151
|
Jansen MG, Geerligs L, Claassen JAHR, Overdorp EJ, Brazil IA, Kessels RPC, Oosterman JM. Positive Effects of Education on Cognitive Functioning Depend on Clinical Status and Neuropathological Severity. Front Hum Neurosci 2021; 15:723728. [PMID: 34566608 PMCID: PMC8459869 DOI: 10.3389/fnhum.2021.723728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Variability in cognitive functions in healthy and pathological aging is often explained by educational attainment. However, it remains unclear to which extent different disease states alter protective effects of education. We aimed to investigate whether protective effects of education on cognition depend on (1) clinical diagnosis severity, and (2) the neuropathological burden within a diagnosis in a memory clinic setting. Methods: In this cross-sectional study, we included 108 patients with subjective cognitive decline [SCD, median age 71, IQR (66-78), 43% men], 190 with mild cognitive impairment [MCI, median age 78, IQR (73-82), 44% men], and 245 with Alzheimer's disease dementia (AD) [median age 80, IQR (76-84), 35% men]. We combined visual ratings of hippocampal atrophy, global atrophy, and white matter hyperintensities on MRI into a single neuropathology score. To investigate whether the contribution of education to cognitive performance differed across SCD, MCI, and AD, we employed several multiple linear regression models, stratified by diagnosis and adjusted for age, sex, and neurodegeneration. We re-ran each model with an additional interaction term to investigate whether these effects were influenced by neuropathological burden for each diagnostic group separately. False discovery rate (FDR) corrections for multiple comparisons were applied. Results: We observed significant positive associations between education and performance for global cognition and executive functions (all adjusted p-values < 0.05). As diagnosis became more severe, however, the strength of these associations decreased (all adjusted p-values < 0.05). Education related to episodic memory only at relatively lower levels of neuropathology in SCD (β = -0.23, uncorrected p = 0.02), whereas education related to episodic memory in those with higher levels of neuropathology in MCI (β = 0.15, uncorrected p = 0.04). However, these interaction effects did not survive FDR-corrections. Conclusions: Altogether, our results demonstrated that positive effects of education on cognitive functioning reduce with diagnosis severity, but the role of neuropathological burden within a particular diagnosis was small and warrants further investigation. Future studies may further unravel the extent to which different dimensions of an individual's disease severity contribute to the waxing and waning of protective effects in cognitive aging.
Collapse
Affiliation(s)
- Michelle G. Jansen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Linda Geerligs
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Jurgen A. H. R. Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Inti A. Brazil
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Roy P. C. Kessels
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Medical Psychology, Radboudumc Alzheimer Center, Radboud University Medical Center, Nijmegen, Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, Netherlands
| | - Joukje M. Oosterman
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
152
|
Li B, Zhang M, Jang I, Ye G, Zhou L, He G, Lin X, Meng H, Huang X, Hai W, Chen S, Li B, Liu J. Amyloid-Beta Influences Memory via Functional Connectivity During Memory Retrieval in Alzheimer's Disease. Front Aging Neurosci 2021; 13:721171. [PMID: 34539382 PMCID: PMC8444623 DOI: 10.3389/fnagi.2021.721171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: Amnesia in Alzheimer's disease (AD) appears early and could be caused by encoding deficiency, consolidation dysfunction, and/or impairment in the retrieval of stored memory information. The relationship between AD pathology biomarker β-amyloid and memory dysfunction is unclear. Method: The memory task functional MRI and amyloid PET were simultaneously performed to investigate the relationship between memory performance, memory phase-related functional connectivity, and cortical β-amyloid deposition. We clustered functional networks during memory maintenance and compared network connectivity between groups in each memory phase. Mediation analysis was performed to investigate the mediator between β-amyloid and related cognitive performance. Results: Alzheimer's disease was primarily characterized by decreased functional connectivity in a data-driven network composed of an a priori default mode network, limbic network, and frontoparietal network during the memory maintenance (0.205 vs. 0.236, p = 0.04) and retrieval phase (0.159 vs. 0.183, p = 0.017). Within the network, AD had more regions with reduced connectivity during the retrieval than the maintenance and encoding phases (chi-square p = 0.01 and < 0.001). Furthermore, the global cortical β-amyloid negatively correlated with network connectivity during the memory retrieval phase (R = - 0.247, p = 0.032), with this relationship mediating the effect of cortical β-amyloid on memory performance (average causal mediation effect = - 0.05, p = 0.035). Conclusion: We demonstrated that AD had decreased connectivity in specific networks during the memory retrieval phase. Impaired functional connectivity during memory retrieval mediated the adverse effect of β-amyloid on memory. These findings help to elucidate the involvement of cortical β-amyloid (Aβ) in the memory performance in the early stages of AD.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ikbeom Jang
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Guanyu Ye
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiying He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
153
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
154
|
Bommarito G, Van De Ville D, Frisoni GB, Garibotto V, Ribaldi F, Stampacchia S, Assal F, Allali G, Griffa A. Alzheimer's Disease Biomarkers in Idiopathic Normal Pressure Hydrocephalus: Linking Functional Connectivity and Clinical Outcome. J Alzheimers Dis 2021; 83:1717-1728. [PMID: 34459399 DOI: 10.3233/jad-210534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) pathology impacts the response to treatment in patients with idiopathic normal pressure hydrocephalus (iNPH), possibly through changes in resting-state functional connectivity (rs-FC). OBJECTIVE To explore the relationship between cerebrospinal fluid biomarkers of AD and the default mode network (DMN)/hippocampal rs-FC in iNPH patients, based on their outcome after cerebrospinal fluid tap test (CSFTT), and in patients with AD. METHODS Twenty-six iNPH patients (mean age: 79.9±5.9 years; 12 females) underwent MRI and clinical assessment before and after CSFTT and were classified as responders (Resp) or not (NResp), based on the improvement at the timed up and go test and walking speed. Eleven AD patients (mean age: 70.91±5.2 years; 5 females), matched to iNPH for cognitive status, were also included. DMN and hippocampal rs-FC was related to amyloid-β42 and phosphorylated tau (pTau) levels. RESULTS Lower amyloid-β42 levels were associated with reduced inter- and intra-network rs-FC in NResp, and the interaction between amyloid-β42 and rs-FC was a predictor of outcome after CSFTT. The rs-FC between DMN and salience networks positively correlated to amyloid-β42 levels in both NResp and AD patients. The increase in the inter-network rs-FC after CSFTT was associated with higher pTau and lower amyloid-β42 levels in NResp, and to lower pTau levels in Resp. CONCLUSION Amyloid-β42 and pTau impact on rs-FC and its changes after CSFTT in iNPH patients. The interaction between AD biomarkers and rs-FC might explain the responder status in iNPH.
Collapse
Affiliation(s)
- Giulia Bommarito
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland.,Department of Radiology and Medical Informatics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, Geneva University, Geneva, Switzerland
| | - Federica Ribaldi
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, Geneva University, Geneva, Switzerland
| | - Frédéric Assal
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Center of Neuroprosthetics, Ecole Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
155
|
Cassady KE, Adams JN, Chen X, Maass A, Harrison TM, Landau S, Baker S, Jagust W. Alzheimer's Pathology Is Associated with Dedifferentiation of Intrinsic Functional Memory Networks in Aging. Cereb Cortex 2021; 31:4781-4793. [PMID: 34037210 PMCID: PMC8408467 DOI: 10.1093/cercor/bhab122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/14/2022] Open
Abstract
In presymptomatic Alzheimer's disease (AD), beta-amyloid plaques (Aβ) and tau tangles accumulate in distinct spatiotemporal patterns within the brain, tracking closely with episodic memory decline. Here, we tested whether age-related changes in the segregation of the brain's intrinsic functional episodic memory networks-anterior-temporal (AT) and posterior-medial (PM) networks-are associated with the accumulation of Aβ, tau, and memory decline using fMRI and PET. We found that AT and PM networks were less segregated in older than that in younger adults and this reduced specialization was associated with more tau and Aβ in the same regions. The effect of network dedifferentiation on memory depended on the amount of Aβ and tau, with low segregation and pathology associated with better performance at baseline and low segregation and high pathology related to worse performance over time. This pattern suggests a compensation phase followed by a degenerative phase in the early, preclinical phase of AD.
Collapse
Affiliation(s)
- Kaitlin E Cassady
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jenna N Adams
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xi Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Anne Maass
- German Center for Neurodegenerative Disease, Magdeburg 39120, Germany
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Susan Landau
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
156
|
Düzel E, Costagli M, Donatelli G, Speck O, Cosottini M. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur Radiol Exp 2021; 5:36. [PMID: 34435242 PMCID: PMC8387546 DOI: 10.1186/s41747-021-00221-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle, and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Emrah Düzel
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,University College London, London, UK.
| | - Mauro Costagli
- IRCCS Stella Maris, Pisa, Italy.,University of Genoa, Genova, Italy
| | - Graziella Donatelli
- Fondazione Imago 7, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Oliver Speck
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Mirco Cosottini
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,University of Pisa, Pisa, Italy
| |
Collapse
|
157
|
Panegyres PK. The Clinical Spectrum of Young Onset Dementia Points to Its Stochastic Origins. J Alzheimers Dis Rep 2021; 5:663-679. [PMID: 34632303 PMCID: PMC8461730 DOI: 10.3233/adr-210309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dementia is a major global health problem and the search for improved therapies is ongoing. The study of young onset dementia (YOD)-with onset prior to 65 years-represents a challenge owing to the variety of clinical presentations, pathology, and gene mutations. The advantage of the investigation of YOD is the lack of comorbidities that complicate the clinical picture in older adults. Here we explore the origins of YOD. OBJECTIVE To define the clinical diversity of YOD in terms of its demography, range of presentations, neurological examination findings, comorbidities, medical history, cognitive findings, imaging abnormalities both structural and functional, electroencephagraphic (EEG) data, neuropathology, and genetics. METHODS A prospective 20-year study of 240 community-based patients referred to specialty neurology clinics established to elucidate the nature of YOD. RESULTS Alzheimer's disease (AD; n = 139) and behavioral variant frontotemporal (bvFTD; n = 58) were the most common causes with a mean age of onset of 56.5 years for AD (±1 SD 5.45) and 57.1 years for bvFTD (±1 SD 5.66). Neuropathology showed a variety of diagnoses from multiple sclerosis, Lewy body disease, FTD-MND, TDP-43 proteinopathy, adult-onset leukoencephalopathy with axonal steroids and pigmented glia, corticobasal degeneration, unexplained small vessel disease, and autoimmune T-cell encephalitis. Non-amnestic forms of AD and alternative forms of FTD were discovered. Mutations were only found in 11 subjects (11/240 = 4.6%). APOE genotyping was not divergent between the two populations. CONCLUSION There are multiple kinds of YOD, and most are sporadic. These observations point to their stochastic origins.
Collapse
Affiliation(s)
- Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, West Perth, Australia
- The University of Western Australia, Nedlands, Australia
| |
Collapse
|
158
|
Strom A, Iaccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, Baker SL, Landau S, Jagust WJ, Miller BL, Rosen HJ, Gorno-Tempini ML, Rabinovici GD, La Joie R. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer's disease. Brain 2021; 145:713-728. [PMID: 34373896 PMCID: PMC9014741 DOI: 10.1093/brain/awab294] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Posterior cortical hypometabolism measured with [18F]-Fluorodeoxyglucose (FDG)-PET is a well-known marker of Alzheimer's disease-related neurodegeneration, but its associations with underlying neuropathological processes are unclear. We assessed cross-sectionally the relative contributions of three potential mechanisms causing hypometabolism in the retrosplenial and inferior parietal cortices: local molecular (amyloid and tau) pathology and atrophy, distant factors including contributions from the degenerating medial temporal lobe or molecular pathology in functionally connected regions, and the presence of the apolipoprotein E (APOE) ε4 allele. Two hundred and thirty-two amyloid-positive cognitively impaired patients from two cohorts (University of California, San Francisco, UCSF, and Alzheimer's Disease Neuroimaging Initiative, ADNI) underwent MRI and PET with FDG, amyloid-PET using [11C]-Pittsburgh Compound B, [18F]-Florbetapir, or [18F]-Florbetaben, and [18F]-Flortaucipir tau-PET within one year. Standard uptake value ratios (SUVR) were calculated using tracer-specific reference regions. Regression analyses were run within cohorts to identify variables associated with retrosplenial or inferior parietal FDG SUVR. On average, ADNI patients were older and were less impaired than UCSF patients. Regional patterns of hypometabolism were similar between cohorts, though there were cohort differences in regional gray matter atrophy. Local cortical thickness and tau-PET (but not amyloid-PET) were independently associated with both retrosplenial and inferior parietal FDG SUVR (ΔR2 = .09 to .21) across cohorts in models that also included age and disease severity (local model). Including medial temporal lobe volume improved the retrosplenial FDG model in ADNI (ΔR2 = .04, p = .008) but not UCSF (ΔR2 < .01, p = .52), and did not improve the inferior parietal models (ΔR2s < .01, ps > .37). Interaction analyses revealed that medial temporal volume was more strongly associated with retrosplenial FDG SUVR at earlier disease stages (p = .06 in UCSF, p = .046 in ADNI). Exploratory analyses across the cortex confirmed overall associations between hypometabolism and local tau pathology and thickness and revealed associations between medial temporal degeneration and hypometabolism in retrosplenial, orbitofrontal, and anterior cingulate cortices. Finally, our data did not support hypotheses of a detrimental effect of pathology in connected regions or of an effect of the APOE ε4 allele in impaired participants. Overall, in two independent groups of patients at symptomatic stages of Alzheimer's disease, cortical hypometabolism mainly reflected structural neurodegeneration and tau, but not amyloid, pathology.
Collapse
Affiliation(s)
- Amelia Strom
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Pham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
159
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to discuss the contribution of the most recent neuroimaging studies to our understanding of the mechanisms underlying Alzheimer's disease. RECENT FINDINGS Studies have applied cross-sectional and longitudinal positron emission tomography (PET), structural and resting-state functional magnetic resonance imaging to primarily investigate (1) how Alzheimer's disease pathological hallmarks like tau and amyloid-beta build up and spread across the brain at different disease stage and in different disease phenotypes and (2) how the spreading of these proteins is related to atrophy, to neuronal network disruption and to neuroinflammation. SUMMARY The findings of these studies offer insight on the mechanisms that drive the pathological and clinical progression of Alzheimer's disease, highlighting their multifactorial nature, which is a crucial aspect for the development of disease-modifying therapeutics and can be captured with multimodal imaging approaches.
Collapse
|
160
|
Shafer AT, Beason-Held L, An Y, Williams OA, Huo Y, Landman BA, Caffo BS, Resnick SM. Default mode network connectivity and cognition in the aging brain: the effects of age, sex, and APOE genotype. Neurobiol Aging 2021; 104:10-23. [PMID: 33957555 PMCID: PMC12004503 DOI: 10.1016/j.neurobiolaging.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
The default mode network (DMN) overlaps with regions showing early Alzheimer's Disease (AD) pathology. Age, sex, and apolipoprotein E ɛ4 are the predominant risk factors for developing AD. How these risk factors interact to influence DMN connectivity and connectivity-cognition relationships before the onset of impairment remains unknown. Here, we examined these issues in 475 cognitively normal adults, targeting total DMN connectivity, its anticorrelated network (acDMN), and the DMN-hippocampal component. There were four main findings. First, in the ɛ3 homozygous group, lower DMN and acDMN connectivity was observed with age. Second, sex and ɛ4 modified the relationship between age and connectivity for the DMN and hippocampus with ɛ4 vs. ɛ3 males showing sustained or higher connectivity with age. Third, in the ɛ3 group, age and sex modified connectivity-cognition relationships with the oldest participants having the most differential patterns due to sex. Fourth, ɛ4 carriers with lower connectivity had poorer cognitive performance. Taken together, our results show the three predominant risk factors for AD interact to influence brain function and function-cognition relationships.
Collapse
Affiliation(s)
- Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD.
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Owen A Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Bennett A Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD.
| |
Collapse
|
161
|
Carlson ML, Toueg TN, Khalighi MM, Castillo J, Shen B, Azevedo EC, DiGiacomo P, Mouchawar N, Chau G, Zaharchuk G, James ML, Mormino EC, Zeineh MM. Hippocampal subfield imaging and fractional anisotropy show parallel changes in Alzheimer's disease tau progression using simultaneous tau-PET/MRI at 3T. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12218. [PMID: 34337132 PMCID: PMC8319659 DOI: 10.1002/dad2.12218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common form of dementia, characterized primarily by abnormal aggregation of two proteins, tau and amyloid beta. We assessed tau pathology and white matter connectivity changes in subfields of the hippocampus simultaneously in vivo in AD. METHODS Twenty-four subjects were scanned using simultaneous time-of-flight 18F-PI-2620 tau positron emission tomography/3-Tesla magnetic resonance imaging and automated segmentation. RESULTS We observed extensive tau elevation in the entorhinal/perirhinal regions, intermediate tau elevation in cornu ammonis 1/subiculum, and an absence of tau elevation in the dentate gyrus, relative to controls. Diffusion tensor imaging showed parahippocampal gyral fractional anisotropy was lower in AD and mild cognitive impairment compared to controls and strongly correlated with early tau accumulation in the entorhinal and perirhinal cortices. DISCUSSION This study demonstrates the potential for quantifiable patterns of 18F-PI2620 binding in hippocampus subfields, accompanied by diffusion and volume metrics, to be valuable markers of AD.
Collapse
Affiliation(s)
| | - Tyler N. Toueg
- Department of NeurologyStanford UniversityStanfordCaliforniaUSA
| | | | - Jessa Castillo
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Bin Shen
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | | | - Phillip DiGiacomo
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| | | | - Gustavo Chau
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| | - Greg Zaharchuk
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Michelle L. James
- Department of NeurologyStanford UniversityStanfordCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | | | | |
Collapse
|
162
|
Grande X, Berron D, Maass A, Bainbridge WA, Düzel E. Content-specific vulnerability of recent episodic memories in Alzheimer's disease. Neuropsychologia 2021; 160:107976. [PMID: 34314781 PMCID: PMC8434425 DOI: 10.1016/j.neuropsychologia.2021.107976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Endel Tulving's episodic memory framework emphasizes the multifaceted re-experiencing of personal events. Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer's disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while other content can remain memorable consistently across individuals and contexts. We propose that these observations are related to the content-specific functional architecture of the medial temporal lobe and consequently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop Endel Tulving's inspirational legacy further and to advance our understanding of how memory function is affected by neurodegenerative conditions such as Alzheimer's disease, we postulate that it is compelling to focus on the representational content of recent episodic memories. The functional anatomy of episodic memory segregates different memory content. Alzheimer's disease may cause content-specific loss of recent memories Content-specific memorability across individuals changes with Alzheimer's disease. Content-specific assessment could provide new insights into episodic memory in health and disease
Collapse
Affiliation(s)
- Xenia Grande
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany.
| | - David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, United Kingdom.
| |
Collapse
|
163
|
Dautricourt S, de Flores R, Landeau B, Poisnel G, Vanhoutte M, Delcroix N, Eustache F, Vivien D, de la Sayette V, Chételat G. Longitudinal Changes in Hippocampal Network Connectivity in Alzheimer's Disease. Ann Neurol 2021; 90:391-406. [PMID: 34279043 PMCID: PMC9291910 DOI: 10.1002/ana.26168] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/05/2022]
Abstract
Objective The hippocampus is connected to 2 distinct cortical brain networks, the posterior–medial and the anterior–temporal networks, involving different medial temporal lobe (MTL) subregions. The aim of this study was to assess the functional alterations of these 2 networks, their changes over time, and links to cognition in Alzheimer's disease. Methods We assessed MTL connectivity in 53 amyloid‐β–positive patients with mild cognitive impairment and AD dementia and 68 healthy elderly controls, using resting‐state functional magnetic resonance imaging, cross‐sectionally and longitudinally. First, we compared the functional connectivity of the posterior–medial and anterior–temporal networks within the control group to highlight their specificities. Second, we compared the connectivity of these networks between groups, and between baseline and 18‐month follow‐up in patients. Third, we assessed the association in the connectivity changes between the 2 networks, and with cognitive performance. Results We found decreased connectivity in patients specifically between the hippocampus and the posterior–medial network, together with increased connectivity between several MTL subregions and the anterior–temporal network. Moreover, changes in the posterior–medial and anterior–temporal networks were interrelated such that decreased MTL–posterior–medial connectivity was associated with increased MTL–anterior–temporal connectivity. Finally, both MTL–posterior–medial decrease and MTL–anterior–temporal increase predicted cognitive decline. Interpretation Our findings demonstrate that longitudinal connectivity changes in the posterior–medial and anterior–temporal hippocampal networks are linked together and that they both contribute to cognitive decline in Alzheimer's disease. These results shed light on the critical role of the posterior–medial and anterior–temporal networks in Alzheimer's disease pathophysiology and clinical symptoms. ANN NEUROL 2021;90:391–406
Collapse
Affiliation(s)
- Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, PhIND.,Neurology Department, Caen-Normandie University Hospital, Caen, France
| | | | | | | | | | - Nicolas Delcroix
- CNRS, Unité Mixte de Service-3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Vincent de la Sayette
- Neurology Department, Caen-Normandie University Hospital, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | |
Collapse
|
164
|
Johnson SA, Zequeira S, Turner SM, Maurer AP, Bizon JL, Burke SN. Rodent mnemonic similarity task performance requires the prefrontal cortex. Hippocampus 2021; 31:701-716. [PMID: 33606338 PMCID: PMC9343235 DOI: 10.1002/hipo.23316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 11/07/2023]
Abstract
Mnemonic similarity task performance, in which a known target stimulus must be distinguished from similar lures, is supported by the hippocampus and perirhinal cortex. Impairments on this task are known to manifest with advancing age. Interestingly, disrupting hippocampal activity leads to mnemonic discrimination impairments when lures are novel, but not when they are familiar. This observation suggests that other brain structures support discrimination abilities as stimuli are learned. The prefrontal cortex (PFC) is critical for retrieval of remote events and executive functions, such as working memory, and is also particularly vulnerable to dysfunction in aging. Importantly, the medial PFC is reciprocally connected to the perirhinal cortex and neuron firing in this region coordinates communication between lateral entorhinal and perirhinal cortices to presumably modulate hippocampal activity. This anatomical organization and function of the medial PFC suggests that it contributes to mnemonic discrimination; however, this notion has not been empirically tested. In the current study, rats were trained on a LEGO object-based mnemonic similarity task adapted for rodents, and surgically implanted with guide cannulae targeting prelimbic and infralimbic regions of the medial PFC. Prior to mnemonic discrimination tests, rats received PFC infusions of the GABAA agonist muscimol. Analyses of expression of the neuronal activity-dependent immediate-early gene Arc in medial PFC and adjacent cortical regions confirmed muscimol infusions led to neuronal inactivation in the infralimbic and prelimbic cortices. Moreover, muscimol infusions in PFC impaired mnemonic discrimination performance relative to the vehicle control across all testing blocks when lures shared 50-90% feature overlap with the target. Thus, in contrast hippocampal infusions, PFC inactivation impaired target-lure discrimination regardless of the novelty or familiarity of the lures. These findings indicate the PFC plays a critical role in mnemonic similarity task performance, but the time course of PFC involvement is dissociable from that of the hippocampus.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sabrina Zequeira
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sean M. Turner
- Department of Clinical Health Psychology, University of Florida, Gainesville, Florida
| | - Andrew P. Maurer
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Jennifer L. Bizon
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Sara N. Burke
- Evelyn F. and William L. McKnight Brain Institute, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
165
|
Cui L, Zhang Z, Zac Lo CY, Guo Q. Local Functional MR Change Pattern and Its Association With Cognitive Function in Objectively-Defined Subtle Cognitive Decline. Front Aging Neurosci 2021; 13:684918. [PMID: 34177559 PMCID: PMC8232526 DOI: 10.3389/fnagi.2021.684918] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: To identify individuals with preclinical cognitive impairment, researchers proposed the concept of objectively-defined subtle cognitive decline (Obj-SCD). However, it is not clear whether Obj-SCD has characteristic brain function changes. In this study, we aimed at exploring the changing pattern of brain function activity in Obj-SCD individuals and the similarities and differences with mild cognitive impairments (MCI). Method: 37 healthy control individuals, 25 Obj-SCD individuals (with the impairment in memory and language domain), and 28 aMCI individuals were included. Resting-state fMRI and neuropsychological tests were performed. fALFF was used to reflect the local functional activity and compared between groups. Finally, we analyzed the correlation between the fALFF values of significantly changed regions and neuropsychological performance. Results: We found similar functional activity enhancements in some local brain regions in the Obj-SCD and aMCI groups, including the left orbital part of the inferior frontal gyrus and the left median cingulate and paracingulate gyri. However, some changes in local functional activities of the Obj-SCD group showed different patterns from the aMCI group. Compared with healthy control (HC), the Obj-SCD group showed increased local functional activity in the right middle occipital gyrus, decreased local functional activity in the left precuneus and the left inferior temporal gyrus. In the Obj-SCD group, in normal band, the fALFF value of the right middle occipital gyrus was significantly negatively correlated with Mini-Mental State Examination (MMSE) score (r = -0.450, p = 0.024) and Animal Verbal Fluency Test (AFT) score (r = -0.402, p = 0.046); the left inferior temporal gyrus was significantly positively correlated with MMSE score (r = 0.588, p = 0.002). In slow-4 band, the fALFF value of the left precuneus was significantly positively correlated with MMSE score (r = 0.468, p = 0.018) and AFT score (r = 0.600, p = 0.002). In the aMCI group, the fALFF value of the left orbital part of the inferior frontal gyrus was significantly positively correlated with Auditory Verbal Learning Test (AVLT) long delay cued recall score (r = 0.506, p = 0.006). Conclusion: The Obj-SCD group showed a unique changing pattern; the functional changes of different brain regions have a close but different correlation with cognitive impairment, indicating that there may be a complex pathological basis inside. This suggests that Obj-SCD may be a separate stage of cognitive decline before aMCI and is helpful to the study of preclinical cognitive decline.
Collapse
Affiliation(s)
- Liang Cui
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhen Zhang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
166
|
Barnett AJ, Reilly W, Dimsdale-Zucker HR, Mizrak E, Reagh Z, Ranganath C. Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. PLoS Biol 2021; 19:e3001275. [PMID: 34077415 PMCID: PMC8202937 DOI: 10.1371/journal.pbio.3001275] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. Here, using data-driven analyses of resting-state functional magnetic resonance imaging (fMRI) data, we identified the networks that interact with the hippocampus-the default mode network (DMN) and a "medial temporal network" (MTN) that included regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays a critical role in connecting the visual network to the DMN and hippocampus. The DMN could be further divided into 3 subnetworks: a "posterior medial" (PM) subnetwork comprised of posterior cingulate and lateral parietal cortices; an "anterior temporal" (AT) subnetwork comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a "medial prefrontal" (MP) subnetwork comprised of regions primarily in the medial prefrontal cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippocampal long axis and represent different kinds of information during memory-guided decision-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses regarding the functions of the MTN and DMN subnetworks, providing a framework to guide future research on the neural architecture of episodic memory.
Collapse
Affiliation(s)
- Alexander J. Barnett
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | - Walter Reilly
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | | | - Eda Mizrak
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Zachariah Reagh
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Neurology, University of California at Davis, Sacramento, California, United States of America
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
167
|
Varzandian A, Razo MAS, Sanders MR, Atmakuru A, Di Fatta G. Classification-Biased Apparent Brain Age for the Prediction of Alzheimer's Disease. Front Neurosci 2021; 15:673120. [PMID: 34121998 PMCID: PMC8193935 DOI: 10.3389/fnins.2021.673120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Machine Learning methods are often adopted to infer useful biomarkers for the early diagnosis of many neurodegenerative diseases and, in general, of neuroanatomical ageing. Some of these methods estimate the subject age from morphological brain data, which is then indicated as “brain age”. The difference between such a predicted brain age and the actual chronological age of a subject can be used as an indication of a pathological deviation from normal brain ageing. An important use of the brain age model as biomarker is the prediction of Alzheimer's disease (AD) from structural Magnetic Resonance Imaging (MRI). Many different machine learning approaches have been applied to this specific predictive task, some of which have achieved high accuracy at the expense of the descriptiveness of the model. This work investigates an appropriate combination of data science techniques and linear models to provide, at the same time, high accuracy and good descriptiveness. The proposed method is based on a data workflow that include typical data science methods, such as outliers detection, feature selection, linear regression, and logistic regression. In particular, a novel inductive bias is introduced in the regression model, which is aimed at improving the accuracy and the specificity of the classification task. The method is compared to other machine learning approaches for AD classification based on morphological brain data with and without the use of the brain age, including Support Vector Machines and Deep Neural Networks. This study adopts brain MRI scans of 1, 901 subjects which have been acquired from three repositories (ADNI, AIBL, and IXI). A predictive model based only on the proposed apparent brain age and the chronological age has an accuracy of 88% and 92%, respectively, for male and female subjects, in a repeated cross-validation analysis, thus achieving a comparable or superior performance than state of the art machine learning methods. The advantage of the proposed method is that it maintains the morphological semantics of the input space throughout the regression and classification tasks. The accurate predictive model is also highly descriptive and can be used to generate potentially useful insights on the predictions.
Collapse
Affiliation(s)
- Ali Varzandian
- Department of Computer Science, University of Reading, Reading, United Kingdom
| | | | | | - Akhila Atmakuru
- Department of Computer Science, University of Reading, Reading, United Kingdom
| | - Giuseppe Di Fatta
- Department of Computer Science, University of Reading, Reading, United Kingdom
| |
Collapse
|
168
|
Matuskova V, Ismail Z, Nikolai T, Markova H, Cechova K, Nedelska Z, Laczo J, Wang M, Hort J, Vyhnalek M. Mild Behavioral Impairment Is Associated With Atrophy of Entorhinal Cortex and Hippocampus in a Memory Clinic Cohort. Front Aging Neurosci 2021; 13:643271. [PMID: 34108874 PMCID: PMC8180573 DOI: 10.3389/fnagi.2021.643271] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives Mild behavioral impairment (MBI) is a syndrome describing late-onset persistent neuropsychiatric symptoms (NPS) in non-demented older adults. Few studies to date have investigated the associations of MBI with structural brain changes. Our aim was to explore structural correlates of NPS in a non-demented memory clinic sample using the Mild Behavioral Impairment Checklist (MBI-C) that has been developed to measure MBI. Methods One hundred sixteen non-demented older adults from the Czech Brain Aging Study with subjective cognitive concerns were classified as subjective cognitive decline (n = 37) or mild cognitive impairment (n = 79). Participants underwent neurological and neuropsychological examinations and brain magnetic resonance imaging (MRI) (1.5 T). The Czech version of the MBI-C was administered to participants’ informants. Five a priori selected brain regions were measured, namely, thicknesses of the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and entorhinal cortex (ERC) and volume of the hippocampus (HV), and correlated with MBI-C total and domain scores. Results Entorhinal cortex was associated with MBI-C total score (rS = −0.368, p < 0.001) and with impulse dyscontrol score (rS = −0.284, p = 0.002). HV was associated with decreased motivation (rS = −0.248, p = 0.008) and impulse dyscontrol score (rS = −0.240, p = 0.011). Conclusion Neuropsychiatric symptoms, particularly in the MBI impulse dyscontrol and motivation domains, are associated with medial temporal lobe atrophy in a clinical cohort of non-demented older adults. This study supports earlier involvement of temporal rather than frontal regions in NPS manifestation. Since these regions are typically affected early in the course of Alzheimer’s disease (AD), the MBI-C may potentially help further identify individuals at-risk of developing AD dementia.
Collapse
Affiliation(s)
- Veronika Matuskova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zahinoor Ismail
- Department of Psychiatry, Cumming School of Medicine, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, Calgary, AB, Canada.,Hotchkiss Brain Institute and O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
| | - Tomas Nikolai
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Hana Markova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Laczo
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Meng Wang
- Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, Calgary, AB, Canada
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
169
|
Posterior Precuneus is Highly Connected to Medial Temporal Lobe Revealed by Tractography and White Matter Dissection. Neuroscience 2021; 466:173-185. [PMID: 34015372 DOI: 10.1016/j.neuroscience.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/16/2021] [Accepted: 05/08/2021] [Indexed: 01/19/2023]
Abstract
The precuneus, involved in various cognitive processes, is considered to form the midline core of the default mode network (DMN), while the medial temporal lobe (MTL) is a subsystem of the DMN. Until now, the anatomical study of the precuneus-MTL connection is limited in humans. One possible reason is the precuneus' territory of the posteromedial cortex (PMC) is inconsistent across studies. The primary purpose of this study is to investigate the structural connectivity (SC) of precuneus-MTL, focusing on its anatomical organization using the Human Connectome Project Multi-modal Parcellation (HCP MMP) atlas. We first conducted the quantitative tractography analyses using the HCP dataset. The major streamlines originated from the posterior precuneus and were projected to the MTL extensively. Next, to complement the tractography data, we conducted the white matter dissection in the post-mortem human brain. We observed the major fiber bundles arise from the posterior precuneus extending to the anterior parahippocampal gyrus, which could support our tractography results. Then we analyzed the relationship between SC and resting-state functional connectivity (rsFC) of the precuneus-MTL. Although the SC-rsFC correlation was scarce on the whole, the posterior precuneus (POS2, 7Pm, 7m) showed a relatively high correlation (r = 0.38349, p < 0.05) with the posterior MTL (PreS, H, ProS, PHA1, PHA2). Our findings suggest the posterior precuneus is highly connected to MTL structurally, which could have an effect on the resting-state functional connectivity. In addition, the precuneus might consist of the heterogeneous connectivity-based subdivisions.
Collapse
|
170
|
Pichet Binette A, Theaud G, Rheault F, Roy M, Collins DL, Levin J, Mori H, Lee JH, Farlow MR, Schofield P, Chhatwal JP, Masters CL, Benzinger T, Morris J, Bateman R, Breitner JC, Poirier J, Gonneaud J, Descoteaux M, Villeneuve S. Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer's disease. eLife 2021; 10:62929. [PMID: 33983116 PMCID: PMC8169107 DOI: 10.7554/elife.62929] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-amyloid (Aβ) and tau proteins, the pathological hallmarks of Alzheimer's disease (AD), are believed to spread through connected regions of the brain. Combining diffusion imaging and positron emission tomography, we investigated associations between white matter microstructure specifically in bundles connecting regions where Aβ or tau accumulates and pathology. We focused on free-water-corrected diffusion measures in the anterior cingulum, posterior cingulum, and uncinate fasciculus in cognitively normal older adults at risk of sporadic AD and presymptomatic mutation carriers of autosomal dominant AD. In Aβ-positive or tau-positive groups, lower tissue fractional anisotropy and higher mean diffusivity related to greater Aβ and tau burden in both cohorts. Associations were found in the posterior cingulum and uncinate fasciculus in preclinical sporadic AD, and in the anterior and posterior cingulum in presymptomatic mutation carriers. These results suggest that microstructural alterations accompany pathological accumulation as early as the preclinical stage of both sporadic and autosomal dominant AD.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - François Rheault
- Electrical Engineering, Vanderbilt University, Nashville, United States
| | - Maggie Roy
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Osaka, Japan
| | - Jae Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Peter Schofield
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jasmeer P Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Boston, United States
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Tammie Benzinger
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - Randall Bateman
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, United States.,Department of Neurology, Washington University School of Medicine, St. Louis, United States
| | - John Cs Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada
| | - Julie Gonneaud
- Douglas Mental Health University Institute, Montreal, Canada.,Normandie Univ, UNICAEN, INSERM, U1237, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | | | | |
Collapse
|
171
|
Gellersen HM, Coughlan G, Hornberger M, Simons JS. Memory precision of object-location binding is unimpaired in APOE ε4-carriers with spatial navigation deficits. Brain Commun 2021; 3:fcab087. [PMID: 33987536 PMCID: PMC8108563 DOI: 10.1093/braincomms/fcab087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Research suggests that tests of memory fidelity, feature binding and spatial navigation are promising for early detection of subtle behavioural changes related to Alzheimer's disease. In the absence of longitudinal data, one way of testing the early detection potential of cognitive tasks is through the comparison of individuals at different genetic risk for Alzheimer's dementia. Most studies have done so using samples aged 70 years or older. Here, we tested whether memory fidelity of long-term object-location binding may be a sensitive marker even among cognitively healthy individuals in their mid-60s by comparing participants at low and higher risk based on presence of the ε4-allele of the apolipoprotein gene (n = 26 ε3ε3, n = 20 ε3ε4 carriers). We used a continuous report paradigm in a visual memory task that required participants to recreate the spatial position of objects in a scene. We employed mixture modelling to estimate the two distinct memory processes that underpin the trial-by-trial variation in localization errors: retrieval success which indexes the proportion of trials where participants recalled any information about an object's position and the precision with which participants retrieved this information. Prior work has shown that these memory paradigms that separate retrieval success from precision are capable of detecting subtle differences in mnemonic fidelity even when retrieval success could not. Nonetheless, Bayesian analyses found good evidence that ε3ε4 carriers did not remember fewer object locations [F(1, 42) = 0.450, P = 0.506, BF01 = 3.02], nor was their precision for the spatial position of objects reduced compared to ε3ε3 carriers [F(1, 42) = 0.12, P = 0.726, BF01 = 3.19]. Because the participants in the sample presented here were a subset of a study on apolipoprotein ε4-carrier status and spatial navigation in the Sea Hero Quest game [Coughlan et al., 2019. PNAS, 116(9)], we obtained these data to contrast genetic effects on the two tasks within the same sample (n = 33). Despite the smaller sample size, wayfinding deficits among ε3ε4 carriers could be replicated [F(1, 33) = 5.60, P = 0.024, BF10 = 3.44]. Object-location memory metrics and spatial navigation scores were not correlated (all r < 0.25, P > 0.1, 0 < BF10 < 3). These findings show spared object-location binding in the presence of a detrimental apolipoprotein ε4 effect on spatial navigation. This suggests that the sensitivity of memory fidelity and binding tasks may not extend to individuals with one ε4-allele in their early to mid-60s. The results provide further support to prior proposals that spatial navigation may be a sensitive marker for the earliest cognitive changes in Alzheimer's disease, even before episodic memory.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Gillian Coughlan
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 1W1, Canada
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
172
|
Xue C, Sun H, Yue Y, Wang S, Qi W, Hu G, Ge H, Yuan Q, Rao J, Tian L, Xiao C, Chen J. Structural and Functional Disruption of Salience Network in Distinguishing Subjective Cognitive Decline and Amnestic Mild Cognitive Impairment. ACS Chem Neurosci 2021; 12:1384-1394. [PMID: 33825444 DOI: 10.1021/acschemneuro.1c00051] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Salience network (SN), playing a vital role in advanced cognitive function, is regarded to be impaired in subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI). The purpose of the study was to explore the importance of structural and functional features of SN in the diagnosis of SCD and aMCI. Structural and resting-state functional magnetic resonance imaging were collected from SCD, aMCI, and healthy control (HC). Cortex thickness, gray matter (GM) volume, spontaneous brain activity, functional connectivity (FC) within SN, and its relationship with cognitive function were analyzed. Moreover, the receiver operating characteristic analysis was performed to assess diagnostic efficacy of altered indictors for SCD and aMCI. Compared to HC, both SCD and aMCI showed decreased GM volume, decreased spontaneous brain activity, and increased FC within SN, while aMCI showed additional decreased cortex thickness. Furthermore, the altered FC in SCD and aMCI was significantly correlated with cognitive function. Particularly, the best-fitting classification models of SCD and aMCI were based on the combined multiple indicators. In conclusion, structure and function of SN were disrupted in SCD and aMCI, which involved in cognitive decline. The combined multiple indicators of SN provided powerful biomarkers for the diagnosis of SCD and aMCI.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Haiting Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Milit ary Medical University (Air Force Medical University), Xi’an, Shaanxi 710032, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Siyu Wang
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Honglin Ge
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Jiang Rao
- Department of Rehabilitation, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Tian
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu210029, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
173
|
Méndez M, Fidalgo C, Arias JL, Arias N. Methylene blue and photobiomodulation recover cognitive impairment in hepatic encephalopathy through different effects on cytochrome c-oxidase. Behav Brain Res 2021; 403:113164. [PMID: 33549685 DOI: 10.1016/j.bbr.2021.113164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction plays a central role in hepatic encephalopathy (HE), due to changes in enzyme cytochrome c-oxidase (CCO), causing a decline in brain metabolism. We used an HE animal model and applied intracranial administration of methylene blue (MB) and transcranial photobiomodulation (PBM), both targeting CCO, to determine their differential effects on recovering cognition. Five groups of rats were used: sham-operated group + saline (SHAM + SAL, n = 6), hepatic encephalopathy + SAL (HE + SAL, n = 7), SHAM + methylene blue (SHAM + MB, n = 7), HE + MB (n = 7), HE + PBM (n = 7). PBM animals were exposed transcranially to 670 +/- 10 nm LED light at a dose of 9 J/cm2 once a day for 7 days, and the MB and SAL groups were injected with 2.2 μg/0.5 μL in the accumbens. Cognitive dysfunction was evaluated on a striatal stimulus-response task using the Morris water maze. Our results showed cognitive improvement in the HE group when treated with MB. This improvement was accompanied by a decrease in CCO activity in the prefrontal cortex, dorsal striatum, and dorsal hippocampus. When comparing MB and PBM, we found that, although both treatments effectively improved the HE-memory deficit, there was a differential effect on CCO. A general decrease in CCO activity was found in the prefrontal and entorhinal cortices, dorsal striatum, and hippocampus when PBM, compared to MB, was applied. Our results suggest that mitochondrial dysfunction and brain metabolic decline in HE might involve CCO alteration and can be improved by administering MB and PBM.
Collapse
Affiliation(s)
- Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Camino Fidalgo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; Departamento de Psicología y Sociología, IIS Aragón, Universidad de Zaragoza, Ciudad Escolar s/n, Teruel, 44003, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, Oviedo, 33003, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain; UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
174
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
175
|
Reduced Repetition Suppression in Aging is Driven by Tau-Related Hyperactivity in Medial Temporal Lobe. J Neurosci 2021; 41:3917-3931. [PMID: 33731446 DOI: 10.1523/jneurosci.2504-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Tau deposition begins in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD), and MTL neural dysfunction is commonly observed in these groups. However, the association between tau and MTL neural activity has not been fully characterized. We investigated the effects of tau on repetition suppression, the reduction of activity for repeated stimulus presentations compared to novel stimuli. We used task-based functional MRI (fMRI) to assess MTL subregional activity in 21 young adults (YA) and 45 cognitively normal human older adults (OA; total sample: 37 females, 29 males). AD pathology was measured with position emission tomography (PET), using 18F-Flortaucipir for tau and 11C-Pittsburgh compound B (PiB) for amyloid-β (Aβ). The MTL was segmented into six subregions using high-resolution structural images. We compared the effects of low tau pathology, restricted to entorhinal cortex and hippocampus (Tau- OA), to high tau pathology, also occurring in temporal and limbic regions (Tau+ OA). Low levels of tau (Tau- OA vs YA) were associated with reduced repetition suppression activity specifically in anterolateral entorhinal cortex (alEC) and hippocampus, the first regions to accumulate tau. High tau pathology (Tau+ vs Tau- OA) was associated with widespread reductions in repetition suppression across MTL. Further analyses indicated that reduced repetition suppression was driven by hyperactivity to repeated stimuli, rather than decreased activity to novel stimuli. Increased activation was associated with entorhinal tau, but not Aβ. These findings reveal a link between tau deposition and neural dysfunction in MTL, in which tau-related hyperactivity prevents deactivation to repeated stimuli, leading to reduced repetition suppression.SIGNIFICANCE STATEMENT Abnormal neural activity occurs in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD). Because tau pathology first deposits in the MTL in aging, this altered activity may be due to local tau pathology, and distinct MTL subregions may be differentially vulnerable. We demonstrate that in older adults (OAs) with low tau pathology, there are focal alterations in activity in MTL subregions that first develop tau pathology, while OAs with high tau pathology have aberrant activity throughout MTL. Tau was associated with hyperactivity to repeated stimulus presentations, leading to reduced repetition suppression, the discrimination between novel and repeated stimuli. Our data suggest that tau deposition is related to abnormal activity in MTL before the onset of cognitive decline.
Collapse
|
176
|
Berron D, Vogel JW, Insel PS, Pereira JB, Xie L, Wisse LEM, Yushkevich PA, Palmqvist S, Mattsson-Carlgren N, Stomrud E, Smith R, Strandberg O, Hansson O. Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain 2021; 144:2771-2783. [PMID: 33725124 PMCID: PMC8557349 DOI: 10.1093/brain/awab114] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 11/12/2022] Open
Abstract
In Alzheimer's disease, postmortem studies have shown that the first cortical site where neurofibrillary tangles appear is the transentorhinal region, a subregion within the medial temporal lobe that largely overlaps with area 35, and the entorhinal cortex. Here we used tau-PET imaging to investigate the sequence of tau pathology progression within the human medial temporal lobe and across regions in the posterior-medial system. Our objective was to study how medial temporal tau is related to functional connectivity, regional atrophy, and memory performance. We included 215 β-amyloid negative cognitively unimpaired, 81 β-amyloid positive cognitively unimpaired and 87 β-amyloid positive individuals with mild cognitive impairment, who each underwent [18]F-RO948 tau and [18]F-flutemetamol amyloid PET imaging, structural T1-MRI and memory assessments as part of the Swedish BioFINDER-2 study. First, event-based modelling revealed that the entorhinal cortex and area 35 show the earliest signs of tau accumulation followed by the anterior and posterior hippocampus, area 36 and the parahippocampal cortex. In later stages, tau accumulation became abnormal in neocortical temporal and finally parietal brain regions. Second, in cognitively unimpaired individuals, increased tau load was related to local atrophy in the entorhinal cortex, area 35 and the anterior hippocampus and tau load in several anterior medial temporal lobe subregions was associated with distant atrophy of the posterior hippocampus. Tau load, but not atrophy, in these regions was associated with lower memory performance. Further, tau-related reductions in functional connectivity in critical networks between the medial temporal lobe and regions in the posterior-medial system were associated with this early memory impairment. Finally, in patients with mild cognitive impairment, the association of tau load in the hippocampus with memory performance was partially mediated by posterior hippocampal atrophy. In summary, our findings highlight the progression of tau pathology across medial temporal lobe subregions and its disease-stage specific association with memory performance. While tau pathology might affect memory performance in cognitively unimpaired individuals via reduced functional connectivity in critical medial temporal lobe-cortical networks, memory impairment in mild cognitively impaired patients is associated with posterior hippocampal atrophy.
Collapse
Affiliation(s)
- David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | - Jacob W Vogel
- Department of Psychiatry, University of Pennsylvania, 19104 Philadelphia, USA
| | - Philip S Insel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden.,Department of Psychiatry and Behavioral Sciences, University of California, 94143 San Francisco, USA
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA.,Department of Radiology, University of Pennsylvania, 19104 Philadelphia, Pennsylvania, USA
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA.,Department of Radiology, University of Pennsylvania, 19104 Philadelphia, Pennsylvania, USA.,Department of Diagnostic Radiology, Lund University, 221 00 Lund, Sweden
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, 19104, Philadelphia, Pennsylvania, USA.,Department of Radiology, University of Pennsylvania, 19104 Philadelphia, Pennsylvania, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden.,Department of Neurology, Skåne University Hospital, 221 00 Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden.,Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden.,Department of Neurology, Skåne University Hospital, 221 00 Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 223 62 Lund, Sweden.,Department of Psychiatry, University of Pennsylvania, 19104 Philadelphia, USA
| |
Collapse
|
177
|
Kim NG, Lee HW. Stereoscopic Depth Perception and Visuospatial Dysfunction in Alzheimer's Disease. Healthcare (Basel) 2021; 9:healthcare9020157. [PMID: 33546119 PMCID: PMC7913121 DOI: 10.3390/healthcare9020157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
With visuospatial dysfunction emerging as a potential marker that can detect Alzheimer's disease (AD) even in its earliest stages and with disturbance in stereopsis suspected to be the prime contributor to visuospatial deficits in AD, we assessed stereoscopic abilities of patients with AD and mild cognitive impairment (MCI). Whereas previous research assessing patients' stereoacuity has yielded mixed results, we assessed patients' capacity to process coarse disparities that can convey adequate depth information about objects in the environment. We produced two virtual cubes at two different distances from the observer by manipulating disparity type (absolute vs. relative), disparity direction (crossed vs. uncrossed) and disparity magnitude, then had participants judge the object that appeared closer to them. Two patient groups performed as well as, or even better than elderly controls, suggesting that AD patients' coarse disparity processing capacity is capable of supporting common tasks involving reaching, grasping, driving, and navigation. Results may help researchers narrow down the exact cause(s) of visuospatial deficits in AD and develop and validate measures to assess visuospatial dysfunction in clinical trials and disease diagnosis.
Collapse
Affiliation(s)
- Nam-Gyoon Kim
- Department of Psychology, Keimyung University, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-580-5415
| | - Ho-Won Lee
- Department of Neurology, School of Medicine & Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
178
|
Garad M, Edelmann E, Leßmann V. Impairment of Spike-Timing-Dependent Plasticity at Schaffer Collateral-CA1 Synapses in Adult APP/PS1 Mice Depends on Proximity of Aβ Plaques. Int J Mol Sci 2021; 22:1378. [PMID: 33573114 PMCID: PMC7866519 DOI: 10.3390/ijms22031378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by progressive and irreversible cognitive decline, with no disease-modifying therapy until today. Spike timing-dependent plasticity (STDP) is a Hebbian form of synaptic plasticity, and a strong candidate to underlie learning and memory at the single neuron level. Although several studies reported impaired long-term potentiation (LTP) in the hippocampus in AD mouse models, the impact of amyloid-β (Aβ) pathology on STDP in the hippocampus is not known. Using whole cell patch clamp recordings in CA1 pyramidal neurons of acute transversal hippocampal slices, we investigated timing-dependent (t-) LTP induced by STDP paradigms at Schaffer collateral (SC)-CA1 synapses in slices of 6-month-old adult APP/PS1 AD model mice. Our results show that t-LTP can be induced even in fully developed adult mice with different and even low repeat STDP paradigms. Further, adult APP/PS1 mice displayed intact t-LTP induced by 1 presynaptic EPSP paired with 4 postsynaptic APs (6× 1:4) or 1 presynaptic EPSP paired with 1 postsynaptic AP (100× 1:1) STDP paradigms when the position of Aβ plaques relative to recorded CA1 neurons in the slice were not considered. However, when Aβ plaques were live stained with the fluorescent dye methoxy-X04, we observed that in CA1 neurons with their somata <200 µm away from the border of the nearest Aβ plaque, t-LTP induced by 6× 1:4 stimulation was significantly impaired, while t-LTP was unaltered in CA1 neurons >200 µm away from plaques. Treatment of APP/PS1 mice with the anti-inflammatory drug fingolimod that we previously showed to alleviate synaptic deficits in this AD mouse model did not rescue the impaired t-LTP. Our data reveal that overexpression of APP and PS1 mutations in AD model mice disrupts t-LTP in an Aβ plaque distance-dependent manner, but cannot be improved by fingolimod (FTY720) that has been shown to rescue conventional LTP in CA1 of APP/PS1 mice.
Collapse
Affiliation(s)
- Machhindra Garad
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.G.); (E.E.)
| | - Elke Edelmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.G.); (E.E.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.G.); (E.E.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| |
Collapse
|
179
|
Trelle AN, Carr VA, Wilson EN, Swarovski MS, Hunt MP, Toueg TN, Tran TT, Channappa D, Corso NK, Thieu MK, Jayakumar M, Nadiadwala A, Guo W, Tanner NJ, Bernstein JD, Litovsky CP, Guerin SA, Khazenzon AM, Harrison MB, Rutt BK, Deutsch GK, Chin FT, Davidzon GA, Hall JN, Sha SJ, Fredericks CA, Andreasson KI, Kerchner GA, Wagner AD, Mormino EC. Association of CSF Biomarkers With Hippocampal-Dependent Memory in Preclinical Alzheimer Disease. Neurology 2021; 96:e1470-e1481. [PMID: 33408146 DOI: 10.1212/wnl.0000000000011477] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine whether memory tasks with demonstrated sensitivity to hippocampal function can detect variance related to preclinical Alzheimer disease (AD) biomarkers, we examined associations between performance in 3 memory tasks and CSF β-amyloid (Aβ)42/Aβ40 and phosopho-tau181 (p-tau181) in cognitively unimpaired older adults (CU). METHODS CU enrolled in the Stanford Aging and Memory Study (n = 153; age 68.78 ± 5.81 years; 94 female) completed a lumbar puncture and memory assessments. CSF Aβ42, Aβ40, and p-tau181 were measured with the automated Lumipulse G system in a single-batch analysis. Episodic memory was assayed using a standardized delayed recall composite, paired associate (word-picture) cued recall, and a mnemonic discrimination task that involves discrimination between studied "target" objects, novel "foil" objects, and perceptually similar "lure" objects. Analyses examined cross-sectional relationships among memory performance, age, and CSF measures, controlling for sex and education. RESULTS Age and lower Aβ42/Aβ40 were independently associated with elevated p-tau181. Age, Aβ42/Aβ40, and p-tau181 were each associated with (1) poorer associative memory and (2) diminished improvement in mnemonic discrimination performance across levels of decreased task difficulty (i.e., target-lure similarity). P-tau mediated the effect of Aβ42/Aβ40 on memory. Relationships between CSF proteins and delayed recall were similar but nonsignificant. CSF Aβ42 was not significantly associated with p-tau181 or memory. CONCLUSIONS Tests designed to tax hippocampal function are sensitive to subtle individual differences in memory among CU and correlate with early AD-associated biomarker changes in CSF. These tests may offer utility for identifying CU with preclinical AD pathology.
Collapse
Affiliation(s)
- Alexandra N Trelle
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA.
| | - Valerie A Carr
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Edward N Wilson
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Michelle S Swarovski
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Madison P Hunt
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Tyler N Toueg
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Tammy T Tran
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Divya Channappa
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Nicole K Corso
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Monica K Thieu
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Manasi Jayakumar
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Ayesha Nadiadwala
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Wanjia Guo
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Natalie J Tanner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Jeffrey D Bernstein
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Celia P Litovsky
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Scott A Guerin
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Anna M Khazenzon
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Marc B Harrison
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Brian K Rutt
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Gayle K Deutsch
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Frederick T Chin
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Guido A Davidzon
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Jacob N Hall
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Sharon J Sha
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Carolyn A Fredericks
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Katrin I Andreasson
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Geoffrey A Kerchner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Anthony D Wagner
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| | - Elizabeth C Mormino
- From the Department of Psychology (A.N.T., V.A.C., M.P.H., T.T.T., M.K.T., M.J., W.G., N.J.T., J.D.B., C.P.L., S.A.G., A.M.K., M.B.H., A.D.W.), Stanford University; and Department of Neurology and Neurological Sciences (E.N.W., M.S.S., T.N.T., D.C., N.K.C., A.N., G.K.D., J.N.H., S.J.S., C.A.F., K.I.A., G.A.K., E.C.M.) and Division of Nuclear Medicine & Molecular Imaging Division, Department of Radiology (B.K.R., F.T.C., G.A.D.), Stanford Medical School, CA
| |
Collapse
|
180
|
Chen Q, Turnbull A, Baran TM, Lin FV. Longitudinal stability of medial temporal lobe connectivity is associated with tau-related memory decline. eLife 2020; 9:e62114. [PMID: 33382038 PMCID: PMC7803375 DOI: 10.7554/elife.62114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/30/2020] [Indexed: 12/02/2022] Open
Abstract
The relationship between Alzheimer's disease (AD) pathology and cognitive decline is an important topic in the aging research field. Recent studies suggest that memory deficits are more susceptible to phosphorylated tau (Ptau) than amyloid-beta. However, little is known regarding the neurocognitive mechanisms linking Ptau and memory-related decline. Here, we extracted data from Alzheimer's Disease Neuroimaging Initiative (ADNI) participants with cerebrospinal fluid (CSF) Ptau collected at baseline, diffusion tensor imaging measure twice, 2 year apart, and longitudinal memory data over 5 years. We defined three age- and education-matched groups: Ptau negative cognitively unimpaired, Ptau positive cognitively unimpaired, and Ptau positive individuals with mild cognitive impairment. We found the presence of CSF Ptau at baseline was related to a loss of structural stability in medial temporal lobe connectivity in a way that matched proposed disease progression, and this loss of stability in connections known to be important for memory moderated the relationship between Ptau accumulation and memory decline.
Collapse
Affiliation(s)
- Quanjing Chen
- Elaine C. Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical CenterRochesterUnited States
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical CenterRochesterUnited States
| | - Adam Turnbull
- Elaine C. Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical CenterRochesterUnited States
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical CenterRochesterUnited States
| | - Timothy M Baran
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of RochesterRochesterUnited States
| | - Feng V Lin
- Elaine C. Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical CenterRochesterUnited States
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical CenterRochesterUnited States
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical CenterRochesterUnited States
- Department of Brain and Cognitive Sciences, University of RochesterRochesterUnited States
- School of Medicine, Stanford UniversityStanfordUnited States
| |
Collapse
|
181
|
Shi YB, Tu T, Jiang J, Zhang QL, Ai JQ, Pan A, Manavis J, Tu E, Yan XX. Early Dendritic Dystrophy in Human Brains With Primary Age-Related Tauopathy. Front Aging Neurosci 2020; 12:596894. [PMID: 33364934 PMCID: PMC7750631 DOI: 10.3389/fnagi.2020.596894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophic neurites (DNs) are found in many neurological conditions such as traumatic brain injury and age-related neurodegenerative diseases. In Alzheimer's disease (AD) specifically, senile plaques containing silver-stained DNs were already described in the original literature defining this disease. These DNs could be both axonal and dendritic in origin, while axonal dystrophy relative to plaque formation has been more extensively studied. Here, we demonstrate an early occurrence of dendritic dystrophy in the hippocampal CA1 and subicular regions in human brains (n = 23) with primary age-related tauopathy (PART), with neurofibrillary tangle (NFT) burden ranging from Braak stages I to III in the absence of cerebral β-amyloid (Aβ) deposition. In Bielschowsky's silver stain, segmented fusiform swellings on the apical dendrites of hippocampal and subicular pyramidal neurons were observed in all the cases, primarily over the stratum radiatum (s.r.). The numbers of silver-stained neuronal somata and dendritic swellings counted over CA1 to subiculum were positively correlated among the cases. Swollen dendritic processes were also detected in sections immunolabeled for phosphorylated tau (pTau) and sortilin. In aged and AD brains with both Aβ and pTau pathologies, silver- and immunolabeled dystrophic-like dendritic profiles occurred around and within individual neuritic plaques. These findings implicate that dendritic dystrophy can occur among hippocampal pyramidal neurons in human brains with PART. Therefore, as with the case of axonal dystrophy reported in literature, dendritic dystrophy can develop prior to Alzheimer-type plaque and tangle formation in the human brain.
Collapse
Affiliation(s)
- Yan-Bin Shi
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
182
|
Impaired Expression of GABA Signaling Components in the Alzheimer's Disease Middle Temporal Gyrus. Int J Mol Sci 2020; 21:ijms21228704. [PMID: 33218044 PMCID: PMC7698927 DOI: 10.3390/ijms21228704] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter, playing a central role in the regulation of cortical excitability and the maintenance of the excitatory/inhibitory (E/I) balance. Several lines of evidence point to a remodeling of the cerebral GABAergic system in Alzheimer’s disease (AD), with past studies demonstrating alterations in GABA receptor and transporter expression, GABA synthesizing enzyme activity and focal GABA concentrations in post-mortem tissue. AD is a chronic neurodegenerative disorder with a poorly understood etiology and the temporal cortex is one of the earliest regions in the brain to be affected by AD neurodegeneration. Utilizing NanoString nCounter analysis, we demonstrate here the transcriptional downregulation of several GABA signaling components in the post-mortem human middle temporal gyrus (MTG) in AD, including the GABAA receptor α1, α2, α3, α5, β1, β2, β3, δ, γ2, γ3, and θ subunits and the GABAB receptor 2 (GABABR2) subunit. In addition to this, we note the transcriptional upregulation of the betaine-GABA transporter (BGT1) and GABA transporter 2 (GAT2), and the downregulation of the 67 kDa isoform of glutamate decarboxylase (GAD67), the primary GABA synthesizing enzyme. The functional consequences of these changes require further investigation, but such alterations may underlie disruptions to the E/I balance that are believed to contribute to cognitive decline in AD.
Collapse
|