151
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Alhibshi AH, Odawara A, Suzuki I. Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. Biochem Biophys Rep 2019; 17:122-126. [PMID: 30623116 PMCID: PMC6317145 DOI: 10.1016/j.bbrep.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The natural antioxidant Thymoquinone (TQ) is the most abundant ingredient in the curative plant Nigella sativa seed's oil. An extensive number of studies have revealed that TQ is the most active and most responsible component for the plant's pharmacological properties. It has been documented in several studies that TQ has a wide range of protective activities and many neuropharmacological attributes. Amyloid beta (Aβ) is the major role player peptide in the progression of Alzheimer's disease (AD). Our current study has been implemented to explore the protective possibilities of TQ on Aβ1–42 -induced neurotoxicity. To test TQ's effect we used cultured human induced pluripotent stem cell (hiPSC)-derived cholinergic neurons. The obtained results showed that Aβ1–42 caused cell death and apoptosis, which was efficiently attenuated by the co-treatment of TQ. Moreover, TQ restored the decrease in the intracellular antioxidant enzyme glutathione levels and inhibited the generation of reactive oxygen species induced by Aβ1–42. Furthermore, using the fluorescent dye FM1–43 we demonstrated that TQ was able to reduce synaptic toxicity caused by Aβ1–42. Thus, the findings of our study suggest that TQ holds a neuroprotective potential and could be a promising therapeutic agent to reduce the risk of developing AD and other disorders of the central nervous system. TQ protected hiPSC-derived cholinergic neurons against Aβ1–42 induced apoptosis. TQ restored reduced Glutathione level in hiPSC-derived cholinergic neurons. TQ protected hiPSC-derived cholinergic neurons against ROS generation induced by Aβ1–42. TQ attenuated Aβ1–42 – induced synaptic toxicity.
Collapse
Affiliation(s)
- A H Alhibshi
- Department of Neuroscience, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441, Saudi Arabia
| | - A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 192-0982, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 192-0982, Japan
| |
Collapse
|
153
|
W. Pilkington IV A, Legleiter J. Challenges in understanding the structure/activity relationship of Aβ oligomers. AIMS BIOPHYSICS 2019. [DOI: 10.3934/biophy.2019.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
154
|
Long JM, Maloney B, Rogers JT, Lahiri DK. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer's disease. Mol Psychiatry 2019; 24:345-363. [PMID: 30470799 PMCID: PMC6514885 DOI: 10.1038/s41380-018-0266-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
In addition to the devastating symptoms of dementia, Alzheimer's disease (AD) is characterized by accumulation of the processing products of the amyloid-β (Aβ) peptide precursor protein (APP). APP's non-pathogenic functions include regulating intracellular iron (Fe) homeostasis. MicroRNAs are small (~ 20 nucleotides) RNA species that instill specificity to the RNA-induced silencing complex (RISC). In most cases, RISC inhibits mRNA translation through the 3'-untranslated region (UTR) sequence. By contrast, we report a novel activity of miR-346: specifically, that it targets the APP mRNA 5'-UTR to upregulate APP translation and Aβ production. This upregulation is reduced but not eliminated by knockdown of argonaute 2. The target site for miR-346 overlaps with active sites for an iron-responsive element (IRE) and an interleukin-1 (IL-1) acute box element. IREs interact with iron response protein1 (IRP1), an iron-dependent translational repressor. In primary human brain cultures, miR-346 activity required chelation of Fe. In addition, miR-346 levels are altered in late-Braak stage AD. Thus, miR-346 plays a role in upregulation of APP in the CNS and participates in maintaining APP regulation of Fe, which is disrupted in late stages of AD. Further work will be necessary to integrate other metals, and IL-1 into the Fe-miR-346 activity network. We, thus, propose a "FeAR" (Fe, APP, RNA) nexus in the APP 5'-UTR that includes an overlapping miR-346-binding site and the APP IRE. When a "healthy FeAR" exists, activities of miR-346 and IRP/Fe interact to maintain APP homeostasis. Disruption of an element that targets the FeAR nexus would lead to pathogenic disruption of APP translation and protein production.
Collapse
Affiliation(s)
- Justin M. Long
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Bryan Maloney
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, MGH, Harvard Medical School, Charlestown, MA 02129 USA
| | - Debomoy K. Lahiri
- 0000 0001 2287 3919grid.257413.6Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,0000 0001 2287 3919grid.257413.6Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
155
|
Downey MA, Giammona MJ, Lang CA, Buratto SK, Singh A, Bowers MT. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:85-93. [PMID: 29713966 PMCID: PMC6258352 DOI: 10.1007/s13361-018-1975-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 05/25/2023]
Abstract
Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development. Graphical Abstract.
Collapse
Affiliation(s)
- Matthew A Downey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Maxwell J Giammona
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Christian A Lang
- Acelot, Inc., 5385 Hollister Ave, Suite 111, Santa Barbara, CA, 93111, USA
| | - Steven K Buratto
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Ambuj Singh
- Acelot, Inc., 5385 Hollister Ave, Suite 111, Santa Barbara, CA, 93111, USA
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
156
|
Tan C, Dong Y, Wang J, Yang X. Vanadyl acetylacetonate attenuates Aβ pathogenesis in APP/PS1 transgenic mice depending on the intervention stage. NEW J CHEM 2019. [DOI: 10.1039/c9nj00820a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VAC treatment caused different Grp75 responses before and after Aβ plaque formation.
Collapse
Affiliation(s)
- Chang Tan
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Yaqiong Dong
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Jing Wang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| | - Xiaoda Yang
- The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology
- School of Pharmaceutical Science
- Peking University Health Science Center
- Beijing 100191
- China
| |
Collapse
|
157
|
Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018; 9:1484. [PMID: 30618771 PMCID: PMC6304357 DOI: 10.3389/fphar.2018.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Jaana van Gastel
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Richard T. Premont
- Harrington Discovery Institute, Case Western Reserve University, Cleveland, GA, United States
| | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| |
Collapse
|
158
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
159
|
Kageyama Y, Saito A, Pletnikova O, Rudow GL, Irie Y, An Y, Murakami K, Irie K, Resnick SM, Fowler DR, Martin LJ, Troncoso JC. Amyloid β toxic conformer has dynamic localization in the human inferior parietal cortex in absence of amyloid plaques. Sci Rep 2018; 8:16895. [PMID: 30442978 PMCID: PMC6237870 DOI: 10.1038/s41598-018-35004-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023] Open
Abstract
Amyloid β (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease. Nevertheless, its distribution and clearance before Aβ plaque formation needs to be elucidated. Using an optimized immunofluorescent staining method, we examined the distribution of Aβ in the post-mortem parietal cortex of 35 subjects, 30 to 65 years of age, APOE ε3/ε3, without AD lesions. We used 11A1, an antibody against an Aβ conformer which forms neurotoxic oligomers. 11A1 immunoreactivity (IR) was present in cortical neurons, pericapillary spaces, astrocytes and the extracellular compartment at 30 years of age. The percentage of neurons with 11A1 IR did not change with age, but the number and percentage of astrocytes with 11A1 IR gradually increased. Notably, the percentage of pericapillary spaces labeled with 11A1 IR declined significantly in the 5th decade of the life, at the same time that 11A1 IR increased in the extracellular space. Our findings indicate that the Aβ toxic conformer is normally present in various cell types and brain parenchyma, and appears to be constitutively produced, degraded, and cleared from the inferior parietal cortex. The decrease in pericapillary Aβ and the concomitant increase of extracellular Aβ may reflect an age-associated impairment in Aβ clearance from the brain.
Collapse
Affiliation(s)
- Yusuke Kageyama
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Atsushi Saito
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gay L Rudow
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yumi Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yang An
- Laboratory of Behavioral Neuroscience, NIH/NIA/IRP, Baltimore, MD, USA
| | - Kazuma Murakami
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuhiro Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, NIH/NIA/IRP, Baltimore, MD, USA
| | - David R Fowler
- Office of the Chief Medical Examiner, Baltimore, MD, USA
| | - Lee J Martin
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
160
|
Panza F, Lozupone M, Solfrizzi V, Sardone R, Piccininni C, Dibello V, Stallone R, Giannelli G, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G, Imbimbo BP. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18:847-857. [DOI: 10.1080/14737175.2018.1531706] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Lecce, Italy
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Carla Piccininni
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Dibello
- Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari Aldo, Moro, Bari, Italy
| | - Roberta Stallone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Lecce, Italy
| | - Bruno P. Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
161
|
Li H, Wang X, Yu H, Zhu J, Jin H, Wang A, Yang Z. Combining in vitro and in silico Approaches to Find New Candidate Drugs Targeting the Pathological Proteins Related to the Alzheimer's Disease. Curr Neuropharmacol 2018; 16:758-768. [PMID: 29086699 PMCID: PMC6080099 DOI: 10.2174/1570159x15666171030142108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer’s disease (AD) as the most common cause of dementia among older people has aroused the universal concern of the whole world. However, until now there is still none effective treatments. Consequently, the development of new drugs targeting this complicated brain disorder is urgent and needs more efforts. In this review, we detailed the current state of knowledge about new candidate drugs targeting the pathological proteins especially the drugs which are employed using the combined methods of in vitro and in silico. Methods: We looked up and reviewed online papers related to the pathogenesis and new drugs development of AD. Then, articles up to the requirements were respectively analyzed and summaried to provide the latest knowledge about the pathogenic effect and the new candidate drugs targeting Aβ and Tau proteins. Results: New candidate drugs targeting the Aβ include decreasing the production, promoting the clearence and preventing aggregation. However these drugs have mostly failed in Phase III clinical trial stage due to the unsuccessful of reversing cognition symptoms. As to tau protein, the prevention of tau aggregation and propagation is a promising strategy to synthesize/design mechanism-based drugs against tauopathies. Some candidate drugs are under research. Moreover, because of the complex pathogenesis of AD, multi-target drugs have also shed light on the treatment of AD. Conclusion: Given to the consecutive failure of Aβ-directed drugs and the feasibilities of tau-targeted therapy, more and more researchers suggested that the AD treatment should be moved from Aβ to tau or focused on considering the soluble form of Aβ and tau as a whole. Moreover, the novel in silico methods also have great potential in drug discovery, drug repositioning, virtual screening of chemical libraries. No matter how many difficulties and challenges in prevention and treatment of AD, we firmly believe that the effective and safe drugs will be found using the combined methods in the immediate future with the global effort.
Collapse
Affiliation(s)
- Hui Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaobing Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongmei Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Hongtao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
162
|
Zhou Y, Chen L, Zhou X, Pei Y, Wei S, Mehmood A, Xiang YK, Wang D. Profiling of Differential Expression of Genes in Mice Carrying Both Mutant Presenilin 1 and Amyloid Precursor Protein Transgenes with or without Knockout of B 2 Adrenergic Receptor Gene. ACTA ACUST UNITED AC 2018; 7. [PMID: 31058201 DOI: 10.4172/2329-9533.1000155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a lifelong progressive neurodegenerativa disease related with accumulation of amyloid β peptide (Aβ) produced by processing of amyloid precursor protein (APP) in the brain. In spite of several-decades effort on AD, there is still no medicine used to intervene with its pathological processes. Our previous studies made in transgenic animal models harboring familial AD genes of mutant presenilin 1 and amyloid precursor protein (APP) showed that β2AR gene knock-out (β2AR-KO) is beneficial in senile AD animals. Consistently, an epidemiological study lasted for two decades showed that the sole usage of β blockers as antihypertensive medicines is associated with fewer brain lesions and less brain shrinkage seen in senile AD patients. In order to understand why senile β2AR-KO AD mice had better learning and memory, genomic effects of β2AR-KO in the double transgenic AD mice were investigated. In the analysis, major genomic significance of β2AR-KO was directed to influence protein-processing and presentation involving membrane structure and MHC class I and II protein complex, and lysosome and hydrolase activity for protein degradation, which are critical for accumulation of amyloid β peptide, the hallmark of AD.
Collapse
Affiliation(s)
- Yuan Zhou
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Amber Glen Alzheimer's Association, 1704 Amber Ln, Urbana, IL 61802, USA
| | - Lintao Chen
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Collage of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570208, China
| | - Xi Zhou
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Collage of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570208, China
| | - Yechun Pei
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Collage of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570208, China
| | - Shuangshuang Wei
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Collage of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570208, China
| | - Anum Mehmood
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Collage of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570208, China
| | - Yang K Xiang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Department of Pharmacology, University of California, Davis, CA95616, USA
| | - Dayong Wang
- Laboratory of Biotechnology and Molecular Pharmacology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570208, China.,Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Collage of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570208, China
| |
Collapse
|
163
|
Di Natale G, Zimbone S, Bellia F, Tomasello M, Giuffrida M, Pappalardo G, Rizzarelli E. Potential therapeutics of Alzheimer's diseases: New insights into the neuroprotective role of trehalose‐conjugated beta sheet breaker peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- G. Di Natale
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - S. Zimbone
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - F. Bellia
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - M.F. Tomasello
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - M.L. Giuffrida
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - G. Pappalardo
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
| | - E. Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR) Instituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18 Catania 95126 Italy
- Dipartimento di Scienze Chimiche Università degli studi di Catania, Viale Andrea Doria 6 Catania 95125 Italy
| |
Collapse
|
164
|
Bi TM, Daggett V. The Role of α-sheet in Amyloid Oligomer Aggregation and Toxicity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:247-255. [PMID: 30258312 PMCID: PMC6153628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major barrier to developing effective treatments and diagnostics for amyloid diseases is the inability of traditional protein structure characterization methods to elucidate the structure of the toxic oligomers that form during amyloidogenesis. Some years ago, our lab "discovered" a novel protein secondary structure in molecular dynamics simulations of multiple unrelated amyloid proteins, which we call α-sheet. We hypothesize that α-sheet plays an important role in amyloid aggregation and oligomer toxicity. De novo monomeric α-sheet peptides designed to be complementary to the structure observed in simulations inhibit amyloid aggregation and toxicity and specifically bind to the toxic oligomeric species in a variety of unrelated mammalian and bacterial amyloid systems associated with a range of diseases. Furthermore, spectroscopic analysis of α-sheet structure, including nuclear magnetic resonance (NMR), circular dichroism (CD), and Fourier-transform infrared spectroscopy (FTIR), correspond well to values predicted for α-sheet. These α-sheet designs are now being tested for their ability to detect and neutralize toxic oligomers in animals and in patient samples, demonstrating the potential of this nonstandard secondary structure as a target for therapeutic and diagnostic agents for amyloid diseases.
Collapse
Affiliation(s)
- Timothy M. Bi
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA
| |
Collapse
|
165
|
Recent Advances by In Silico and In Vitro Studies of Amyloid-β 1-42 Fibril Depicted a S-Shape Conformation. Int J Mol Sci 2018; 19:ijms19082415. [PMID: 30115846 PMCID: PMC6121414 DOI: 10.3390/ijms19082415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
The amyloid-β 1-42 (Aβ1-42) peptide is produced by proteolytic cleavage of the amyloid precursor protein (APP) by sequential reactions that are catalyzed by γ and β secretases. Aβ1-42, together with the Tau protein are two principal hallmarks of Alzheimer's disease (AD) that are related to disease genesis and progression. Aβ1-42 possesses a higher aggregation propensity, and it is able to form fibrils via nucleated fibril formation. To date, there are compounds available that prevent Aβ1-42 aggregation, but none have been successful in clinical trials, possibly because the Aβ1-42 structure and aggregation mechanisms are not thoroughly understood. New molecules have been designed, employing knowledge of the Aβ1-42 structure and are based on preventing or breaking the ionic interactions that have been proposed for formation of the Aβ1-42 fibril U-shaped structure. Recently, a new Aβ1-42 fibril S-shaped structure was reported that, together with its aggregation and catalytic properties, could be helpful in the design of new inhibitor molecules. Therefore, in silico and in vitro methods have been employed to analyze the Aβ1-42 fibril S-shaped structure and its aggregation to obtain more accurate Aβ1-42 oligomerization data for the design and evaluation of new molecules that can prevent the fibrillation process.
Collapse
|
166
|
Silverman JM, Gibbs E, Peng X, Martens KM, Balducci C, Wang J, Yousefi M, Cowan CM, Lamour G, Louadi S, Ban Y, Robert J, Stukas S, Forloni G, Hsiung GYR, Plotkin SS, Wellington CL, Cashman NR. A Rational Structured Epitope Defines a Distinct Subclass of Toxic Amyloid-beta Oligomers. ACS Chem Neurosci 2018; 9:1591-1606. [PMID: 29614860 DOI: 10.1021/acschemneuro.7b00469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oligomers of amyloid-β (AβO) are deemed key in synaptotoxicity and amyloid seeding of Alzheimer's disease (AD). However, the heterogeneous and dynamic nature of AβO and inadequate markers for AβO subtypes have stymied effective AβO identification and therapeutic targeting in vivo. We identified an AβO-subclass epitope defined by differential solvent orientation of the lysine 28 side chain in a constrained loop of serine-asparagine-lysine (cSNK), rarely displayed in molecular dynamics simulations of monomer and fibril ensembles. A mouse monoclonal antibody targeting AβOcSNK recognizes ∼50-60 kDa SDS-resistant soluble Aβ assemblages in AD brain and prolongs the lag phase of Aβ aggregation in vitro. Acute peripheral infusion of a murine IgG1 anti-AβOcSNK in two AD mouse models reduced soluble brain Aβ aggregates by 20-30%. Chronic cSNK peptide immunization of APP/PS1 mice engendered an anti-AβOcSNK IgG1 response without epitope spreading to Aβ monomers or fibrils and was accompanied by preservation of global PSD95 expression and improved cued fear memory. Our data indicate that the oligomer subtype AβOcSNK participates in synaptotoxicity and propagation of Aβ aggregation in vitro and in vivo.
Collapse
Affiliation(s)
- Judith M. Silverman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Ebrima Gibbs
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Xubiao Peng
- Department of Physics and Astronomy, Genome Sciences and Technology Program, Bioinformatics, Institute for Applied Math, University of British Columbia, Room
311, 6356 Agricultural Road, Vancouver, BC V6T 1Z2, Canada
| | - Kris M. Martens
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Claudia Balducci
- IRCCS, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via La Masa, 19, 20156 Milano, Italy
| | - Jing Wang
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Masoud Yousefi
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Catherine M. Cowan
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Guillaume Lamour
- Chemistry Department, University of British Columbia, Rm D223, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Sarah Louadi
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Yuxin Ban
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Gianluigi Forloni
- IRCCS, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via La Masa, 19, 20156 Milano, Italy
| | - Ging-Yuek R. Hsiung
- UBC Hospital Clinic for Alzheimer Disease and Related Disorders, Department of Medicine, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Steven S. Plotkin
- Department of Physics and Astronomy, Genome Sciences and Technology Program, Bioinformatics, Institute for Applied Math, University of British Columbia, Room
311, 6356 Agricultural Road, Vancouver, BC V6T 1Z2, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Neil R. Cashman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
167
|
Lotfabadi A, Hajipour MJ, Derakhshankhah H, Peirovi A, Saffar S, Shams E, Fatemi E, Barzegari E, Sarvari S, Moakedi F, Ferdousi M, Atyabi F, Saboury AA, Dinarvand R. Biomolecular Corona Dictates Aβ Fibrillation Process. ACS Chem Neurosci 2018; 9:1725-1734. [PMID: 29676567 DOI: 10.1021/acschemneuro.8b00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid beta (Aβ), which forms toxic oligomers and fibrils in brain tissues of patients with Alzheimer's disease, is broadly used as a model protein to probe the effect of nanoparticles (NPs) on oligomerization and fibrillation processes. However, the majority of the reports in the field have ignored the effect of the biomolecular corona on the fibrillogenesis of the Aβ proteins. The biomolecular corona, which is a layer composed of various types of biomolecules that covers the surface of NPs upon their interaction with biological fluids, determines the biological fates of NPs. Therefore, during in vivo interaction of NPs with Aβ protein, what the Aβ actually "sees" is the human plasma and/or cerebrospinal fluid (CSF) biomolecular-coated NPs rather than the pristine surface of NPs. Here, to mimic the in vivo effects of therapeutic NPs as antifibrillation agents, we probed the effects of a biomolecular corona derived from human CSF and/or plasma on Aβ fibrillation. The results demonstrated that the type of biomolecular corona can dictate the inhibitory or acceleratory effect of NPs on Aβ1-42 and Aβ25-35 fibrillation processes. More specifically, we found that the plasma biomolecular-corona-coated gold NPs, with sphere and rod shapes, has less inhibitory effect on Aβ1-42 fibrillation kinetics compared with CSF biomolecular-corona-coated and pristine NPs. Opposite results were obtained for Aβ25-35 peptide, where the pristine NPs accelerated the Aβ25-35 fibrillation process, whereas corona-coated ones demonstrated an inhibitory effect. In addition, the CSF biomolecular corona had less inhibitory effect than those obtained from plasma.
Collapse
Affiliation(s)
| | - Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Hossein Derakhshankhah
- Pharmacutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 67145-67346, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Gulisano W, Melone M, Li Puma DD, Tropea MR, Palmeri A, Arancio O, Grassi C, Conti F, Puzzo D. The effect of amyloid-β peptide on synaptic plasticity and memory is influenced by different isoforms, concentrations, and aggregation status. Neurobiol Aging 2018; 71:51-60. [PMID: 30092511 DOI: 10.1016/j.neurobiolaging.2018.06.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023]
Abstract
The increase of oligomeric amyloid-beta (oAβ) has been related to synaptic dysfunction, thought to be the earliest event in Alzheimer's disease pathophysiology. Conversely, the suppression of endogenous Aβ impaired synaptic plasticity and memory, suggesting that the peptide is needed in the healthy brain. However, different species, aggregation forms and concentrations of Aβ might differently influence synaptic function/dysfunction. Here, we have tested the contribution of monomeric and oligomeric Aβ42 and Aβ40 at 200 nM and 200 pM concentrations on hippocampal long-term potentiation and spatial memory. We found that, when at 200 nM, oAβ40, oAβ42, and monomeric Aβ42 impaired long-term potentiation and memory, whereas only oAβ42 200 pM enhanced synaptic plasticity and memory and rescued the detrimental effect due to depletion of endogenous Aβ. Interestingly, quantification of monomer-like and oligomer-like species carried out by transmission electron microscopy revealed an increase of the monomer/oligomer ratio in the oAβ42 200 pM preparation, suggesting that the content of monomers and oligomers depends on the final concentration of the solution.
Collapse
Affiliation(s)
- Walter Gulisano
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marcello Melone
- Department Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Domenica D Li Puma
- Institute of Human Physiology, Università Cattolica Medical School, Rome, Italy
| | - Maria Rosaria Tropea
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agostino Palmeri
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica Medical School, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Fiorenzo Conti
- Department Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Puzzo
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
169
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
170
|
Maity S, Pramanik A, Lyubchenko YL. Probing Intermolecular Interactions within the Amyloid β Trimer Using a Tethered Polymer Nanoarray. Bioconjug Chem 2018; 29:2755-2762. [PMID: 29975836 DOI: 10.1021/acs.bioconjchem.8b00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amyloid oligomers are considered the most neurotoxic species of amyloid aggregates. Spontaneous assembly of amyloids into aggregates is recognized as a major molecular mechanism behind Alzheimer's disease and other neurodegenerative disorders involving protein aggregation. Characterization of such oligomers is extremely challenging but complicated by their transient nature. Previously, we introduced a flexible nanoarray (FNA) method enabling us to probe dimers assembled by the amyloid β (14-23) [Aβ (14-23)] peptide. The study presented herein modifies and enhances this approach to assemble and probe trimers of Aβ (14-23). A metal-free click chemistry approach was used, in which dibenzocyclooctyne (DBCO) groups were incorporated at selected sites within the FNA template to click Aβ (14-23) monomers at their terminal azide groups. Atomic force microscopy (AFM) force spectroscopy was employed to characterize the assemblies. The force measurement data demonstrate that the dissociation of the trimer undergoes a stepwise pattern, in which the first monomer dissociates at the rupture force ∼48 ± 2.4 pN. The remaining dimer ruptures at the second step at a slightly larger rupture force (∼53 ± 3.2 pN). The assembled trimer was found to be quite dynamic, and transient species of this inherently dynamic process were identified.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , 986025 Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Apurba Pramanik
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , 986025 Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences , University of Nebraska Medical Center , 986025 Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
171
|
Yang Y, Giau VV, An SSA, Kim S. Plasma Oligomeric Beta Amyloid in Alzheimer's Disease with History of Agent Orange Exposure. Dement Neurocogn Disord 2018; 17:41-49. [PMID: 30906391 PMCID: PMC6427972 DOI: 10.12779/dnd.2018.17.2.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/20/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE During the Vietnam War, many Korean soldiers were exposed to Agent Orange. Until now, there existed only limited evidence of association between exposure to Agent Orange and Alzheimer's disease (AD). The main pathological feature of AD is brain amyloidosis. To explore the pathophysiological characteristic of AD with Agent Orange exposure, we compared newly developed amyloid beta (Aβ) oligomer levels in plasma between AD with Agent Orange exposure and without exposure. METHODS We recruited 48 AD patients with Agent Orange exposure and 66 AD patients without Agent Orange. Using the Multimer Detection System technique, which was based on an enzyme-linked immunosorbent assay, we measured Aβ oligomers in the plasma of study subjects. RESULTS Compared to normal control patients, plasma Aβ oligomer levels were higher in AD patients regardless of history of Agent Orange exposure. However, AD patients with Agent Orange exposure showed higher plasma Aβ oligomer levels than AD patients without Agent Orange. DISCUSSION This study showed higher plasma Aβ oligomer levels in AD patients with Agent Orange exposure compared to AD patients without Agent Orange. This finding suggests the possibility of a different pathophysiology of AD patients with Agent Orange exposure from AD patients without Agent Orange.
Collapse
Affiliation(s)
- YoungSoon Yang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon University, Seongnam, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
172
|
Cunningham TJ, Greenstein J, Yao L, Fischer I, Connors T. Heptamer Peptide Disassembles Native Amyloid in Human Plasma Through Heat Shock Protein 70. Rejuvenation Res 2018; 21:527-534. [PMID: 29651925 DOI: 10.1089/rej.2017.2049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proteostasis, which includes the repair and disposal of misfolded proteins, depends, in part, on the activity of heat shock proteins (HSPs), a well-known class of chaperone molecules. When this process fails, abnormally folded proteins may accumulate in cells, tissues, and blood. These species are a hallmark of protein aggregation diseases, but also amass during aging, often in the absence of an identified clinical disorder. We report that a neuroprotective cyclic heptapeptide, CHEC-7, which has been applied systemically as a therapeutic in animal neurodegeneration models, disrupts such aggregates and inhibits amyloidogenesis when added in nanomolar concentrations to human plasma. This effect includes aggregates of amyloid beta (Aβ1-40, 1-42), prominent features of Alzheimer's disease pathology. The activity of endogenous HSP70, a recently discovered target of the peptide, is required as demonstrated by both antibody blocking and application of pifithrin-μ, an HSP70 inhibitor. CHEC-7 is the first high-affinity compound to stimulate HSP70's disaggregase activity and therefore enable this endogenous mechanism in a human systemic environment, increasing the likelihood of a convenient therapy for protein aggregate disease, including age-related failures of protein repair.
Collapse
Affiliation(s)
- Timothy J Cunningham
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Lihua Yao
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Theresa Connors
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
173
|
Pan Y, Short JL, Newman SA, Choy KHC, Tiwari D, Yap C, Senyschyn D, Banks WA, Nicolazzo JA. Cognitive benefits of lithium chloride in APP/PS1 mice are associated with enhanced brain clearance of β-amyloid. Brain Behav Immun 2018; 70:36-47. [PMID: 29545118 DOI: 10.1016/j.bbi.2018.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022] Open
Abstract
Epidemiological evidence suggests that people with bipolar disorder prescribed lithium exhibit a lower risk of Alzheimer's disease (AD) relative to those prescribed other mood-stabilizing medicines. Lithium chloride (LiCl) reduces brain β-amyloid (Aβ) levels, and the brain clearance of Aβ is reduced in AD. Therefore, the purpose of this study was to assess whether the cognitive benefits of LiCl are associated with enhanced brain clearance of exogenously-administered Aβ. The brain clearance of intracerebroventricularly (icv) administered 125I-Aβ42 was assessed in male Swiss outbred mice administered daily oral NaCl or LiCl (300 mg/kg for 21 days). LiCl exhibited a 31% increase in the brain clearance of 125I-Aβ42 over 10 min, which was associated with a 1.6-fold increase in brain microvascular expression of the blood-brain barrier efflux transporter low density lipoprotein receptor-related protein 1 (LRP1) and increased cerebrospinal fluid (CSF) bulk-flow. 8-month-old female wild type (WT) and APP/PS1 mice were also administered daily NaCl or LiCl for 21 days, which was followed by cognitive assessment by novel object recognition and water maze, and measurement of soluble Aβ42, plaque-associated Aβ42, and brain efflux of 125I-Aβ42. LiCl treatment restored the long-term spatial memory deficit observed in APP/PS1 mice as assessed by the water maze (back to similar levels of escape latency as WT mice), but the short-term memory deficit remained unaffected by LiCl treatment. While LiCl did not affect plaque-associated Aβ42, soluble Aβ42 levels were reduced by 49.9% in APP/PS1 mice receiving LiCl. The brain clearance of 125I-Aβ42 decreased by 27.8% in APP/PS1 mice, relative to WT mice, however, LiCl treatment restored brain 125I-Aβ42 clearance in APP/PS1 mice to a rate similar to that observed in WT mice. These findings suggest that the cognitive benefits and brain Aβ42 lowering effects of LiCl are associated with enhanced brain clearance of Aβ42, possibly via brain microvascular LRP1 upregulation and increased CSF bulk-flow, identifying a novel mechanism of protection by LiCl for the treatment of AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jennifer L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Durgesh Tiwari
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christopher Yap
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Danielle Senyschyn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
174
|
Adalbert R, Milde S, Durrant C, Ando K, Stygelbout V, Yilmaz Z, Gould S, Brion JP, Coleman MP. Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiol Aging 2018; 68:68-75. [PMID: 29729423 PMCID: PMC5998378 DOI: 10.1016/j.neurobiolaging.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/27/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-β promotes an action of mutant tau that impairs axonal transport. As amyloid-β levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.
Collapse
Affiliation(s)
- Robert Adalbert
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Stefan Milde
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Claire Durrant
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Virginie Stygelbout
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Stacey Gould
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Michael P Coleman
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
175
|
Dominguez G, Maddelein ML, Pucelle M, Nicaise Y, Maurage CA, Duyckaerts C, Cuvillier O, Delisle MB. Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer's disease brain. Acta Neuropathol Commun 2018; 6:25. [PMID: 29615132 PMCID: PMC5883421 DOI: 10.1186/s40478-018-0527-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by the accumulation of β-amyloid (Aβ) peptides and hyperphosphorylated tau protein accompanied by neuronal loss. Aβ accumulation has been associated with an impaired sphingosine 1-phosphate (S1P) metabolism. S1P is generated by sphingosine kinases (SphKs), of which there are two isoenzymes SphK1 and SphK2, and degraded by the sphingosine 1-phosphate lyase (SPL). We previously reported, that both a decrease in SphK1 expression and an increase in SPL expression, correlated with amyloid deposits in the entorhinal cortex of AD brains, suggesting a global loss of pro-survival S1P in AD neurons. SphK2 contribution has also been examined in AD yielding to conflicting results that may reflect the complexity of SphK2 regulation. The subcellular localization of SphK2, hence the compartmentalization of generated S1P, is recognized to play a crucial role in dictating either its pro-survival or pro-apoptotic functions. We therefore aimed at studying the expression of SphK2 and notably its subcellular localization in brain tissues from patients with AD. Results We report that a decrease in SphK2 protein cytosolic expression correlated with the density of amyloid deposits in a cohort of 25 post-mortem brains. Interestingly, we observed that the equilibrium between cytoplasmic and nuclear SphK2 is disrupted and showed that SphK2 is preferentially localized in the nucleus in AD brain extracts as compared to control extracts, with a marked increase of cleaved SphK2. Conclusions Our results suggest that a shift in the subcellular localization of the S1P generating SphK2 may compromise the well established pro-survival cytosolic S1P by favoring the production of nuclear S1P associated with adverse effects in AD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s40478-018-0527-z) contains supplementary material, which is available to authorized users.
Collapse
|
176
|
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 2018; 14:450-464. [PMID: 29080524 PMCID: PMC5680523 DOI: 10.1016/j.redox.2017.10.014] [Citation(s) in RCA: 1336] [Impact Index Per Article: 222.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.
Collapse
Affiliation(s)
- C Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - M Tomas
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - D Bonnefont-Rousselot
- Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France; Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Paris, France; CNRS UMR8258 - INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - P Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR 7177), University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg Cedex, France
| | - C Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - F Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France.
| |
Collapse
|
177
|
Kreutzer AG, Nowick JS. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases. Acc Chem Res 2018; 51:706-718. [PMID: 29508987 DOI: 10.1021/acs.accounts.7b00554] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the more than a century since its identification, Alzheimer's disease has become the archetype of amyloid diseases. The first glimpses of the chemical basis of Alzheimer's disease began with the identification of "amyloid" plaques in the brain in 1892 and extended to the identification of proteinaceous fibrils with "cross-β" structure in 1968. Further efforts led to the discovery of the β-amyloid peptide, Aβ, as a 40- or 42-amino acid peptide that is responsible for the plaques and fibrils. At this point, a three-decade-long marathon began to elucidate the structure of the fibrils and identify the molecular basis of Alzheimer's disease. Along the way, an alternative model began to emerge in which small aggregates of Aβ, called "oligomers", rather than fibrils, are the culprits that lead to neurodegeneration in Alzheimer's disease. This Account describes what is known about the structures of the fibrils and details our research group's efforts to understand the structural, biophysical, and biological properties of the oligomers in amyloid diseases. β-Sheets are the building blocks of amyloid fibrils and oligomers. Amyloid fibrils generally consist of extended networks of parallel β-sheets. Amyloid oligomers appear to be more compact enclosed structures, some of which are thought to be composed of antiparallel β-sheets comprising β-hairpins. β-Hairpins are special because their twisted shape, hydrophobic surfaces, and exposed hydrogen-bonding edges impart a unique propensity to form compact assemblies. Our laboratory has developed macrocyclic β-sheets that are designed to mimic β-hairpins formed by amyloidogenic peptides and proteins. The β-hairpin mimics contain two β-strand peptide fragments linked together at their N- and C-termini by two δ-linked ornithine turn mimics to create a macrocycle. An N-methyl group is installed on one of the β-strands to prevent uncontrolled aggregation. These design features facilitate crystallization of the β-hairpin mimics and determination of the X-ray crystallographic structures of the oligomers that they form. During the past few years, our laboratory has elucidated the X-ray crystallographic structures of oligomers formed by β-hairpin mimics derived from Aβ, α-synuclein, and β2-microglobulin. Out of these three amyloidogenic peptides and proteins, the Aβ β-hairpin mimics have provided the most insight into amyloid oligomers. Our studies have revealed a previously undiscovered mode of self-assembly, whereby three Aβ β-hairpin mimics assemble to form a triangular trimer. The triangular trimers are remarkable, because they contain two largely hydrophobic surfaces that pack together with other triangular trimers to form higher-order oligomers, such as hexamers and dodecamers. Some of the dodecamers pack in the crystal lattice to form annular porelike assemblies. Some of the β-hairpin mimics and triangular trimers assemble in solution to form oligomers that recapitulate the crystallographically observed oligomers. These oligomers exhibit toxicity toward neuronally derived cells, recapitulating the toxicity of the oligomers formed by full-length amyloidogenic peptides and proteins. These findings are significant, because they address a gap in understanding the molecular basis of amyloid diseases. We anticipate that these studies will pave the way for developing diagnostics and therapeutics to combat Alzheimer's disease, Parkinson's disease, and other amyloid diseases.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
178
|
Wang X, Kastanenka KV, Arbel-Ornath M, Commins C, Kuzuya A, Lariviere AJ, Krafft GA, Hefti F, Jerecic J, Bacskai BJ. An acute functional screen identifies an effective antibody targeting amyloid-β oligomers based on calcium imaging. Sci Rep 2018; 8:4634. [PMID: 29545579 PMCID: PMC5854710 DOI: 10.1038/s41598-018-22979-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/05/2018] [Indexed: 12/15/2022] Open
Abstract
Soluble amyloid β oligomers (AβOs) are widely recognized neurotoxins that trigger aberrant signaling in specific subsets of neurons, leading to accumulated neuronal damage and memory disorders in Alzheimer's disease (AD). One of the profound downstream consequences of AβO-triggered events is dysregulation of cytosolic calcium concentration ([Ca2+]i), which has been implicated in synaptic failure, cytoskeletal abnormalities, and eventually neuronal death. We have developed an in vitro/in vivo drug screening assay to evaluate putative AβO-blocking candidates by measuring AβO-induced real-time changes in [Ca2+]i. Our screening assay demonstrated that the anti-AβO monoclonal antibody ACU3B3 exhibits potent blocking capability against a broad size range of AβOs. We showed that picomolar concentrations of AβOs were capable of increasing [Ca2+]i in primary neuronal cultures, an effect prevented by ACU3B3. Topical application of 5 nM AβOs onto exposed cortical surfaces also elicited significant calcium elevations in vivo, which was completely abolished by pre-treatment of the brain with 1 ng/mL (6.67 pM) ACU3B3. Our results provide strong support for the utility of this functional screening assay in identifying and confirming the efficacy of AβO-blocking drug candidates such as the human homolog of ACU3B3, which may emerge as the first experimental AD therapeutic to validate the amyloid oligomer hypothesis.
Collapse
Affiliation(s)
- Xueying Wang
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Harvard University, Center for Brain Science, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Ksenia V Kastanenka
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Michal Arbel-Ornath
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Caitlin Commins
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Akira Kuzuya
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Amanda J Lariviere
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
| | - Grant A Krafft
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA
| | - Franz Hefti
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 4435 North First Street, #360, Livermore, CA, 94551, USA.
| | - Brian J Bacskai
- Massachusetts General Hospital, Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
179
|
A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 2018; 9:1097. [PMID: 29545515 PMCID: PMC5854577 DOI: 10.1038/s41467-018-03509-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Protein accumulation and aggregation with a concomitant loss of proteostasis often contribute to neurodegenerative diseases, and the ubiquitin–proteasome system plays a major role in protein degradation and proteostasis. Here, we show that three different proteins from Alzheimer’s, Parkinson’s, and Huntington’s disease that misfold and oligomerize into a shared three-dimensional structure potently impair the proteasome. This study indicates that the shared conformation allows these oligomers to bind and inhibit the proteasome with low nanomolar affinity, impairing ubiquitin-dependent and ubiquitin-independent proteasome function in brain lysates. Detailed mechanistic analysis demonstrates that these oligomers inhibit the 20S proteasome through allosteric impairment of the substrate gate in the 20S core particle, preventing the 19S regulatory particle from injecting substrates into the degradation chamber. These results provide a novel molecular model for oligomer-driven impairment of proteasome function that is relevant to a variety of neurodegenerative diseases, irrespective of the specific misfolded protein that is involved. Disruption of the ubiquitin proteasome system (UPS) is often associated with neurodegenerative diseases. Here the authors demonstrate the existence of a general mechanism of proteasomal impairment triggered by a specific protein oligomer structure, irrespective of its protein constituent.
Collapse
|
180
|
Yau WM, Tycko R. Depletion of amyloid-β peptides from solution by sequestration within fibril-seeded hydrogels. Protein Sci 2018; 27:1218-1230. [PMID: 29417648 DOI: 10.1002/pro.3387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022]
Abstract
Aggregation of amyloid-β (Aβ) peptides in brain tissue leads to neurodegeneration in Alzheimer's disease (AD). Regardless of the kinetics or detailed mechanisms of Aβ aggregation, aggregation can only occur if Aβ concentrations exceed their local equilibrium solubility values. We propose that excess Aβ peptides can be removed from supersaturated solutions, including solutions in biological fluids, by the addition of hydrogels that are seeded with Aβ fibril fragments. Fibril growth within the hydrogels then sequesters excess peptides until equilibrium concentrations are reached. Experiments with 40- and 42-residue Aβ peptides (Aβ40 and Aβ42) in phosphate buffer at 24°C and in filtered fetal bovine serum at 37°C, using crosslinked polyacrylamide hydrogels, demonstrate the validity of this concept. Aβ sequestration in fibril-seeded hydrogels (or other porous media) may prove to be a useful technique in experiments with animal models of AD and may represent a possible approach to preventing or slowing the progression of AD in humans.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| |
Collapse
|
181
|
Chiang ACA, Fowler SW, Reddy R, Pletnikova O, Troncoso JC, Sherman MA, Lesne SE, Jankowsky JL. Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:739-756. [PMID: 29248459 PMCID: PMC5840490 DOI: 10.1016/j.ajpath.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Abstract
Despite increasing appreciation that oligomeric amyloid-β (Aβ) may contribute to cognitive decline of Alzheimer disease, defining the most critical forms has been thwarted by the changeable nature of these aggregates and the varying methods used for detection. Herein, using a broad approach, we quantified Aβ oligomers during the evolution of cognitive deficits in an aggressive model of Aβ amyloidosis. Amyloid precursor protein/tetracycline transactivator mice underwent behavioral testing at 3, 6, 9, and 12 months of age to evaluate spatial learning and memory, followed by histologic assessment of amyloid burden and biochemical characterization of oligomeric Aβ species. Transgenic mice displayed progressive impairments in acquisition and immediate recall of the trained platform location. Biochemical analysis of cortical extracts from behaviorally tested mice revealed distinct age-dependent patterns of accumulation in multiple oligomeric species. Dot blot analysis demonstrated that nonfibrillar Aβ oligomers were highly soluble and extracted into a fraction enriched for extracellular proteins, whereas prefibrillar species required high-detergent conditions to retrieve, consistent with membrane localization. Low-detergent extracts tested by 82E1 enzyme-linked immunosorbent assay confirmed the presence of bona fide Aβ oligomers, whereas immunoprecipitation-Western blotting using high-detergent extracts revealed a variety of SDS-stable low-n species. These findings show that different Aβ oligomers vary in solubility, consistent with distinct localization, and identify nonfibrillar Aβ oligomer-positive aggregates as tracking most closely with cognitive decline in this model.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Stephanie W Fowler
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Rohit Reddy
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Cognitive Science, Rice University, Houston, Texas
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathew A Sherman
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sylvain E Lesne
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joanna L Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
182
|
Akhter R, Saleem S, Saha A, Biswas SC. The pro-apoptotic protein Bmf co-operates with Bim and Puma in neuron death induced by β-amyloid or NGF deprivation. Mol Cell Neurosci 2018; 88:249-257. [PMID: 29499358 DOI: 10.1016/j.mcn.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/22/2022] Open
Abstract
The pro-apoptotic Bcl-2 homology 3 domain only (BH3-only) proteins are central regulators of cell death in various physiological and pathological conditions, including Alzheimer's disease (AD). Bcl-2 modifying factor (Bmf) is one such BH3-only protein that is implicated in various death paradigms such as anoikis, seizures, cancer and autoimmunity. It also co-operates with other BH3-only proteins such as Bim in various death paradigms. However, its role in neurodegeneration is under-investigated. Here, we report for the first time the essential role of Bmf and its co-operativity with direct activator BH3-only proteins Bim and Puma in neuron death induced by beta-amyloid (Aβ) toxicity or NGF deprivation. Oligomeric Aβ is main pathologic species in AD and NGF deprivation is relevant for both developmental as well as pathologic neuron death. We find that Bmf over-expression causes cell death and Bmf knockdown protects neurons against death evoked by Aβ or NGF deprivation. We also find that Bmf co-operates with other important BH3-only proteins such as Bim and Puma in neuron death induced by Aβ or NGF deprivation. Simultaneous knocking down of these molecules by their respective shRNAs provide enhanced protection against Aβ. Taken together, our results elucidate the essential role of Bmf and its co-operative effects with already known neuron death inducers, Bim and Puma, in neuron death evoked by Aβ treatment or NGF deprivation.
Collapse
Affiliation(s)
- Rumana Akhter
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Suraiya Saleem
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Akash Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
183
|
Ohshima Y, Taguchi K, Mizuta I, Tanaka M, Tomiyama T, Kametani F, Yabe-Nishimura C, Mizuno T, Tokuda T. Mutations in the β-amyloid precursor protein in familial Alzheimer's disease increase Aβ oligomer production in cellular models. Heliyon 2018; 4:e00511. [PMID: 29560429 PMCID: PMC5857613 DOI: 10.1016/j.heliyon.2018.e00511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomers of amyloid-β (Aβ) peptides (AβOs) contribute to neurotoxicity in Alzheimer’s disease (AD). However, it currently remains unknown whether an increase in AβOs is the common phenotype in cellular and animal models. Furthermore, it has not yet been established whether experimental studies conducted using models overexpressing mutant genes of the amyloid precursor protein (APP) are suitable for investigating the underlying molecular mechanism of AD. We herein employed the Flp-In™ T-REx™-293 (T-REx 293) cellular system transfected with a single copy of wild-type, Swedish-, Dutch-, or London-type APP, and quantified the levels of Aβ monomers (Aβ1-40 and Aβ1-42) and AβOs using an enzyme-linked immunosorbent assay (ELISA). The levels of extracellular AβOs were significantly higher in Dutch- and London-type APP-transfected cells than in wild-type APP-transfected cells. Increased levels were also observed in Swedish-type APP-transfected cells. On the other hand, intracellular levels of AβOs were unaltered among wild-type and mutant APP-transfected cells. Intracellular levels of Aβ monomers were undetectable, and no common abnormality was observed in their extracellular levels or ratios (Aβ1-42/Aβ1-40) among the cells examined. We herein demonstrated that increased levels of extracellular AβOs are the common phenotype in cellular models harboring different types of APP mutations. Our results suggest that extracellular AβOs play a key role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Yoichi Ohshima
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.,Department of Neurology, Kyoto Yamashiro General Medical Center, 1-27 Kizu station, Kizugawa, Kyoto, 619-0214, Japan
| | - Katsutoshi Taguchi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Takami Tomiyama
- Department of Neuroscience, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chihiro Yabe-Nishimura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.,Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
184
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
185
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
186
|
Tapia-Rojas C, Inestrosa NC. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice. J Neurochem 2018; 144:443-465. [DOI: 10.1111/jnc.14278] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE UC); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC); Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
- Centre for Healthy Brain Ageing; School of Psychiatry; Faculty of Medicine; University of New South Wales; Sydney New South Wales Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA); Universidad de Magallanes; Punta Arenas Chile
| |
Collapse
|
187
|
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study and Rush Memory and Aging Project. J Alzheimers Dis 2018; 64:S161-S189. [PMID: 29865057 PMCID: PMC6380522 DOI: 10.3233/jad-179939] [Citation(s) in RCA: 705] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-pathologic cohort studies of aging and Alzheimer's disease (AD). OBJECTIVES To summarize progress over the past five years and its implications for understanding neurodegenerative diseases. METHODS Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in the future. RESULTS We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development of a novel drug discovery platform. CONCLUSION Complexity at multiple levels needs to be understood and overcome to develop effective treatments and preventions for cognitive decline and AD dementia.
Collapse
Affiliation(s)
- David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Aron S. Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Patricia A. Boyle
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL., USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL., USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL., USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL., USA
| |
Collapse
|
188
|
Tapia-Rojas C, Inestrosa NC. Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease. Neural Regen Res 2018; 13:1705-1710. [PMID: 30136680 PMCID: PMC6128062 DOI: 10.4103/1673-5374.238606] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β (Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein (APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic (Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1-42 production in the hippocampus of wild-type (WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
189
|
Ahmed R, Melacini G. A solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors. Chem Commun (Camb) 2018; 54:4644-4652. [DOI: 10.1039/c8cc01380b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A chemical exchange-based solution NMR toolset to probe the molecular mechanisms of amyloid inhibitors.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
- Department of Chemistry and Chemical Biology
| |
Collapse
|
190
|
Banerjee S, Sun Z, Hayden EY, Teplow DB, Lyubchenko YL. Nanoscale Dynamics of Amyloid β-42 Oligomers As Revealed by High-Speed Atomic Force Microscopy. ACS NANO 2017; 11:12202-12209. [PMID: 29165985 PMCID: PMC5752618 DOI: 10.1021/acsnano.7b05434] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amyloid β-protein (Aβ) oligomers are emerging as potent neurotoxic species in Alzheimer's disease pathogenesis. Detailed characterization of oligomer structure and dynamics is necessary to develop oligomer-specific therapeutic agents. However, oligomers exist transiently, which complicates their structural analysis. One approach to mitigate these problems has been photochemical cross-linking of native oligomers. In these states, the oligomers can be isolated and purified for physical and chemical studies. Here we characterized the structure of isolated cross-linked Aβ42 trimers, pentamers, and heptamers with atomic force microscopy (AFM) imaging and probed their dynamics in solution using time-lapse high-speed AFM. This technique enables visualization of the structural dynamics of the oligomers at nanometer resolution on a millisecond time scale. Results demonstrate that cross-linked pentamers and heptamers are very dynamic fluctuating between a compact single-globular and multiglobular assemblies. Trimers remain in their single-globular geometry that elongates adopting an ellipsoidal shape. Biological significance of oligomers dynamics is discussed.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine, and Molecular Biology Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States
| |
Collapse
|
191
|
Oligomeric forms of amyloid-β protein in plasma as a potential blood-based biomarker for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:98. [PMID: 29246249 PMCID: PMC5732503 DOI: 10.1186/s13195-017-0324-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Background Soluble amyloid-β (Aβ) oligomers are the major toxic substances associated with the pathology of Alzheimer’s disease (AD). The ability to measure Aβ oligomer levels in the blood would provide simple and minimally invasive tools for AD diagnostics. In the present study, the recently developed Multimer Detection System (MDS) for AD, a new enzyme-linked immunosorbent assay for measuring Aβ oligomers selectively, was used to detect Aβ oligomers in the plasma of patients with AD and healthy control individuals. Methods Twenty-four patients with AD and 37 cognitively normal control individuals underwent extensive clinical evaluations as follows: blood sampling; detailed neuropsychological tests; brain magnetic resonance imaging; cerebrospinal fluid (CSF) measurement of Aβ42, phosphorylated tau protein (pTau), and total tau protein (tTau); and 11C-Pittsburgh compound B (PIB) positron emission tomography. Pearson’s correlation analyses between the estimations of Aβ oligomer levels by MDS and other conventional AD biomarkers (CSF Aβ42, pTau, and tTau, as well as PIB standardized uptake value ratio [PIB SUVR]) were conducted. ROC analyses were used to compare the diagnostic performance of each biomarker. Results The plasma levels of Aβ oligomers by MDS were higher in patients with AD than in normal control individuals, and they correlated well with conventional AD biomarkers (levels of Aβ oligomers by MDS vs. CSF Aβ42, r = −0.443; PIB SUVR, r = 0.430; CSF pTau, r = 0.530; CSF tTau, r = 0.604). The sensitivity and specificity of detecting plasma Aβ oligomers by MDS for differentiating AD from the normal controls were 78.3% and 86.5%, respectively. The AUC for plasma Aβ oligomers by MDS was 0.844, which was not significantly different from the AUC of other biomarkers (p = 0.250). Conclusions Plasma levels of Aβ oligomers could be assessed using MDS, which might be a simple, noninvasive, and accessible assay for evaluating brain amyloid deposition related to AD pathology. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0324-0) contains supplementary material, which is available to authorized users.
Collapse
|
192
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
193
|
Ruan Q, D'Onofrio G, Sancarlo D, Greco A, Lozupone M, Seripa D, Panza F, Yu Z. Emerging biomarkers and screening for cognitive frailty. Aging Clin Exp Res 2017; 29:1075-1086. [PMID: 28260159 DOI: 10.1007/s40520-017-0741-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022]
Abstract
Physical frailty and cognitive frailty are two important targets of secondary intervention in aging research to narrow the gap between life and health span. The objective of the present narrative review was to examine clinical and epidemiological studies investigating the recently proposed construct of cognitive frailty and its subtypes, with a focus on operational definitions, clinical criteria, and emerging biomarkers potentially useful for the screening of this novel entity. Both physical frailty and frailty indexes with a multidimensional nature were associated with late-life cognitive impairment/decline, incident dementia, Alzheimer's disease (AD), mild cognitive impairment, vascular dementia, non-AD dementias, and AD pathology proposing cognitive frailty as a clinical entity with cognitive impairment related to physical causes with a potential reversibility. The new clinical and research AD criteria established by the National Institute on Aging-Alzheimer's Association and the American Psychiatric Association could improve the differential diagnosis of cognitive impairment within the cognitive frailty construct. The emerging biomarkers of sarcopenia, physical frailty, and cognitive impairment will provide the basis to establish more reliable clinical and research criteria for cognitive frailty, using different operational definitions for frailty and cognitive impairment and useful clinical, biological, and imaging markers for this novel clinical construct.
Collapse
Affiliation(s)
- Qingwei Ruan
- Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Institute of Geriatrics and Gerontology, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Grazia D'Onofrio
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Daniele Sancarlo
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Francesco Panza
- Geriatric Unit and Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy.
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.
| | - Zhuowei Yu
- Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Institute of Geriatrics and Gerontology, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
194
|
Binyamin O, Keller G, Frid K, Larush L, Magdassi S, Gabizon R. Continues administration of Nano-PSO significantly increased survival of genetic CJD mice. Neurobiol Dis 2017; 108:140-147. [DOI: 10.1016/j.nbd.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022] Open
|
195
|
Akhter R, Shao Y, Shaw M, Formica S, Khrestian M, Leverenz JB, Bekris LM. Regulation of ADAM10 by miR-140-5p and potential relevance for Alzheimer's disease. Neurobiol Aging 2017; 63:110-119. [PMID: 29253717 DOI: 10.1016/j.neurobiolaging.2017.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022]
Abstract
Recent reports in Alzheimer's disease (AD) research suggest that alterations in microRNA (miRNA) expression are associated with disease pathology. Our previous studies suggest that A Disintegrin and Metalloproteinase 10 (ADAM10) expression is important in AD and could be modulated by an extended regulatory region that includes the 3' untranslated region. In this study, we have investigated the role of trans-acting factors in ADAM10 gene regulation. Our study shows that miRNA-140-5p has enhanced expression in the AD postmortem brain hippocampus using high-throughput miRNA arrays and quantitative real-time polymerase chain reaction. Interestingly, we have also seen that miRNA-140-5p seed sequence is present on 3' untranslated region of both ADAM10 and its transcription factor SOX2. The specific interaction of miRNA-140-5p with both ADAM10 and SOX2 signifies high regulatory importance of this miRNA in controlling ADAM10 expression. Thus, this investigation unravels mechanisms underlying ADAM10 downregulation by miR-140-5p and suggests that dysfunctional regulation of ADAM10 expression is exacerbated by AD-related neurotoxic effects. These findings underscore the importance of understanding the impact of trans-acting factors in the modulation of AD pathophysiology.
Collapse
Affiliation(s)
- Rumana Akhter
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Yvonne Shao
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKenzie Shaw
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shane Formica
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Maria Khrestian
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
196
|
Kreutzer AG, Spencer RK, McKnelly KJ, Yoo S, Hamza IL, Salveson PJ, Nowick JS. A Hexamer of a Peptide Derived from Aβ 16-36. Biochemistry 2017; 56:6061-6071. [PMID: 29028351 PMCID: PMC5689071 DOI: 10.1021/acs.biochem.7b00831] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/09/2017] [Indexed: 11/29/2022]
Abstract
The absence of high-resolution structures of amyloid oligomers constitutes a major gap in our understanding of amyloid diseases. A growing body of evidence indicates that oligomers of the β-amyloid peptide Aβ are especially important in the progression of Alzheimer's disease. In many Aβ oligomers, the Aβ monomer components are thought to adopt a β-hairpin conformation. This paper describes the design and study of a macrocyclic β-hairpin peptide derived from Aβ16-36. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion chromatography studies show that the Aβ16-36 β-hairpin peptide assembles in solution to form hexamers, trimers, and dimers. X-ray crystallography reveals that the peptide assembles to form a hexamer in the crystal state and that the hexamer is composed of dimers and trimers. Lactate dehydrogenase release assays show that the oligomers formed by the Aβ16-36 β-hairpin peptide are toxic toward neuronally derived SH-SY5Y cells. Replica-exchange molecular dynamics demonstrates that the hexamer can accommodate full-length Aβ. These findings expand our understanding of the structure, solution-phase behavior, and biological activity of Aβ oligomers and may offer insights into the molecular basis of Alzheimer's disease.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Ryan K. Spencer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Kate J. McKnelly
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Imane L. Hamza
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Patrick J. Salveson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
197
|
Dong X, Sun Y, Wei G, Nussinov R, Ma B. Binding of protofibrillar Aβ trimers to lipid bilayer surface enhances Aβ structural stability and causes membrane thinning. Phys Chem Chem Phys 2017; 19:27556-27569. [PMID: 28979963 PMCID: PMC5647258 DOI: 10.1039/c7cp05959k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease, a common neurodegenerative disease, is characterized by the aggregation of amyloid-β (Aβ) peptides. The interactions of Aβ with membranes cause changes in membrane morphology and ion permeation, which are responsible for its neurotoxicity and can accelerate fibril growth. However, the Aβ-lipid interactions and how these induce membrane perturbation and disruption at the atomic level and the consequences for the Aβ organization are not entirely understood. Here, we perform multiple atomistic molecular dynamics simulations on three protofibrillar Aβ9-40 trimers. Our simulations show that, regardless of the morphologies and the initial orientations of the three different protofibrillar Aβ9-40 trimers, the N-terminal β-sheet of all trimers preferentially binds to the membrane surface. The POPG lipid bilayers enhance the structural stability of protofibrillar Aβ trimers by stabilizing inter-peptide β-sheets and D23-K28 salt-bridges. The interaction causes local membrane thinning. We found that the trimer structure related to Alzheimer's disease brain tissue () is the most stable both in water solution and at membrane surface, and displays slightly stronger membrane perturbation capability. These results provide mechanistic insights into the membrane-enhanced structural stability of protofibrillar Aβ oligomers and the first step of Aβ-induced membrane disruption at the atomic level.
Collapse
Affiliation(s)
- Xuewei Dong
- Department of Physics, State Key Laboratory of Surface physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
198
|
Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017; 5:e79. [PMID: 32309597 PMCID: PMC7159844 DOI: 10.15190/d.2017.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids play critical roles in human diseases but have increasingly been recognized to also exist naturally. Shared physicochemical characteristics of amyloids and of their smaller oligomeric building blocks offer the prospect of molecular interactions and crosstalk amongst these assemblies, including the propensity to mutually influence aggregation. A case in point might be the recent discovery of an interaction between the amyloid β peptide (Aβ) and somatostatin (SST). Whereas Aβ is best known for its role in Alzheimer disease (AD) as the main constituent of amyloid plaques, SST is intermittently stored in amyloid-form in dense core granules before its regulated release into the synaptic cleft. This review was written to introduce to readers a large body of literature that surrounds these two peptides. After introducing general concepts and recent progress related to our understanding of amyloids and their aggregation, the review focuses separately on the biogenesis and interactions of Aβ and SST, before attempting to assess the likelihood of encounters of the two peptides in the brain, and summarizing key observations linking SST to the pathobiology of AD. While the review focuses on Aβ and SST, it is to be anticipated that crosstalk amongst functional and disease-associated amyloids will emerge as a general theme with much broader significance in the etiology of dementias and other amyloidosis.
Collapse
Affiliation(s)
- Angus Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Matthew Bourkas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Yang Qing Qin Lu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lauren Anne Ostrowski
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Danielle Weber-Adrian
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Carlyn Figueiredo
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hamza Arshad
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Seyedeh Zahra Shams Shoaei
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Daniel Morrone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Stuart Matan-Lithwick
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Karan Joshua Abraham
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
199
|
Reyes-Marin KE, Nuñez A. Seizure susceptibility in the APP/PS1 mouse model of Alzheimer's disease and relationship with amyloid β plaques. Brain Res 2017; 1677:93-100. [PMID: 28963050 DOI: 10.1016/j.brainres.2017.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is a common age associated neurodegenerative disorder associated with an elevated risk of seizures that may be fundamentally connected to cognitive dysfunction. We used 4-9month-old mice of the APP/PS1 mouse model of Alzheimer's disease to study the presence of epileptiform-like discharges and to establish if the amyloid-β plaques affect their generation. The EEG of the APP/PS1 transgenic mice revealed a higher incidence of epileptiform-like discharges i.e. seizure events (interictal spikes, sharp waves, or polyspikes) than in the controls. Also, APP/PS1 mice showed a lower latency to evoke seizure events than in the control animals when pentylenetetrazole (60mg/kg; i.p.) was injected. Moreover, physostigmine injection (1mg/kg; i.p.) also increased the frequency of spontaneous epileptiform-like discharges in the APP/PS1 mice. We also found a correlation between the frequency of epileptiform-like discharges and the number of amyloid-β plaques. Application of N-(2-chloroethyl)-N-ethyl-bromobenzylamine (50mg/kg) generated amyloid-β plaques in the cortex and seizure activity appeared. Taken together, these data indicate that deposits of amyloid-β plaques may be responsible for the epileptiform-like discharges recorded in the APP/PS1 mice and could be responsible for the elevated risk for seizures of Alzheimer's patients.
Collapse
Affiliation(s)
- Karen E Reyes-Marin
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
200
|
Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 2017; 12:e0185102. [PMID: 28934273 PMCID: PMC5608314 DOI: 10.1371/journal.pone.0185102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa), a derivative of Paeonol, attenuated D-galactose (D-gal) and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT), elevated plus maze test (EPMT), and Morris water maze test (MWMT). Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.
Collapse
Affiliation(s)
- Fei Han
- College of Life Science, Anhui Normal University, Wuhu, China
| | | | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, Wuhu, China
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Ya-Fei Cai
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, Wuhu, China
- * E-mail:
| |
Collapse
|