivity was determined by whole body plethysmography. Co-application of pCMV-IDO with pFascin-βGal, but not pCMV-βGal inhibited the Th1/Tc1 immune response after PMED. Moreover, AHR in those mice was attenuated following intranasal challenge. Therapeutic vaccination of βGal-sensitized mice with pFascin-βGal plus pCMV-IDO slightly suppressed airway inflammation and AHR after provocation with βGal protein, while prophylactic vaccination was not effective. Altogether, our data suggest that only the combination of DC-restricted antigen and ubiquitous IDO expression attenuated asthma responses in mice, most probably by forming a tryptophan-depleted and kynurenine-enriched micromilieu known to affect neutrophils and T cells.
Collapse
|
155
|
Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Mesenchymal stromal cell based therapies for the treatment of immune disorders: recent milestones and future challenges. Expert Opin Drug Deliv 2020; 17:189-200. [PMID: 31918562 DOI: 10.1080/17425247.2020.1714587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Mesenchymal stromal cells (MSCs) present unique immunomodulatory properties that make them promising candidates for the treatment of inflammatory and immune disorders. MSC-mediated immunomodulation is a complex combination of mechanisms, in which the secretome plays a fundamental role. The plethora of bioactive molecules MSCs produce, such as indoleamine 2,3-dioxygenase (IDO) or prostaglandin E2 (PGE2), efficiently regulates innate and adaptive immunity. As a result, MSCs have been extensively employed in preclinical studies, leading to the conduction of multiple clinical trials.Areas covered: This review summarizes the effects of some of the key biomolecules in the MSC secretome and the advances in preclinical studies exploring the treatment of disorders including graft-versus-host disease (GvHD) or inflammatory bowel disease (IBD). Further, late-stage clinical trials and the first MSC-based therapies that recently obtained regulatory approval are discussed.Expert opinion: Extensive research supports the potential of MSC-based immunomodulatory therapies. However, to establish the bases for clinical translation, the future of study lies in the standardization of protocols and in the development of strategies that boost the therapeutic properties of MSCs.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
156
|
Dos Santos RO, Gonçalves-Lopes RM, Lima NF, Scopel KKG, Ferreira MU, Lalwani P. Kynurenine elevation correlates with T regulatory cells increase in acute Plasmodium vivax infection: A pilot study. Parasite Immunol 2020; 42:e12689. [PMID: 31799743 DOI: 10.1111/pim.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disease-tolerance mechanisms limit infection severity by preventing tissue damage; however, the underlying mechanisms in human malaria are still unclear. Tryptophan (TRP), an essential amino acid, is catabolized into tolerogenic metabolites, kynurenines (KYN), by indoleamine 2,3-dioxygenase 1 (IDO1), which can induce Foxp3+ T regulatory cells (Tregs). In this study, we evaluated the relationship of these metabolites with Treg-mediated tolerance induction in acute malaria infections. METHODS We performed a cross-sectional study that evaluated asymptomatic, symptomatic malaria patients and endemic control patient groups. We assessed plasmatic concentration of cytokines by ELISA. Plasmatic TRP and KYN levels were measured by HPLC. Peripheral T regulatory cells were measured and phenotyped by flow cytometry. RESULTS The KYN/TRP ratio was significantly elevated in asymptomatic and symptomatic Plasmodium infection, compared to healthy controls. Also, Th1 and Th2 cytokines were elevated in the acute phase of malaria disease. IFN-γ increase in acute phase was positively correlated with the KYN/TRP ratio and KYN elevation was positively correlated with the increase of peripheral FoxP3+ T regulatory cells. CONCLUSIONS Additional studies are needed not only to identify innate mechanisms that increase tryptophan catabolism but also the role of Tregs in controlling malaria-induced pathology and malaria tolerance by the host.
Collapse
Affiliation(s)
| | - Raquel M Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Nathália F Lima
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Kézia K G Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane (ILMD), Fiocruz Amazônia, Manaus, Brazil, Manaus, Brazil
| |
Collapse
|
157
|
Hoffmann D, Pilotte L, Stroobant V, Van den Eynde BJ. Induction of tryptophan 2,3-dioxygenase expression in human monocytic leukemia/lymphoma cell lines THP-1 and U937. Int J Tryptophan Res 2020; 12:1178646919891736. [PMID: 31903023 PMCID: PMC6933542 DOI: 10.1177/1178646919891736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages are immune cells with diverse functions in tumor development. Among other functions, they downregulate immune-mediated tumor rejection by depriving lymphocytes of nutrients. The essential amino acid tryptophan is metabolized by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase (TDO). Indoleamine 2,3-dioxygenase 1 is expressed in a large number of human tumors, and inhibitors are in development to improve immunotherapy. Tryptophan 2,3-dioxygenase was also found in human tumors and preclinical working models confirmed its immunosuppressive power. We explored a potential expression of TDO by macrophages. This enzyme could be induced in two human cell lines, THP-1 and U937, by incubation with phorbol myristate acetate, lipopolysaccharide, and interferon gamma. Phorbol-myristate-acetate-mediated induction was inhibited by rottlerin, a protein kinase C inhibitor. In contrast to these monocytic cell lines, other cell lines or fresh human monocytes isolated from peripheral blood mononuclear cells and differentiated into proinflammatory or anti-inflammatory macrophages could not be induced to express TDO. Our results suggest that TDO might play an immunosuppressive role in human monocytic leukemias but not in untransformed macrophages.
Collapse
Affiliation(s)
- Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
158
|
Sioud M. Unleashing the Therapeutic Potential of Dendritic and T Cell Therapies Using RNA Interference. Methods Mol Biol 2020; 2115:259-280. [PMID: 32006406 DOI: 10.1007/978-1-0716-0290-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic dendritic cell (DC) cancer vaccines work to boost the body's immune system to fight a cancer. Although this type of immunotherapy often leads to the activation of tumor-specfic T cells, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. Recent studies revealed a promising strategy of combining DC vaccines with small interfering RNAs (siRNAs) targeting immunosuppressive signals such as checkpoint receptors. Similarly, incorporating checkpoint siRNA blockers in adoptive T-cell therapy to amplify cytotoxic T lymphocyte responses is now being tested in the clinic. The development of the next generation of cancer immunotherapies using siRNA technology will hopefuly benefit patients with various cancer types including those who did not respond to current therapies. This review highlights the latest advances in RNA interference technology to improve the therapeutic efficacy of DC cancer vaccines and T cell therapy.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, Oslo, Norway.
| |
Collapse
|
159
|
Ogbechi J, Clanchy FI, Huang YS, Topping LM, Stone TW, Williams RO. IDO activation, inflammation and musculoskeletal disease. Exp Gerontol 2019; 131:110820. [PMID: 31884118 DOI: 10.1016/j.exger.2019.110820] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
The IDO/kynurenine pathway is now established as a major regulator of immune system function. The initial enzyme, indoleamine 2,3-dioxygenase (IDO1) is induced by IFNγ, while tryptophan-2,3-dioxygenase (TDO) is induced by corticosteroids. The pathway is therefore positioned to mediate the effects of systemic inflammation or stress-induced steroids on tissue function and its expression increases with age. Disorders of the musculoskeletal system are a common feature of ageing and many of these conditions are characterized by an inflammatory state. In inflammatory arthritis and related disorders, kynurenine protects against the development of disease, while inhibition or deletion of IDO1 increases its severity. The long-term regulation of autoimmune disorders may be influenced by the epigenetic modulation of kynurenine pathway genes, with recent data suggesting that methylation of IDO may be involved. Osteoporosis is also associated with abnormalities of the kynurenine pathway, reflected in an inversion of the ratio between blood levels of the metabolites anthranilic acid and 3-hydroxy-anthranilic acid. This review discusses evidence to date on the role of the IDO/kynurenine pathway and the highly prevalent age-related disorders of osteoporosis and rheumatoid arthritis and identifies key areas that require further research.
Collapse
Affiliation(s)
- Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Louise M Topping
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
160
|
Schramme F, Crosignani S, Frederix K, Hoffmann D, Pilotte L, Stroobant V, Preillon J, Driessens G, Van den Eynde BJ. Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors. Cancer Immunol Res 2019; 8:32-45. [PMID: 31806638 DOI: 10.1158/2326-6066.cir-19-0041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO) is an enzyme that degrades tryptophan into kynurenine and thereby induces immunosuppression. Like indoleamine 2,3-dioxygenase (IDO1), TDO is considered as a relevant drug target to improve the efficacy of cancer immunotherapy. However, its role in various immunotherapy settings has not been fully characterized. Here, we described a new small-molecule inhibitor of TDO that can modulate kynurenine and tryptophan in plasma, liver, and tumor tissue upon oral administration. We showed that this compound improved the ability of anti-CTLA4 to induce rejection of CT26 tumors expressing TDO. To better characterize TDO as a therapeutic target, we used TDO-KO mice and found that anti-CTLA4 or anti-PD1 induced rejection of MC38 tumors in TDO-KO, but not in wild-type mice. As MC38 tumors did not express TDO, we related this result to the high systemic tryptophan levels in TDO-KO mice, which lack the hepatic TDO needed to contain blood tryptophan. The antitumor effectiveness of anti-PD1 was abolished in TDO-KO mice fed on a tryptophan-low diet that normalized their blood tryptophan level. MC38 tumors expressed IDO1, which could have limited the efficacy of anti-PD1 in wild-type mice and could have been overcome in TDO-KO mice due to the high levels of tryptophan. Accordingly, treatment of mice with an IDO1 inhibitor improved the efficacy of anti-PD1 in wild-type, but not in TDO-KO, mice. These results support the clinical development of TDO inhibitors to increase the efficacy of immunotherapy of TDO-expressing tumors and suggest their effectiveness even in the absence of tumoral TDO expression.See article by Hoffmann et al., p. 19.
Collapse
Affiliation(s)
- Florence Schramme
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. .,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
161
|
Hoffmann D, Dvorakova T, Stroobant V, Bouzin C, Daumerie A, Solvay M, Klaessens S, Letellier MC, Renauld JC, van Baren N, Lelotte J, Marbaix E, Van den Eynde BJ. Tryptophan 2,3-Dioxygenase Expression Identified in Human Hepatocellular Carcinoma Cells and in Intratumoral Pericytes of Most Cancers. Cancer Immunol Res 2019; 8:19-31. [DOI: 10.1158/2326-6066.cir-19-0040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
|
162
|
Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019; 18:379-401. [PMID: 30760888 DOI: 10.1038/s41573-019-0016-5] [Citation(s) in RCA: 820] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
L-Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is involved in the regulation of immunity, neuronal function and intestinal homeostasis. Imbalances in Trp metabolism in disorders ranging from cancer to neurodegenerative disease have stimulated interest in therapeutically targeting the KP, particularly the main rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan-2,3-dioxygenase (TDO) as well as kynurenine monooxygenase (KMO). However, although small-molecule IDO1 inhibitors showed promise in early-stage cancer immunotherapy clinical trials, a phase III trial was negative. This Review summarizes the physiological and pathophysiological roles of Trp metabolism, highlighting the vast opportunities and challenges for drug development in multiple diseases.
Collapse
|
163
|
Watanabe T, Gaedicke S, Guffart E, Firat E, Niedermann G. Adding Indoximod to Hypofractionated Radiotherapy with Anti-PD-1 Checkpoint Blockade Enhances Early NK and CD8 + T-Cell-Dependent Tumor Activity. Clin Cancer Res 2019; 26:945-956. [PMID: 31694834 DOI: 10.1158/1078-0432.ccr-19-0476] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/05/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE There is growing interest in combinations of immunogenic radiotherapy (RT) and immune checkpoint blockade, but clinical responses are still limited. Therefore, we tested the triple therapy with an inhibitor of the indoleamine 2,3-dioxygenase pathway, which like immune checkpoints, downregulates the antitumor immune response. EXPERIMENTAL DESIGN Triple treatment with hypofractionated RT (hRT) + anti-PD-1 antibody (αPD1) + indoximod was compared with the respective mono- and dual therapies in two syngeneic mouse models. RESULTS The tumors did not regress following treatment with hRT + αPD1. The αPD1/indoximod combination was not effective at all. In contrast, triple treatment induced rapid, marked tumor regression, even in mice with a large tumor. The effects strongly depended on CD8+ T cells and partly on natural killer (NK) cells. Numbers and functionality of tumor-specific CD8+ T cells and NK cells were increased, particularly early during treatment. However, after 2.5-3 weeks, all large tumors relapsed, which was accompanied by increased apoptosis of tumor-infiltrating lymphocytes associated with a non-reprogrammable state of exhaustion, terminal differentiation, and increased activation-induced cell death, which could not be prevented by indoximod in these aggressive tumor models. Some mice with a smaller tumor were cured. Reirradiation during late regression (day 12), but not after relapse, cured almost all mice with a large B16-CD133 tumor, and strongly delayed relapse in the less immunogenic 4T1 model, depending on CD8+ T cells. CONCLUSIONS Our findings may serve as a rationale for the clinical evaluation of this triple-combination therapy in patients with solitary or oligometastatic tumors in the neoadjuvant or the definitive setting.
Collapse
Affiliation(s)
- Tsubasa Watanabe
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elena Guffart
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium, partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
164
|
Boros FA, Vécsei L. Immunomodulatory Effects of Genetic Alterations Affecting the Kynurenine Pathway. Front Immunol 2019; 10:2570. [PMID: 31781097 PMCID: PMC6851023 DOI: 10.3389/fimmu.2019.02570] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Several enzymes and metabolites of the kynurenine pathway (KP) have immunomodulatory effects. Modulation of the activities and levels of these molecules might be of particular importance under disease conditions when the amelioration of overreacting immune responses is desired. Results obtained by the use of animal and tissue culture models indicate that by eliminating or decreasing activities of key enzymes of the KP, a beneficial shift in disease outcome can be attained. This review summarizes experimental data of models in which IDO, TDO, or KMO activity modulation was achieved by interventions affecting enzyme production at a genomic level. Elimination of IDO activity was found to improve the outcome of sepsis, certain viral infections, chronic inflammation linked to diabetes, obesity, aorta aneurysm formation, and in anti-tumoral processes. Similarly, lack of TDO activity was advantageous in the case of anti-tumoral immunity, while KMO inhibition was found to be beneficial against microorganisms and in the combat against tumors, as well. On the other hand, the complex interplay among KP metabolites and immune function in some cases requires an increase in a particular enzyme activity for the desired immune response modulation, as was shown by the exacerbation of liver fibrosis due to the elimination of IDO activity and the detrimental effects of TDO inhibition in a mouse model of autoimmune gastritis. The relevance of these studies concerning possible human applications are discussed and highlighted. Finally, a brief overview is presented on naturally occurring genetic variants affecting immune functions via modulation of KP enzyme activity.
Collapse
Affiliation(s)
- Fanni A. Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
165
|
Badawy AAB. Kynurenine pathway and human systems. Exp Gerontol 2019; 129:110770. [PMID: 31704347 DOI: 10.1016/j.exger.2019.110770] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/30/2023]
Abstract
The essential amino acid L-tryptophan (Trp) appears to play an important role in aging by acting as a general regulator of protein homeostasis. The major route of Trp degradation, the kynurenine pathway (KP), produces a range of biologically active metabolites that can impact or be impacted by a variety of body systems, including the endocrine, haemopoietic, immune, intermediary metabolism and neuronal systems, with the end product of the KP, NAD+, being essential for vital cellular processes. An account of the pathway, its regulation and functions is presented in relation to body systems with a summary of previous studies of the impact of aging on the pathway enzymes and metabolites. A low-grade inflammatory environment characterized by elevation of cytokines and other immune modulators and consequent disturbances in KP activity develops with aging. The multifactorial nature of the aging process necessitates assessment of factors determining the progression of this mild dysfunction to age-related diseases and developing strategies aimed at arresting and reversing this progression.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
166
|
Das UN. Bioactive lipids as modulators of immune check point inhibitors. Med Hypotheses 2019; 135:109473. [PMID: 31733534 DOI: 10.1016/j.mehy.2019.109473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
It is proposed that arachidonic acid (AA, 20:4 n-6) and other polyunsaturated fatty acids (PUFAs) in combination with immune check point inhibitors and tumor infiltrating lymphocytes (TILs) enhances the activity of T and NK cells and macrophages and thus, aids in the elimination of tumor cells and suppresses inflammatory side effects due to immune check point inhibitors.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, GVP Hospital and Medical College, Visakhapatnam 530048, India.
| |
Collapse
|
167
|
Kwak Y, Seo AN, Lee HE, Lee HS. Tumor immune response and immunotherapy in gastric cancer. J Pathol Transl Med 2019; 54:20-33. [PMID: 31674166 PMCID: PMC6986974 DOI: 10.4132/jptm.2019.10.08] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Remarkable developments in immuno-oncology have changed the landscape of gastric cancer (GC) treatment. Because immunotherapy intervenes with tumor immune response rather than directly targeting tumor cells, it is important to develop a greater understanding of tumor immunity. This review paper summarizes the tumor immune reaction and immune escape mechanisms while focusing on the role of T cells and their co-inhibitory signals, such as the immune checkpoint molecules programmed death-1 and programmed deathligand 1 (PD-L1). This paper also describes past clinical trials of immunotherapy for patients with GC and details their clinical implications. Strong predictive markers are essential to improve response to immunotherapy. Microsatellite instability, Epstein-Barr virus, PD-L1 expression, and tumor mutational burden are now regarded as potent predictive markers for immunotherapy in patients with GC. Novel immunotherapy and combination therapy targeting new immune checkpoint molecules such as lymphocyte-activation gene 3, T cell immunoglobulin, and mucin domain containing-3, and indoleamine 2,3-dioxygenase have been suggested, and trials are ongoing to evaluate their safety and efficacy. Immunotherapy is an important treatment option for patients with GC and has great potential for improving patient outcome, and further research in immuno-oncology should be carried out.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Hee Eun Lee
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
168
|
Abstract
New therapies that promote antitumour immunity have been recently developed. Most of these immunomodulatory approaches have focused on enhancing T-cell responses, either by targeting inhibitory pathways with immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to unprecedented successes, only a minority of patients with cancer benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for long-lasting, multilayered tumour control.
Collapse
|
169
|
Yazdanifar M, Zhou R, Grover P, Williams C, Bose M, Moore LJ, Wu ST, Maher J, Dreau D, Mukherjee P. Overcoming Immunological Resistance Enhances the Efficacy of A Novel Anti-tMUC1-CAR T Cell Treatment against Pancreatic Ductal Adenocarcinoma. Cells 2019; 8:cells8091070. [PMID: 31514488 PMCID: PMC6770201 DOI: 10.3390/cells8091070] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable success in treating hematologic cancers. However, this efficacy has yet to translate to treatment in solid tumors. Pancreatic ductal adenocarcinoma (PDA) is a fatal malignancy with poor prognosis and limited treatment options. We have developed a second generation CAR T cell using the variable fragments of a novel monoclonal antibody, TAB004, which specifically binds the tumor-associated-MUC1 (tMUC1). tMUC1 is overexpressed on ~85% of all human PDA. We present data showing that TAB004-derived CAR T cells specifically bind to tMUC1 on PDA cells and show robust killing activity; however, they do not bind or kill normal epithelial cells. We further demonstrated that the tMUC1-CAR T cells control the growth of orthotopic pancreatic tumors in vivo. We witnessed that some PDA cells (HPAFII and CFPAC) were refractory to CAR T cell treatment. qPCR analysis of several genes revealed overexpression of indoleamine 2, 3-dioxygenases-1 (IDO1), cyclooxygenase 1 and 2 (COX1/2), and galectin-9 (Gal-9) in resistant PDA cells. We showed that combination of CAR T cells and biological inhibitors of IDO1, COX1/2, and Gal-9 resulted in significant enhancement of CAR T cell cytotoxicity against PDA cells. Overcoming PDA resistance is a significant advancement in the field.
Collapse
Affiliation(s)
- Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Chandra Williams
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London SE1 9RT, UK;
| | - Didier Dreau
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
- Correspondence:
| |
Collapse
|
170
|
Furukawa H, Oka S, Shimada K, Hashimoto A, Komiya A, Matsui T, Fukui N, Tohma S. Serum Metabolomic Profiles of Rheumatoid Arthritis Patients With Acute-Onset Diffuse Interstitial Lung Disease. Biomark Insights 2019; 14:1177271919870472. [PMID: 31488947 PMCID: PMC6709435 DOI: 10.1177/1177271919870472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Objective: Acute-onset diffuse interstitial lung disease (AoDILD) includes acute
exacerbation of interstitial lung disease (ILD), drug-induced ILD, and
Pneumocystis pneumonia, and frequently occurs in
patients with rheumatoid arthritis (RA). Since AoDILD causes a poor
prognosis in RA, biomarkers for AoDILD were eagerly desired. Metabolomic
analyses were extensively performed in cancer patients and successfully
generated better diagnostic biomarkers. In the present study, serum
metabolomic profiles of AoDILD in RA were investigated to generate better
potential metabolomic biomarkers. Methods: Serum samples of 10 RA patients with AoDILD were collected on admission and
in a stable state, more than 3 months before the admission. Serum
metabolomic analyses were conducted on the samples from these RA patients
with AoDILD. Results: Apparently distinct serum metabolomic profiles in AoDILD were not observed in
univariate or hierarchical cluster analyses. Partial least
squares-discriminant analysis (PLS-DA) was performed to select candidate
metabolites based on variable importance in projection (VIP) scores. The
PLS-DA model generated from the four metabolites with VIP scores more than
2.25 (mannosamine, alliin, kynurenine, and 2-hydroxybutyric acid) could
successfully discriminate AoDILD from the stable condition (area under the
curve: 0.962, 95% confidence interval: 0.778–1.000). Conclusion: It was demonstrated that metabolomic profiling was useful to generate better
biomarkers in AoDILD.
Collapse
Affiliation(s)
- Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Shomi Oka
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| | - Kota Shimada
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, Fuchu, Japan
| | - Atsushi Hashimoto
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Akiko Komiya
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Clinical Laboratory, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Toshihiro Matsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Naoshi Fukui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan.,Department of Rheumatology, National Hospital Organization Tokyo National Hospital, Kiyose, Japan
| |
Collapse
|
171
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
172
|
Giesbrecht K, Förmer S, Sähr A, Heeg K, Hildebrand D. Streptococcal Pyrogenic Exotoxin A-Stimulated Monocytes Mediate Regulatory T-Cell Accumulation through PD-L1 and Kynurenine. Int J Mol Sci 2019; 20:ijms20163933. [PMID: 31412561 PMCID: PMC6719222 DOI: 10.3390/ijms20163933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/20/2023] Open
Abstract
Bacterial superantigens (SAgs) are exotoxins that promote a fulminant activation of the immune system. The subsequent intense release of inflammatory cytokines often results in hypotension, shock, and organ failure with high mortality rates. In the current paradigm, the direct and simultaneous binding of SAgs with T-cell receptor (TCR)-bearing Vβ regions and conserved structures on major histocompatibility complex class II (MHC class II) on antigen-presenting cells (APCs) induces the activation of both cell types. However, by crosslinking MHC class II molecules, APCs can be activated by SAgs independently of T lymphocytes. Recently, we showed that streptococcal pyrogenic exotoxin A (SPEA) of Streptococcus pyogenes stimulates an immunogenic APC phenotype with upregulated costimulatory molecules and inflammatory cytokines. Additionally, we revealed that SPEA triggers immunosuppressive programs in monocytes that facilitate the accumulation of regulatory T cells (Tregs) in in vitro monocyte/CD4+ T-cell cocultures. Immunosuppressive factors include anti-inflammatory interleukin 10 (IL-10), co-inhibitory surface molecule programmed cell death 1 ligand 1 (PD-L1), and the inhibitory indoleamine 2,3-dioxygenase (IDO)/kynurenine effector system. In the present study, we investigated the underlying mechanism of SPEA-stimulated monocyte-mediated accumulation of Tregs. Blood-derived monocytes from healthy donors were stimulated with SPEA for 48 h (SPEA-monocytes). For the evaluation of SPEA-monocyte-mediated modulation of CD4+ T lymphocytes, SPEA was removed from the culture through extensive washing of cells before adding allogeneic CD3/CD28-activated T cells. Results: In coculture with allogeneic CD4+ T cells, SPEA-monocytes mediate apoptosis of CD4+Foxp3− lymphocytes and accumulation of CD4+Foxp3+ Tregs. PD-L1 and kynurenine are critically involved in the mediated cell death because blocking both factors diminished apoptosis and decreased the proportion of the CD25+/Foxp3+ Treg subpopulation significantly. Upregulation of PD-L1 and kynurenine as well as SPEA-monocyte-mediated effects on T cells depend on inflammatory IL-1β. Our study shows that monocytes activated by SPEA mediate apoptosis of CD4+Foxp3− T effector cells through PD-L1 and kynurenine. CD4+Foxp3+ T cells are resistant to apoptosis and accumulate in SPEA-monocyte/CD4+ T-cell coculture.
Collapse
Affiliation(s)
- Katharina Giesbrecht
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZIF German Center for Infection Research, 38124 Brunswick, Germany
| | - Sandra Förmer
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Aline Sähr
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZIF German Center for Infection Research, 38124 Brunswick, Germany
| | - Dagmar Hildebrand
- Medical Microbiology and Hygiene, Centre for Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- DZIF German Center for Infection Research, 38124 Brunswick, Germany.
| |
Collapse
|
173
|
Teshigawara T, Mouri A, Kubo H, Nakamura Y, Shiino T, Okada T, Morikawa M, Nabeshima T, Ozaki N, Yamamoto Y, Saito K. Changes in tryptophan metabolism during pregnancy and postpartum periods: Potential involvement in postpartum depressive symptoms. J Affect Disord 2019; 255:168-176. [PMID: 31158779 DOI: 10.1016/j.jad.2019.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Many women experience depressive symptoms during pregnancy and postpartum periods. These depressive symptoms are often accompanied by other inflammatory morbidities present during pregnancy. Tryptophan (TRP) metabolism has attracted considerable attention due to its influence on the onset of depression via induction of inflammation. We examined the changes in plasma levels of TRP metabolites in pregnant women with depressive symptoms during pregnancy and/or the postpartum period. METHODS In line with a previous analysis using the Edinburgh Postnatal Depression Scale (EPDS), participants were divided into a non-depressive (ND) group, a postpartum depressive (PD) group, a temporary gestational depressive (TG) group, and a continuous depressive (CD) group. Blood samples were collected before and 1 month after delivery. The concentrations of plasma TRP metabolites were measured using high-performance liquid chromatography (HPLC). RESULTS There are differences in plasma levels of TRP metabolites during pregnancy and postpartum periods between the ND group and the PD group, but not the TG or CD group. In the PD group, plasma levels of kynurenine (KYN) and kynurenic acid (KA), and KYN/TRP and KA/KYN ratio during the pregnancy period were higher and 3-hydroxyanthranilic acid (3HAA) during the postpartum period was lower than those in the ND group. LIMITATIONS Histories regarding mood disorders before pregnancy were not assessed. CONCLUSIONS The higher plasma levels of KYN and KA, and KYN/TRP and KA/KYN ratio during pregnancy period and lower plasma level of 3HAA during the postpartum period could be useful predictive and diagnostic markers of postpartum depressive symptoms.
Collapse
Affiliation(s)
- Tomoaki Teshigawara
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi 468-0069, Japan
| | - Hisako Kubo
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Shiino
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi 468-0069, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi 470-1192, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi 468-0069, Japan.
| |
Collapse
|
174
|
Onesti CE, Boemer F, Josse C, Leduc S, Bours V, Jerusalem G. Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. J Transl Med 2019; 17:239. [PMID: 31337401 PMCID: PMC6652004 DOI: 10.1186/s12967-019-1984-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase catalyzes the conversion of tryptophan to kynurenine, an immunosuppressive metabolite involved in T regulatory cell differentiation. Indoleamine 2,3-dioxygenase is expressed in many cancer types, including breast cancer. Here, we analyze kynurenine and tryptophan and their ratio in breast cancer patients and healthy controls. Methods Breast cancer patients and healthy controls were prospectively enrolled in our study. All subjects underwent blood sample withdrawal at diagnosis or on the day of screening mammography for the healthy controls. Plasmatic kynurenine and tryptophan were determined on a TQ5500 tandem mass spectrometer after chromatographic separation. Results We enrolled 146 healthy controls and 202 women with stages I–III breast cancer of all subtypes. All patients underwent surgery, 126 underwent neoadjuvant chemotherapy with 43 showing a pathological complete response, and 43 underwent adjuvant chemotherapy. We observed significantly higher plasmatic kynurenine, tryptophan and their ratio for the healthy controls compared to patients with breast cancer. We observed a lower plasmatic tryptophan and a higher kynurenine/tryptophan ratio in hormone receptor-negative patients compared to hormone receptor-positive cancers. Lobular cancers showed a lower ratio than any other histologies. Advanced cancers were associated with a lower tryptophan level and higher grades with an increased kynurenine/tryptophan ratio. Pathological complete response was associated with higher kynurenine values. The plasmatic kynurenine, tryptophan and kynurenine/tryptophan ratios were not predictive of survival. Conclusions The plasmatic kynurenine, tryptophan and kynurenine/tryptophan ratio could differentiate breast cancer patients from healthy controls. The Kyn/Trp ratio and Trp also showed different values according to hormone receptor status, TNM stage, T grade and histology. These results suggest a rapid metabolism in breast cancer, but no associations with outcome or sensitivity to chemotherapy were observed. Electronic supplementary material The online version of this article (10.1186/s12967-019-1984-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Concetta Elisa Onesti
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium
| | - François Boemer
- Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Claire Josse
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium. .,Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium.
| | - Stephane Leduc
- Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Institute, Liège, Belgium.,Department of Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium
| | - Guy Jerusalem
- Medical Oncology Department, Centre Hospitalier Universitaire Sart-Tilman, Liège, Belgium.,Liège University, Liège, Belgium
| |
Collapse
|
175
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
176
|
Spekker-Bosker K, Ufermann CM, Oldenburg M, Däubener W, Eller SK. Interplay between IDO1 and iNOS in human retinal pigment epithelial cells. Med Microbiol Immunol 2019; 208:811-824. [PMID: 31267172 PMCID: PMC6817751 DOI: 10.1007/s00430-019-00627-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Human retinal pigment epithelial (hRPE) cells form a selectively permeable monolayer between the neural retina and the highly permeable choroidal vessels. Thus, hRPE cells bear important regulatory functions and are potential targets of pathogens in vivo. Endogenous bacterial endophthalmitis (EBE) is frequently caused by infections with the Gram-positive bacterium Staphylococcus aureus (S. aureus). Upon microbial infection, interferon gamma (IFN-γ), a major cytokine of the adaptive immune response, induces a broad spectrum of effector molecules, such as the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase-1 (IDO1). We stimulated human RPE (hRPE) cells in vitro with proinflammatory cytokines and analyzed the expression levels and enzymatic activities of IDO1 and inducible nitric oxide synthase (iNOS), another antimicrobial effector molecule. The antimicrobial capacity was analyzed in infection experiments using S. aureus and Toxoplasma gondii (T. gondii). Our aim was to characterize the particular importance of IDO1 and iNOS during EBE. We found that an IFN-γ stimulation of hPRE cells induced the expression of IDO1, which inhibited the growth of T. gondii and S. aureus. A co-stimulation with IFN-γ, interleukin-1 beta, and tumor necrosis factor alpha induced a strong expression of iNOS. The iNOS-derived nitric oxide production was dependent on cell-culture conditions; however, it could not cause antimicrobial effects. iNOS did not act synergistically with IDO1. Instead, iNOS activity inhibited IDO1-mediated tryptophan degradation and bacteriostasis. This effect was reversible by the addition of the iNOS inhibitor NG-monomethyl-l-arginine. In conclusion, iNOS mediates anti-inflammatory effects in hRPE cells stimulated with high amounts of IFN-γ together with tumor necrosis factor alpha and Interleukin-1 beta and prevents potential IDO1-dependent tissue damage.
Collapse
Affiliation(s)
- Katrin Spekker-Bosker
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Christoph-Martin Ufermann
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Maike Oldenburg
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany
| | - Silvia Kathrin Eller
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Bldg. 22.21, 40225, Düsseldorf, Germany.
| |
Collapse
|
177
|
Park A, Yang Y, Lee Y, Kim MS, Park YJ, Jung H, Kim TD, Lee HG, Choi I, Yoon SR. Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways. J Clin Med 2019; 8:jcm8060842. [PMID: 31212870 PMCID: PMC6617210 DOI: 10.3390/jcm8060842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are key players in the immune system. They use receptors on their cell surface to identify target cells. However, to escape being killed by the immune system, cancer cells such as thyroid cancer cells, use various methods to suppress the function of NK cells. Thus, this study aims to elucidate how thyroid cancer cells downregulate NK cell function in a co-culture system. We found that thyroid cancer cells suppress NK cell cytotoxicity and inhibit the expression of activating receptors, such as NKG2D and NKp46, by regulating indoleamine 2,3-dioxygenase (IDO). Also, thyroid cancer cells produce kynurenine using IDO, which causes NK cell dysfunction. Kynurenine enters NK cells via the aryl hydrocarbon receptor (AhR) on the surfaces of the NK cells, which decreases NK cell function and NK receptor expression via the signal transducer and activator of transcription (STAT) 1 and STAT3 pathways. In addition, STAT1 and STAT3 directly regulated the expression of NKG2D and NKp46 receptors by binding to the promoter region. Conclusively, NK cell function may be impaired in thyroid cancer patients by IDO-induced kynurenine production. This implies that IDO can be used as a target for thyroid cancer therapeutics aiming at improving NK cell function.
Collapse
Affiliation(s)
- Arum Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| | - Yunjeong Yang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Mi Sun Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
| | - Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
178
|
Kathrani A, Lezcano V, Hall EJ, Jergens AE, Seo YJ, Mochel JP, Atherly T, Allenspach K. Indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1) mRNA is over-expressed in the duodenal mucosa and is negatively correlated with serum tryptophan concentrations in dogs with protein-losing enteropathy. PLoS One 2019; 14:e0218218. [PMID: 31181125 PMCID: PMC6557522 DOI: 10.1371/journal.pone.0218218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Dogs with protein-losing enteropathy (PLE) have decreased serum tryptophan concentrations, which may contribute to disease pathogenesis. Indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1) expression is associated with low serum tryptophan concentrations and is increased in the gastrointestinal tract of humans with inflammatory bowel disease (IBD). Therefore, the objective of our study was to determine if the mRNA expression of IDO-1 is increased in the duodenal mucosa of dogs with PLE as compared to dogs with chronic enteropathy (CE) and healthy dogs, and whether this expression is correlated with changes in serum tryptophan concentration. METHODS Our study was a retrospective study using archived paraffin-embedded duodenal biopsy specimens from 8 healthy Beagle dogs from the Iowa State University Canine Service Colony and 18 and 6 client-owned dogs diagnosed with CE and PLE, respectively at the Bristol Veterinary School. A novel RNA in situ hybridization (ISH) technology, RNAscope, was used to identify IDO-1 mRNA mucosal expression in duodenal tissues. An IDO-1 specific probe was hybridized onto 10 duodenal biopsy sections from each dog whereby RNAscope signal (mRNA expression) was quantified by a single operator using light microscopy. RESULTS Dogs with PLE had significantly higher mRNA expression of IDO-1 in the duodenal mucosa compared to healthy dogs (mucosal percentage IDO-1 positive: P = 0.0093, (mean ± S.D) control: 19.36 ± 7.08, PLE: 34.12 ± 5.98, average fold difference: 1.76 and mucosal IDO-1 H-score: P = 0.0356, (mean ± S.D) control: 45.26 ± 19.33, PLE: 84.37 ± 19.86, average fold difference: 1.86). The duodenal mucosal mRNA expression of IDO-1 was negatively correlated with serum tryptophan concentrations in dogs with PLE (mucosal IDO-1 H-score: Spearman's rank correlation coefficient = -0.94, P = 0.0048). CONCLUSIONS In conclusion, our study suggests that decreased serum tryptophan concentrations in dogs with PLE is associated with increased intestinal IDO-1 expression. Further studies are needed to determine potential inflammatory pathways responsible for increased expression of IDO-1 in the intestinal tract of dogs with PLE.
Collapse
Affiliation(s)
- Aarti Kathrani
- Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
- * E-mail:
| | - Victor Lezcano
- College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, United States of America
| | - Edward J. Hall
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| | - Albert E. Jergens
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Yeon-Jung Seo
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Jonathan P. Mochel
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Todd Atherly
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Karin Allenspach
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
179
|
Awuah D, Alobaid M, Latif A, Salazar F, Emes RD, Ghaemmaghami AM. The Cross-Talk between miR-511-3p and C-Type Lectin Receptors on Dendritic Cells Affects Dendritic Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:148-157. [PMID: 31118225 DOI: 10.4049/jimmunol.1801108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small, noncoding RNAs that function as posttranscriptional modulators of gene expression by binding target mRNAs and inhibiting translation. They are therefore crucial regulators of several biological as well as immunological events. Recently, miR-511-3p has been implicated in the development and differentiation of APCs, such as dendritic cells (DCs), and regulating several human diseases. Interestingly, miR-511-3p is embedded within the human MRC1 gene that encodes the mannose receptor. In this study, we sought to examine the impact of miR-511-3p up- or downregulation on human DC surface phenotype, cytokine profile, immunogenicity (using IDO activity as a surrogate), and downstream T cell polarization. Using gene silencing and a selection of microRNA mimics, we could successfully suppress or induce the expression of miR-511-3p in DCs. Consequently, we show for the first time, to our knowledge, that inhibition and/or overexpression of miR-511-3p has opposing effects on the expression levels of two key C-type lectin receptors, namely the mannose receptor and DC-specific ICAM 3 nonintegrin at protein and mRNA levels, thereby affecting C-type lectin receptor-induced modulation of IDO activity in DCs. Furthermore, we show that downregulation of miR-511-3p drives an anti-inflammatory DC response characterized by IL-10 production. Interestingly, the miR-511-3plow DCs also promoted IL-4 secretion and suppressed IL-17 in cocultures with autologous T cells. Together, our data highlight the potential role of miR-511 in regulating DC function and downstream events leading to Th polarization and immune modulation.
Collapse
Affiliation(s)
- Dennis Awuah
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Meshal Alobaid
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Arsalan Latif
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Fabián Salazar
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5NT, United Kingdom; and.,Advanced Data Analysis Centre, University of Nottingham, Leicestershire LE12 5NT, United Kingdom
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
180
|
Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, Kalergis AM. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol 2019; 106:933-942. [PMID: 31091352 PMCID: PMC7166882 DOI: 10.1002/jlb.4ru0219-051rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 12/18/2022] Open
Abstract
IDO is an enzyme that participates in the degradation of tryptophan (Trp), which is an essential amino acid necessary for vital cellular processes. The degradation of Trp and the metabolites generated by the enzymatic activity of IDO can have immunomodulating effects, notably over T cells, which are particularly sensitive to the absence of Trp and leads to the inhibition of T cell activation, cell death, and the suppression of T cell effector functions. Noteworthy, T cells participate in the cellular immune response against the human respiratory syncytial virus (hRSV) and are essential for viral clearance, as well as the total recovery of the host. Furthermore, inadequate or non‐optimal polarization of T cells is often seen during the acute phase of the disease caused by this pathogen. Here, we discuss the capacity of hRSV to exploit the immunosuppressive features of IDO to reduce T cell function, thus acquiring relevant aspects during the biology of the virus. Additionally, we review studies on the influence of IDO over T cell activation and its relationship with hRSV infection.
Collapse
Affiliation(s)
- Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S Pizarro-Ortega
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
181
|
Overexpression of Kynurenine 3-Monooxygenase Correlates with Cancer Malignancy and Predicts Poor Prognosis in Canine Mammary Gland Tumors. JOURNAL OF ONCOLOGY 2019; 2019:6201764. [PMID: 31186637 PMCID: PMC6521384 DOI: 10.1155/2019/6201764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/08/2019] [Indexed: 12/01/2022]
Abstract
Tumor biomarkers are developed to indicate tumor status, clinical outcome, or prognosis. Since currently there are no effective biomarkers for canine mammary tumor (CMT), this study intended to verify whether kynurenine 3-monooxygenase (KMO), one of the key enzymes involved in tryptophan catabolism, is competent for predicting prognosis in patients with CMT. By investigating a series of 86 CMT clinical cases, we found that both gene and protein expression of KMO discriminated malignant from benign CMTs and was significantly higher in stage IV and V tumors than in lower-stage CMTs. About 73.7% of malignant CMTs showed strong expression of KMO which correlated with lower overall survival rates in patients. Further, downregulation of KMO activity significantly inhibited cell proliferation of CMT cells. Taken together, the findings indicated that KMO is a potential biomarker for tumor diagnosis, and this might open up new perspectives for clinical applications of CMT.
Collapse
|
182
|
Schollbach J, Kircher S, Wiegering A, Seyfried F, Klein I, Rosenwald A, Germer CT, Löb S. Prognostic value of tumour-infiltrating CD8+ lymphocytes in rectal cancer after neoadjuvant chemoradiation: is indoleamine-2,3-dioxygenase (IDO1) a friend or foe? Cancer Immunol Immunother 2019; 68:563-575. [PMID: 30671614 PMCID: PMC11028246 DOI: 10.1007/s00262-019-02306-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/17/2019] [Indexed: 01/05/2023]
Abstract
The prognostic value of the local immune phenotype in patients with colorectal cancer has been extensively studied. Neoadjuvant radiotherapy and/or chemotherapy may potentially influence these immune responses. In this study, we examined the prognostic role of indoleamine-2,3-Dioxygenase (IDO1) and infiltrating cytotoxic T lymphocytes (CD8+) in locally advanced rectal carcinomas after neoadjuvant treatment. Expression of IDO1 and CD8 was evaluated by immunohistochemistry in 106 archival tumour tissue samples from patients following neoadjuvant chemoradiation and radical resection. The average infiltration of IDO1+ and CD8+ cells was calculated along the tumour invasive front, in the tumour centre and within the neoplastic cells and expressed as total scores. Of the tumour specimens evaluable for immunohistochemistry, 100% showed CD8+ lymphocyte infiltration and 93.4% stained positive for IDO1. Total IDO1 score positively correlated with total CD8 score for all three subsites (p = 0.002, Kendall-tau-b 0.357). A high total CD8 score was positively correlated with lower ypUICC-stages (p = 0.047) and lower ypT-categories (p = 0.032). Total IDO1 expression showed a clear trend towards a lower risk of recurrence (p = 0.078). A high total IDO1 score was an independent prognostic marker for prolonged disease-free survival (HR 0.38, p = 0.046) and a high total CD8 score for favourable overall survival (HR 0.16, p = 0.029). Analysis of the local CD8 and IDO1 expression profile may be a helpful tool in predicting prognosis for patients with locally advanced rectal cancer following neoadjuvant chemoradiation.
Collapse
Affiliation(s)
- Julia Schollbach
- Department of General-, Visceral-, Transplant-, Vascular- and Paediatric Surgery, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Stefan Kircher
- Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Armin Wiegering
- Department of General-, Visceral-, Transplant-, Vascular- and Paediatric Surgery, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Florian Seyfried
- Department of General-, Visceral-, Transplant-, Vascular- and Paediatric Surgery, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Ingo Klein
- Department of General-, Visceral-, Transplant-, Vascular- and Paediatric Surgery, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 97080, Würzburg, Germany
| | - Andreas Rosenwald
- Department of Pathology, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 97080, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General-, Visceral-, Transplant-, Vascular- and Paediatric Surgery, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 97080, Würzburg, Germany
| | - Stefan Löb
- Department of General-, Visceral-, Transplant-, Vascular- and Paediatric Surgery, University Hospital of Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
183
|
Zhao H, Sun P, Guo W, Wang Y, Zhang A, Meng L, Ding C. Discovery of Indoleamine 2,3-Dioxygenase 1 (IDO-1) Inhibitors Based on Ortho-Naphthaquinone-Containing Natural Product. Molecules 2019; 24:molecules24061059. [PMID: 30889860 PMCID: PMC6471201 DOI: 10.3390/molecules24061059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/24/2023] Open
Abstract
There is great interest in developing small molecules agents capable of reversing tumor immune escape to restore the body’s immune system. As an immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO-1) is considered a promising target for oncology immunotherapy. Currently, none of IDO-1 inhibitors have been launched for clinical practice yet. Thus, the discovery of new IDO-1 inhibitors is still in great demand. Herein, a series of diverse ortho-naphthaquinone containing natural product derivatives were synthesized as novel IDO-1 inhibitors. Among them, 1-ene-3-ketone-17-hydroxyl derivative 12 exhibited significantly improved enzymatic and cellular inhibitory activity against IDO-1 when compared to initial lead compounds. Besides, the molecular docking study disclosed that the two most potent compounds 11 and 12 have more interactions within the binding pocket of IDO-1 via hydrogen-bonding, which may account for their higher IDO-1 inhibitory activity.
Collapse
Affiliation(s)
- Hongchuan Zhao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Guo
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Wang
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
- School of Life Scienece and Technology, ShanghaiTech University, Shanghai 20120, China.
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
184
|
Phan T, Nguyen VH, D'Alincourt MS, Manuel ER, Kaltcheva T, Tsai W, Blazar BR, Diamond DJ, Melstrom LG. Salmonella-mediated therapy targeting indoleamine 2, 3-dioxygenase 1 (IDO) activates innate immunity and mitigates colorectal cancer growth. Cancer Gene Ther 2019; 27:235-245. [PMID: 30824815 PMCID: PMC8177749 DOI: 10.1038/s41417-019-0089-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/19/2022]
Abstract
Patients with colon cancer remain largely refractory to current immunotherapeutic strategies. This is, in part, due to the overexpression of the immune checkpoint protein indoleamine 2,3-dioxygenase 1 (IDO). IDO is an important enzyme contributing to tumor-mediated immunosuppression and also correlates with poor prognosis in colon cancer patients. The aim of this study was to assess the therapeutic efficacy of attenuated Salmonella typhimurium delivering an shRNA plasmid targeting IDO (shIDO-ST) in two mouse models of colorectal cancer. In vitro, the CT26 and MC38 murine colon cancer cell lines were shown to upregulate IDO expression following stimulation with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Transfection of both cell lines with shIDO plasmid reduced IDO protein expression and function. In vivo, shIDO-ST treatment significantly delayed CT26 and MC38 tumor progression compared to mice treated with scrambled shRNA control (shScr-ST) or the clinically-tested IDO inhibitor epacadostat. Increased tumor infiltration of neutrophils was found to be the primary immune cell population associated with shIDO-ST treatment, suggesting robust activation of innate immunity. Although increased tumor expression of IDO is associated with resistance to antibody therapy against programed cell death-1 (anti-PD1), co-administration of anti-PD1 with shIDO-ST did not provide additional tumor growth control in either model of colorectal cancer. Altogether, we demonstrate that treatment with shIDO-ST markedly delays tumor growth in two immunocompetent colorectal mouse models and this appears to be a superior therapeutic strategy compared to epacadostat or blocking anti-PD1 antibody therapy in colon cancer.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Vu H Nguyen
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Teodora Kaltcheva
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, USA
| | - Weimin Tsai
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Don J Diamond
- Department of Hematology, City of Hope National Medical Center, Duarte, CA, USA
| | - Laleh G Melstrom
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA. .,Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
185
|
Dougan M, Dranoff G, Dougan SK. Cancer Immunotherapy: Beyond Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:55-75. [PMID: 37539076 PMCID: PMC10400018 DOI: 10.1146/annurev-cancerbio-030518-055552] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Blocking antibodies to the immune checkpoint receptors or their ligands have revolutionized the treatment of diverse malignancies. Many tumors are recognized by adaptive immunity, but these adaptive responses can be inhibited by immunosuppressive mechanisms within the tumor, often through pathways outside of the currently targeted checkpoints. For this reason, only a minority of cancer patients achieve durable responses to current immunotherapies. Multiple novel approaches strive to expand immunotherapy's reach. These may include targeting alternative immune checkpoints. However, many investigational strategies look beyond checkpoint blockade. These include cellular therapies to bypass endogenous immunity and efforts to stimulate new adaptive antitumor responses using vaccines, adjuvants, and combinations with cytotoxic therapy, as well as strategies to inhibit innate immune suppression and modulate metabolism within the tumor microenvironment. The challenge for immunotherapy going forward will be to select rational strategies for overcoming barriers to effective antitumor responses from the myriad possible targets.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Stephanie K Dougan
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
186
|
Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther 2019; 199:30-57. [PMID: 30825473 DOI: 10.1016/j.pharmthera.2019.02.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Breast cancer accounts for 25% of all types of cancer in women, and triple negative breast cancer (TNBC) comprises around 15~20% of breast cancers. Conventional chemotherapy and radiation are the primary systemic therapeutic strategies; no other FDA-approved targeted therapies are yet available as for TNBC. TNBC is generally characterized by a poor prognosis and high rates of proliferation and metastases. Due to these aggressive features and lack of targeted therapies, numerous attempts have been made to discover viable molecular targets for TNBC. Massive cohort studies, clinical trials, and in-depth analyses have revealed diverse molecular alterations in TNBC; however, controversy exists as to whether many of these changes are beneficial or detrimental in caner progression. Here we review the complicated tumorigenic processes and discuss critical findings and therapeutic trends in TNBC with a focus on promising therapeutic approaches, the clinical trials currently underway, and potent experimental compounds under preclinical and evaluation.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
187
|
Dendritic Cells Treated with Exogenous Indoleamine 2,3-Dioxygenase Maintain an Immature Phenotype and Suppress Antigen-specific T cell Proliferation. ACTA ACUST UNITED AC 2019; 5. [PMID: 31788580 DOI: 10.1016/j.regen.2019.100015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme responsible for catalyzing the rate limiting step of tryptophan catabolism, plays a critical role in immune cell suppression and tolerance. Indoleamine 2,3-dioxygenase-mediated depletion of the essential amino acid tryptophan increases susceptibility of T cells to apoptosis, while kynurenine and its downstream metabolites, such as 3-hydroxyanthranilic acid and quinolinic acid, have a direct cytotoxic effect on conventional effector T cells. Additionally, IDO-expressing antigen presenting cells (APCs) induce proliferation of regulatory T cells. When expressed by an APC, the immunosuppressive effects of IDO may act directly on the APC as well as indirectly upon local T cells. One approach to elicit immune tolerance or reduce inflammation therefore is to promote expression of IDO. However, this approach is constrained by several factors including the potential for deleterious biologic effects of conventional IDO-inducing agents such as interferon gamma (IFNγ), and the potential limitations of constitutive gene transfection. Alternatively, direct action of recombinant IDO enzyme supplied exogenously as a potential therapeutic in the extracellular space has not been investigated previously, and is the focus of this work. Results indicate exogenous recombinant human IDO supplementation influences murine dendritic cell (DC) maturation and ability to suppress antigen specific T cell proliferation. Following treatment, DCs were refractory to maturation by LPS as defined by co-stimulatory molecule expression (CD80 and CD86) and major histocompatibility complex II (MHC-II) expression. Dendritic cells exhibited skewing toward an anti-inflammatory cytokine release profile, with reduced secretion of IL-12p70 and maintained basal level of secreted IL-10. Notably, IDO-treated DCs suppressed proliferation of ovalbumin (OVA) antigen-specific CD4+ and CD8+ T cells in the presence of cognate antigen presentation in a manner dependent on active enzyme, as introduction of IDO inhibitor 1-methyl-tryptophan, restored T cell proliferation. Defined media experiments indicate a cumulative role for both tryptophan depletion and kynurenine presence, in the suppressive programming of DCs. In sum, we report that exogenously supplied IDO maintains immunoregulatory function on DCs, suggesting that IDO may have potential as a therapeutic protein for suppressive programming with application toward inflammation and tolerance.
Collapse
|
188
|
Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. J Alzheimers Dis 2019; 62:523-547. [PMID: 29480191 DOI: 10.3233/jad-170929] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathomechanism of Alzheimer's disease (AD) certainly involves mitochondrial disturbances, glutamate excitotoxicity, and neuroinflammation. The three main aspects of mitochondrial dysfunction in AD, i.e., the defects in dynamics, altered bioenergetics, and the deficient transport, act synergistically. In addition, glutamatergic neurotransmission is affected in several ways. The balance between synaptic and extrasynaptic glutamatergic transmission is shifted toward the extrasynaptic site contributing to glutamate excitotoxicity, a phenomenon augmented by increased glutamate release and decreased glutamate uptake. Neuroinflammation in AD is predominantly linked to central players of the innate immune system, with central nervous system (CNS)-resident microglia, astroglia, and perivascular macrophages having been implicated at the cellular level. Several abnormalities have been described regarding the activation of certain steps of the kynurenine (KYN) pathway of tryptophan metabolism in AD. First of all, the activation of indolamine 2,3-dioxygenase, the first and rate-limiting step of the pathway, is well-demonstrated. 3-Hydroxy-L-KYN and its metabolite, 3-hydroxy-anthranilic acid have pro-oxidant, antioxidant, and potent immunomodulatory features, giving relevance to their alterations in AD. Another metabolite, quinolinic acid, has been demonstrated to be neurotoxic, promoting glutamate excitotoxicity, reactive oxygen species production, lipid peroxidation, and microglial neuroinflammation, and its abundant presence in AD pathologies has been demonstrated. Finally, the neuroprotective metabolite, kynurenic acid, has been associated with antagonistic effects at glutamate receptors, free radical scavenging, and immunomodulation, giving rise to potential therapeutic implications. This review presents the multiple connections of KYN pathway-related alterations to three main domains of AD pathomechanism, such as mitochondrial dysfunction, excitotoxicity, and neuroinflammation, implicating possible therapeutic options.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
189
|
Massalska M, Kuca-Warnawin E, Janicka I, Plebanczyk M, Pawlak D, Dallos T, Olwert A, Radzikowska A, Maldyk P, Kontny E, Maslinski W. Survival of lymphocytes is not restricted by IDO-expressing fibroblast from rheumatoid arthritis patients. Immunopharmacol Immunotoxicol 2019; 41:214-223. [PMID: 30714436 DOI: 10.1080/08923973.2019.1569048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Rheumatoid arthritis (RA) is characterized by expansion of fibroblast-like synoviocytes (FLS) in inflamed joints and activation of lymphocytes. Tryptophan (trp) is an essential amino acid indispensable for the biosynthesis of proteins and critical for survival of lymphocytes. Indoleamine 2,3-dioxygenase (IDO) that initiates the degradation of trp and tryptophanyl-tRNA synthetase (TTS) essential for tryptophan synthesis, regulate trp bioavailability. Here, we tested the hypothesis that triggered by cytokines, enhanced IDO activity modulate regulatory function of otherwise non-tolerogenic FLS isolated from RA patients. Materials and methods: IDO and TTS mRNA expression were evaluated by RT-PCR. IDO enzymatic activity was confirmed using HPLC. Resting or PHA-activated PBMC from healthy volunteers and RA patients were co-cultured with IDO expressing untreated (FLSC) or IFNγ-treated (FLSIFNγ) RA FLS. Lymphocyte survival and proliferation were evaluated by flow cytometry analysis and tritiated thymidine incorporation, respectively. Results: RA FLSIFNγ produce functionally active IDO and constitutively express TTS. RA FLSC and FLSIFNγ increased survival of resting lymphocytes in both studied groups, and decreased proliferation of healthy, but not RA, PBMC. Only FLSIFNγ diminished survival of activated CD3+CD4-, but not CD3+CD4+, healthy T cells and similar tendency was observed in rheumatoid cells. Importantly, IDO inhibitor, 1-methyl-DL-tryptophan (1-MT), failed to reverse this effect. PBMC, irrespective of their state (resting versus activated) or origin (healthy or RA), expressed high level of TTS mRNA. Conclusions: We suggest that RA FLS express functionally active IDO but control survival and expansion of healthy cells in IDO-independent mechanism and exert weaker, if any, suppressive effect on rheumatoid cells.
Collapse
Affiliation(s)
- Magdalena Massalska
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Ewa Kuca-Warnawin
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Iwona Janicka
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Magdalena Plebanczyk
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Dariusz Pawlak
- b Department of Pharmacodynamics, The Faculty of Pharmacy with the Division of Laboratory Medicine , Medical University , Białystok , Poland
| | - Tomas Dallos
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Anna Olwert
- c Systems Research InstitutePolish Academy of Sciences , Warsaw , Poland
| | - Anna Radzikowska
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Pawel Maldyk
- d Department of Rheumoorthopaedic Surgery , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Ewa Kontny
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| | - Wlodzimierz Maslinski
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology, and Rehabilitation , Warsaw , Poland
| |
Collapse
|
190
|
Sioud M. Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy. Cancers (Basel) 2019; 11:cancers11020176. [PMID: 30717461 PMCID: PMC6406640 DOI: 10.3390/cancers11020176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Therapeutic dendritic cell (DC) cancer vaccines rely on the immune system to eradicate tumour cells. Although tumour antigen-specific T cell responses have been observed in most studies, clinical responses are fairly low, arguing for the need to improve the design of DC-based vaccines. The incorporation of small interfering RNAs (siRNAs) against immunosuppressive factors in the manufacturing process of DCs can turn the vaccine into potent immune stimulators. Additionally, siRNA modification of ex vivo-expanded T cells for adoptive immunotherapy enhanced their killing potency. Most of the siRNA-targeted immune inhibitory factors have been successful in that their blockade produced the strongest cytotoxic T cell responses in preclinical and clinical studies. Cancer patients treated with the siRNA-modified DC vaccines showed promising clinical benefits providing a strong rationale for further development of these immunogenic vaccine formulations. This review covers the progress in combining siRNAs with DC vaccines or T cell therapy to boost anti-tumour immunity.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Montebello, N-0310 Oslo, Norway.
| |
Collapse
|
191
|
Domblides C, Lartigue L, Faustin B. Control of the Antitumor Immune Response by Cancer Metabolism. Cells 2019; 8:cells8020104. [PMID: 30708988 PMCID: PMC6406288 DOI: 10.3390/cells8020104] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The metabolic reprogramming of tumor cells and immune escape are two major hallmarks of cancer cells. The metabolic changes that occur during tumorigenesis, enabling survival and proliferation, are described for both solid and hematological malignancies. Concurrently, tumor cells have deployed mechanisms to escape immune cell recognition and destruction. Additionally, therapeutic blocking of tumor-mediated immunosuppression has proven to have an unprecedented positive impact in clinical oncology. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune signaling through both the release of signaling molecules and the expression of immune membrane ligands. Here, we review these molecular events to highlight the contribution of cancer cell metabolic reprogramming on the shaping of the antitumor immune response.
Collapse
Affiliation(s)
- Charlotte Domblides
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Department of Medical Oncology, Hôpital Saint-André, Bordeaux University Hospital-CHU, 33000 Bordeaux, France.
| | - Lydia Lartigue
- Curematch, Inc., 6440 Lusk Bvld, San Diego, CA 92121, USA.
| | - Benjamin Faustin
- Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France.
- Cellomet, CGFB, 146 Rue léo Saignat, F-33000 Bordeaux, France.
| |
Collapse
|
192
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
193
|
Liu YH, Yeh IJ, Lai MD, Liu KT, Kuo PL, Yen MC. Cancer Immunotherapy: Silencing Intracellular Negative Immune Regulators of Dendritic Cells. Cancers (Basel) 2019; 11:cancers11010108. [PMID: 30658461 PMCID: PMC6357062 DOI: 10.3390/cancers11010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 01/26/2023] Open
Abstract
Dendritic cells (DCs) are capable of activating adaptive immune responses, or inducing immune suppression or tolerance. In the tumor microenvironment, the function of DCs is polarized into immune suppression that attenuates the effect of T cells, promoting differentiation of regulatory T cells and supporting tumor progression. Therefore, blocking negative immune regulators in DCs is considered a strategy of cancer immunotherapy. Antibodies can target molecules on the cell surface, but not intracellular molecules of DCs. The delivery of short-hairpin RNAs (shRNA) and small-interfering RNAs (siRNA) should be a strategy to silence specific intracellular targets in DCs. This review provides an overview of the known negative immune regulators of DCs. Moreover, a combination of shRNA/siRNA and DC vaccines, DNA vaccines in animal models, and clinical trials are also discussed.
Collapse
Affiliation(s)
- Yao-Hua Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
194
|
Kozlova A, Frédérick R. Current state on tryptophan 2,3-dioxygenase inhibitors: a patent review. Expert Opin Ther Pat 2019; 29:11-23. [DOI: 10.1080/13543776.2019.1556638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arina Kozlova
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Raphaël Frédérick
- Medicinal Chemistry Research Group (CMFA), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
195
|
Badawy AAB. Tryptophan Metabolism: A Versatile Area Providing Multiple Targets for Pharmacological Intervention. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019; 9:10.32527/2019/101415. [PMID: 31105983 PMCID: PMC6520243 DOI: 10.32527/2019/101415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) undergoes extensive metabolism along several pathways, resulting in production of many biologically active metabolites which exert profound effects on physiological processes. The disturbance in Trp metabolism and disposition in many disease states provides a basis for exploring multiple targets for pharmaco-therapeutic interventions. In particular, the kynurenine pathway of Trp degradation is currently at the forefront of immunological research and immunotherapy. In this review, I shall consider mammalian Trp metabolism in health and disease and outline the intervention targets. It is hoped that this account will provide a stimulus for pharmacologists and others to conduct further studies in this rich area of biomedical research and therapeutics.
Collapse
|
196
|
Acovic A, Gazdic M, Jovicic N, Harrell CR, Fellabaum C, Arsenijevic N, Volarevic V. Role of indoleamine 2,3-dioxygenase in pathology of the gastrointestinal tract. Therap Adv Gastroenterol 2018; 11:1756284818815334. [PMID: 30574192 PMCID: PMC6295700 DOI: 10.1177/1756284818815334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/31/2018] [Indexed: 02/04/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has the most important role in modulation of tryptophan-dependent effects in the gastrointestinal tract, including modulation of intestinal immune response. An increased IDO activity maintains immune tolerance and attenuates ongoing inflammation but allows immune escape and uncontrolled growth of gastrointestinal tumors. Accordingly, IDO represents a novel therapeutic target for the treatment of inflammatory and malignant diseases of the gastrointestinal tract. In this review article, we summarize current knowledge about molecular and cellular mechanisms that are involved in IDO-dependent effects. We provide a brief outline of experimental and clinical studies that increased our understanding of how enhanced IDO activity: controls host-microbiota interactions in the gut; regulates detrimental immune response in inflammatory disorders of the gastrointestinal system; and allows immune escape and uncontrolled growth of gastrointestinal tumors. Additionally, we present future perspectives regarding modulation of IDO activity in the gut as possible new therapeutic approaches for the treatment of inflammatory and malignant diseases of the gastrointestinal system.
Collapse
Affiliation(s)
- Aleksandar Acovic
- Center for Molecular Medicine and Stem Cell Research, Department of Microbiology and Immunology, Faculty of Medical Sciences University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic
- Center for Molecular Medicine and Stem Cell Research, Department of Microbiology and Immunology, Faculty of Medical Sciences University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Center for Molecular Medicine and Stem Cell Research, Department of Microbiology and Immunology, Faculty of Medical Sciences University of Kragujevac, Kragujevac, Serbia
| | | | - Crissy Fellabaum
- Regenerative Processing Plant-RPP, LLC, Palm Harbor, Florida, USA
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Department of Microbiology and Immunology, Faculty of Medical Sciences University of Kragujevac, Kragujevac, Serbia
| | | |
Collapse
|
197
|
Abstract
Immunotherapy through immune checkpoint blockers (ICBs) is quickly transforming cancer treatment by improving patients' outcomes. However, innate and acquired resistance to ICBs remain a major challenge in clinical settings. Indoleamine 2,3-dioxygenases (IDOs) are enzymes involved in tryptophan catabolism with a central immunosuppressive function within the tumor microenvironment. IDOs are over-expressed in cancer patients and have increasingly been associated with worse outcomes and a poor prognosis. Preclinical data have shown that combining IDO and checkpoint inhibition might be a valuable strategy to improve the efficacy of immunotherapy. Currently, several IDO inhibitors have been evaluated in clinical trials, showing favorable pharmacokinetic profiles and promising efficacy. This review describes the mechanisms involved in IDO-mediated immune suppression and its role in cancer immune escape, focusing on the potential clinical application of IDO inhibitors as an immunotherapy strategy for cancer treatment.
Collapse
|
198
|
Quist-Paulsen E, Aukrust P, Kran AMB, Dunlop O, Ormaasen V, Stiksrud B, Midttun Ø, Ueland T, Ueland PM, Mollnes TE, Dyrhol-Riise AM. High neopterin and IP-10 levels in cerebrospinal fluid are associated with neurotoxic tryptophan metabolites in acute central nervous system infections. J Neuroinflammation 2018; 15:327. [PMID: 30470234 PMCID: PMC6260858 DOI: 10.1186/s12974-018-1366-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/11/2018] [Indexed: 11/22/2022] Open
Abstract
Background The host response to intruders in the central nervous system (CNS) may be beneficial but could also be harmful and responsible for neurologic symptoms and sequelae in CNS infections. This immune response induces the activation of the kynurenine pathway (KP) with the production of neuroactive metabolites. Herein, we explored cytokine and KP responses in cerebrospinal fluid (CSF) and serum in patients with encephalitis, aseptic, and bacterial meningitis. Methods Cytokines were measured in CSF and serum by multiplex assay in adult patients with encephalitis of infectious, autoimmune or unknown etiology (n = 10), aseptic meningitis (ASM, n = 25), acute bacterial meningitis (ABM, n = 6), and disease control patients with similar symptoms but without pleocytosis in CSF (n = 42). Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was used to measure KP metabolites in CSF and serum. Results A characteristic pattern of increasing cytokine levels and KP metabolites was found in CSF from encephalitis to ASM, with the highest levels in ABM. In ASM and ABM, most inflammatory mediators, including IL-6, IL-8, and IFN-inducible protein-10 (IP-10), showed markedly elevated levels in CSF compared with serum, indicating production within the CNS. In contrast to most mediators, the highest level of IP-10 was found in the ASM group, suggesting a potential role for IP-10 in aseptic/viral meningitis. Neopterin and IP-10 were associated with marked changes in KP metabolites in CSF with increasing kynurenine/tryptophan ratio reflecting indoleamine 2,3-dioxygenase activity. Neopterin, a marker of IFN-γ activity, was associated with an unfavorable balance between neuroprotective and neurotoxic tryptophan metabolites. Conclusion We show that parenchymal and meningeal inflammations in CNS share a characteristic cytokine profile with a general immune response in the CSF with limited influence from the systemic circulation. IFN-γ activity, assessed by neopterin and IP-10 levels, may play a role in the activation of the KP pathway in these patients, potentially mediating neurotoxic effects. Electronic supplementary material The online version of this article (10.1186/s12974-018-1366-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Else Quist-Paulsen
- Department of Infectious Diseases, Oslo University Hospital, Ullevaal Hospital, P. O. Box 4956 Nydalen, N-0450, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, Tromsø, Norway
| | - Anne-Marte Bakken Kran
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Oona Dunlop
- Department of Acute Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Vidar Ormaasen
- Department of Infectious Diseases, Oslo University Hospital, Ullevaal Hospital, P. O. Box 4956 Nydalen, N-0450, Oslo, Norway
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Ullevaal Hospital, P. O. Box 4956 Nydalen, N-0450, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, Tromsø, Norway
| | | | - Tom Eirik Mollnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, Tromsø, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Ma Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Ullevaal Hospital, P. O. Box 4956 Nydalen, N-0450, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
199
|
Boros FA, Klivényi P, Toldi J, Vécsei L. Indoleamine 2,3-dioxygenase as a novel therapeutic target for Huntington’s disease. Expert Opin Ther Targets 2018; 23:39-51. [DOI: 10.1080/14728222.2019.1549231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fanni A. Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged, Szeged, Hungary
| |
Collapse
|
200
|
Li S, Han X, Lyu N, Xie Q, Deng H, Mu L, Pan T, Huang X, Wang X, Shi Y, Zhao M. Mechanism and prognostic value of indoleamine 2,3-dioxygenase 1 expressed in hepatocellular carcinoma. Cancer Sci 2018; 109:3726-3736. [PMID: 30264546 PMCID: PMC6272112 DOI: 10.1111/cas.13811] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3‐dioxygenase 1 (IDO1) is a tryptophan‐metabolizing enzyme that is widely distributed in normal or malignant tissues and contributes to immunologic tolerance and immune escape. However, in hepatocellular carcinoma (HCC), the characteristics and mechanism of IDO1 expression have not been well defined. In this study, IDO1 expression in tumor cells (T‐IDO1) was frequently detected (109/112) by immunohistochemistry in formalin‐fixed paraffin‐embedded specimens from HCC patients, and the expression patterns were mostly focal (102/109). Expression of T‐IDO1 was significantly associated with the infiltration of CD8+ T cells (P = .043), as well as younger age (<50 years old, P = .02). It was also found that IDO1 had diffuse expression in inflammatory cells in all specimens, which were defined as antigen‐presenting cells. Significant correlations among IDO1,IFNG, and CD8A transcriptional levels were observed in freshly resected HCC specimens; moreover, no constitutive IDO1 expression was detected in HCC cell lines until stimulated by interferon‐γ through the JAK2‐STAT1 signaling pathway, but not type I interferon. Survival analyses showed that increased T‐IDO1 and CD8+ T cell infiltration were significantly associated with superior overall survival (OS) (T‐IDO1, P = .003; CD8+ T cells, P = .004), and T‐IDO1 expression is an independent prognosis factor in both OS and disease‐free survival (OS, P = .007; disease‐free survival, P = .044). These findings indicated that T‐IDO1 expression in HCC is common and is dominantly driven by the host antitumor immune response, which is a favorable prognostic factor in HCC.
Collapse
Affiliation(s)
- Shaolong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiankun Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haijing Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Luwen Mu
- Department of Vascular Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Pan
- Department of Vascular Interventional Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Wang
- Department of Pathology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Shi
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|