151
|
Liu X, Tseng SCG, Zhang MC, Chen SY, Tighe S, Lu WJ, Zhu YT. LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells. Cell Cycle 2016; 14:1197-206. [PMID: 25695744 DOI: 10.1080/15384101.2015.1013667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells (HCECs) responsible for corneal transparency have limited proliferative capacity in vivo because of "contact-inhibition." This feature has hampered the ability to engineer HCECs for transplantation. Previously we have reported an in vitro model of HCECs in which contact inhibition was re-established at Day 21, even though cell junction and cell matrix interaction were not perturbed during isolation. Herein, we observe that such HCEC monolayers continue to expand and retain a normal phenotype for 2 more weeks if cultured in a leukemia inhibitory factor (LIF)-containing serum-free medium. Such expansion is accompanied initially by upregulation of Cyclin E2 colocalized with nuclear translocation of phosphorylated retinoblastoma tumor suppressor (p-Rb) at Day 21 followed by a delay in contact inhibition through activation of LIF-Janus kinase1 (JAK1)-signal transducer and activator of transcription 3 (STAT3) signaling at Day 35. The LIF-JAK1-STAT3 signaling is coupled with upregulation of E2F2 colocalized with nuclear p-Rb and with concomitant downregulation of p16(INK4a), of which upregulation is linked to senescence. Hence, activation of LIF-JAK1-STAT3 signaling to delay contact inhibition can be used as another strategy to facilitate engineering of HCEC grafts to solve the unmet global shortage of corneal grafts.
Collapse
Key Words
- BMP, bone morphogenetic protein
- BrdU, bromodeoxyuridine
- CDK, cyclin-dependent kinase
- CKI, cyclin-dependent kinase inhibitors
- DMEM, Dulbecco's modified Eagle's medium
- E2F2
- EDTA, ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- EMT, endothelial mesenchymal transition
- ESC, embryonic stem cell
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3- phosphate dehydrogenase
- HBSS, Hanks’ balanced salt solution
- HCEC, human corneal endothelial cell
- ID, inhibitor of differentiation
- ITS, insulin-transferrin-sodium selenite
- JAK, Janus kinase
- JAK1
- LEF1, lymphoid enhancer-binding factor 1
- LIF
- LIF, leukemia inhibitory factor
- MESCM, modified embryonic stem cell medium
- NC, neural crest
- NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PBS, phosphate-buffered saline
- RPE, retinal pigment epithelial cells
- Rb, retinoblastoma tumor suppressor
- SHEM, supplemental hormonal epithelial medium
- STAT3
- STAT3, signal transducer and activator of transcription 3
- ZO-1, Zona occludens protein 1
- bFGF, basic fibroblast growth factor
- contact inhibition
- corneal endothelium
- iPSCs, induced pluripotent stem cells
- p120, p120 catenin
- p16INK4a
- proliferation
- scRNA, scramble RNA
- siRNA, small interfering ribonucleic acid
Collapse
Affiliation(s)
- Xin Liu
- a Department of Ophthalmology; Union Hospital; Tongji Medical College ; Huazhong University of Science and Technology ; Wuhan , China
| | | | | | | | | | | | | |
Collapse
|
152
|
Srivastava J, DiGiovanni J. Non-canonical Stat3 signaling in cancer. Mol Carcinog 2015; 55:1889-1898. [PMID: 26649644 DOI: 10.1002/mc.22438] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 01/27/2023]
Abstract
Stat3 is a member of the signal transducers and activators of transcription family and is a known regulator of essential biologic processes including angiogenesis, apoptosis, cell cycle progression, and cell migration. Canonical Stat3-mediated signaling involves tyrosine phosphorylation on specific residues that leads to homodimerization and translocation to the nucleus. For many years it was presumed that most, if not all, of the functions of Stat3, both normal and aberrant, were due to the canonical cytokine and growth factor signaling mechanisms. Recent studies suggest that Stat3 functions through alternate non-canonical pathways to bring about some of these biological functions both in normal cells as well as during cancer development and progression. A number of studies have now shown that Stat3 has a function in mitochondria and that unphosphorylated Stat3 (uStat3) can also function as a transcription factor broadening the potential mechanisms involved in Stat3 action. In this review article, we discuss these two main non-canonical functions of Stat3 and their potential roles in oncogenesis. Given the many facets of Stat3 signaling, additional comprehensive investigations are required to fully understand the role of non-canonical Stat3 signaling in cancer and whether these pathways can be targeted for cancer prevention and treatment. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jaya Srivastava
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
153
|
Shen J, Jia W, Yu Y, Chen J, Cao X, Du Y, Zhang X, Zhu S, Chen W, Xi J, Wei T, Wang G, Yuan D, Duan T, Jiang C, Kang J. Pwp1 is required for the differentiation potential of mouse embryonic stem cells through regulating Stat3 signaling. Stem Cells 2015; 33:661-73. [PMID: 25335925 DOI: 10.1002/stem.1876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/19/2014] [Accepted: 09/04/2014] [Indexed: 11/08/2022]
Abstract
Leukemia inhibitory factor/Stat3 signaling is critical for maintaining the self-renewal and differentiation potential of mouse embryonic stem cells (mESCs). However, the upstream effectors of this pathway have not been clearly defined. Here, we show that periodic tryptophan protein 1 (Pwp1), a WD-40 repeat-containing protein associated with histone H4 modification, is required for the exit of mESCs from the pluripotent state into all lineages. Knockdown (KD) of Pwp1 does not affect mESC proliferation, self-renewal, or apoptosis. However, KD of Pwp1 impairs the differentiation potential of mESCs both in vitro and in vivo. PWP1 chromatin immunoprecipitation-seq results revealed that the PWP1-occupied regions were marked with significant levels of H4K20me3. Moreover, Pwp1 binds to sites in the upstream region of Stat3. KD of Pwp1 decreases the level of H4K20me3 in the upstream region of Stat3 gene and upregulates the expression of Stat3. Furthermore, Pwp1 KD mESCs recover their differentiation potential through suppressing the expression of Stat3 or inhibiting the tyrosine phosphorylation of STAT3. Together, our results suggest that Pwp1 plays important roles in the differentiation potential of mESCs.
Collapse
Affiliation(s)
- Junwei Shen
- Shanghai Key Laboratory of Signaling and Disease Research, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Wu N, Liu J, Zhao X, Yan Z, Jiang B, Wang L, Cao S, Shi D, Lin X. Cardamonin induces apoptosis by suppressing STAT3 signaling pathway in glioblastoma stem cells. Tumour Biol 2015; 36:9667-9676. [PMID: 26150336 DOI: 10.1007/s13277-015-3673-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/15/2015] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma stem cells (GSCs) are the initiating cells in glioblastoma multiforme (GBM) and contribute to the resistance of GBM to chemotherapy and radiation. In the present study, we investigated the effects of cardamonin (3,4,2,4-tetrahydroxychalcone) on the self-renewal and apoptosis of GSCs, and if its action is associated with signal transducer and activator of transcription 3 (STAT3) pathway. CD133(+) GSCs, a kind of GSCs line, was established from human glioblastoma tissues. Cardamonin inhibited the proliferation and induced apoptosis in CD133+ GSCs. The proapoptotic effects of temozolomide (TMZ) were further enhanced by cardamonin in CD133+ GSCs and U87 cells in vitro. For in vivo study, injection of 5 × 10(5) cells of CD133+ GSCs subcutaneously (s.c.) into nude mice, 100 % of large tumors were developed within 8 weeks in all mice; in contrast, only one out of five mice developed a small tumor when 5 × 10(5) cells of CD133(-) GMBs cells were injected. Cardamonin also inhibited STAT3 activation by luciferase assay and suppressed the expression of the downstream genes of STAT3, such as Bcl-XL, Bcl-2, Mcl-1, survivin, and VEGF. Furthermore, cardamonin locked nuclear translocation and dimerization of STAT3 in CD133(+) GSCs. Docking analysis confirmed that cardamonin molecule was successfully docked into the active sites of STAT3 with a highly favorable binding energy of -10.78 kcal/mol. The study provides evidence that cardamonin is a novel inhibitor of STAT3 and has the potential to be developed as a new anticancer agent targeting GSCs. This study also reveals that targeting STAT3 signal pathway is an important strategy for the treatment of human GBM.
Collapse
Affiliation(s)
- Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jia Liu
- College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiangzhong Zhao
- Qingdao Medical University Affiliated Hospital, Qingdao, 266070, China
| | - Zhiyong Yan
- Qingdao Medical University Affiliated Hospital, Qingdao, 266070, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shousong Cao
- Chifeng Saliont Pharmaceutical Co., Ltd, Chifeng, Inner Mongolia Autonomous Region, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Xiukun Lin
- Department of Pharmacology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
155
|
Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, Ban Q, Lv F, Huang S, Liu D, Ying QL. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci 2015; 129:269-76. [PMID: 26598557 PMCID: PMC4732286 DOI: 10.1242/jcs.177675] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/18/2015] [Indexed: 01/29/2023] Open
Abstract
Activation of leukemia inhibitor factor (LIF)–Stat3 or Wnt/β-catenin signaling promotes mouse embryonic stem cell (mESC) self-renewal. A myriad of downstream targets have been identified in the individual signal pathways, but their common targets remain largely elusive. In this study, we found that the LIF–Stat3 and Wnt/β-catenin signaling pathways converge on Sp5 to promote mESC self-renewal. Forced Sp5 expression can reproduce partial effects of Wnt/β-catenin signaling but mimics most features of LIF–Stat3 signaling to maintain undifferentiated mESCs. Moreover, Sp5 is able to convert mouse epiblast stem cells into a naïve pluripotent state. Thus, Sp5 is an important component of the regulatory network governing mESC naïve pluripotency. Summary: This study reveals a new function of Sp5 in mouse embryonic stem cell (ESC) self-renewal mediated by CHIR99021 and LIF, and reprogramming of EpiSCs into naїve ESCs.
Collapse
Affiliation(s)
- Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dongming Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Fei Cheng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Daniel Wilson
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jeffrey Mackay
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Feng Lv
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Saifei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, People's Republic of China
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
156
|
Partial inhibition of differentiation associated with elevated protein levels of pluripotency factors in mouse embryonic stem cells expressing exogenous EGAM1N homeoprotein. J Biosci Bioeng 2015; 120:562-9. [DOI: 10.1016/j.jbiosc.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/14/2023]
|
157
|
Allouba MH, ElGuindy AM, Krishnamoorthy N, Yacoub MH, Aguib YE. NaNog: A pluripotency homeobox (master) molecule. Glob Cardiol Sci Pract 2015; 2015:36. [PMID: 26566529 PMCID: PMC4625207 DOI: 10.5339/gcsp.2015.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/30/2015] [Indexed: 01/06/2023] Open
Abstract
One of the most intriguing aspects of cell biology is the state of pluripotency, where the cell is capable of self-renewal for as many times as deemed “necessary”, then at a specified time can differentiate into any type of cell. This fundamental process is required during organogenesis in foetal life and importantly during tissue repair in health and disease. Pluripotency is very tightly regulated, as any dysregulation can result in congenital defects, inability to repair damage, or cancer. Fuelled by the relatively recent interest in stem cell biology and tissue regeneration, the molecules implicated in regulating pluripotency have been the subject of extensive research. One of the important molecules involved in pluripotency, is NaNog, the subject of this article.
Collapse
Affiliation(s)
| | | | - Navaneethakrishnan Krishnamoorthy
- Qatar Cardiovascular Research Centre, Doha, Qatar ; Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
158
|
Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F. STATs: An Old Story, Yet Mesmerizing. CELL JOURNAL 2015; 17:395-411. [PMID: 26464811 PMCID: PMC4601860 DOI: 10.22074/cellj.2015.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Signal transducers and activators of transcription (STATs) are cytoplasmic transcription factors that have a key role in cell fate. STATs, a protein family comprised of
seven members, are proteins which are latent cytoplasmic transcription factors that
convey signals from the cell surface to the nucleus through activation by cytokines
and growth factors. The signaling pathways have diverse biological functions that
include roles in cell differentiation, proliferation, development, apoptosis, and inflammation which place them at the center of a very active area of research. In this review we explain Janus kinase (JAK)/STAT signaling and focus on STAT3, which is
transient from cytoplasm to nucleus after phosphorylation. This procedure controls
fundamental biological processes by regulating nuclear genes controlling cell proliferation, survival, and development. In some hematopoietic disorders and cancers,
overexpression and activation of STAT3 result in high proliferation, suppression of
cell differentiation and inhibition of cell maturation. This article focuses on STAT3
and its role in malignancy, in addition to the role of microRNAs (miRNAs) on STAT3
activation in certain cancers.
Collapse
Affiliation(s)
- Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ahmadvand
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farahnaz Asghari
- Department of Medicine II, Division of Gastroenterology, University of Rostock, E.Heydemann-Strasse 6, Rostock, Germany
| | - Fatemeh Salari
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
159
|
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia
| |
Collapse
|
160
|
Abstract
Leukemia inhibitory factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. All members of this family activate signal transducer and activator of transcription 3 (STAT3), a transcription factor that influences stem and progenitor cell identity, proliferation and cytoprotection. The role of LIF in development was first identified when LIF was demonstrated to support the propagation of mouse embryonic stem cells. Subsequent studies of mice deficient for components of the LIF pathway have revealed important roles for LIF signaling during development and homeostasis. Here and in the accompanying poster, we provide a broad overview of JAK-STAT signaling during development, with a specific focus on LIF-mediated JAK-STAT3 activation.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5 The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, Canada M5S 3E1 McEwen Centre for Regenerative Medicine, University Health Network, 101 College St., Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
161
|
Ohtsuka S, Nakai-Futatsugi Y, Niwa H. LIF signal in mouse embryonic stem cells. JAKSTAT 2015; 4:e1086520. [PMID: 27127728 PMCID: PMC4802755 DOI: 10.1080/21623996.2015.1086520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
Since the establishment of mouse embryonic stem cells (mESCs) in the 1980s, a number of important notions on the self-renewal of pluripotent stem cells in vitro have been found. In serum containing conventional culture, an exogenous cytokine, leukemia inhibitory factor (LIF), is absolutely essential for the maintenance of pluripotency. In contrast, in serum-free culture with simultaneous inhibition of Map-kinase and Gsk3 (so called 2i-culture), LIF is no longer required. However, recent findings also suggest that LIF may have a role not covered by the 2i for the maintenance of naïve pluripotency. These suggest that LIF functions for the maintenance of naïve pluripotency in a context dependent manner. We summarize how LIF-signal pathway is converged to maintain the naïve state of pluripotency.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Yoko Nakai-Futatsugi
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN; Kobe, Japan; Department of Pluripotent Stem Cell Biology; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; Kumamoto, Japan
| |
Collapse
|
162
|
Ren F, Wang K, Zhang T, Jiang J, Nice EC, Huang C. New insights into redox regulation of stem cell self-renewal and differentiation. Biochim Biophys Acta Gen Subj 2015; 1850:1518-26. [DOI: 10.1016/j.bbagen.2015.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 01/14/2015] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
|
163
|
Akagi T, Kuure S, Uranishi K, Koide H, Costantini F, Yokota T. ETS-related transcription factors ETV4 and ETV5 are involved in proliferation and induction of differentiation-associated genes in embryonic stem (ES) cells. J Biol Chem 2015. [PMID: 26224636 DOI: 10.1074/jbc.m115.675595] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pluripotency and self-renewal capacity of embryonic stem (ES) cells is regulated by several transcription factors. Here, we show that the ETS-related transcription factors Etv4 and Etv5 (Etv4/5) are specifically expressed in undifferentiated ES cells, and suppression of Oct3/4 results in down-regulation of Etv4/5. Simultaneous deletion of Etv4 and Etv5 (Etv4/5 double knock-out (dKO)) in ES cells resulted in a flat, epithelial cell-like appearance, whereas the morphology changed into compact colonies in a 2i medium (containing two inhibitors for GSK3 and MEK/ERK). Expression levels of self-renewal marker genes, including Oct3/4 and Nanog, were similar between wild-type and dKO ES cells, whereas proliferation of Etv4/5 dKO ES cells was decreased with overexpression of cyclin-dependent kinase inhibitors (p16/p19, p15, and p57). A differentiation assay revealed that the embryoid bodies derived from Etv4/5 dKO ES cells were smaller than the control, and expression of ectoderm marker genes, including Fgf5, Sox1, and Pax3, was not induced in dKO-derived embryoid bodies. Microarray analysis demonstrated that stem cell-related genes, including Tcf15, Gbx2, Lrh1, Zic3, and Baf60c, were significantly repressed in Etv4/5 dKO ES cells. The artificial expression of Etv4 and/or Etv5 in Etv4/5 dKO ES cells induced re-expression of Tcf15 and Gbx2. These results indicate that Etv4 and Etv5, potentially through regulation of Gbx2 and Tcf15, are involved in the ES cell proliferation and induction of differentiation-associated genes in ES cells.
Collapse
Affiliation(s)
- Tadayuki Akagi
- From the Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan,
| | - Satu Kuure
- the Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland, and
| | - Kousuke Uranishi
- From the Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Koide
- From the Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Frank Costantini
- the Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032
| | - Takashi Yokota
- From the Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan,
| |
Collapse
|
164
|
Wu Y, Zhu R, Zhou Y, Zhang J, Wang W, Sun X, Wu X, Cheng L, Zhang J, Wang S. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway. NANOSCALE 2015; 7:11102-11114. [PMID: 26060037 DOI: 10.1039/c5nr02339d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ∼100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.
Collapse
Affiliation(s)
- Youjun Wu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Guo YL, Carmichael GG, Wang R, Hong X, Acharya D, Huang F, Bai F. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine. Stem Cells 2015; 33:3165-73. [PMID: 26086534 DOI: 10.1002/stem.2079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/16/2015] [Indexed: 12/14/2022]
Abstract
Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine.
Collapse
Affiliation(s)
- Yan-Lin Guo
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gordon G Carmichael
- The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ruoxing Wang
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Xiaoxiao Hong
- The Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Dhiraj Acharya
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Faqing Huang
- The Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Fengwei Bai
- The Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
166
|
Abstract
Signal transducer and activators of transcription-3 (STAT3) regulates diverse biological functions including cell growth, differentiation, and apoptosis. In addition, STAT3 plays a key role in regulating host immune and inflammatory responses and in the pathogenesis of many cancers. Several studies reported differential regulation of STAT3 in a range of viral infections. Interestingly, STAT3 appears to direct seemingly contradictory responses and both pro- and antiviral roles of STAT3 have been described. This review summarized the currently known functions of STAT3 in the regulation of viral replication and pathogenesis of viral infections. Some of the key unanswered questions and the gap in our current understanding of the role of STAT3 in viral pathogenesis are discussed.
Collapse
|
167
|
Abstract
Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.
Collapse
|
168
|
Gu H, Li Q, Huang S, Lu W, Cheng F, Gao P, Wang C, Miao L, Mei Y, Wu M. Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling. Nat Commun 2015; 6:7112. [PMID: 26033541 PMCID: PMC4458872 DOI: 10.1038/ncomms8112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 04/02/2015] [Indexed: 01/06/2023] Open
Abstract
Embryonic stem cells (ESCs) possess pluripotency, which is the capacity of cells to differentiate into all lineages of the mature organism. Increasing evidence suggests that the pluripotent state of ESCs is regulated by a combination of extrinsic and intrinsic factors. The underlying mechanisms, however, are not completely understood. Here, we show that March5, an E3 ubiquitin ligase, is involved in maintaining mouse-ESC (mESC) pluripotency. Knockdown of March5 in mESCs led to differentiation from naive pluripotency. Mechanistically, as a transcriptional target of Klf4, March5 catalyses K63-linked polyubiquitination of Prkar1a, a negative regulatory subunit of PKA, to activate PKA, thereby inhibiting the Raf/MEK/ERK pathway. Moreover, March5 is able to replace a MEK/ERK inhibitor to maintain mESC pluripotency under serum-free culture conditions. In addition, March5 can partially replace the use of Klf4 for somatic cell reprogramming. Collectively, our study uncovers a role for the Klf4–March5–PKA–ERK pathway in maintaining the stemness properties of mESCs. The pluripotent state of mouse embryonic stem cells (mESCs) is regulated by extrinsic and intrinsic signals but the underlying mechanisms are not completely understood. Here the authors show that the E3 ligase, March5, contributes to the maintenance of the pluripotent state in mESCs via suppression of ERK activation.
Collapse
Affiliation(s)
- Hao Gu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qidong Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shan Huang
- Pathology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230061, China
| | - Weiguang Lu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Fangyuan Cheng
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping Gao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chen Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Miao
- Scientific and Educational Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230061, China
| | - Yide Mei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
169
|
Wei W, Lewis MT. Identifying and targeting tumor-initiating cells in the treatment of breast cancer. Endocr Relat Cancer 2015; 22:R135-55. [PMID: 25876646 PMCID: PMC4447610 DOI: 10.1530/erc-14-0447] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer in women (excluding skin cancer), and it is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - because of traits that tumor cells possess before treatment - or acquired - because of traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes the existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSCs). TICs have the capacity to self-renew and to generate new tumors that consist entirely of clonally derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies and that they can survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow, which results in disease relapse. It has also been hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative for achieving a cure. In the present review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear to be important for TIC function and may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Wei Wei
- Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA
| | - Michael T Lewis
- Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA Baylor College of MedicineLester and Sue Smith Breast Center, Houston, Texas, USADepartments of Molecular and Cellular BiologyRadiologyBaylor College of Medicine, One Baylor Plaza, BCM600, Room N1210, Houston, Texas 77030, USA
| |
Collapse
|
170
|
Wei W, Tweardy DJ, Zhang M, Zhang X, Landua J, Petrovic I, Bu W, Roarty K, Hilsenbeck SG, Rosen JM, Lewis MT. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells 2015; 32:2571-82. [PMID: 24891218 DOI: 10.1002/stem.1752] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 05/03/2014] [Indexed: 12/31/2022]
Abstract
In breast cancer, a subset of tumor-initiating cells (TIC) or "cancer stem cells" are thought to be responsible for tumor maintenance, treatment resistance, and disease recurrence. While current breast cancer stem cell markers (e.g., CD44(high) /CD24(low/neg) , ALDH positive) have allowed enrichment for such cells, they are not universally expressed and may actually identify distinct TIC subpopulations in the same tumor. Thus, additional markers of functional stem cells are needed. The STAT3 pathway is a critical regulator of the function of normal stem cells, and evidence is accumulating for its important role in breast cancer stem cells. However, due to the lack of a method for separating live cells based on their level of STAT3 activity, it remains unknown whether STAT3 functions in the cancer stem cells themselves, or in surrounding niche cells, or in both. To approach this question, we constructed a series of lentiviral fluorescent (enhanced green fluorescent protein, EGFP) reporters that enabled flow cytometric enrichment of cells differing in STAT3-mediated transcriptional activity, as well as in vivo/in situ localization of STAT3 responsive cells. Using in vivo claudin-low cell line xenograft models of human breast cancer, we found that STAT3 signaling reporter activity (EGFP(+) ) is associated with a subpopulation of cancer cells enriched for mammosphere-forming efficiency, as well as TIC function in limiting dilution transplantation assays compared to negative or unsorted populations. Our results support STAT3 signaling activity as another functional marker for human breast cancer stem cells thus making it an attractive therapeutic target for stem-cell-directed therapy in some breast cancer subtypes.
Collapse
Affiliation(s)
- Wei Wei
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun 2015; 6:7095. [PMID: 25968054 PMCID: PMC4479042 DOI: 10.1038/ncomms8095] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
Leukemia inhibitory factor (LIF)/STAT3 signalling is a hallmark of naive pluripotency in rodent pluripotent stem cells (PSCs), whereas fibroblast growth factor (FGF)-2 and activin/nodal signalling is required to sustain self-renewal of human PSCs in a condition referred to as the primed state. It is unknown why LIF/STAT3 signalling alone fails to sustain pluripotency in human PSCs. Here we show that the forced expression of the hormone-dependent STAT3-ER (ER, ligand-binding domain of the human oestrogen receptor) in combination with 2i/LIF and tamoxifen allows human PSCs to escape from the primed state and enter a state characterized by the activation of STAT3 target genes and long-term self-renewal in FGF2- and feeder-free conditions. These cells acquire growth properties, a gene expression profile and an epigenetic landscape closer to those described in mouse naive PSCs. Together, these results show that temporarily increasing STAT3 activity is sufficient to reprogramme human PSCs to naive-like pluripotent cells. LIF/STAT3 signalling characterizes naive pluripotency in mouse embryonic stem cells (ESCs), but whether this pathway can sustain a similar state in human cells is not completely understood. Here the authors show that LIF stimulation and enhancement of STAT3 activity allow human ESCs to escape from FGF2 dependency and facilitates their entry into a naive-like state of pluripotency.
Collapse
|
172
|
El-Badawy A, El-Badri N. Regulators of pluripotency and their implications in regenerative medicine. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:67-80. [PMID: 25960670 PMCID: PMC4410894 DOI: 10.2147/sccaa.s80157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ultimate goal of regenerative medicine is to replace damaged tissues with new functioning ones. This can potentially be accomplished by stem cell transplantation. While stem cell transplantation for blood diseases has been increasingly successful, widespread application of stem cell therapy in the clinic has shown limited results. Despite successful efforts to refine existing methodologies and to develop better ones for reprogramming, clinical application of stem cell therapy suffers from issues related to the safety of the transplanted cells, as well as the low efficiency of reprogramming technology. Better understanding of the underlying mechanism(s) involved in pluripotency should accelerate the clinical application of stem cell transplantation for regenerative purposes. This review outlines the main decision-making factors involved in pluripotency, focusing on the role of microRNAs, epigenetic modification, signaling pathways, and toll-like receptors. Of special interest is the role of toll-like receptors in pluripotency, where emerging data indicate that the innate immune system plays a vital role in reprogramming. Based on these data, we propose that nongenetic mechanisms for reprogramming provide a novel and perhaps an essential strategy to accelerate application of regenerative medicine in the clinic.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
173
|
Zhang W, Pei Y, Zhong L, Wen B, Cao S, Han J. Pluripotent and Metabolic Features of Two Types of Porcine iPSCs Derived from Defined Mouse and Human ES Cell Culture Conditions. PLoS One 2015; 10:e0124562. [PMID: 25893435 PMCID: PMC4404361 DOI: 10.1371/journal.pone.0124562] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 02/02/2023] Open
Abstract
The domestic pig is an excellent animal model for stem cell research and clinical medicine. There is still no suitable culture condition to generate authentic porcine embryonic stem cells (pESCs) and high quality porcine induced pluripotent stem cells (piPSCs). In this study, we found that culture conditions affected pluripotent and metabolic features of piPSCs. Using defined human embryonic stem cell (hESC) and mouse ESC (mESC) culture conditions, we generated two types of piPSCs, one of which was morphologically similar to hESCs (here called hpiPSCs), the other resembled mESCs (here called mpiPSCs). Transcriptome analysis and signaling pathway inhibition results suggested that mpiPSCs shared more of mESC signaling pathways, such as the BMP pathway and JAK/STAT pathway and hpiPSCs shared more hESC signaling pathways, such as the FGF pathway. Importantly, the mpiPSCs performed embryonic chimera incorporation more efficiently than the hpiPSCs did. In addition, the mpiPSCs showed mitochondrial features of naive ESCs and lipid droplets accumulation. These evidences may facilitate understanding of the gene regulation network and metabolism in piPSCs and promote derivation of bona fide pESCs for translational medicine.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yangli Pei
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Zhong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bingqiang Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
174
|
Michel-Schmidt R, Kirkpatrick CJ, Wessler I. Effect of LIF-withdrawal on acetylcholine synthesis in the embryonic stem cell line CGR8 is not mediated by STAT3, PI3Ks or cAMP/PKA pathways. Int Immunopharmacol 2015; 29:115-8. [PMID: 25887270 DOI: 10.1016/j.intimp.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/18/2022]
Abstract
Acetylcholine (ACh) acts as a local cellular signaling molecule and is widely expressed in nature, including mammalian cells and embryonic stem cells. The murine embryonic stem cell line CGR8 synthesizes and releases substantial amounts of ACh. Particularly during early differentiation - a period associated with multiple alterations in geno-/phenotype functions - synthesis and release of ACh are increased by 10-fold. In murine stem cells second messengers of the STAT-3, PI3K and cAMP/PKA pathways are involved in maintaining self-renewal and pluripotency. The present experiments were designed to test whether blockers of these signaling pathways enhance ACh cell content in the presence of LIF, i.e. when CGR8 is pluripotent. NSC74859, an inhibitor of STAT-3, affected neither the proliferation rate nor ACh cell content, whereas the more sensitive STAT-3 inhibitor FLLL31 reduced the proliferation rate and increased ACh cell content by about 3-fold. The PI3K inhibitor LY294002 reduced the proliferation rate but did not modify the ACh cell content, whereas the PKA inhibitor H89 produced effects comparable to FLLL31. Interestingly, in control experiments a strong inverse correlation was found between cell density and ACh cell content, which could explain the 3-fold increase in the ACh cell content observed in the presence of FLLL31 and H89. Forskolin, a PKA activator, had no effect. In conclusion, it appears unlikely that the 10-fold increase in ACh cell content induced by LIF removal, i.e. during early differentiation, is mediated by second messengers of the STAT-3, PI3K and cAMP/PKA pathways. However, the PI3K pathway appears to be involved in control of the inverse relation between cell density and ACh cell content, because this correlation was significantly attenuated in the presence of LY294002.
Collapse
Affiliation(s)
- Rosmarie Michel-Schmidt
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany
| | - Ignaz Wessler
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, D-55101 Mainz, Germany.
| |
Collapse
|
175
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
176
|
Mühl B, Hägele J, Tasdogan A, Loula P, Schuh K, Bundschu K. SPREDs (Sprouty related proteins with EVH1 domain) promote self-renewal and inhibit mesodermal differentiation in murine embryonic stem cells. Dev Dyn 2015; 244:591-606. [PMID: 25690936 DOI: 10.1002/dvdy.24261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/11/2015] [Accepted: 01/23/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pluripotency, self-renewal, and differentiation are special features of embryonic stem (ES) cells, thereby providing valuable perspectives in regenerative medicine. Developmental processes require a fine-tuned organization, mainly regulated by the well-known JAK/STAT, PI3K/AKT, and ERK/MAPK pathways. SPREDs (Sprouty related proteins with EVH1 domain) were discovered as inhibitors of the ERK/MAPK signaling pathway, whereas nothing was known about their functions in ES cells and during early differentiation, so far. RESULTS We generated SPRED1 and SPRED2 overexpressing and SPRED2 knockout murine ES cells to analyze the functions of SPRED proteins in ES cells and during early differentiation. Overexpression of SPREDs increases significantly the self-renewal and clonogenicity of murine ES cells, whereas lack of SPRED2 reduces proliferation and increases apoptosis. During early differentiation in embryoid bodies, SPREDs promote the pluripotent state and inhibit differentiation whereby mesodermal differentiation into cardiomyocytes is considerably delayed and inhibited. LIF- and growth factor-stimulation revealed that SPREDs inhibit ERK/MAPK activation in murine ES cells. However, no effects were detectable on LIF-induced activation of the JAK/STAT3, or PI3K/AKT signaling pathway by SPRED proteins. CONCLUSIONS We show that SPREDs promote self-renewal and inhibit mesodermal differentiation of murine ES cells by selective suppression of the ERK/MAPK signaling pathway in pluripotent cells.
Collapse
Affiliation(s)
- Bastian Mühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany; Laboratory for Human Genetics, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
177
|
Kanai D, Ueda A, Akagi T, Yokota T, Koide H. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells. Biochem Biophys Res Commun 2015; 459:374-8. [PMID: 25727014 DOI: 10.1016/j.bbrc.2015.02.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth.
Collapse
Affiliation(s)
- Dai Kanai
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Atsushi Ueda
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Japan
| | - Hiroshi Koide
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| |
Collapse
|
178
|
Pereira L, Font-Nieves M, Van den Haute C, Baekelandt V, Planas AM, Pozas E. IL-10 regulates adult neurogenesis by modulating ERK and STAT3 activity. Front Cell Neurosci 2015; 9:57. [PMID: 25762897 PMCID: PMC4340210 DOI: 10.3389/fncel.2015.00057] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 11/16/2022] Open
Abstract
The adult subventricular zone (SVZ) contains Nestin+ progenitors that differentiate mainly into neuroblasts. Our previous data showed that interleukin-10 (IL-10) regulates SVZ adult neurogenesis by up-regulating the expression of pro-neural genes and modulating cell cycle exit. Here we addressed the specific mechanism through which IL-10 carries out its signaling on SVZ progenitors. We found that, in vitro and in vivo, IL-10 targets Nestin+ progenitors and activates the phosphorylation of ERK and STAT3. The action of IL-10 on Nestin+ progenitors is reversed by treatment with a MEK/ERK inhibitor, thus restoring neurogenesis to normal levels. Silencing STAT3 expression by lentiviral vectors also impaired neurogenesis by blocking the effects of IL-10. Our findings unveil ERK and STAT3 as effectors of IL-10 in adult SVZ neurogenesis.
Collapse
Affiliation(s)
- Leticia Pereira
- Unit of Brain Ischemia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona Spain ; Department of Brain Ischemia and Neurodegeneration, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Spain
| | - Miriam Font-Nieves
- Unit of Brain Ischemia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona Spain ; Department of Brain Ischemia and Neurodegeneration, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Spain
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Faculty of Medicine, KU Leuven, Leuven Belgium ; Leuven Viral Vector Core, KU Leuven, Leuven Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Faculty of Medicine, KU Leuven, Leuven Belgium
| | - Anna M Planas
- Unit of Brain Ischemia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona Spain ; Department of Brain Ischemia and Neurodegeneration, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Spain
| | - Esther Pozas
- Unit of Brain Ischemia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona Spain ; Department of Brain Ischemia and Neurodegeneration, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona Spain
| |
Collapse
|
179
|
Abstract
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Collapse
|
180
|
Hishida T, Nakachi Y, Mizuno Y, Katano M, Okazaki Y, Ema M, Takahashi S, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Hishida-Nozaki Y, Vazquez-Ferrer E, Sancho-Martinez I, Carlos Izpisua Belmonte J, Okuda A. Functional Compensation Between Myc and PI3K Signaling Supports Self-Renewal of Embryonic Stem Cells. Stem Cells 2015; 33:713-25. [DOI: 10.1002/stem.1893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Tomoaki Hishida
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Yutaka Nakachi
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Miyuki Katano
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masatsugu Ema
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Satoru Takahashi
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Radioisotope Experimental Laboratory; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | | | | | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
| |
Collapse
|
181
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
182
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
183
|
Abstract
Pluripotent stem cells have great potential for regenerative medicine; however, their clinical use is associated with a risk of tumor formation. We utilized pluripotent cells expressing green fluorescent protein and puromycin resistance under control of the Oct4 promoter to study the persistence of potential pluripotent cells under embryoid body (EB) culture conditions, which are commonly used to obtain organotypic cells. We found that i.) OCT4-expressing cells dramatically decrease during the first week of differentiation, ii.) the number of OCT4-expressing cells recovers from day 7 on, iii.) the OCT4-expressing cells are similar to embryonic stem cells grown in the presence of leukemia inhibitory factor LIF but express several markers associated with germ cell formation, such as DAZL and STRA-8 and iv.) the persistence of potentially pluripotent cells is independent of supportive cells in EBs. Finally, OCT4-expressing cells, isolated from EBs after 2-month of culture, were further maintained under feeder-free conditions in absence of LIF and continued to express OCT4 in 95 % of the population for at least 36 days. These findings point to an alternative state of stable OCT4 expression. In the frame of the landscape model of differentiation two attractors of pluripotency might be defined based on their different characteristics.
Collapse
|
184
|
Ohtsuka S, Niwa H. The differential activation of intracellular signaling pathways confers the permissiveness of embryonic stem cell derivation from different mouse strains. Development 2015; 142:431-7. [PMID: 25564647 PMCID: PMC4302992 DOI: 10.1242/dev.112375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The requirement of leukemia inhibitory factor (LIF) for the establishment and maintenance of mouse embryonic stem cells (ESCs) depends on the genetic background of the ESC origin. To reveal the molecular basis of the strain-dependent function of LIF, we compared the activation of the intracellular signaling pathways downstream of LIF in ESCs with different genetic backgrounds. We found that the JAK-Stat3 pathway was dominantly activated in ESCs derived from 'permissive' mouse strains (129Sv and C57BL6), whereas the MAP kinase pathway was hyperactivated in ESCs from 'non-permissive' strains (NOD, CBA and FVB). Artificial activation of Stat3 supported stable self-renewal of ESCs from non-permissive strains. These data suggest that the difference in the balance between the two intracellular signaling pathways underlies the differential response to LIF.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), Minatojima-minamimachi 2-2-3, Chuo-Ku, Kobe 650-0047, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology (CDB), Minatojima-minamimachi 2-2-3, Chuo-Ku, Kobe 650-0047, Japan CREST (Core Research for Evolutional Science and Technology), Japan Science Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan Laboratory for Development and Regenerative Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe 6500017, Japan
| |
Collapse
|
185
|
Morgani SM, Brickman JM. LIF supports primitive endoderm expansion during pre-implantation development. Development 2015; 142:3488-99. [DOI: 10.1242/dev.125021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023]
Abstract
Embryonic stem cells (ESCs) are pluripotent cell lines that can be maintained indefinitely in an early developmental state. ESC culture conditions almost all require the cytokine LIF to maintain self-renewal. As ESCs are not homogeneous, but contain multiple populations reminiscent of the blastocyst, identifying the target cells of LIF is necessary to understand the propagation of pluripotency. We recently found that LIF acts under self-renewing conditions to stimulate the fraction of ESCs that express extraembryonic markers, but has little impact on pluripotent gene expression. Here we report that LIF has two distinct roles. It blocks early epiblast differentiation and supports the expansion of primitive endoderm (PrE) primed ESCs and PrE in vivo. We find that activation of JAK/STAT signalling downstream of LIF occurs initially throughout the pre-implantation embryo, but later marks the PrE. Moreover, the addition of LIF to cultured embryos increases the GATA6+ PrE population while inhibition of JAK/STAT reduces both NANOG+ epiblast (Epi) and GATA6+ PrE. The reduction of the NANOG+ Epi may be explained by its precocious differentiation to later Epi derivatives, while the increase in PrE is mediated both by an increase in proliferation and inhibition of PrE apoptosis that is normally triggered in embryos with an excess of GATA6+ cells. Thus, it appears that the relative size of the PrE is determined by the number of LIF-producing cells in the embryo. This suggests a mechanism by which the embryo adjusts the relative ratio of the primary lineages in response to experimental manipulation.
Collapse
Affiliation(s)
- Sophie M. Morgani
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Joshua M. Brickman
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
186
|
Abstract
Pluripotent cells in embryos are situated near the apex of the hierarchy of developmental potential. They are capable of generating all cell types of the mammalian body proper. Therefore, they are the exemplar of stem cells. In vivo, pluripotent cells exist transiently and become expended within a few days of their establishment. Yet, when explanted into artificial culture conditions, they can be indefinitely propagated in vitro as pluripotent stem cell lines. A host of transcription factors and regulatory genes are now known to underpin the pluripotent state. Nonetheless, how pluripotent cells are equipped with their vast multilineage differentiation potential remains elusive. Consensus holds that pluripotency transcription factors prevent differentiation by inhibiting the expression of differentiation genes. However, this does not explain the developmental potential of pluripotent cells. We have presented another emergent perspective, namely, that pluripotency factors function as lineage specifiers that enable pluripotent cells to differentiate into specific lineages, therefore endowing pluripotent cells with their multilineage potential. Here we provide a comprehensive overview of the developmental biology, transcription factors, and extrinsic signaling associated with pluripotent cells, and their accompanying subtypes, in vitro heterogeneity and chromatin states. Although much has been learned since the appreciation of mammalian pluripotency in the 1950s and the derivation of embryonic stem cell lines in 1981, we will specifically emphasize what currently remains unclear. However, the view that pluripotency factors capacitate differentiation, recently corroborated by experimental evidence, might perhaps address the long-standing question of how pluripotent cells are endowed with their multilineage differentiation potential.
Collapse
Affiliation(s)
- Kyle M. Loh
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Bing Lim
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| | - Lay Teng Ang
- Department of Developmental Biology and the Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Genome Institute of Singapore, Stem Cell & Regenerative Biology Group, Agency for Science, Technology & Research, Singapore; and Department of Medicine and the Beth Israel Deaconess Medical Center, Division of Hematology/Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
187
|
Ma Y, Yao N, Liu G, Dong L, Liu Y, Zhang M, Wang F, Wang B, Wei X, Dong H, Wang L, Ji S, Zhang J, Wang Y, Huang Y, Yu J. Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. EMBO J 2014; 34:361-78. [PMID: 25519956 DOI: 10.15252/embj.201489957] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation.
Collapse
Affiliation(s)
- Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Nan Yao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lei Dong
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yufang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meili Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xueju Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - He Dong
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lanlan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shaowei Ji
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Junwu Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yangming Wang
- Peking-Tsinghua Joint Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
188
|
Abstract
In mice, three pluripotent stem cell lines have been established from different stage of developing embryo, which are embryonic stem (ES) cell, post-implantation epiblast stem cell (EpiSC), and embryonic germ (EG) cell. ES cell and EG cell share many common features including factor requirement, colony morphology, and gene expression pattern. On the other hand, EpiSC needs different external signal inputs, exhibits flattened colony morphology, and a different set of gene expression patterns. In addition, the germ line competency of EpiSCs is still unclear. To distinguish the differences between them, they are defined by the words "naïve" and "primed" pluripotent cells, respectively. This article introduces how pluripotent stem cell lines are established in culture, and how much those cells in vitro are similar or relevant to their in vivo origin and the knowledge about transcription factors to support this state.
Collapse
|
189
|
Callihan P, Ali MW, Salazar H, Quach N, Wu X, Stice SL, Hooks SB. Convergent regulation of neuronal differentiation and Erk and Akt kinases in human neural progenitor cells by lysophosphatidic acid, sphingosine 1-phosphate, and LIF: specific roles for the LPA1 receptor. ASN Neuro 2014; 6:6/6/1759091414558416. [PMID: 25424429 PMCID: PMC4357610 DOI: 10.1177/1759091414558416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The bioactive lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have diverse effects on the developing nervous system and neural progenitors, but the molecular basis for their pleiotropic effects is poorly understood. We previously defined LPA and S1P signaling in proliferating human neural progenitor (hNP) cells, and the current study investigates their role in neuronal differentiation of these cells. Differentiation in the presence of LPA or S1P significantly enhanced cell survival and decreased expression of neuronal markers. Further, the LPA receptor antagonist Ki16425 fully blocked the effects of LPA, and differentiation in the presence of Ki16425 dramatically enhanced neurite length. LPA and S1P robustly activated Erk, but surprisingly both strongly suppressed Akt activation. Ki16425 and pertussis toxin blocked LPA activation of Erk but not LPA inhibition of Akt, suggesting distinct receptor and G-protein subtypes mediate these effects. Finally, we explored cross talk between lysophospholipid signaling and the cytokine leukemia inhibitory factor (LIF). LPA/S1P effects on neuronal differentiation were amplified in the presence of LIF. Similarly, the ability of LPA/S1P to regulate Erk and Akt was impacted by the presence of LIF; LIF enhanced the inhibitory effect of LPA/S1P on Akt phosphorylation, while LIF blunted the activation of Erk by LPA/S1P. Taken together, our results suggest that LPA and S1P enhance survival and inhibit neuronal differentiation of hNP cells, and LPA1 is critical for the effect of LPA. The pleiotropic effects of LPA may reflect differences in receptor subtype expression or cross talk with LIF receptor signaling.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Mourad W Ali
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Hector Salazar
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Nhat Quach
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Xian Wu
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
190
|
Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, Tucker BA. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 2014; 44:15-35. [PMID: 25448922 DOI: 10.1016/j.preteyeres.2014.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/26/2022]
Abstract
Vision is the sense that we use to navigate the world around us. Thus it is not surprising that blindness is one of people's most feared maladies. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through drug therapy, gene augmentation or a cell-based transplantation approach. In this review we will discuss the use of the induced pluripotent stem cell technology to model and develop various treatment modalities for the treatment of inherited retinal degenerative disease. We will focus on the use of iPSCs for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell transplantation and replacement.
Collapse
Affiliation(s)
- Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Allison E Songstad
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Arlene V Drack
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
191
|
Zoller R, Schulz C. The Drosophila cyst stem cell lineage: Partners behind the scenes? SPERMATOGENESIS 2014; 2:145-157. [PMID: 23087834 PMCID: PMC3469438 DOI: 10.4161/spmg.21380] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This review focuses on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals.
Collapse
Affiliation(s)
- Richard Zoller
- Department of Cellular Biology; University of Georgia; Athens, GA USA
| | | |
Collapse
|
192
|
Yamaguchi Y, Takamura H, Tada Y, Akagi T, Oyama K, Miyashita T, Tajima H, Kitagawa H, Fushida S, Yokota T, Ohta T, Koide H. Nanog positively regulates Zfp57 expression in mouse embryonic stem cells. Biochem Biophys Res Commun 2014; 453:817-20. [PMID: 25445595 DOI: 10.1016/j.bbrc.2014.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 11/30/2022]
Abstract
To maintain the self-renewal of embryonic stem (ES) cells, several core transcription factors, including Oct3/4, STAT3, and Nanog, regulate the expression of their target genes. Zinc finger protein 57 (Zfp57) is specifically expressed in self-renewing ES cells and its expression level is reduced upon ES cell differentiation, suggesting that expression of this transcription factor is regulated by core transcription factors. In the present study, we investigated whether Zfp57 expression is regulated by Nanog. Nanog overexpression resulted in the upregulation of Zfp57. On the other hand, knockdown of Nanog reduced the expression level of Zfp57. In addition, we identified the Nanog-responsive region in the promoter of the Zfp57 gene. These results suggest that Nanog is an upstream regulator of Zfp57. Moreover, Nanog overexpression promoted the growth of ES cells in soft agar and this was suppressed by Zfp57 knockdown, suggesting that the Nanog/Zfp57 pathway plays a central role in anchorage-independent growth of ES cells. Interestingly, NANOG overexpression also led to the upregulation of ZFP57 in two human tumor cell lines. Taken together, our results suggest that Nanog positively regulates Zfp57 expression in multiple types of cells.
Collapse
Affiliation(s)
- Yukari Yamaguchi
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Yuhki Tada
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Katsunobu Oyama
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hidehiro Tajima
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hirohisa Kitagawa
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Sachio Fushida
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Tetsuo Ohta
- Department of Gastroenterologic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Koide
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
193
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
194
|
Tai CI, Schulze EN, Ying QL. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner. Biol Open 2014; 3:958-65. [PMID: 25238758 PMCID: PMC4197444 DOI: 10.1242/bio.20149514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stat3 is essential for mouse embryonic stem cell (mESC) self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary "on/off" manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE) lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.
Collapse
Affiliation(s)
- Chih-I Tai
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Present address: Animal Biotechnology Interdisciplinary Group, Center for Veterinary Medicine, United States Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA
| | - Eric N Schulze
- Present address: Animal Biotechnology Interdisciplinary Group, Center for Veterinary Medicine, United States Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Present address: Animal Biotechnology Interdisciplinary Group, Center for Veterinary Medicine, United States Food and Drug Administration, 7500 Standish Place, Rockville, MD 20855, USA.
| |
Collapse
|
195
|
Son EY, Crabtree GR. The role of BAF (mSWI/SNF) complexes in mammalian neural development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:333-49. [PMID: 25195934 DOI: 10.1002/ajmg.c.31416] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in embryonic stem cells, neural progenitors and postmitotic neurons. In particular, the neural progenitor-specific BAF complexes are essential for controlling the kinetics and mode of neural progenitor cell division, while neuronal BAF function is necessary for the maturation of postmitotic neuronal phenotypes as well as long-term memory formation. The microRNA-mediated mechanism for transitioning from npBAF to nBAF complexes is instructive for the neuronal fate and can even convert fibroblasts into neurons. The high frequency of BAF subunit mutations in neurological disorders underscores the rate-determining role of BAF complexes in neural development, homeostasis, and plasticity.
Collapse
|
196
|
Voskas D, Ling LS, Woodgett JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway. J Cell Physiol 2014; 229:1312-22. [PMID: 24604594 PMCID: PMC4258093 DOI: 10.1002/jcp.24603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.
Collapse
Affiliation(s)
- Daniel Voskas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
197
|
Fritz AL, Mao SR, West MG, Schaffer DV. A medium-throughput analysis of signaling pathways involved in early stages of stem cell reprogramming. Biotechnol Bioeng 2014; 112:209-19. [PMID: 25065366 DOI: 10.1002/bit.25336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The induction of pluripotency from adult cells has enormous potential in regenerative medicine. While initial efforts to study mechanisms and improve efficiency of induced pluripotent stem cell (iPSC) reprogramming focused on the direct roles of transcriptional regulators, increasing evidence indicates that cellular signal transduction pathways can modulate this process. Here, we present a medium-throughput system to study the effect of signaling pathways on the early stages of reprogramming. We generated a set of lentiviral vectors encoding 38 genes that upregulate or downregulate major signal transduction pathways and quantified each signaling factor's effect on reprogramming. This approach confirmed the role of several factors previously implicated in reprogramming, as well as identified several GTPases-factors that to date have not been largely studied in reprogramming-that improve or hinder iPSC reprogramming. In addition, this methodology is useful in determining new targets for enhancing pluripotency reprogramming, lineage reprogramming, and/or cell differentiation.
Collapse
Affiliation(s)
- Ashley L Fritz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, 94720
| | | | | | | |
Collapse
|
198
|
West JA, Cook A, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ, Tolstorukov MY, Kingston RE. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun 2014; 5:4719. [PMID: 25158628 PMCID: PMC4217530 DOI: 10.1038/ncomms5719] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/16/2014] [Indexed: 01/23/2023] Open
Abstract
Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes. Changes in chromatin structure impact gene expression programs by modulating accessibility to the transcription machinery. Here, West et al. explore differences in nucleosome occupancy between mammalian pluripotent and somatic cells and uncover regulatory regions likely to play key roles in determining cell identity.
Collapse
Affiliation(s)
- Jason A West
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4]
| | - April Cook
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3]
| | - Burak H Alver
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, The Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Aimee M Deaton
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- 1] Howard Hughes Medical Institute and the Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] The Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter J Park
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Y Tolstorukov
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2]
| | - Robert E Kingston
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
199
|
Mo X, Li N, Wu S. Generation and characterization of bat-induced pluripotent stem cells. Theriogenology 2014; 82:283-93. [PMID: 24853281 PMCID: PMC7103130 DOI: 10.1016/j.theriogenology.2014.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) were first generated from mouse embryonic fibroblasts in the year 2006. These cells resemble the typical morphology of embryonic stem cells, express pluripotency markers, and are able to transmit through germlines. To date, iPSCs of many species have been generated, whereas generation of bat iPSCs (biPSCs) has not been reported. To facilitate in-depth study of bats at the molecular and cellular levels, we describe the successful derivation of biPSCs with a piggyBac (PB) vector that contains eight reprogramming factors Oct4, Sox2, Klf4, Nanog, cMyc, Lin28, Nr5a2, and miR302/367. These biPSCs were cultured in media containing leukemia inhibitory factor and three small molecule inhibitors (CHIR99021, PD0325901, and A8301). They retained normal karyotype, displayed alkaline phosphatase activity, and expressed pluripotency markers Oct4, Sox2, Nanog, TBX3, and TRA-1-60. They could differentiate in vitro to form embryoid bodies and in vivo to form teratomas that contained tissue cells of all three germ layers. Generation of biPSCs will facilitate future studies on the mechanisms of antiviral immunity and longevity of bats at the cellular level.
Collapse
Affiliation(s)
- Xiaohui Mo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
200
|
Pagliari S, Jelinek J, Grassi G, Forte G. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Front Physiol 2014; 5:219. [PMID: 25071583 PMCID: PMC4076671 DOI: 10.3389/fphys.2014.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction-which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs-would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
Collapse
Affiliation(s)
- Stefania Pagliari
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Jakub Jelinek
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, University of TriesteTrieste, Italy
| | - Giancarlo Forte
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| |
Collapse
|