151
|
Nardin C, Hennemann A, Diallo K, Funck-Brentano E, Puzenat E, Heidelberger V, Jeudy G, Samimi M, Lesage C, Boussemart L, Peuvrel L, Rouanet J, Brunet-Possenti F, Gerard E, Seris A, Jouary T, Saint-Jean M, Puyraveau M, Saiag P, Aubin F. Efficacy of Immune Checkpoint Inhibitor (ICI) Rechallenge in Advanced Melanoma Patients' Responders to a First Course of ICI: A Multicenter National Retrospective Study of the French Group of Skin Cancers (Groupe de Cancérologie Cutanée, GCC). Cancers (Basel) 2023; 15:3564. [PMID: 37509227 PMCID: PMC10377277 DOI: 10.3390/cancers15143564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The long-term effectiveness of immune checkpoint inhibitor (ICI) rechallenge for progressive or recurrent advanced melanoma following previous disease control induced by ICI has not been thoroughly described in the literature. PATIENTS AND METHODS In this retrospective multicenter national real-life study, we enrolled patients who had been rechallenged with an ICI after achieving disease control with a first course of ICI, which was subsequently interrupted. The primary objective was to evaluate tumor response, while the secondary objectives included assessing the safety profile, identifying factors associated with tumor response, and evaluating survival outcomes. RESULTS A total of 85 patients from 12 centers were included in the study. These patients had advanced (unresectable stage III or stage IV) melanoma that had been previously treated and controlled with a first course of ICI before undergoing rechallenge with ICI. The rechallenge treatments consisted of pembrolizumab (n = 44, 52%), nivolumab (n = 35, 41%), ipilimumab (n = 2, 2%), or ipilimumab plus nivolumab (n = 4, 5%). The best overall response rate was 54%. The best response was a complete response in 30 patients (35%), a partial response in 16 patients (19%), stable disease in 18 patients (21%) and progressive disease in 21 patients (25%). Twenty-eight adverse events (AEs) were reported in 23 patients (27%), including 18 grade 1-2 AEs in 14 patients (16%) and 10 grade 3-4 AEs in nine patients (11%). The median progression-free survival (PFS) was 21 months, and the median overall survival (OS) was not reached at the time of analysis. Patients who received another systemic treatment (chemotherapy, targeted therapy or clinical trial) between the two courses of ICI had a lower response to rechallenge (p = 0.035) and shorter PFS (p = 0.016). CONCLUSION Rechallenging advanced melanoma patients with ICI after previous disease control induced by these inhibitors resulted in high response rates (54%) and disease control (75%). Therefore, ICI rechallenge should be considered as a relevant therapeutic option.
Collapse
Affiliation(s)
- Charlée Nardin
- Service de Dermatologie, Centre Hospitalier Universitaire, 25000 Besancon, France
- Université Franche Comté, Inserm 1098 RIGHT, 25020 Besancon, France
| | - Aymeric Hennemann
- Service de Dermatologie, Centre Hospitalier Universitaire, 25000 Besancon, France
| | - Kadiatou Diallo
- Centre de Méthodologie Clinique, Centre Hospitalier Universitaire, 25030 Besancon, France
| | - Elisa Funck-Brentano
- Université Paris-Saclay, UVSQ, EA4340-BECCOH, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Ambroise-Paré, Service de Dermatologie Générale et Oncologique, 92104 Boulogne-Billancourt, France
| | - Eve Puzenat
- Service de Dermatologie, Centre Hospitalier Universitaire, 25000 Besancon, France
| | | | - Géraldine Jeudy
- Service de Dermatologie, Centre Hospitalier Universitaire, Hôpital Le Bocage, 21079 Dijon, France
| | - Mahtab Samimi
- Service de Dermatologie, Centre Hospitalier Universitaire, BIP 1282, INRA-Université de Tours, 37020 Tours, France
| | - Candice Lesage
- Service de Dermatologie, Centre Hospitalier Universitaire, 34295 Montpellier, France
| | - Lise Boussemart
- Service de Dermatologie, Centre Hospitalier Universitaire, Université de Nantes, INSERM, Immunology and New Concepts in Immunotherapy, INCIT, UMR 1302, 44000 Nantes, France
| | - Lucie Peuvrel
- Institut de Cancérologie de l'Ouest, 44800 Saint-Herblain, France
| | - Jacques Rouanet
- Service de Dermatologie, Centre Hospitalier Universitaire, 63003 Clermont-Ferrand, France
| | | | - Emilie Gerard
- Service de Dermatologie, Centre Hospitalier Universitaire, 33075 Bordeaux, France
| | - Alice Seris
- Oncologie Médicale, Centre Hospitalier, 64046 Pau, France
| | - Thomas Jouary
- Oncologie Médicale, Centre Hospitalier, 64046 Pau, France
| | | | - Marc Puyraveau
- Centre de Méthodologie Clinique, Centre Hospitalier Universitaire, 25030 Besancon, France
| | - Philippe Saiag
- Université Paris-Saclay, UVSQ, EA4340-BECCOH, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Ambroise-Paré, Service de Dermatologie Générale et Oncologique, 92104 Boulogne-Billancourt, France
| | - François Aubin
- Service de Dermatologie, Centre Hospitalier Universitaire, 25000 Besancon, France
- Université Franche Comté, Inserm 1098 RIGHT, 25020 Besancon, France
| |
Collapse
|
152
|
Ho P, Melms JC, Rogava M, Frangieh CJ, Poźniak J, Shah SB, Walsh Z, Kyrysyuk O, Amin AD, Caprio L, Fullerton BT, Soni RK, Ager CR, Biermann J, Wang Y, Khosravi-Maharlooei M, Zanetti G, Mu M, Fatima H, Moore EK, Vasan N, Bakhoum SF, Reiner SL, Bernatchez C, Sykes M, Mace EM, Wucherpfennig KW, Schadendorf D, Bechter O, Shah P, Schwartz GK, Marine JC, Izar B. The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity. Cancer Cell 2023; 41:1207-1221.e12. [PMID: 37327789 PMCID: PMC10524902 DOI: 10.1016/j.ccell.2023.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.
Collapse
Affiliation(s)
- Patricia Ho
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Chris J Frangieh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Klarman Cell Observatory, the Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Shivem B Shah
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Zachary Walsh
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Lindsay Caprio
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Benjamin T Fullerton
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY 10032, USA
| | - Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Yiping Wang
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Giorgia Zanetti
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Michael Mu
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hijab Fatima
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Emily K Moore
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Medicine, Division of Rheumatology, Columbia University, New York, NY 10032, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven L Reiner
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Chantale Bernatchez
- Department of Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA; Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Emily M Mace
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site, 45147 Essen, Germany
| | | | - Parin Shah
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA
| | - Gary K Schwartz
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Columbia University, New York, NY 10032, USA; Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
153
|
Ozbay Kurt FG, Lasser S, Arkhypov I, Utikal J, Umansky V. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. J Clin Invest 2023; 133:e170762. [PMID: 37395271 DOI: 10.1172/jci170762] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Despite the remarkable success of immune checkpoint inhibitors (ICIs) in melanoma treatment, resistance to them remains a substantial clinical challenge. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that can suppress antitumor immune responses mediated by T and natural killer cells and promote tumor growth. They are major contributors to ICI resistance and play a crucial role in creating an immunosuppressive tumor microenvironment. Therefore, targeting MDSCs is considered a promising strategy to improve the therapeutic efficacy of ICIs. This Review describes the mechanism of MDSC-mediated immune suppression, preclinical and clinical studies on MDSC targeting, and potential strategies for inhibiting MDSC functions to improve melanoma immunotherapy.
Collapse
Affiliation(s)
- Feyza Gul Ozbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| |
Collapse
|
154
|
Ayati N, Jamshidi-Araghi Z, Hoellwerth M, Schweighofer-Zwink G, Hitzl W, Koelblinger P, Pirich C, Beheshti M. Predictive value and accuracy of [ 18F]FDG PET/CT modified response criteria for checkpoint immunotherapy in patients with advanced melanoma. Eur J Nucl Med Mol Imaging 2023; 50:2715-2726. [PMID: 37140669 PMCID: PMC10317870 DOI: 10.1007/s00259-023-06247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) are widely used in metastatic melanoma and dramatically alter the treatment of these patients. Given the high cost and potential toxicity, a reliable method for evaluating treatment response is needed. In this study, we assessed tumor response in patients with metastatic melanoma treated with ICIs using three modified response criteria: PET Response Evaluation Criteria for Immunotherapy (PERCIMT), PET Response Criteria in Solid Tumors for up to Five Lesions (PERCIST5), and immunotherapy-modified PET Response Criteria in Solid Tumors for up to Five Lesions (imPERCIST5). METHODS Ninety-one patients with non-resectable stage IV metastatic melanoma who received ICIs were retrospectively enrolled in this study. Each patient had two [18F]FDG PET/CT scans performed before and after ICI therapy. Responses at the follow-up scan were evaluated according to PERCIMT, PERCIST5, and imPERCIST5 criteria. Patients were classified into four groups: complete metabolic response (CMR), partial metabolic response (PMR), progressive metabolic disease (PMD), and stable metabolic disease (SMD). To assess the "disease control rate," two groups have been defined based on each criterion: patients with CMR, PMR, and SMD as "disease-controlled group (i.e., responders)" and PMD as the "uncontrolled-disease group (i.e., non-responders)". The correspondence between metabolic tumor response defined by these criteria and clinical outcome was assessed and compared. RESULTS The response and the disease control rates were 40.7% and 71.4%, 41.8% and 50.5%, and 54.9% and 74.7% based on the PERCIMT, PERCIST5, and imPERCIST5 criteria, respectively. PERCIMT and imPERCIST5 showed significantly different disease control rates from that of PERCIST5 (P < 0.001), whereas it was not significant between PERCIMT and imPERCIST5. Overall survival was significantly longer in the metabolic responder groups than in the non-responder groups based on PERCIMT and PERCIST5 criteria (PERCIMT: 2.48 versus 1.47 years, P = 0.003; PERCIST5: 2.57 versus 1.81 years. P = 0.017). However, according to imPERCIST5 criterion, this difference was not observed (P = 0.12). CONCLUSION Although the appearance of new lesions can be secondary to an inflammatory response to ICIs and indicative of pseudoprogression, given the higher rate of true progression, the appearance of new lesions should be interpreted deliberately. Of the three assessed modified criteria, PERCIMT appear to provide more reliable metabolic response assessment that correlates strongly with overall patient survival.
Collapse
Affiliation(s)
- Narjess Ayati
- Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Zahra Jamshidi-Araghi
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
- Department of Nuclear Medicine, Shahid Rajaie Cardiovascular, Medical & Research Center, Tehran, Iran
| | - Magdalena Hoellwerth
- Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Gregor Schweighofer-Zwink
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Wolfgang Hitzl
- Biostatistics and Publication of Clinical Trial Studies, Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology & Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Peter Koelblinger
- Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| |
Collapse
|
155
|
Rozeman EA, Versluis JM, Sikorska K, Hoefsmit EP, Dimitriadis P, Rao D, Lacroix R, Grijpink-Ongering LG, Lopez-Yurda M, Heeres BC, van de Wiel BA, Flohil C, Sari A, Heijmink SWTPJ, van den Broek D, Broeks A, de Groot JWB, Vollebergh MA, Wilgenhof S, van Thienen JV, Haanen JBAG, Blank CU. IMPemBra: a phase 2 study comparing pembrolizumab with intermittent/short-term dual MAPK pathway inhibition plus pembrolizumab in patients with melanoma harboring the BRAFV600 mutation. J Immunother Cancer 2023; 11:e006821. [PMID: 37479483 PMCID: PMC10364170 DOI: 10.1136/jitc-2023-006821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Continuous combination of MAPK pathway inhibition (MAPKi) and anti-programmed death-(ligand) 1 (PD-(L)1) showed high response rates, but only limited improvement in progression-free survival (PFS) at the cost of a high frequency of treatment-related adverse events (TRAE) in patients with BRAFV600-mutated melanoma. Short-term MAPKi induces T-cell infiltration in patients and is synergistic with anti-programmed death-1 (PD-1) in a preclinical melanoma mouse model. The aim of this phase 2b trial was to identify an optimal regimen of short-term MAPKi with dabrafenib plus trametinib in combination with pembrolizumab. METHODS Patients with treatment-naïve BRAFV600E/K-mutant advanced melanoma started pembrolizumab 200 mg every 3 weeks. In week 6, patients were randomized to continue pembrolizumab only (cohort 1), or to receive, in addition, intermittent dabrafenib 150 mg two times per day plus trametinib 2 mg one time per day for two cycles of 1 week (cohort 2), two cycles of 2 weeks (cohort 3), or continuously for 6 weeks (cohort 4). All cohorts continued pembrolizumab for up to 2 years. Primary endpoints were safety and treatment-adherence. Secondary endpoints were objective response rate (ORR) at week 6, 12, 18 and PFS. RESULTS Between June 2016 and August 2018, 33 patients with advanced melanoma have been included and 32 were randomized. Grade 3-4 TRAE were observed in 12%, 12%, 50%, and 63% of patients in cohort 1, 2, 3, and 4, respectively. All planned targeted therapy was given in 88%, 63%, and 38% of patients in cohort 2, 3, and 4. ORR at week 6, 12, and 18 were 38%, 63%, and 63% in cohort 1; 25%, 63%, and 75% in cohort 2; 25%, 50%, and 75% in cohort 3; and 0%, 63%, and 50% in cohort 4. After a median follow-up of 43.5 months, median PFS was 10.6 months for pembrolizumab monotherapy and not reached for patients treated with pembrolizumab and intermittent dabrafenib and trametinib (p=0.17). The 2-year and 3-year landmark PFS were both 25% for cohort 1, both 63% for cohort 2, 50% and 38% for cohort 3 and 75% and 60% for cohort 4. CONCLUSIONS The combination of pembrolizumab plus intermittent dabrafenib and trametinib seems more feasible and tolerable than continuous triple therapy. The efficacy is promising and appears to be favorable over pembrolizumab monotherapy. TRIAL REGISTRATION NUMBER NCT02625337.
Collapse
Affiliation(s)
- Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Judith M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karolina Sikorska
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Esmée P Hoefsmit
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petros Dimitriadis
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Disha Rao
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruben Lacroix
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Birthe C Heeres
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bart A van de Wiel
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Claudie Flohil
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aysegul Sari
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annegien Broeks
- Core Facility and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marieke A Vollebergh
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sofie Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical center, Leiden, The Netherlands
| |
Collapse
|
156
|
Galus Ł, Michalak M, Lorenz M, Stoińska-Swiniarek R, Tusień Małecka D, Galus A, Kolenda T, Leporowska E, Mackiewicz J. Vitamin D supplementation increases objective response rate and prolongs progression-free time in patients with advanced melanoma undergoing anti-PD-1 therapy. Cancer 2023; 129:2047-2055. [PMID: 37089083 DOI: 10.1002/cncr.34718] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Vitamin D3 is a prohormone with pleiotropic effects, including modulating the functions of the immune system and may affect the effectiveness of anti-PD-1 treatment in patients with cancer. According to the literature, the potential mechanism of vitamin D's influence on the effectiveness of therapy is most likely related to the amount and activity of tumor-infiltrating lymphocytes. There are data showing the effect of vitamin D on cells regulating the activity of CD8 lymphocytes. METHODS A total of 200 patients with advanced melanoma were included in the study. All patients received anti-PD-1 immunotherapy (nivolumab or pembrolizumab) as first-line treatment. Serum vitamin D levels were measured in patients both before and every 12 weeks during treatment. Part of the group had vitamin D measured retrospectively from the preserved serum. The other part of the supplementation group was tested prospectively. RESULTS The response rate in the group with low vitamin D levels and not supplemented was 36.2%, whereas in the group with normal baseline levels or a normal level obtained with supplementation was 56.0% (p = .01). Moreover, progression-free survival in these groups was 5.75 and 11.25 months, respectively (p = .03). In terms of overall survival, there was also a difference in favor of the group with normal vitamin D levels (27 vs. 31.5 months, respectively; p = .39). CONCLUSIONS In our opinion, maintaining the vitamin D level within the normal range during anti-PD-1 immunotherapy in advanced melanoma patients should be a standard procedure allowing the improvement of treatment outcomes.
Collapse
Affiliation(s)
- Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | - Mateusz Lorenz
- Department of Diagnostic Imaging, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznań, Poland
| | - Renata Stoińska-Swiniarek
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznań, Poland
| | - Daria Tusień Małecka
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznań, Poland
| | - Ewa Leporowska
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, Poznań, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznań, Poland
| |
Collapse
|
157
|
de Barros E Silva MJ, Teixeira MR, Lobo MDM, Molina AS, Bertolli E, Santos Filho IDDAO, Castro Ribeiro HS, Pelizon ACDA, Lopes Pinto CA, Duprat Neto JP. Local therapy in advanced melanoma after immune checkpoint inhibitors aiming to achieve complete response. J Cancer Res Ther 2023; 19:1272-1278. [PMID: 37787295 DOI: 10.4103/jcrt.jcrt_1684_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background and Objectives New scenarios for local therapy have arisen after starting immune checkpoint inhibitors (ICIs) to treat advanced melanoma (AM). The aim of this study is to examine the role of local therapies with curative intention for patients with AM that have been on ICI. Methods This was a single institution, retrospective analysis of unresectable stage III or IV melanoma patients on treatment with anti-PD1 ± anti-CTLA-4 who underwent local therapy with curative intention with no other remaining sites of disease (NRD). Results Of the 170 patients treated with ICI, 19 (11.2%) met the criteria of curative intention. The median time on ICI before local therapy was 16.6 months (range: 0.92-43.2). At the time of the local treatment, the disease was controlled in 16 (84.25%) and progressing in 3 patients (15.75%); 14 patients (73.7%) treated a single lesion and 5 (26.3%) treated 2 to 3 lesions. In a median follow-up of 17 months (range: 1.51-38.2) after the local therapy and 9.8 months after the last ICI cycle (range: 0.56-31), only 2 (10.5%) out of 19 patients relapsed. Conclusions Patients with AM on treatment with ICI were able to achieve NRD after local treatment and may benefit from long-term disease control without systemic treatment.
Collapse
Affiliation(s)
| | | | | | - André Sapata Molina
- Department of Surgical Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Eduardo Bertolli
- Department of Surgical Oncology, AC Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
158
|
Giovannini E, Bonasoni MP, D'Aleo M, Tamagnini I, Tudini M, Fais P, Pelotti S. Pembrolizumab-Induced Fatal Myasthenia, Myocarditis, and Myositis in a Patient with Metastatic Melanoma: Autopsy, Histological, and Immunohistochemical Findings-A Case Report and Literature Review. Int J Mol Sci 2023; 24:10919. [PMID: 37446095 DOI: 10.3390/ijms241310919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a major advance in cancer treatment. The lowered immune tolerance induced by ICIs brought to light a series of immune-related adverse events (irAEs). Pembrolizumab belongs to the ICI class and is a humanized IgG4 anti-PD-1 antibody that blocks the interaction between PD-1 and PD-L1. The ICI-related irAEs involving various organ systems and myocarditis are uncommon (incidence of 0.04% to 1.14%), but they are associated with a high reported mortality. Unlike idiopathic inflammatory myositis, ICI-related myositis has been reported to frequently co-occur with myocarditis. The triad of myasthenia, myositis, and myocarditis must not be underestimated as they can rapidly deteriorate, leading to death. Herein we report a case of a patient with metastatic melanoma who fatally developed myasthenia gravis, myocarditis, and myositis, after a single cycle of pembrolizumab. Considering evidence from the literature review, autopsy, histological, and immunohistochemical investigations on heart and skeletal muscle are presented and discussed, also from a medical-legal perspective.
Collapse
Affiliation(s)
- Elena Giovannini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Michele D'Aleo
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Matteo Tudini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Paolo Fais
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| |
Collapse
|
159
|
Wu Z, Cao Z, Yao H, Yan X, Xu W, Zhang M, Jiao Z, Zhang Z, Chen J, Liu Y, Zhang M, Wang D. Coupled deglycosylation-ubiquitination cascade in regulating PD-1 degradation by MDM2. Cell Rep 2023; 42:112693. [PMID: 37379210 DOI: 10.1016/j.celrep.2023.112693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Posttranslational modifications represent a key step in modulating programmed death-1 (PD-1) functions, but the underlying mechanisms remain incompletely defined. Here, we report crosstalk between deglycosylation and ubiquitination in regulating PD-1 stability. We show that the removal of N-linked glycosylation is a prerequisite for efficient PD-1 ubiquitination and degradation. Murine double minute 2 (MDM2) is identified as an E3 ligase of deglycosylated PD-1. In addition, the presence of MDM2 facilitates glycosylated PD-1 interaction with glycosidase NGLY1 and promotes subsequent NGLY1-catalyzed PD-1 deglycosylation. Functionally, we demonstrate that the absence of T cell-specific MDM2 accelerates tumor growth by primarily upregulating PD-1. By stimulating the p53-MDM2 axis, interferon-α (IFN-α) reduces PD-1 levels in T cells, which, in turn, exhibit a synergistic effect on tumor suppression by sensitizing anti-PD-1 immunotherapy. Our study reveals that MDM2 directs PD-1 degradation via a deglycosylation-ubiquitination coupled mechanism and sheds light on a promising strategy to boost cancer immunotherapy by targeting the T cell-specific MDM2-PD-1 regulatory axis.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zhijie Cao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wenbin Xu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Zishan Jiao
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Zijing Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jianyuan Chen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yajing Liu
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
160
|
Affiliation(s)
- Ashley Wysong
- From the Department of Dermatology, University of Nebraska Medical Center, Omaha
| |
Collapse
|
161
|
Hulen TM, Friese C, Kristensen NP, Granhøj JS, Borch TH, Peeters MJW, Donia M, Andersen MH, Hadrup SR, Svane IM, Met Ö. Ex vivo modulation of intact tumor fragments with anti-PD-1 and anti-CTLA-4 influences the expansion and specificity of tumor-infiltrating lymphocytes. Front Immunol 2023; 14:1180997. [PMID: 37359554 PMCID: PMC10285209 DOI: 10.3389/fimmu.2023.1180997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Checkpoint inhibition (CPI) therapy and adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL-based ACT) are the two most effective immunotherapies for the treatment of metastatic melanoma. While CPI has been the dominating therapy in the past decade, TIL-based ACT is beneficial for individuals even after progression on previous immunotherapies. Given that notable differences in response have been made when used as a subsequent treatment, we investigated how the qualities of TILs changed when the ex vivo microenvironment of intact tumor fragments were modulated with checkpoint inhibitors targeting programmed death receptor 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Initially, we show that unmodified TILs from CPI-resistant individuals can be produced, are overwhelmingly terminally differentiated, and are capable of responding to tumor. We then investigate these properties in ex vivo checkpoint modulated TILs finding that that they retain these qualities. Lastly, we confirmed the specificity of the TILs to the highest responding tumor antigens, and identified this reactivity resides largely in CD39+CD69+ terminally differentiated populations. Overall, we found that anti-PD-1 will alter the proliferative capacity while anti-CTLA4 will influence breadth of antigen specificity.
Collapse
Affiliation(s)
- Thomas Morgan Hulen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Christina Friese
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marlies J. W. Peeters
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
162
|
Fang Y, Zhang X, Huang H, Zeng Z. The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 2023; 21:369. [PMID: 37286982 DOI: 10.1186/s12967-023-04238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in people, and a common primary liver cancer. Lacking early diagnosis and a high recurrence rate after surgical resection, systemic treatment is still an important treatment method for advanced HCC. Different drugs have distinct curative effects, side effects and drug resistance due to different properties. At present, conventional molecular drugs for HCC have displayed some limitations, such as adverse drug reactions, insensitivity to some medicines, and drug resistance. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have been well documented to be involved in the occurrence and progression of cancer. Novel biomarkers and therapeutic targets, as well as research into the molecular basis of drug resistance, are urgently needed for the management of HCC. We review current research on ncRNAs and consolidate the known roles regulating drug resistance in HCC and examine the potential clinical applications of ncRNAs in overcoming drug resistance barriers in HCC based on targeted therapy, cell cycle non-specific chemotherapy and cell cycle specific chemotherapy.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
163
|
Dellino M, Cerbone M, Laganà AS, Vitagliano A, Vimercati A, Marinaccio M, Baldini GM, Malvasi A, Cicinelli E, Damiani GR, Cazzato G, Cascardi E. Upgrading Treatment and Molecular Diagnosis in Endometrial Cancer-Driving New Tools for Endometrial Preservation? Int J Mol Sci 2023; 24:9780. [PMID: 37298731 PMCID: PMC10253366 DOI: 10.3390/ijms24119780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
One emerging problem for onco-gynecologists is the incidence of premenopausal patients under 40 years of age diagnosed with stage I Endometrial Cancer (EC) who want to preserve their fertility. Our review aims to define a primary risk assessment that can help fertility experts and onco-gynecologists tailor personalized treatment and fertility-preserving strategies for fertile patients wishing to have children. We confirm that risk factors such as myometrial invasion and The International Federation of Gynecology and Obstetrics (FIGO) staging should be integrated into the novel molecular classification provided by The Cancer Genome Atlas (TCGA). We also corroborate the influence of classical risk factors such as obesity, Polycystic ovarian syndrome (PCOS), and diabetes mellitus to assess fertility outcomes. The fertility preservation options are inadequately discussed with women with a diagnosis of gynecological cancer. A multidisciplinary team of gynecologists, oncologists, and fertility specialists could increase patient satisfaction and improve fertility outcomes. The incidence and death rates of endometrial cancer are rising globally. International guidelines recommend radical hysterectomy and bilateral salpingo-oophorectomy as the standard of care for this cancer; however, fertility-sparing alternatives should be tailored to motivated women of reproductive age, establishing an appropriate cost-benefit balance between childbearing desire and cancer risk. New molecular classifications such as that of TCGA provide a robust supplementary risk assessment tool that can tailor the treatment options to the patient's needs, curtail over- and under-treatment, and contribute to the spread of fertility-preserving strategies.
Collapse
Affiliation(s)
- Miriam Dellino
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Marco Cerbone
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS “Civico—Di Cristina—Benfratelli”, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Amerigo Vitagliano
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonella Vimercati
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Marco Marinaccio
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Antonio Malvasi
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ettore Cicinelli
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gianluca Raffaello Damiani
- Obstetrics and Gynaecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Eliano Cascardi
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, 10060 Candiolo, Italy
| |
Collapse
|
164
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
165
|
Najafi A, Sabaghi M, Asgarian-Omran H, Valadan R, Shekarriz R, Zaboli E, Janbabai G, Tehrani M. Relative Expression of BATF and CD112 in PBMC of Patients with Chronic Lymphocytic Leukemia. Asian Pac J Cancer Prev 2023; 24:2171-2176. [PMID: 37378949 PMCID: PMC10505859 DOI: 10.31557/apjcp.2023.24.6.2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE BATF, as a transcription factor, and CD112, as a receptor for TIGIT, are involved in T-cell exhaustion. We investigated BATF and CD112 gene expression in the peripheral blood mononuclear cells from CLL patients and healthy subjects. METHODS In a case-control study, 33 patients with CLL and 20 sex- and age-matched healthy individual were enrolled. Diagnosis and classification of patients was done according to immunophenotyping via flow cytometry and RAI staging system, respectively. Relative mRNA expression of BATF and CD112 was measured using qRT-PCR. RESULT Our results showed that the expression of BATF and CD112 in CLL samples were significantly decreased in comparison those of the healthy controls (P = 0.0236 and P = 0.0002, respectively). CONCLUSION These findings suggest the role of BATF and CD112 not only as a role in T cell exhaustion, but in effector differentiation program in CLL, which warrants further studies in future.
Collapse
Affiliation(s)
- Ahmad Najafi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Matineh Sabaghi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ramin Shekarriz
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ehsan Zaboli
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ghasem Janbabai
- Department of Hematology and Oncology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
166
|
Hamid O, Hassel JC, Shoushtari AN, Meier F, Bauer TM, Salama AKS, Kirkwood JM, Ascierto PA, Lorigan PC, Mauch C, Orloff M, Evans TRJ, Holland C, Edukulla R, Abedin SE, Middleton MR. Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: a phase 1 study. J Immunother Cancer 2023; 11:e006747. [PMID: 37286303 PMCID: PMC10254987 DOI: 10.1136/jitc-2023-006747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have significantly improved outcomes in first line cutaneous melanoma. However, there is a high unmet need for patients who progress on these therapies and combination therapies are being explored to improve outcomes. Tebentafusp is a first-in-class gp100×CD3 ImmTAC bispecific that demonstrated overall survival (OS) benefit (HR 0.51) in metastatic uveal melanoma despite a modest overall response rate of 9%. This phase 1b trial evaluated the safety and initial efficacy of tebentafusp in combination with durvalumab (anti-programmed death ligand 1 (PDL1)) and/or tremelimumab (anti-cytotoxic T lymphocyte-associated antigen 4) in patients with metastatic cutaneous melanoma (mCM), the majority of whom progressed on prior checkpoint inhibitors. METHODS In this open-label, multicenter, phase 1b, dose-escalation trial, HLA-A*02:01-positive patients with mCM received weekly intravenous tebentafusp with increasing monthly doses of durvalumab and/or tremelimumab starting day 15 of each cycle. The primary objective was to identify the maximum tolerated dose (MTD) or recommended phase 2 dose for each combination. Efficacy analyses were performed in all tebentafusp with durvalumab±tremelimumab treated patients with a sensitivity analysis in those who progressed on prior anti-PD(L)1 therapy. RESULTS 85 patients were assigned to receive tebentafusp in combination with durvalumab (n=43), tremelimumab (n=13), or durvalumab and tremelimumab (n=29). Patients were heavily pretreated with a median of 3 prior lines of therapy, including 76 (89%) who received prior anti-PD(L)1. Maximum target doses of tebentafusp (68 mcg) alone or in combination with durvalumab (20 mg/kg) and tremelimumab (1 mg/kg) were tolerated; MTD was not formally identified for any arm. Adverse event profile was consistent with each individual therapy and there were no new safety signals nor treatment-related deaths. In the efficacy subset (n=72), the response rate was 14%, tumor shrinkage rate was 41% and 1-year OS rate was 76% (95% CI: 70% to 81%). The 1-year OS for triplet combination (79%; 95% CI: 71% to 86%) was similar to tebentafusp plus durvalumab (74%; 95% CI: 67% to 80%). CONCLUSION At maximum target doses, the safety of tebentafusp with checkpoint inhibitors was consistent with safety of each individual therapy. Tebentafusp with durvalumab demonstrated promising efficacy in heavily pretreated patients with mCM, including those who progressed on prior anti-PD(L)1. TRIAL REGISTRATION NUMBER NCT02535078.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinic and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, California, USA
| | | | - Alexander N Shoushtari
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Friedegund Meier
- Skin Cancer Center at the National Center for Tumor Diseases and University Cancer Centre, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | - John M Kirkwood
- University of Pittsburgh Medical Center Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | | | - Marlana Orloff
- Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | - Mark R Middleton
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
167
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
168
|
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y, Wang K. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol 2023; 14:1199631. [PMID: 37313405 PMCID: PMC10258331 DOI: 10.3389/fimmu.2023.1199631] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Unprecedented breakthroughs have been made in cancer immunotherapy in recent years. Particularly immune checkpoint inhibitors have fostered hope for patients with cancer. However, immunotherapy still exhibits certain limitations, such as a low response rate, limited efficacy in certain populations, and adverse events in certain tumors. Therefore, exploring strategies that can improve clinical response rates in patients is crucial. Tumor-associated macrophages (TAMs) are the predominant immune cells that infiltrate the tumor microenvironment and express a variety of immune checkpoints that impact immune functions. Mounting evidence indicates that immune checkpoints in TAMs are closely associated with the prognosis of patients with tumors receiving immunotherapy. This review centers on the regulatory mechanisms governing immune checkpoint expression in macrophages and strategies aimed at improving immune checkpoint therapies. Our review provides insights into potential therapeutic targets to improve the efficacy of immune checkpoint blockade and key clues to developing novel tumor immunotherapies.
Collapse
Affiliation(s)
- Shumin Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chenyang Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lingge Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaji Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengshu Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Peng Xiao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
169
|
Mannucci M, Fontana V, Campanella D, Filiberti RA, Pronzato P, Rosa A. A Descriptive Study of Repeated Hospitalizations and Survival of Patients with Metastatic Melanoma in the Northern Italian Region during 2004-2019. Curr Oncol 2023; 30:5266-5278. [PMID: 37366883 DOI: 10.3390/curroncol30060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Survival rates for metastatic melanoma (MM) patients have improved in recent years, leading to major expenses and health resource use. We conducted a non-concurrent prospective study to describe the burden of hospitalization in a real-world setting for patients with MM. METHODS Patients were tracked throughout all hospital stays in 2004-2019 by means of hospital discharges. The number of hospitalizations, the rehospitalization rate, the average time spent in the hospital and the time span between consecutive admissions were evaluated. Relative survival was also calculated. RESULTS Overall, 1570 patients were identified at the first stay (56.5% in 2004-2011 and 43.7% in 2012-2019). A total of 8583 admissions were retrieved. The overall rehospitalization rate was 1.78 per patient/year (95%CI = 1.68-1.89); it increased significantly with the period of first stay (1.51, 95%CI = 1.40-1.64 in 2004-2011 and 2.11, 95%CI = 1.94-2.29 thereafter). The median time span between hospitalizations was lower for patients hospitalized after 2011 (16 vs. 26 months). An improvement in survival for males was highlighted. CONCLUSIONS The hospitalization rate of patients with MM was higher in the last years of the study. Compared with a shorter length of stay, patients were admitted to hospitals with a higher frequency. Knowledge of the burden of MM is essential for planning the allocation of healthcare resources.
Collapse
Affiliation(s)
- Matilde Mannucci
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Dalila Campanella
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosa Angela Filiberti
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Pronzato
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Rosa
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
170
|
Chen J, Wang D, Chan S, Yang Q, Wang C, Wang X, Sun R, Gui Y, Yu S, Yang J, Zhang H, Zhang X, Tang K, Zhang H, Liu S. Development and validation of a novel T cell proliferation-related prognostic model for predicting survival and immunotherapy benefits in melanoma. Aging (Albany NY) 2023; 15:204748. [PMID: 37227816 DOI: 10.18632/aging.204748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND T cell plays a crucial role in the occurrence and progression of Skin cutaneous melanoma (SKCM). This research aims to identify the actions of T cell proliferation-related genes (TRGs) on the prognosis and immunotherapy response of tumor patients. METHOD The clinical manifestation and gene expression data of SKCM patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. T cell proliferation-related molecular subtypes were identified utilizing consensus clustering. Subsequently, Cox and Lasso regression analysis was conducted to identify six prognostic genes, and a prognostic signature was constructed. A series of experiments, such as qRT-PCR, Western blotting and CCK8 assay, were then conducted to verify the reliability of the six genes. RESULTS In this study, a grading system was established to forecast survival time and responses to immunotherapy, providing an overview of the tumoral immune landscape. Meanwhile, we identified six prognostic signature genes. Notably, we also found that C1RL protein may inhibit the growth of melanoma cell lines. CONCLUSION The scoring system depending on six prognostic genes showed great efficiency in predicting survival time. The system could help to forecast prognosis of SKCM patients, characterize SKCM immunological condition, assess patient immunotherapy response.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qingqing Yang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Chen Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yu Gui
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Shuling Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Jinwei Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haoxue Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Huabing Zhang
- Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui 230022, China
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| |
Collapse
|
171
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
172
|
Stoff R, Asher N, Laks S, Steinberg Y, Schachter J, Shapira-Frommer R, Grynberg S, Ben-Betzalel G. Real world evidence of Lenvatinib + anti PD-1 as an advanced line for metastatic melanoma. Front Oncol 2023; 13:1180988. [PMID: 37274272 PMCID: PMC10233023 DOI: 10.3389/fonc.2023.1180988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Immunotherapy has revolutionized the prognosis of patients with metastatic melanoma. To date, the most active regimen is the combination of ipilimumab + nivolumab (ipi-nivo) achieving a response rate of nearly 60% and a median survival (OS) of 6 years. However, approximately 40% of patients experience primary resistance, while around 50% experience secondary resistance, highlighting the need for an effective second-line treatment option The recently published results on the use of lenvatinib + pembrolizumab in the advanced line setting led to the adoption of this regimen at our institution. Here we present our experience with this regimen, focusing on efficacy and safety. Methods Electronic medical records of patients treated at a tertiary referral melanoma center, with at least one cycle of anti PD-1 + lenvatinib from 2020 to 2023 were analyzed for baseline demographic characteristics, disease related characteristics and treatment outcomes. Results Forty-two patients were identified. The Response rate (RR) was 28% and the disease control rate was 38%. Responses were seen across different melanoma subtypes, including 67% in acral melanoma, 20% in uveal melanoma, and 25% in mucosal melanoma. Patients with a more aggressive disease manifested by elevated lactate dehydrogenase (LDH) achieved a RR of 26%, while patients with active central nervous system (CNS) metastases had a RR of 31%, and an intra-cranial RR of 23%. Responses were seen across lines of treatment, with a 25% RR in the second and third lines, and a 36% RR in the fourth and fifth lines. The median progression free survival was 3 months, and the median survival was 11 months. The treatment was not easily tolerated with 31% of the patients experiencing grade 3-4 toxicity, which was manageable through dose interruptions and reductions. Only 7% of patients discontinued the treatment due to toxicity. Conclusion Lenvatinib in combination with anti-PD1 had demonstrated both relative safety and efficacy in patients with metastatic melanoma of all subtypes in the advanced line setting. We are eagerly anticipating the mature results of the LEAP-004 study hoping that this regimen will receive regulatory approval, paving the way for its widespread adoption in daily practice worldwide.
Collapse
|
173
|
Dulal D, Boring A, Terrero D, Johnson T, Tiwari AK, Raman D. Tackling of Immunorefractory Tumors by Targeting Alternative Immune Checkpoints. Cancers (Basel) 2023; 15:2774. [PMID: 37345111 PMCID: PMC10216651 DOI: 10.3390/cancers15102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physiologically, well known or traditional immune checkpoints (ICs), such as CTLA-4 and PD-1, are in place to promote tolerance to self-antigens and prevent generation of autoimmunity. In cancer, the ICs are effectively engaged by the tumor cells or stromal ells from the tumor microenvironment through expression of cognate ligands for the ICs present on the cell surface of CD8+ T lymphocytes. The ligation of ICs on CD8+ T lymphocytes triggers inhibitory signaling pathways, leading to quiescence or an exhaustion of CD8+ T lymphocytes. This results in failure of immunotherapy. To overcome this, several FDA-approved therapeutic antibodies are available, but the clinical outcome is quite variable due to the resistance encountered through upregulated expression of alternate ICs such as VISTA, LAG-3, TIGIT and TIM-3. This review focuses on the roles played by the traditional as well as alternate ICs and the contribution of associated signaling pathways in generating such resistance to immunotherapy. Combinatorial targeting of traditional and alternate ICs might be beneficial for immune-refractory tumors.
Collapse
Affiliation(s)
- Dharmindra Dulal
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Andrew Boring
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - David Terrero
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Tiffany Johnson
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| | - Amit K. Tiwari
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo Main Campus, Toledo, OH 43614, USA
| | - Dayanidhi Raman
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (D.D.); (A.B.); (A.K.T.)
| |
Collapse
|
174
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
175
|
Galati D, Zanotta S, Capone M, Madonna G, Mallardo D, Romanelli M, Simeone E, Festino L, Sparano F, Azzaro R, De Filippi R, Pinto A, Paulos CM, Ascierto PA. Potential clinical implications of CD4 +CD26 high T cells for nivolumab treated melanoma patients. J Transl Med 2023; 21:318. [PMID: 37170241 PMCID: PMC10176780 DOI: 10.1186/s12967-023-04184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Nivolumab is an anti-PD1 antibody that has dramatically improved metastatic melanoma patients' outcomes. Nevertheless, many patients are resistant to PD-1 inhibition, occasionally experiencing severe off-target immune toxicity. In addition, no robust and reproducible biomarkers have yet been validated to identify the correct selection of patients who will benefit from anti-PD-1 treatment avoiding unwanted side effects. However, the strength of CD26 expression on CD4+ T lymphocytes permits the characterization of three subtypes with variable degrees of responsiveness to tumors, suggesting that the presence of CD26-expressing T cells in patients might be a marker of responsiveness to PD-1-based therapies. METHODS The frequency distribution of peripheral blood CD26-expressing cells was investigated employing multi-parametric flow cytometry in 69 metastatic melanoma patients along with clinical characteristics and blood count parameters at baseline (W0) and compared to 20 age- and sex-matched healthy controls. Percentages of baseline CD4+CD26high T cells were correlated with the outcome after nivolumab treatment. In addition, the frequency of CD4+CD26high T cells at W0 was compared with those obtained after 12 weeks (W1) of therapy in a sub-cohort of 33 patients. RESULTS Circulating CD4+CD26high T cells were significantly reduced in melanoma patients compared to healthy subjects (p = 0.001). In addition, a significant association was observed between a low baseline percentage of CD4+CD26high T cells (< 7.3%) and clinical outcomes, measured as overall survival (p = 0.010) and progression-free survival (p = 0.014). Moreover, patients with clinical benefit from nivolumab therapy had significantly higher frequencies of circulating CD4+CD26high T cells than patients with non-clinical benefit (p = 0.004) at 12 months. Also, a higher pre-treatment proportion of circulating CD4+CD26high T cells was correlated with Disease Control Rate (p = 0.014) and best Overall Response Rate (p = 0.009) at 12 months. Interestingly, after 12 weeks (W1) of nivolumab treatment, percentages of CD4+CD26high T cells were significantly higher in comparison with the frequencies measured at W0 (p < 0.0001), aligning the cell counts with the ranges seen in the blood of healthy subjects. CONCLUSIONS Our study firstly demonstrates that peripheral blood circulating CD4+CD26high T lymphocytes represent potential biomarkers whose perturbations are associated with reduced survival and worse clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Domenico Galati
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Serena Zanotta
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Mariaelena Capone
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Marilena Romanelli
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Ester Simeone
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Lucia Festino
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Francesca Sparano
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Rosa Azzaro
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Rosaria De Filippi
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi Federico II, Naples, Italy
| | - Antonio Pinto
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Chrystal M. Paulos
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, GA USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Paolo A. Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| |
Collapse
|
176
|
Fan H, Shi Y, Wang H, Li Y, Mei J, Xu J, Liu C. GBP5 Identifies Immuno-Hot Tumors and Predicts the Therapeutic Response to Immunotherapy in NSCLC. Int J Gen Med 2023; 16:1757-1769. [PMID: 37193249 PMCID: PMC10183185 DOI: 10.2147/ijgm.s408900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Background Immunotherapy drugs, immune checkpoint inhibitors (ICIs), have been approved for first- and second-line treatment of non-small cell lung cancer (NSCLC), but only a portion of patients respond to ICIs. It is crucial to screen the beneficiaries of immunotherapy through biomarkers accurately. Methods Several datasets were used to explore the predictive value for immunotherapy and immune relevance of guanylate binding protein 5 (GBP5) in NSCLC, including the GSE126044 dataset, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset, the Kaplan-Meier plotter dataset, the HLuA150CS02 cohort, and the HLugS120CS01 cohort. Results GBP5 was upregulated in tumor tissues but associated with a good prognosis in NSCLC. Moreover, our findings demonstrated that GBP5 was strongly correlated with the expression of many immune-related genes, TIIC levels, and PD-L1 expression based on RNA-seq data onto online databases and validation of the NSCLC tissue microarray using IHC staining. Moreover, pan-cancer analysis has shown that GBP5 was a factor in identifying immuno-hot tumors, except for a few tumor types. Conclusion In summary, our current research suggests that GBP5 expression is a potential biomarker for predicting the outcome of NSCLC patients treated with ICIs. More research with large-scale samples is needed to determine their value as biomarkers of ICIs benefit.
Collapse
Affiliation(s)
- Honghong Fan
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuxin Shi
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuting Li
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Chaoying Liu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| |
Collapse
|
177
|
Krutzek F, Donat CK, Ullrich M, Zarschler K, Ludik MC, Feldmann A, Loureiro LR, Kopka K, Stadlbauer S. Design and Biological Evaluation of Small-Molecule PET-Tracers for Imaging of Programmed Death Ligand 1. Cancers (Basel) 2023; 15:cancers15092638. [PMID: 37174103 PMCID: PMC10177516 DOI: 10.3390/cancers15092638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Noninvasive molecular imaging of the PD-1/PD-L1 immune checkpoint is of high clinical relevance for patient stratification and therapy monitoring in cancer patients. Here we report nine small-molecule PD-L1 radiotracers with solubilizing sulfonic acids and a linker-chelator system, designed by molecular docking experiments and synthesized according to a new, convergent synthetic strategy. Binding affinities were determined both in cellular saturation and real-time binding assay (LigandTracer), revealing dissociation constants in the single digit nanomolar range. Incubation in human serum and liver microsomes proved in vitro stability of these compounds. Small animal PET/CT imaging, in mice bearing PD-L1 overexpressing and PD-L1 negative tumors, showed moderate to low uptake. All compounds were cleared primarily through the hepatobiliary excretion route and showed a long circulation time. The latter was attributed to strong blood albumin binding effects, discovered during our binding experiments. Taken together, these compounds are a promising starting point for further development of a new class of PD-L1 targeting radiotracers.
Collapse
Affiliation(s)
- Fabian Krutzek
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Cornelius K Donat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Marie-Charlotte Ludik
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sven Stadlbauer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| |
Collapse
|
178
|
Plais H, Dumont C, Gauthier H, Culine S. Short-course treatment after complete response to pembrolizumab in metastatic urothelial bladder cancer: a case series. Immunotherapy 2023. [PMID: 37139988 DOI: 10.2217/imt-2022-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background: The optimal duration of treatment for metastatic patients who achieve a complete response with immune checkpoint inhibitors is unknown. Methods: The outcome for six metastatic bladder cancer patients who received short course of pembrolizumab is reported. Results: A median number of seven cycles of pembrolizumab was given. After a median follow-up of 38 months, progressive disease was confirmed in three patients. All patients relapsed in lymph nodes and underwent pembrolizumab rechallenge: one achieved a complete response, another a partial response. Conclusion: Our case series paves the way for discontinuation of pembrolizumab in patients who achieve a complete response since three out of six patients remain free of disease after 3-year follow-up. Prospective studies are required to confirm our results.
Collapse
Affiliation(s)
- Henri Plais
- Department of Medical Oncology, Hôpital Saint-Louis, AP-HP Nord - Université Paris-Cité, Paris, 75010, France
| | - Clément Dumont
- Department of Medical Oncology, Hôpital Saint-Louis, AP-HP Nord - Université Paris-Cité, Paris, 75010, France
| | - Hélène Gauthier
- Department of Medical Oncology, Hôpital Saint-Louis, AP-HP Nord - Université Paris-Cité, Paris, 75010, France
| | - Stéphane Culine
- Department of Medical Oncology, Hôpital Saint-Louis, AP-HP Nord - Université Paris-Cité, Paris, 75010, France
| |
Collapse
|
179
|
Zhang T, Forde PM, Sullivan RJ, Sharon E, Barksdale E, Selig W, Ebbinghaus S, Fusaro G, Gunenc D, Battle D, Burns R, Hurlbert MS, Stewart M, Atkins MB. Addressing resistance to PD-1/PD-(L)1 pathway inhibition: considerations for combinatorial clinical trial designs. J Immunother Cancer 2023; 11:e006555. [PMID: 37137552 PMCID: PMC10163527 DOI: 10.1136/jitc-2022-006555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
With multiple PD-(L)1 inhibitors approved across dozens of indications by the US Food and Drug Administration, the number of patients exposed to these agents in adjuvant, first-line metastatic, second-line metastatic, and refractory treatment settings is increasing rapidly. Although some patients will experience durable benefit, many have either no clinical response or see their disease progress following an initial response to therapy. There is a significant need to identify therapeutic approaches to overcome resistance and confer clinical benefits for these patients. PD-1 pathway blockade has the longest history of use in melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). Therefore, these settings also have the most extensive clinical experience with resistance. In 2021, six non-profit organizations representing patients with these diseases undertook a year-long effort, culminating in a 2-day workshop (including academic, industry, and regulatory participants) to understand the challenges associated with developing effective therapies for patients previously exposed to anti-PD-(L)1 agents and outline recommendations for designing clinical trials in this setting. This manuscript presents key discussion themes and positions reached through this effort, with a specific focus on the topics of eligibility criteria, comparators, and endpoints, as well as tumor-specific trial design options for combination therapies designed to treat patients with melanoma, NSCLC, or RCC after prior PD-(L)1 pathway blockade.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern, Dallas, Texas, USA
| | - Patrick M Forde
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Ryan J Sullivan
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Gina Fusaro
- Bristol-Myers Squibb Co Summit, Summit, New Jersey, USA
| | - Damla Gunenc
- Department of Internal Medicine, Division of Hematology and Oncology, UT Southwestern, Dallas, Texas, USA
| | - Dena Battle
- Kidney Cancer Research Alliance, Alexandria, Virginia, USA
| | - Robyn Burns
- Melanoma Research Foundation, Washington, District of Columbia, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, Washington, District of Columbia, USA
| | - Mark Stewart
- Friends of Cancer Research, Washington, District of Columbia, USA
| | - Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| |
Collapse
|
180
|
Koseła-Paterczyk H, Rutkowski P. Nivolumab + relatlimab for the treatment of unresectable or metastatic melanoma. Expert Opin Biol Ther 2023; 23:383-388. [PMID: 37200112 DOI: 10.1080/14712598.2023.2215922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Though melanoma is one of the less common skin malignancies, it accounts for the majority of deaths due to cutaneous cancers. The recent progress and drug approvals in targeted treatment and immunotherapy revolutionized the outcome of patients with metastatic disease, and now is also changing the landscape of adjuvant treatment in melanoma. AREA COVERED A combination of anti-PD-1 and anti-CTLA-4 (nivolumab with ipilimumab) has demonstrated superior outcomes in terms of progression-free survival (PFS) and overall survival with recent data confirming median survival exceeding six years. However, the use of this immunotherapy combination is limited in routine practice to approximately half of the patients due to high toxicity with the majority of patients at risk of severe adverse events. The current efforts are to determine how best to integrate combination immunotherapy in different clinical scenarios and limit these drugs' toxicity. That is why novel strategies in immunotherapy are needed and one of the examples of such novelty are anti-LAG-3 antibodies (lymphocyte-activation gene 3). LAG-3 inhibitor (relatlimab) in combination with nivolumab significantly improved PFS as compared to anti-PD-1 monotherapy in patients with previously untreated metastatic or unresectable melanoma. We describe the current status of combination of nivolumab+ relatlimab in the treatment of advanced melanoma patients based on the available data coming from pivotal clinical trials. EXPERT OPINION The most important question to be answered is what would be the place of this novel combination in the treatment planning strategy.
Collapse
MESH Headings
- Humans
- Nivolumab/adverse effects
- Nivolumab/pharmacokinetics
- Nivolumab/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Melanoma/drug therapy
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/therapeutic use
- Randomized Controlled Trials as Topic
- Product Surveillance, Postmarketing
Collapse
Affiliation(s)
- Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
181
|
Loo K, Kalvin HL, Panageas KS, Callahan MK, Chapman PB, Momtaz P, Shoushtari AN, Wolchok JD, Postow MA, Warner AB. Beyond the 5-year milestone: Long-term survivorship of melanoma patients treated off-trial with anti-PD-1. Pigment Cell Melanoma Res 2023; 36:314-320. [PMID: 37039320 PMCID: PMC11072376 DOI: 10.1111/pcmr.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/31/2023] [Accepted: 03/12/2023] [Indexed: 04/12/2023]
Abstract
Little is known about the long-term outcomes of anti-PD-1 treated patients with melanoma beyond 5 years, especially for patients treated off clinical trials. This retrospective cohort study includes patients with unresectable stage III/IV nonuveal melanoma treated with anti-PD-1 off-trial at Memorial Sloan Kettering Cancer Center between 2014 and 2017 who survived at least 5 years following their first anti-PD-1 dose (N = 139). We characterized overall survival (OS), melanoma-specific survival (MSS) estimates, treatment-free survival rates, and subsequent treatment courses. Median follow-up among 5-plus year survivors (N = 125) was 78.4 months (range 60.0-96.3). OS at year 7 (2 years post 5-year landmark) was 90.1% (95% CI: 83.0%-94.3%). Fourteen deaths occurred, seven due to melanoma. MSS at year 7 (2 years post 5-year landmark) was 95.0% (95% CI: 33.5%-95.2%). In patients who completed anti-PD-1 based therapy and did not require subsequent treatment by 5 years (N = 80), the probability of not requiring additional treatment for an additional 2 years was 95.7% (95% CI: 91.0%-100%). Patients treated with anti-PD-1 regimens off clinical trials who survive at least 5 years from initial anti-PD-1 treatment can be reassured of their excellent long-term prognosis, particularly if they did not require additional melanoma treatment during the first 5 years.
Collapse
Affiliation(s)
- Kimberly Loo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Department of Internal Medicine, New York-Presbyterian Hospital and Weill Cornell Medicine, New York City, New York, USA
| | - Hannah L Kalvin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Margaret K Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| | - Paul B Chapman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| | - Parisa Momtaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| | - Alexander N Shoushtari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| | - Allison Betof Warner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
| |
Collapse
|
182
|
García-Carro C, Jhaveri KD, Sprangers B. Revisiting the role of acute kidney injury in patients on immune checkpoint inhibitors: a good prognosis renal event with a significant impact on survival. Clin Kidney J 2023; 16:773-775. [PMID: 37151419 PMCID: PMC10157754 DOI: 10.1093/ckj/sfad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/06/2023] Open
Abstract
In the last decade, immune checkpoint inhibitors (ICI) have become a cornerstone in the treatment of a wide range of malignancies. It is well established that ICI are associated with multiple immune-related adverse events, a spectrum of autoimmune toxicities, that can also affect the kidney. In this issue of Clinical Kidney Journal, Kanbay et al. report the first meta-analysis and systematic review evaluating the impact of ICI-related acute kidney injury (ICI-AKI) on long-term kidney and patient outcomes (including mortality). The authors report a high incidence of ICI-AKI (mostly mild AKI episodes) with high rates of recovery resulting in a good kidney outcomes. However, the occurrence of ICI-AKI has a significant impact on mortality in ICI-treated patients probably related to temporary or definitive cessation of ICI. Additional studies are needed to establish the safety of ICI re-challenging in patients with ICI-AKI, and to determine the optimal treatment strategy for them.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Department, San Carlos Clinical University Hospital, Madrid, Spain
| | - Kenar D Jhaveri
- Department of Medicine, Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Ben Sprangers
- Department of Medicine, Division of Nephrology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
| |
Collapse
|
183
|
Yang TT, Yu S, Ke CLK, Cheng ST. The Genomic Landscape of Melanoma and Its Therapeutic Implications. Genes (Basel) 2023; 14:genes14051021. [PMID: 37239381 DOI: 10.3390/genes14051021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Melanoma is one of the most aggressive malignancies of the skin. The genetic composition of melanoma is complex and varies among different subtypes. With the aid of recent technologies such as next generation sequencing and single-cell sequencing, our understanding of the genomic landscape of melanoma and its tumor microenvironment has become increasingly clear. These advances may provide explanation to the heterogenic treatment outcomes of melanoma patients under current therapeutic guidelines and provide further insights to the development of potential new therapeutic targets. Here, we provide a comprehensive review on the genetics related to melanoma tumorigenesis, metastasis, and prognosis. We also review the genetics affecting the melanoma tumor microenvironment and its relation to tumor progression and treatment.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chiao-Li Khale Ke
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Psychiatry, Kaohsiung Municipal SiaoGang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Tsung Cheng
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
184
|
Long GV, Menzies AM, Scolyer RA. Neoadjuvant Checkpoint Immunotherapy and Melanoma: The Time Is Now. J Clin Oncol 2023:JCO2202575. [PMID: 37104746 DOI: 10.1200/jco.22.02575] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
The role of neoadjuvant therapy is undergoing an historic shift in oncology. The emergence of potent immunostimulatory anticancer agents has transformed neoadjuvant therapy from a useful tool in minimizing surgical morbidity to a life-saving treatment with curative promise, led by research in the field of melanoma. Health practitioners have witnessed remarkable improvements in melanoma survival outcomes over the past decade, beginning with checkpoint immunotherapies and BRAF-targeted therapies in the advanced setting that were successfully adopted into the postsurgical adjuvant setting for high-risk resectable disease. Despite substantial reductions in postsurgical recurrence, high-risk resectable melanoma has remained a life-altering and potentially fatal disease. In recent years, data from preclinical models and early-phase clinical trials have pointed to the potential for greater clinical efficacy when checkpoint inhibitors are administered in the neoadjuvant rather than adjuvant setting. Early feasibility studies showed impressive pathologic response rates to neoadjuvant immunotherapy, which were associated with recurrence-free survival rates of over 90%. Recently, the randomized phase II SWOG S1801 trial (ClinicalTrials.gov identifier: NCT03698019) reported a 42% reduction in 2-year event-free survival risk with neoadjuvant versus adjuvant pembrolizumab in resectable stage IIIB-D/IV melanoma (72% v 49%; hazard ratio, 0.58; P = .004), establishing neoadjuvant single-agent immunotherapy as a new standard of care. A randomized phase III trial of neoadjuvant immunotherapy in resectable stage IIIB-D melanoma, NADINA (ClinicalTrials.gov identifier: NCT04949113), is ongoing, as are feasibility studies in high-risk stage II disease. With a swathe of clinical, quality-of-life, and economic benefits, neoadjuvant immunotherapy has the potential to redefine the contemporary management of resectable tumors.
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
- Mater Hospital, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
- Mater Hospital, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
185
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
186
|
Wang Y, Zhou SK, Wang Y, Lu ZD, Zhang Y, Xu CF, Wang J. Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy. Nat Commun 2023; 14:1993. [PMID: 37031188 PMCID: PMC10082825 DOI: 10.1038/s41467-023-37656-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
PD-1/PD-L1 blockade therapy that eliminates T-cell inhibition signals is successful, but poor benefits are often observed. Increasing T-cell infiltration and quantity of PD-1/PD-L1 inhibitors in tumor can improve efficacy but remains challenging. Here, we devise tumor-specific gene nanomedicines to mobilize tumor cells to secrete CXCL9 (T-cell chemokine) and anti-PD-L1 scFv (αPD-L1, PD-L1 blocking agent) for enhanced immunotherapy. The tyrosinase promoter-driven NPTyr-C9AP can specifically co-express CXCL9 and αPD-L1 in melanoma cells, thereby forming a CXCL9 gradient for T-cell recruitment and high intratumoral αPD-L1 concentration for enhancing T-cell activation. As a result, NPTyr-C9AP shows strong antimelanoma effects. Moreover, specific co-expression of CXCL9 and αPD-L1 in various tumor cells is achieved by replacing the tyrosinase promoter of NPTyr-C9AP with a survivin promoter, which increases T-cell infiltration and activation and therapeutic efficacy in multiple tumors in female mice. This study provides a strategy to maximize the immunotherapeutic outcome regardless of the heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Yue Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China
| | - Shi-Kun Zhou
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China
| | - Yan Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P.R. China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P.R. China.
| |
Collapse
|
187
|
Cybulska-Stopa B, Piejko K, Ostaszewski K, Dziura R, Galus Ł, Ziółkowska B, Kempa-Kamińska N, Ziętek M, Bal W, Kamycka A, Dudzisz-Śledź M, Kubiatowski T, Kamińska-Winciorek G, Suwiński R, Mackiewicz J, Czarnecka AM, Rutkowski P. Long-term clinical evidence of comparable efficacy and toxicity of nivolumab and pembrolizumab in advanced melanoma treatment. Melanoma Res 2023; 33:208-217. [PMID: 37015054 DOI: 10.1097/cmr.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Pembrolizumab and nivolumab (anty-PD-1 antibody) are commonly used for the treatment of melanoma patients. However, their efficacy and safety have never been directly compared, leaving little guidance for clinicians to select the best therapy. The study included patients with inoperable or metastatic melanoma treated in first line with anti-PD-1 immunotherapy (nivolumab or pembrolizumab). In total 1037 patients were enrolled in the study, 455 (44%) patients were treated with pembrolizumab and 582 (56%) with nivolumab. The estimated median overall survival (OS) in the pembrolizumab and nivolumab groups was 17.4 and 20.0 months [P = 0.2323; hazard ratio (HR), 1.1; 95% confidence interval (CI), 0.94-1.28], respectively, whereas the median progression-free survival (PFS) was 5.6 and 7.5 months (P = 0.0941; HR, 1.13; 95% CI, 0.98-1.29), respectively. The estimated 2- and 3-year OS in the pembrolizumab and nivolumab groups were 42/34% and 47/37%, respectively, and the PFS was 25/21% and 29/23%, respectively. There were 391 (49%) immune-related adverse events (irAEs) of any grade during treatment, including 133 (42%) related to pembrolizumab treatment and 258 (53%) to nivolumab treatment. A total of 72 (9.6%) irAEs were in G3 or G4, including during pembrolizumab 29 (9%) and nivolumab 48 (11%). There were no differences in OS, PFS and overall response rates between nivolumab and pembrolizumab therapy in previously untreated patients with advanced/metastatic melanoma. There were no differences in the frequency of G1/G2 or G3/G4 irAEs. The choice of treatment should be based on the preferences of the patient and the clinician.
Collapse
Affiliation(s)
- Bożena Cybulska-Stopa
- Department of Clinical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow
| | - Karolina Piejko
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Cracow
| | - Krzysztof Ostaszewski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | - Robert Dziura
- Department of Clinical Oncology, Holy Cross Cancer Center, Kielce
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan
| | - Barbara Ziółkowska
- 2 Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Natasza Kempa-Kamińska
- Department of Clinical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
| | - Marcin Ziętek
- Department of Surgical Oncology, Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw
- Department of Oncology, Wroclaw Medical University, Wroclaw
| | - Wiesław Bal
- Department of Chemotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | | | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| | | | - Grażyna Kamińska-Winciorek
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Rafał Suwiński
- 2 Radiotherapy and Chemotherapy Clinic and Teaching Hospital, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, Poznan
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan
| | - Anna Małgorzata Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw
| |
Collapse
|
188
|
Tobin RP, Cogswell DT, Cates VM, Davis DM, Borgers JS, Van Gulick RJ, Katsnelson E, Couts KL, Jordan KR, Gao D, Davila E, Medina TM, Lewis KD, Gonzalez R, McFarland RW, Robinson WA, McCarter MD. Targeting MDSC Differentiation Using ATRA: A Phase I/II Clinical Trial Combining Pembrolizumab and All-Trans Retinoic Acid for Metastatic Melanoma. Clin Cancer Res 2023; 29:1209-1219. [PMID: 36378549 PMCID: PMC10073240 DOI: 10.1158/1078-0432.ccr-22-2495] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE A phase Ib/II clinical trial was conducted to evaluate the safety and efficacy of the combination of all-trans retinoic acid (ATRA) with pembrolizumab in patients with stage IV melanoma. PATIENTS AND METHODS Anti-PD-1 naïve patients with stage IV melanoma were treated with pembrolizumab plus supplemental ATRA for three days surrounding each of the first four pembrolizumab infusions. The primary objective was to establish the MTD and recommended phase II dose (RP2D) of the combination. The secondary objectives were to describe the safety and toxicity of the combined treatment and to assess antitumor activity in terms of (i) the reduction in circulating myeloid-derived suppressor cell (MDSC) frequency and (ii) progression-free survival (PFS). RESULTS Twenty-four patients were enrolled, 46% diagnosed with M1a and 29% with M1c stage disease at enrollment. All patients had an ECOG status ≤1, and 75% had received no prior therapies. The combination was well tolerated, with the most common ATRA-related adverse events being headache, fatigue, and nausea. The RP2D was established at 150 mg/m2 ATRA + 200 mg Q3W pembrolizumab. Median PFS was 20.3 months, and the overall response rate was 71%, with 50% of patients experiencing a complete response, and the 1-year overall survival was 80%. The combination effectively lowered the frequency of circulating MDSCs. CONCLUSIONS With a favorable tolerability and high response rate, this combination is a promising frontline treatment strategy for advanced melanoma. Targeting MDSCs remains an attractive mechanism to enhance the efficacy of immunotherapies, and this combination merits further investigation. See related commentary by Olson and Luke, p. 1167.
Collapse
Affiliation(s)
- Richard P. Tobin
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Dasha T. Cogswell
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Victoria M. Cates
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Dana M. Davis
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Jessica S.W. Borgers
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
- Netherlands Cancer Institute, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Robert J. Van Gulick
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Elizabeth Katsnelson
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| | - Kasey L. Couts
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Kimberly R. Jordan
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Dexiang Gao
- University of Colorado Anschutz Medical Campus, Pediatrics, Biostatistics and Informatics, Cancer Center Biostatistics Core, Aurora, Colorado, USA
| | - Eduardo Davila
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Theresa M. Medina
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Karl D. Lewis
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Rene Gonzalez
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Ross W. McFarland
- UCHealth Cancer Care and Hematology Clinic - Harmony Campus, Fort Collins, Colorado, USA
| | - William A. Robinson
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Medical Oncology, Aurora, Colorado, USA
| | - Martin D. McCarter
- University of Colorado Anschutz Medical Campus, Department of Surgery, Division of Surgical Oncology, Aurora, Colorado, USA
| |
Collapse
|
189
|
Wang Y, Smith M, Ruiz J, Liu Y, Kucera GL, Topaloglu U, Chan MD, Li W, Su J, Xing F. Modulation of oxidative phosphorylation and mitochondrial biogenesis by cigarette smoke influence the response to immune therapy in NSCLC patients. Lung Cancer 2023; 178:37-46. [PMID: 36773459 PMCID: PMC10065953 DOI: 10.1016/j.lungcan.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
The treatment regimen of non-small cell lung cancer (NSCLC) has drastically changed owing to the superior anti-cancer effects generated by the immune-checkpoint blockade (ICB). However, only a subset of patients experience benefit after receiving ICBs. Therefore, it is of paramount importance to increase the response rate by elucidating the underlying molecular mechanisms and identifying novel therapeutic targets to enhance the efficacy of IBCs in non-responders. We analyzed the progression-free survival (PFS) and overall survival (OS) of 295 NSCLC patients who received anti-PD-1 therapy by segregating them with multiple clinical factors including sex, age, race, smoking history, BMI, tumor grade and subtype. We also identified key signaling pathways and mutations that are enriched in patients with distinct responses to ICB by gene set enrichment analysis (GSEA) and mutational analyses. We found that former and current smokers have a higher response rate to anti-PD-1 treatment than non-smokers. GSEA results revealed that oxidative phosphorylation (OXPHOS) and mitochondrial related pathways are significantly enriched in both responders and smokers, suggesting a potential role of cellular metabolism in regulating immune response to ICB. We also demonstrated that all-trans retinoic acid (ATRA) which enhances mitochondrial function significantly enhanced the efficacy of anti-PD-1 treatment in vivo. Our clinical and bioinformatics based analyses revealed a connection between smoking induced metabolic switch and the response to immunotherapy, which can be the basis for developing novel combination therapies that are beneficial to never smoked NSCLC patients.
Collapse
Affiliation(s)
- Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Margaret Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory L Kucera
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Umit Topaloglu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jing Su
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
190
|
Simonetti E, Cutarella S, Valente M, Sani T, Ravara M, Maio M, Di Giacomo AM. From Co-Stimulation to Co-Inhibition: A Continuum of Immunotherapy Care Toward Long-Term Survival in Melanoma. Onco Targets Ther 2023; 16:227-232. [PMID: 37041860 PMCID: PMC10083011 DOI: 10.2147/ott.s368408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Harnessing the immune system with immune-checkpoint(s) blockade (ICB) has dramatically changed the treatment landscape of advanced melanoma patients in the last decade. Indeed, durable clinical responses and long-term survival can be achieved with anti-Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and anti-Programmed cell Death-1 (PD-1) monoclonal antibodies (mAb) either alone or in combination. Despite these unprecedented results, due to intrinsic or acquired resistance to ICB-based immunotherapy, about half of metastatic melanoma (MM) patients neither respond to therapy nor experience durable clinical benefit or long-term survival. To improve the efficacy of ICB therapy among a larger proportion of MM patients, in addition to the targeting of immune-checkpoint(s) inhibitors (ICI) such as CTLA-4 or PD-1, several co-stimulatory molecules, such as Inducible T-cell COStimulator (ICOS), CD137 and OX40, have been investigated in MM, with initial signs of activity. Thus, a number of MM patients have been exposed to co-inhibitory and co-stimulatory mAb in the course of their disease. Being aware of the clinical outcome of such patients may pave the way to novel and more effective clinical approaches and therapeutic sequences for MM patients. Here we report a paradigmatic clinical case of a cutaneous MM patient who achieved multiple and durable complete responses, leading to an extraordinary long-term survival with sequential ICB therapies, suggesting the possibility to build a highly effective continuum of care with co-inhibitory and co-stimulatory therapeutic mAb.
Collapse
Affiliation(s)
| | | | - Monica Valente
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
| | | | | | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
| | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
- Correspondence: Anna Maria Di Giacomo, Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Viale Bracci, 14, Siena, 53100, Italy, Email
| |
Collapse
|
191
|
Maharaj S, Jain N, Al Bawaliz A, Miller D, Chesney J. Melanoma of unknown primary: favorable survival persists in the immunotherapy era. Int J Dermatol 2023; 62:e236-e238. [PMID: 36030543 DOI: 10.1111/ijd.16419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Satish Maharaj
- Hematology & Oncology, Texas Tech University, El Paso, TX, USA
| | - Nikita Jain
- Hematology & Oncology, University of Louisville, Louisville, KY, USA
| | - Anas Al Bawaliz
- Hematology & Oncology, University of Louisville, Louisville, KY, USA
| | - Donald Miller
- Hematology & Oncology, University of Louisville, Louisville, KY, USA
| | - Jason Chesney
- Hematology & Oncology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
192
|
Kanbay M, Yildiz AB, Siriopol D, Vehbi S, Hasbal NB, Kesgin YE, Celayir M, Selcukbiricik F, Covic A, Perazella MA. Immune checkpoints inhibitors and its link to acute kidney injury and renal prognosis. Int Urol Nephrol 2023; 55:1025-1032. [PMID: 36282399 DOI: 10.1007/s11255-022-03395-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICPi) may cause acute kidney injury (AKI) and their use is increasing. MATERIALS AND METHODS This is a single-center retrospective cohort study of patients receiving ICPi drugs for solid organ malignancies. ICPi-related AKI, the need for renal replacement therapy during or following ICPi treatment, and the associated mortality was studied. RESULTS Two hundred thirty five patients were included in the final analysis. Patients with (N = 40) and without (n = 195) AKI had similar age, sex, type of ICPi, baseline serum creatinine levels, comorbidities and mortality; while patients with AKI were more likely to be receiving a nephrotoxic agent or be treated for genitourinary malignancy. 18 patients had ICPi-related AKI; 7 of these patients underwent kidney biopsy, which showed acute interstitial nephritis while the remaining 11 were diagnosed on clinical parameters. 18 (45%) patients recovered kidney function after AKI. No differences were observed between patients with and without kidney function recovery, although patients without recovery had a numerical, but not statistically significant, higher mortality. Patients with biopsy-confirmed ICPi-induced AKI had an increased risk of mortality, as compared with the rest of the population-HR 1.83, 95% CI 1.22-2.74, p = 0.003. CONCLUSION Use of nephrotoxic drugs and the location of malignancy appear to be common drivers of AKI in patients receiving ICPis for solid organ malignancy. Whether nephrotoxic agents or urinary tract obstruction may favor ICPi-related autoimmunity should be further studied.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey.
| | | | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Suceava, Romania
- Stefan Cel Mare" University, Suceava, Romania
| | - Sezan Vehbi
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Nuri Baris Hasbal
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey
| | - Yavuz E Kesgin
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Melisa Celayir
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mark A Perazella
- Department of Internal Medicine Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
193
|
Xu Z, Fisher DE. mRNA melanoma vaccine revolution spurred by the COVID-19 pandemic. Front Immunol 2023; 14:1155728. [PMID: 37063845 PMCID: PMC10101324 DOI: 10.3389/fimmu.2023.1155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The advent of mRNA vaccines represents a significant advance in the field of vaccinology. While several vaccine approaches (mRNA, DNA, recombinant protein, and viral-vectored vaccines) had been investigated at the start of the COVID-19 pandemic, mRNA vaccines quickly gained popularity due to superior immunogenicity at a low dose, strong safety/tolerability profiles, and the possibility of rapid vaccine mass manufacturing and deployment to rural regions. In addition to inducing protective neutralizing antibody responses, mRNA vaccines can also elicit high-magnitude cytotoxic T-cell responses comparable to natural viral infections; thereby, drawing significant interest from cancer immunotherapy experts. This mini-review will highlight key developmental milestones and lessons we have learned from mRNA vaccines during the COVID-19 pandemic, with a specific emphasis on clinical trial data gathered so far for mRNA vaccines against melanoma and other forms of cancer.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David E. Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: David E. Fisher,
| |
Collapse
|
194
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
195
|
Pham JP, Joshua AM, da Silva IP, Dummer R, Goldinger SM. Chemotherapy in Cutaneous Melanoma: Is There Still a Role? Curr Oncol Rep 2023; 25:609-621. [PMID: 36988735 PMCID: PMC10164011 DOI: 10.1007/s11912-023-01385-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Abstract
Purpose of Review
In the preceding decade, the management of metastatic cutaneous melanoma has been revolutionised with the development of highly effective therapies including immune checkpoint inhibitors (specifically CTLA-4 and PD-1 inhibitors) and targeted therapies (BRAF and MEK inhibitors). The role of chemotherapy in the contemporary management of melanoma is undefined.
Recent Findings
Extended analyses highlight substantially improved 5-year survival rates of approximately 50% in patients with metastatic melanoma treated with first-line therapies. However, most patients will progress on these first-line treatments. Sequencing of chemotherapy following failure of targeted and immunotherapies is associated with low objective response rates and short progression-free survival, and thus, meaningful benefits to patients are minimal.
Summary
Chemotherapy has limited utility in the contemporary management of cutaneous melanoma (with a few exceptions, discussed herein) and should not be the standard treatment sequence following failure of first-line therapies. Instead, enrolment onto clinical trials should be standard-of-care in these patients.
Collapse
Affiliation(s)
- James P Pham
- Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Anthony M Joshua
- Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Darlinghurst, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW, Australia
| | - Ines P da Silva
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW, Australia
- Medical Oncology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Simone M Goldinger
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
196
|
Patel RP, Somasundram PM, Smith LK, Sheppard KE, McArthur GA. The therapeutic potential of targeting minimal residual disease in melanoma. Clin Transl Med 2023; 13:e1197. [PMID: 36967556 PMCID: PMC10040726 DOI: 10.1002/ctm2.1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 03/28/2023] Open
Abstract
Background Cutaneous melanoma is a lethal form of skin cancer with morbidity and mortality rates highest amongst European, North American and Australasian populations. The developments of targeted therapies (TTs) directed at the oncogene BRAF and its downstream mediator MEK, and immune checkpoint inhibitors (ICI), have revolutionized the treatment of metastatic melanoma, improving patient outcomes. However, both TT and ICI have their limitations. Although TTs are associated with high initial response rates, these are typically short‐lived due to resistance. Conversely, although ICIs provide more durable responses, they have lower initial response rates. Due to these distinct yet complementary response profiles, it has been proposed that sequencing ICI with TT could lead to a high frequency of durable responses whilst circumventing the toxicity associated with combined ICI + TT treatment. However, several questions remain unanswered, including the mechanisms underpinning this synergy and the optimal sequencing strategy. The key to determining this is to uncover the biology of each phase of the therapeutic response. Aims and methods In this review, we show that melanoma responds to TT and ICI in three phases: early response, minimal residual disease (MRD) and disease progression. We explore the effects of ICI and TT on melanoma cells and the tumour immune microenvironment, with a particular focus on MRD which is predicted to underpin the development of acquired resistance in the third phase of response. Conclusion In doing so, we provide a new framework which may inform novel therapeutic approaches for melanoma, including optimal sequencing strategies and agents that target MRD, thereby ultimately improving clinical outcomes for patients.
Collapse
Affiliation(s)
- Riyaben P Patel
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Pretashini M Somasundram
- Faculty of MedicineDentistry and Health Sciences, University of MelbourneParkvilleVictoriaAustralia
| | - Lorey K. Smith
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Karen E. Sheppard
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Grant A. McArthur
- Cancer Research DivisionPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
197
|
Yang T, Li W, Huang T, Zhou J. Immunotherapy Targeting PD-1/PD-L1 in Early-Stage Triple-Negative Breast Cancer. J Pers Med 2023; 13:526. [PMID: 36983708 PMCID: PMC10055616 DOI: 10.3390/jpm13030526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The advent of immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized antitumor therapy. Programmed cell death receptor 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are among the most promising targets for encouraging the immune system to eliminate cancer cells. PD-1/PD-L1 have made clinical remission for numerous solid tumors, including metastatic triple-negative breast cancer (TNBC). In recent years, integrating PD-1/PD-L1 inhibitors into existing treatments in early-stage TNBC has attracted wide attention. Herein, we summarize the clinical benefit of PD-1/PD-L1 inhibitors plus neoadjuvant chemotherapy, adjuvant chemotherapy, and targeted therapy in early-stage TNBC. Possible immunotherapy biomarkers, immune-related adverse events (irAEs), and the key challenges faced in TNBC anti-PD-1/PD-L1 therapy are also concluded. Numerous studies on immunotherapy are ongoing, and PD-1/PD-L1 inhibitors have demonstrated great clinical prospects in early-stage TNBC. To maximize the efficacy of anti-PD-1/PD-L1 therapy, further research into the challenges which still exist is necessary.
Collapse
Affiliation(s)
| | | | | | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
198
|
Ito T, Hashimoto H, Kaku-Ito Y, Tanaka Y, Nakahara T. Nail Apparatus Melanoma: Current Management and Future Perspectives. J Clin Med 2023; 12:jcm12062203. [PMID: 36983205 PMCID: PMC10057171 DOI: 10.3390/jcm12062203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Nail apparatus melanoma (NAM) is a rare type of cutaneous melanoma that belongs to the acral melanoma subtype. NAM is managed principally in accordance with the general treatment for cutaneous melanoma, but there is scarce evidence in support of this in the literature. Acral melanoma is genetically different from non-acral cutaneous melanoma, while recently accumulated data suggest that NAM also has a different genetic background from acral melanoma. In this review, we focus on recent advances in the management of NAM. Localized NAM should be surgically removed; amputation of the digit and digit-preserving surgery have been reported. Sentinel lymph node biopsy can be considered for invasive NAM for the purpose of accurate staging. However, it is yet to be clarified whether patients with metastatic sentinel lymph nodes can be safely spared completion lymph node dissection. Similar to cutaneous melanoma, immune checkpoint inhibitors and BRAF/MEK inhibitors are used as the first-line treatment for metastatic NAM, but data on the efficacy of these therapies remain scarce. The therapeutic effects of immune checkpoint inhibitors could be lower for NAM than for cutaneous melanoma. This review highlights the urgent need to accumulate data to better define the optimal management of this rare melanoma.
Collapse
Affiliation(s)
- Takamichi Ito
- Correspondence: ; Tel.: +81-92-642-5585; Fax: +81-92-642-5600
| | | | | | | | | |
Collapse
|
199
|
Malissen N, Grob JJ. Treatment of Recurrent Melanoma Following Adjuvant Therapy. Am J Clin Dermatol 2023; 24:333-341. [PMID: 36890427 DOI: 10.1007/s40257-023-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
In the era of effective therapies in melanoma, notably the widespread use of two types of adjuvant treatments: anti-PD-1 immunotherapies and therapies targeting the mitogen-activated protein kinase pathway, for BRAF-mutant patients, an important question arises about how to treat these patients in case of recurrent melanoma following adjuvant therapy. Prospective data are lacking in this area and might be difficult to obtain due to the constant progress being made in the field. Therefore, we reviewed available data suggesting that the initial adjuvant treatment received and the following events provide information about the biology of the disease and the probability of response to following systemic treatments. Thus, in case of relapse during or just after adjuvant anti-PD-1, immune resistance is probable, an anti-PD-1 monotherapy rechallenge has a low likelihood of clinical benefit, and escalation with a combination of immunotherapies should be given priority. In case of relapse during treatment with BRAF plus MEK inhibitors, there may be a risk of lower efficacy of immunotherapy than in naïve patients since this relapse attests not only to a resistance to BRAF-MEK inhibition, but also the introduction of immunotherapy to rescue a progression on targeted therapy. In case of relapse long after adjuvant treatment cessation, whatever the treatment received, no conclusion can be drawn about the efficacy of these drugs, and these patients can be treated like naïve patients. Thus, a combination of anti-PD-1 and anti-CTLA4 is probably the best solution, and the following line can be BRAF-MEK inhibitors in BRAF-mutated patients. Finally, in case of recurrent melanoma following adjuvant therapy, given the promising upcoming strategies, inclusion in a clinical trial should be offered as frequently as possible.
Collapse
Affiliation(s)
- Nausicaa Malissen
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, 13005, Marseille, France.
| | - Jean-Jacques Grob
- Dermatology and Skin Cancer Department, Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, 13005, Marseille, France
| |
Collapse
|
200
|
Peng Z, Gillissen B, Richter A, Sinnberg T, Schlaak MS, Eberle J. Enhanced Apoptosis and Loss of Cell Viability in Melanoma Cells by Combined Inhibition of ERK and Mcl-1 Is Related to Loss of Mitochondrial Membrane Potential, Caspase Activation and Upregulation of Proapoptotic Bcl-2 Proteins. Int J Mol Sci 2023; 24:ijms24054961. [PMID: 36902392 PMCID: PMC10002974 DOI: 10.3390/ijms24054961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Targeting of MAP kinase pathways by BRAF inhibitors has evolved as a key therapy for BRAF-mutated melanoma. However, it cannot be applied for BRAF-WT melanoma, and also, in BRAF-mutated melanoma, tumor relapse often follows after an initial phase of tumor regression. Inhibition of MAP kinase pathways downstream at ERK1/2, or inhibitors of antiapoptotic Bcl-2 proteins, such as Mcl-1, may serve as alternative strategies. As shown here, the BRAF inhibitor vemurafenib and the ERK inhibitor SCH772984 showed only limited efficacy in melanoma cell lines, when applied alone. However, in combination with the Mcl-1 inhibitor S63845, the effects of vemurafenib were strongly enhanced in BRAF-mutated cell lines, and the effects of SCH772984 were enhanced in both BRAF-mutated and BRAF-WT cells. This resulted in up to 90% loss of cell viability and cell proliferation, as well as in induction of apoptosis in up to 60% of cells. The combination of SCH772984/S63845 resulted in caspase activation, processing of poly (ADP-ribose) polymerase (PARP), phosphorylation of histone H2AX, loss of mitochondrial membrane potential, and cytochrome c release. Proving the critical role of caspases, a pan-caspase inhibitor suppressed apoptosis induction, as well as loss of cell viability. As concerning Bcl-2 family proteins, SCH772984 enhanced expression of the proapoptotic Bim and Puma, as well as decreased phosphorylation of Bad. The combination finally resulted in downregulation of antiapoptotic Bcl-2 and enhanced expression of the proapoptotic Noxa. In conclusion, combined inhibition of ERK and Mcl-1 revealed an impressive efficacy both in BRAF-mutated and WT melanoma cells, and may thus represent a new strategy for overcoming drug resistance.
Collapse
Affiliation(s)
- Zhe Peng
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Clinical Medicine, University of South China, Hengyang 421001, China
| | - Bernhard Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Antje Richter
- Department of Hematology, Oncology, and Tumor Immunology, Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Tobias Sinnberg
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Division of Dermatooncology, Department of Dermatology, University Tübingen, 72076 Tübingen, Germany
| | - Max S. Schlaak
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|