151
|
Sharma VP, DesMarais V, Sumners C, Shaw G, Narang A. Immunostaining evidence for PI(4,5)P2 localization at the leading edge of chemoattractant-stimulated HL-60 cells. J Leukoc Biol 2008; 84:440-7. [PMID: 18477691 DOI: 10.1189/jlb.0907636] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is well known that in fMLP-stimulated neutrophils, phosphatidyl inositol 3,4,5-trisphosphate [PI(3,4,5)P3] localizes at the leading edge of the cells. However, no effort has been made to study the PI 4,5-bisphosphate [PI(4,5)P2] distribution in these cells. In fact, it has been suggested that PI(4,5)P2 is unlikely to localize, as its basal level is orders of magnitude higher than that of PI(3,4,5)P3. We developed an optimized immunostaining protocol for studying the endogenous distribution of PI(4,5)P2 in neutrophil-like HL-60 cells. We show that PI(4,5)P2 localizes sharply at the leading edge with an intensity gradient similar to that for PI(3,4,5)P3. The enzymes for the production of PI(4,5)P2, namely, PI5KIalpha and PI5KIgamma, were also found to localize at the leading edge, further supporting our finding that PI(4,5)P2 localizes at the leading edge. These results imply that complementary regulation of PI3K and phosphate and tensin homolog (PTEN) is not the sole or dominant mechanism of PI(3,4,5)P3 polarization in HL-60 cells.
Collapse
Affiliation(s)
- Ved P Sharma
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
152
|
Hayakawa M, Matsushima M, Hagiwara H, Oshima T, Fujino T, Ando K, Kikugawa K, Tanaka H, Miyazawa K, Kitagawa M. Novel insights into FGD3, a putative GEF for Cdc42, that undergoes SCF(FWD1/beta-TrCP)-mediated proteasomal degradation analogous to that of its homologue FGD1 but regulates cell morphology and motility differently from FGD1. Genes Cells 2008; 13:329-42. [PMID: 18363964 DOI: 10.1111/j.1365-2443.2008.01168.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that FGD1, the Cdc42 guanine nucleotide exchange factor (GEF) responsible for faciogenital dysplasia, is targeted by the ubiquitin ligase SCF(FWD1/beta-TrCP) upon phosphorylation of two serine residues in its DSGIDS motif and subsequently degraded by the proteasome. Here we show that FGD3, which was identified as a homologue of FGD1 but has been poorly characterized, has conserved the same motif and is down-regulated similarly by SCF(FWD1/beta-TrCP). Although FGD3 and FGD1 share strikingly similar Dbl homology (DH) domains and adjacent pleckstrin homology (PH) domains, both of which are responsible for guanine nucleotide exchange, there also exist remarkable differences in their structures. Indeed, FGD1 and FGD3 induced significantly different morphological changes in HeLa Tet-Off cells: whereas FGD1 induced long finger-like protrusions, FGD3 induced broad sheet-like protrusions when the level of GTP-bound Cdc42 was significantly increased by the inducible expression of FGD3. Furthermore, FGD1 and FGD3 reciprocally regulated cell motility: when inducibly expressed in HeLa Tet-Off cells, FGD1 stimulated cell migration whereas FGD3 inhibited it. Thus we demonstrate that the highly homologous GEFs, FGD1 and FGD3 play different roles to regulate cellular functions but that their intracellular levels are tightly controlled by the same destruction pathway through SCF(FWD1/beta-TrCP).
Collapse
Affiliation(s)
- Makio Hayakawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Bolourani P, Spiegelman GB, Weeks G. Rap1 activation in response to cAMP occurs downstream of ras activation during Dictyostelium aggregation. J Biol Chem 2008; 283:10232-40. [PMID: 18180289 DOI: 10.1074/jbc.m707459200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have used a doubly disrupted rasC(-)/rasG(-) strain of Dictyostelium discoideum, which ectopically expresses the carA gene, to explore the relationship between the activation of RasC and RasG, the two proteins that are necessary for optimum cAMP signaling, and the activation of Rap1, a Ras subfamily protein, that is also activated by cAMP. The ectopic expression of carA restored early developmental gene expression to the rasC(-)/rasG(-) strain, rendering it suitable for an analysis of cAMP signal transduction. Because there was negligible signaling through both the cAMP chemotactic pathway and the adenylyl cyclase activation pathway in the rasC(-)/rasG(-)/[act15]:carA strain, it is clear that RasG and RasC are the only two Ras subfamily proteins that directly control these pathways. The position of Rap1 in the signal transduction cascade was clarified by the finding that Rap1 activation was totally abolished in rasC(-)/rasG(-)/[act15]:carA and rasG(-) cells but only slightly reduced in rasC(-) cells. Rap1 activation, therefore, occurs downstream of the Ras proteins and predominantly, if not exclusively, downstream of RasG. The finding that in vitro guanylyl cyclase activation is also abolished in the rasC(-)/rasG(-)/[act15]:carA strain identifies RasG/RasC as the presumptive monomeric GTPases required for this activation.
Collapse
Affiliation(s)
- Parvin Bolourani
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
154
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
155
|
Shiota M, Kusakabe H, Hikita Y, Nakao T, Izumi Y, Iwao H. Pharmacogenomics of Cardiovascular Pharmacology: Molecular Network Analysis in Pleiotropic Effects of Statin — an Experimental Elucidation of the Pharmacologic Action From Protein-Protein Interaction Analysis. J Pharmacol Sci 2008; 107:15-9. [DOI: 10.1254/jphs.08r01fm] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
156
|
Basu S, Ray NT, Atkinson SJ, Broxmeyer HE. Protein phosphatase 2A plays an important role in stromal cell-derived factor-1/CXC chemokine ligand 12-mediated migration and adhesion of CD34+ cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:3075-85. [PMID: 17709522 DOI: 10.4049/jimmunol.179.5.3075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Migration of hemopoietic stem and progenitor cells (HSPC) is required for homing to bone marrow following transplantation. Therefore, it is critical to understand signals underlying directional movement of HSPC. Stromal cell-derived factor-1 (SDF-1)/CXCL12 is a potent chemoattractant for HSPC. In this study, we demonstrate that the serine-threonine protein phosphatase (PP)2A plays an important role in regulation of optimal level and duration of Akt/protein kinase B activation (a molecule important for efficient chemotaxis), in response to SDF-1. Inhibition of PP2A, using various pharmacological inhibitors of PP2A including okadaic acid (OA) as well as using genetic approaches including dominant-negative PP2A-catalytic subunit (PP2A-C) or PP2A-C small interfering RNA, in primary CD34(+) cord blood (CB) cells led to reduced chemotaxis. This was associated with impairment in polarization and slower speed of movement in response to SDF-1. Concomitantly, SDF-1-induced Akt phosphorylation was robust and prolonged. Following SDF-1 stimulation, Akt and PP2A-C translocate to plasma membrane with enhanced association of PP2A-C with Akt observed at the plasma membrane. Inhibition of PI3K by low-dose LY294002 partially recovered chemotactic activity of cells pretreated with OA. In addition to chemotaxis, adhesion of CD34(+) cells to fibronectin was impaired by OA pretreatment. Our study demonstrates PP2A plays an important role in chemotaxis and adhesion of CD34(+) CB cells in response to SDF-1. CD34(+) CB cells pretreated with OA showed impaired ability to repopulate NOD-SCID mice in vivo, suggesting physiological relevance of these observations.
Collapse
Affiliation(s)
- Sunanda Basu
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
157
|
Lokuta MA, Senetar MA, Bennin DA, Nuzzi PA, Chan KT, Ott VL, Huttenlocher A. Type Igamma PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Mol Biol Cell 2007; 18:5069-80. [PMID: 17928408 DOI: 10.1091/mbc.e07-05-0428] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cell polarization is necessary for directed migration and leukocyte recruitment to inflamed tissues. Recent progress has been made in defining the molecular mechanisms that regulate chemoattractant-induced cell polarity during chemotaxis, including the contribution of phosphoinositide 3-kinase (PI3K)-dependent phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] synthesis at the leading edge. However, less is known about the molecular composition of the cell rear and how the uropod functions during cell motility. Here, we demonstrate that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma661), which generates PtdIns(4,5)P(2), is enriched in the uropod during chemotaxis of primary neutrophils and differentiated HL-60 cells (dHL-60). Using time-lapse microscopy, we show that enrichment of PIPKIgamma661 at the cell rear occurs early upon chemoattractant stimulation and is persistent during chemotaxis. Accordingly, we were able to detect enrichment of PtdIns(4,5)P(2) at the uropod during chemotaxis. Overexpression of kinase-dead PIPKIgamma661 compromised uropod formation and rear retraction similar to inhibition of ROCK signaling, suggesting that PtdIns(4,5)P(2) synthesis is important to elicit the backness response during chemotaxis. Together, our findings identify a previously unknown function for PIPKIgamma661 as a novel component of the backness signal that regulates rear retraction during chemotaxis.
Collapse
Affiliation(s)
- Mary A Lokuta
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Kortholt A, King JS, Keizer-Gunnink I, Harwood AJ, Van Haastert PJM. Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol Biol Cell 2007; 18:4772-9. [PMID: 17898079 PMCID: PMC2096598 DOI: 10.1091/mbc.e07-05-0407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Generation of a phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] gradient within the plasma membrane is important for cell polarization and chemotaxis in many eukaryotic cells. The gradient is produced by the combined activity of phosphatidylinositol 3-kinase (PI3K) to increase PI(3,4,5)P(3) on the membrane nearest the polarizing signal and PI(3,4,5)P(3) dephosphorylation by phosphatase and tensin homolog deleted on chromosome ten (PTEN) elsewhere. Common to both of these enzymes is the lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], which is not only the substrate of PI3K and product of PTEN but also important for membrane binding of PTEN. Consequently, regulation of phospholipase C (PLC) activity, which hydrolyzes PI(4,5)P(2), could have important consequences for PI(3,4,5)P(3) localization. We investigate the role of PLC in PI(3,4,5)P(3)-mediated chemotaxis in Dictyostelium. plc-null cells are resistant to the PI3K inhibitor LY294002 and produce little PI(3,4,5)P(3) after cAMP stimulation, as monitored by the PI(3,4,5)P(3)-specific pleckstrin homology (PH)-domain of CRAC (PH(CRAC)GFP). In contrast, PLC overexpression elevates PI(3,4,5)P(3) and impairs chemotaxis in a similar way to loss of pten. PI3K localization at the leading edge of plc-null cells is unaltered, but dissociation of PTEN from the membrane is strongly reduced in both gradient and uniform stimulation with cAMP. These results indicate that local activation of PLC can control PTEN localization and suggest a novel mechanism to regulate the internal PI(3,4,5)P(3) gradient.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
159
|
Xu X, Meier-Schellersheim M, Yan J, Jin T. Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. ACTA ACUST UNITED AC 2007; 178:141-53. [PMID: 17606871 PMCID: PMC2064430 DOI: 10.1083/jcb.200611096] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gprotein-coupled receptor (GPCR) signaling mediates a balance of excitatory and inhibitory activities that regulate Dictyostelium chemosensing to cAMP. The molecular nature and kinetics of these inhibitors are unknown. We report that transient cAMP stimulations induce PIP3 responses without a refractory period, suggesting that GPCR-mediated inhibition accumulates and decays slowly. Moreover, exposure to cAMP gradients leads to asymmetric distribution of the inhibitory components. The gradients induce a stable accumulation of the PIP3 reporter PHCrac-GFP in the front of cells near the cAMP source. Rapid withdrawal of the gradient led to the reassociation of G protein subunits, and the return of the PIP3 phosphatase PTEN and PHCrac-GFP to their pre-stimulus distribution. Reapplication of cAMP stimulation produces a clear PHCrac-GFP translocation to the back but not to the front, indicating that a stronger inhibition is maintained in the front of a polarized cell. Our study demonstrates a novel spatiotemporal feature of currently unknown inhibitory mechanisms acting locally on the PI3K activation pathway.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
160
|
Wang Y, Ding SJ, Wang W, Yang F, Jacobs JM, Camp D, Smith RD, Klemke RL. Methods for pseudopodia purification and proteomic analysis. ACTA ACUST UNITED AC 2007; 2007:pl4. [PMID: 17712138 DOI: 10.1126/stke.4002007pl4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Directional cell migration requires the formation of a dominant pseudopodium in the direction toward which the cell migrates. When a migratory cell is stimulated with a chemoattractant or extracellular matrix (ECM) gradient, it responds with localized amplification of signals on the side facing the gradient. The signals mediate reorganization of the actin-myosin cytoskeleton, leading to morphological polarization of the cell and pseudopodium extension. To identify these signals, we developed an approach to biochemically isolate the pseudopodium from the cell body using 3.0-micrometer porous filters for large-scale quantitative proteomic and phosphoproteomic analysis. Here, we detail the methodology for pseudopodium purification and proteomic analysis. This model system should be widely applicable for the analysis of the pseudopodium proteome from various migratory cell lines, including primary and cancer cell lines stimulated with a diverse array of chemoattractants, ECM proteins, or both.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Bach TL, Chen QM, Kerr WT, Choi JK, Wu D, Koretzky GA, Zigmond S, Abrams CS. Phospholipase cbeta is critical for T cell chemotaxis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:2223-7. [PMID: 17675482 PMCID: PMC3228861 DOI: 10.4049/jimmunol.179.4.2223] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemokines acting through G protein-coupled receptors play an essential role in the immune response. PI3K and phospholipase C (PLC) are distinct signaling molecules that have been proposed in the regulation of chemokine-mediated cell migration. Studies with knockout mice have demonstrated a critical role for PI3K in G(alphai) protein-coupled receptor-mediated neutrophil and lymphocyte chemotaxis. Although PLCbeta is not essential for the chemotactic response of neutrophils, its role in lymphocyte migration has not been clearly defined. We compared the chemotactic response of peripheral T cells derived from wild-type mice with mice containing loss-of-function mutations in both of the two predominant lymphocyte PLCbeta isoforms (PLCbeta2 and PLCbeta3), and demonstrate that loss of PLCbeta2 and PLCbeta3 significantly impaired T cell migration. Because second messengers generated by PLCbeta lead to a rise in intracellular calcium and activation of PKC, we analyzed which of these responses was critical for the PLCbeta-mediated chemotaxis. Intracellular calcium chelation decreased the chemotactic response of wild-type lymphocytes, but pharmacologic inhibition of several PKC isoforms had no effect. Furthermore, calcium efflux induced by stromal cell-derived factor-1alpha was undetectable in PLCbeta2beta3-null lymphocytes, suggesting that the migration defect is due to the impaired ability to increase intracellular calcium. This study demonstrates that, in contrast to neutrophils, phospholipid second messengers generated by PLCbeta play a critical role in T lymphocyte chemotaxis.
Collapse
Affiliation(s)
- Tami L. Bach
- Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Qing-Min Chen
- Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Wesley T. Kerr
- Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - John K. Choi
- Department of Pediatrics, Division of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104; Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Dianqing Wu
- Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, 06030
| | - Gary A. Koretzky
- Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104
| | - Sally Zigmond
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles S. Abrams
- Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| |
Collapse
|
162
|
Chen Y, McQuade KJ, Guan XJ, Thomason PA, Wert MS, Stock JB, Cox EC. Isoprenylcysteine carboxy methylation is essential for development in Dictyostelium discoideum. Mol Biol Cell 2007; 18:4106-18. [PMID: 17699599 PMCID: PMC1995708 DOI: 10.1091/mbc.e06-11-1006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Members of the Ras superfamily of small GTPases and the heterotrimeric G protein gamma subunit are methylated on their carboxy-terminal cysteine residues by isoprenylcysteine methyltransferase. In Dictyostelium discoideum, small GTPase methylation occurs seconds after stimulation of starving cells by cAMP and returns quickly to basal levels, suggesting an important role in cAMP-dependent signaling. Deleting the isoprenylcysteine methyltransferase-encoding gene causes dramatic defects. Starving mutant cells do not propagate cAMP waves in a sustained manner, and they do not aggregate. Motility is rescued when cells are pulsed with exogenous cAMP, or coplated with wild-type cells, but the rescued cells exhibit altered polarity. cAMP-pulsed methyltransferase-deficient cells that have aggregated fail to differentiate, but mutant cells plated in a wild-type background are able to do so. Localization of and signaling by RasG is altered in the mutant. Localization of the heterotrimeric Ggamma protein subunit was normal, but signaling was altered in mutant cells. These data indicate that isoprenylcysteine methylation is required for intercellular signaling and development in Dictyostelium.
Collapse
Affiliation(s)
- Ying Chen
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Kyle J. McQuade
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
- Department of Biology, Mesa State College, Grand Junction, CO 81501
| | - Xiao-Juan Guan
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Peter A. Thomason
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Michael S. Wert
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Jeffry B. Stock
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| | - Edward C. Cox
- *Department of Molecular Biology, Princeton University, Princeton, NJ 08544; and
| |
Collapse
|
163
|
del Álamo JC, Meili R, Alonso-Latorre B, Rodríguez-Rodríguez J, Aliseda A, Firtel RA, Lasheras JC. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc Natl Acad Sci U S A 2007; 104:13343-8. [PMID: 17684097 PMCID: PMC1940228 DOI: 10.1073/pnas.0705815104] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell motility plays an essential role in many biological systems, but precise quantitative knowledge of the biophysical processes involved in cell migration is limited. Better measurements are needed to ultimately build models with predictive capabilities. We present an improved force cytometry method and apply it to the analysis of the dynamics of the chemotactic migration of the amoeboid form of Dictyostelium discoideum. Our explicit calculation of the force field takes into account the finite thickness of the elastic substrate and improves the accuracy and resolution compared with previous methods. This approach enables us to quantitatively study the differences in the mechanics of the migration of wild-type (WT) and mutant cell lines. The time evolution of the strain energy exerted by the migrating cells on their substrate is quasi-periodic and can be used as a simple indicator of the stages of the cell motility cycle. We have found that the mean velocity of migration v and the period of the strain energy T cycle are related through a hyperbolic law v = L/T, where L is a constant step length that remains unchanged in mutants with adhesion or contraction defects. Furthermore, when cells adhere to the substrate, they exert opposing pole forces that are orders of magnitude higher than required to overcome the resistance from their environment.
Collapse
Affiliation(s)
| | - Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, and
- Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | | | | | - Richard A. Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, and
- Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- To whom correspondence should be addressed at:
Natural Sciences Building, Room 6316, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380. E-mail:
| | | |
Collapse
|
164
|
Gao T, Roisin-Bouffay C, Hatton RD, Tang L, Brock DA, DeShazo T, Olson L, Hong WP, Jang W, Canseco E, Bakthavatsalam D, Gomer RH. A cell number-counting factor regulates levels of a novel protein, SslA, as part of a group size regulation mechanism in Dictyostelium. EUKARYOTIC CELL 2007; 6:1538-51. [PMID: 17660362 PMCID: PMC2043358 DOI: 10.1128/ec.00169-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing Dictyostelium cells form aggregation streams that break into groups of approximately 2 x 10(4) cells. The breakup and subsequent group size are regulated by a secreted multisubunit counting factor (CF). To elucidate how CF regulates group size, we isolated second-site suppressors of smlA(-), a transformant that forms small groups due to oversecretion of CF. smlA(-) sslA1(CR11) cells form roughly wild-type-size groups due to an insertion in the beginning of the coding region of sslA1, one of two highly similar genes encoding a novel protein. The insertion increases levels of SslA. In wild-type cells, the sslA1(CR11) mutation forms abnormally large groups. Reducing SslA levels by antisense causes the formation of smaller groups. The sslA(CR11) mutation does not affect the extracellular accumulation of CF activity or the CF components countin and CF50, suggesting that SslA does not regulate CF secretion. However, CF represses levels of SslA. Wild-type cells starved in the presence of smlA(-) cells, recombinant countin, or recombinant CF50 form smaller groups, whereas sslA1(CR11) cells appear to be insensitive to the presence of smlA(-) cells, countin, or CF50, suggesting that the sslA1(CR11) insertion affects CF signal transduction. We previously found that CF reduces intracellular glucose levels. sslA(CR11) does not significantly affect glucose levels, while glucose increases SslA levels. Together, the data suggest that SslA is a novel protein involved in part of a signal transduction pathway regulating group size.
Collapse
Affiliation(s)
- Tong Gao
- Howard Hughes Medical Institute, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
During chemotaxis, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) accumulates at the leading edge of a eukaryotic cell, where it induces the formation of pseudopodia. PIP(3) has been suggested to be the compass of cells navigating in gradients of signaling molecules. Recent observations suggest that chemotaxis is more complex than previously anticipated. Complete inhibition of all PIP(3) signaling has little effect, and alternative pathways have been identified. In addition, selective pseudopod growth and retraction are more important in directing cell movement than is the place where new pseudopodia are formed.
Collapse
|
166
|
Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW, Meili R, Devreotes PN, Firtel RA. G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 2007; 178:185-91. [PMID: 17635933 PMCID: PMC2064438 DOI: 10.1083/jcb.200611138] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 06/14/2007] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K)gamma and Dictyostelium PI3K are activated via G protein-coupled receptors through binding to the Gbetagamma subunit and Ras. However, the mechanistic role(s) of Gbetagamma and Ras in PI3K activation remains elusive. Furthermore, the dynamics and function of PI3K activation in the absence of extracellular stimuli have not been fully investigated. We report that gbeta null cells display PI3K and Ras activation, as well as the reciprocal localization of PI3K and PTEN, which lead to local accumulation of PI(3,4,5)P(3). Simultaneous imaging analysis reveals that in the absence of extracellular stimuli, autonomous PI3K and Ras activation occur, concurrently, at the same sites where F-actin projection emerges. The loss of PI3K binding to Ras-guanosine triphosphate abolishes this PI3K activation, whereas prevention of PI3K activity suppresses autonomous Ras activation, suggesting that PI3K and Ras form a positive feedback circuit. This circuit is associated with both random cell migration and cytokinesis and may have initially evolved to control stochastic changes in the cytoskeleton.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- Section of Cell and Developmental Biology, Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Starving, highly motile Dictyostelium cells maintain an active endocytic cycle, taking up their surface about every 11 minutes. Cell motility depends on a functional NSF (N-ethylmaleimide sensitive factor) protein--also essential for endocytosis and membrane trafficking generally--and we, therefore, investigated possible ways in which the endocytic cycle might be required for cell movement. First, NSF, and presumably membrane trafficking, are not required for the initial polarization of the leading edge in a cyclic-AMP gradient. Second, we can detect no evidence for membrane flow from the leading edge, as photobleached or photoactivated marks in the plasma membrane move forward roughly in step with the leading edge, rather than backwards from it. Third, we find that the surface area of a cell--measured from confocal reconstructions--constantly fluctuates during movement as it projects pseudopodia and otherwise changes shape; increases of 20-30% can often occur over a few minutes. These fluctuations cannot be explained by reciprocal changes in filopodial surface area and they substantially exceed the 2-3% by which membranes can stretch. We propose that the endocytic cycle has a key function in motility by allowing adjustment of cell surface area to match changes in shape and that, without this function, movement is severely impaired.
Collapse
Affiliation(s)
- David Traynor
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
168
|
Kim D, Dressler GR. PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 2007; 307:290-9. [PMID: 17540362 PMCID: PMC2129124 DOI: 10.1016/j.ydbio.2007.04.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/12/2007] [Accepted: 04/30/2007] [Indexed: 01/20/2023]
Abstract
The RET receptor tyrosine kinase is activated by GDNF and controls outgrowth and invasion of the ureteric bud epithelia in the developing kidney. In renal epithelial cells and in enteric neuronal precursor cells, activation of RET results in chemotaxis as Ret expressing cells invade the surrounding GDNF expressing tissue. One potential downstream signaling pathway governing RET mediated chemotaxis may require phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5) triphosphate. The PTEN tumor suppressor gene encodes a protein and lipid phosphatase that regulates cell growth, apoptosis and many other cellular processes. PTEN helps regulate cellular chemotaxis by antagonizing the PI3K signaling pathway through dephosphorylation of phosphotidylinositol triphosphates. In this report, we show that PTEN suppresses RET mediated cell migration and chemotaxis in cell culture assays, that RET activation results in asymmetric localization of inositol triphosphates and that loss of PTEN affects the pattern of branching morphogenesis in developing mouse kidneys. These data suggest a critical role for the PI3K/PTEN axis in shaping the pattern of epithelial branches in response to RET activation.
Collapse
Affiliation(s)
- Doyeob Kim
- Department of Pathology, University of Michigan, MSRB1, BSRB 2049, 109 Zina Pitcher Dr., Ann Arbor, MI 48109, USA
| | - Gregory R. Dressler
- Department of Pathology, University of Michigan, MSRB1, BSRB 2049, 109 Zina Pitcher Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
169
|
Langridge PD, Kay RR. Mutants in the Dictyostelium Arp2/3 complex and chemoattractant-induced actin polymerization. Exp Cell Res 2007; 313:2563-74. [PMID: 17553489 DOI: 10.1016/j.yexcr.2007.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 04/07/2007] [Accepted: 04/16/2007] [Indexed: 11/23/2022]
Abstract
We have investigated the role of the Arp2/3 complex in Dictyostelium cell chemotaxis towards cyclic-AMP and in the actin polymerization that is triggered by this chemoattractant. We confirm that the Arp2/3 complex is recruited to the cell perimeter, or into a pseudopod, after cyclic-AMP stimulation and that this is coincident with actin polymerization. This recruitment is inhibited when actin polymerization is blocked using latrunculin suggesting that the complex binds to pre-existing actin filaments, rather than to a membrane associated signaling complex. We show genetically that an intact Arp2/3 complex is essential in Dictyostelium and have produced partially active mutants in two of its subunits. In these mutants both phases of actin polymerization in response to cyclic-AMP are greatly reduced. One mutant projects pseudopodia more slowly than wild type and has impaired chemotaxis, together with slower movement. The second mutant chemotaxes poorly due to an adhesion defect, suggesting that the Arp2/3 complex plays a crucial part in adhering cells to the substratum as they move. We conclude that the Arp2/3 complex largely mediates the actin polymerization response to chemotactic stimulation and contributes to cell motility, pseudopod extension and adhesion in Dictyostelium chemotaxis.
Collapse
Affiliation(s)
- Paul D Langridge
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK. <>
| | | |
Collapse
|
170
|
Wessels D, Lusche DF, Kuhl S, Heid P, Soll DR. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J Cell Sci 2007; 120:2517-31. [PMID: 17623773 DOI: 10.1242/jcs.010876] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been suggested that the phosphatydylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] phosphatase and tensin homolog PTEN plays a fundamental role in Dictyostelium discoideum chemotaxis. To identify that role, the behavior of a pten(-) mutant was quantitatively analyzed using two-dimensional and three-dimensional computer-assisted methods. pten(-) cells were capable of polarizing and translocating in the absence of attractant, and sensing and responding to spatial gradients, temporal gradients and natural waves of attractant. However, all of these responses were compromised (i.e. less efficient) because of the fundamental incapacity of pten(-) cells to suppress lateral pseudopod formation and turning. This defect was equally manifested in the absence, as well as presence, of attractant. PTEN, which is constitutively localized in the cortex of polarized cells, was found essential for the attractant-stimulated increase in cortical myosin II and F-actin that is responsible for the increased suppression of pseudopods during chemotaxis. PTEN, therefore, plays a fundamental role in the suppression of lateral pseudopod formation, a process essential for the efficiency of locomotion and chemotaxis, but not in directional sensing.
Collapse
Affiliation(s)
- Deborah Wessels
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
171
|
Xu X, Müller-Taubenberger A, Adley KE, Pawolleck N, Lee VWY, Wiedemann C, Sihra TS, Maniak M, Jin T, Williams RSB. Attenuation of phospholipid signaling provides a novel mechanism for the action of valproic acid. EUKARYOTIC CELL 2007; 6:899-906. [PMID: 17435006 PMCID: PMC1951516 DOI: 10.1128/ec.00104-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 03/04/2007] [Indexed: 11/20/2022]
Abstract
Valproic acid (VPA) is used to treat epilepsy and bipolar disorder and to prevent migraine. It is also undergoing trials for cancer therapy. However, the biochemical and molecular biological actions of VPA are poorly understood. Using the social amoeba Dictyostelium discoideum, we show that an acute effect of VPA is the inhibition of chemotactic cell movement, a process partially dependent upon phospholipid signaling. Analysis of this process shows that VPA attenuates the signal-induced translocation of PH(Crac)-green fluorescent protein from cytosol to membrane, suggesting the inhibition of phosphatidylinositol-(3,4,5)-trisphosphate (PIP(3)) production. Direct labeling of lipids in vivo also shows a reduction in PIP and PIP(2) phosphorylation following VPA treatment. We further show that VPA acutely reduces endocytosis and exocytosis-processes previously shown to be dependent upon PIP(3) production. These results suggest that in Dictyostelium, VPA rapidly attenuates phospholipid signaling to reduce endocytic trafficking. To examine this effect in a mammalian model, we also tested depolarization-dependent neurotransmitter release in rat nerve terminals, and we show that this process is also suppressed upon application of VPA and an inhibitor of phosphatidylinositol 3-kinase. Although a more comprehensive analysis of the effect of VPA on lipid signaling will be necessary in mammalian systems, these results suggest that VPA may function to reduce phospholipid signaling processes and thus may provide a novel therapeutic effect for this drug.
Collapse
Affiliation(s)
- Xuehua Xu
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hoeller O, Kay RR. Chemotaxis in the absence of PIP3 gradients. Curr Biol 2007; 17:813-7. [PMID: 17462897 DOI: 10.1016/j.cub.2007.04.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 03/30/2007] [Accepted: 04/02/2007] [Indexed: 12/18/2022]
Abstract
Chemotaxing neutrophils and Dictyostelium amoebae produce in their plasma membranes the signaling lipid PI(3,4,5)P3 (PIP3) in gradients, which are orientated with the external chemotactic gradient and have been proposed to act as an internal compass, guiding movement of the cell. Evidence for and against this idea exists, but in all cases it depends on the use of inhibitors or gene knockouts, which may only incompletely abolish the PIP3 gradient. We have created a multiple gene-knockout strain in Dictyostelium lacking all five type-1 phosphoinositide 3-kinases encoded in the genome and the PTEN phosphatase and have thus removed all known ways for chemoattractant to produce PIP3 gradients in the plasma membrane. The resulting sextuple mutant is able to chemotax to cyclic-AMP with near wild-type efficiency and to trigger actin polymerization without apparent defect. There is, however, a consistent defect in movement speed in chemotaxis and especially in random movement. This work shows that polarization of membrane PIP3 is not necessary for accurate chemotaxis, but it can affect cell speed. A signaling pathway from receptor to cytoskeleton able to guide cells independently of polarized PIP3 and type-1 phosphoinositide 3-kinases must exist.
Collapse
Affiliation(s)
- Oliver Hoeller
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
173
|
Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A, Kuroda S. A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput Biol 2007; 3:e108. [PMID: 17559299 PMCID: PMC1892603 DOI: 10.1371/journal.pcbi.0030108] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/29/2007] [Indexed: 12/23/2022] Open
Abstract
Cell polarity is a general cellular process that can be seen in various cell types such as migrating neutrophils and Dictyostelium cells. The Rho small GTP(guanosine 5′-tri phosphate)ases have been shown to regulate cell polarity; however, its mechanism of emergence has yet to be clarified. We first developed a reaction–diffusion model of the Rho GTPases, which exhibits switch-like reversible response to a gradient of extracellular signals, exclusive accumulation of Cdc42 and Rac, or RhoA at the maximal or minimal intensity of the signal, respectively, and tracking of changes of a signal gradient by the polarized peak. The previous cell polarity models proposed by Subramanian and Narang show similar behaviors to our Rho GTPase model, despite the difference in molecular networks. This led us to compare these models, and we found that these models commonly share instability and a mass conservation of components. Based on these common properties, we developed conceptual models of a mass conserved reaction–diffusion system with diffusion–driven instability. These conceptual models retained similar behaviors of cell polarity in the Rho GTPase model. Using these models, we numerically and analytically found that multiple polarized peaks are unstable, resulting in a single stable peak (uniqueness of axis), and that sensitivity toward changes of a signal gradient is specifically restricted at the polarized peak (localized sensitivity). Although molecular networks may differ from one cell type to another, the behaviors of cell polarity in migrating cells seem similar, suggesting that there should be a fundamental principle. Thus, we propose that a mass conserved reaction–diffusion system with diffusion-driven instability is one of such principles of cell polarity. Eukaryotic cells such as neutrophils and Dictyostelium cells respond to temporal and spatial gradients of extracellular signals with directional movements. In a migrating cell, specific molecular events take place at the front and back edges. The spatially distinctive molecular accumulation inside cells is known as cell polarity. Despite numerous experimental and theoretical studies, its mechanism of emergence has yet to be clarified. We first developed a mathematical model of the Rho small GTP(guanosine 5′-tri phosphate)ases that cooperatively regulate cell polarity, and showed that the model generates specific spatial accumulation of the molecules. Based on our Rho GTPases model and other models, we further established a conceptual model, a mass conserved reaction–diffusion system, and showed that diffusion-driven instability and a mass conservation of molecules that have active and inactive states are sufficient for polarity formation. We numerically and analytically found that molecular accumulations at multiple sites are unstable, resulting in a single stable front–back axis, and that sensitivity toward changes of a signal gradient is specifically restricted at the front of a polarized cell. We propose that a mass conserved reaction–diffusion system is one of the fundamental principles of cell polarity.
Collapse
Affiliation(s)
- Mikiya Otsuji
- Department of Anesthesiology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
174
|
Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007; 8:194-205. [PMID: 17311006 DOI: 10.1038/nrn2056] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
After they are born and differentiate, neurons break their previous symmetry, dramatically change their shape, and establish two structurally and functionally distinct compartments - axons and dendrites - within one cell. How do neurons develop their morphologically and molecularly distinct compartments? Recent studies have implicated several signalling pathways evoked by extracellular signals as having essential roles in a number of aspects of neuronal polarization.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65, Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | | |
Collapse
|
175
|
Takeda K, Sasaki AT, Ha H, Seung HA, Firtel RA. Role of Phosphatidylinositol 3-Kinases in Chemotaxis in Dictyostelium. J Biol Chem 2007; 282:11874-84. [PMID: 17331950 DOI: 10.1074/jbc.m610984200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Experiments in several cell types revealed that local accumulation of phosphatidylinositol 3,4,5-triphosphate mediates the ability of cells to migrate during gradient sensing. We took a systematic approach to characterize the functions of the six putative Class I phosphatidylinositol 3-kinases (PI3K1-6) in Dictyostelium by creating a series of gene knockouts. These studies revealed that PI3K1-PI3K3 are the major PI3Ks for chemoattractant-mediated phosphatidylinositol 3,4,5-triphosphate production. We studied chemotaxis of the pi3k1/2/3 triple knock-out strain (pi3k1/2/3 null cells) to cAMP under two distinct experimental conditions, an exponential gradient emitted from a micropipette and a shallow, linear gradient in a Dunn chamber, using four cAMP concentrations ranging over a factor of 10,000. Under all conditions tested pi3k1/2/3 null cells moved slower and had less polarity than wild-type cells. pi3k1/2/3 null cells moved toward a chemoattractant emitted by a micropipette, although persistence was lower than that of wild-type or pi3k1/2 null cells. In shallow linear gradients, pi3k1/2 null cells had greater directionality defects, especially at lower chemoattractant concentrations. Our studies suggest that although PI3K is not essential for directional movement under some chemoattractant conditions, it is a key component of the directional sensing pathway and plays a critical role in linear chemoattractant gradients, especially at low chemoattractant concentrations. The relative importance of PI3K in chemotaxis is also dependent on the developmental stage of the cells. Our data suggest that the output of other signaling pathways suffices to mediate directional sensing when cells perceive a strong signal, but PI3K signaling is crucial for detecting weaker signals.
Collapse
Affiliation(s)
- Kosuke Takeda
- Section of Cell and Developmental Biology, Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0380, USA
| | | | | | | | | |
Collapse
|
176
|
Jeon TJ, Lee DJ, Merlot S, Weeks G, Firtel RA. Rap1 controls cell adhesion and cell motility through the regulation of myosin II. ACTA ACUST UNITED AC 2007; 176:1021-33. [PMID: 17371831 PMCID: PMC2064086 DOI: 10.1083/jcb.200607072] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1–guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin–mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell.
Collapse
Affiliation(s)
- Taeck J Jeon
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
177
|
Franca-Koh J, Kamimura Y, Devreotes PN. Leading-edge research: PtdIns(3,4,5)P3 and directed migration. Nat Cell Biol 2007; 9:15-7. [PMID: 17199126 DOI: 10.1038/ncb0107-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
178
|
Abstract
Cell migration requires the formation of a leading pseudopodium (lamellipodium) in the direction of movement. This process requires signal amplification to facilitate directional sensing mechanisms that lead to actin-mediated membrane extension. However, it has been difficult to study pseudopodia formation because it has not been possible to purify this structure for biochemical analysis. Here we describe a method to biochemically purify the protruding pseudopodium from the cell body compartment using polycarbonate microporous filters. Cells are cultured on top of 3.0-microm porous filters and allowed to extend pseudopodia through the small pores to the undersurface in response to a gradient of either chemokine or extracellular matrix (ECM) protein. Pseudopodia and cell bodies are then differentially scraped from the filter surface into lysis buffer for biochemical analysis. Using this method, it is possible to identify novel pseudopodium and cell body proteins as well as study the spatiotemporal organization of signaling processes that regulate pseudopodium formation and cell polarity. This method will help facilitate our understanding of how cells protrude pseudopodia through small openings in the ECM and vasculature during cancer cell invasion, immune cell surveillance, and embryonic development.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pathology and MooresCancer Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
179
|
Nishio M, Watanabe KI, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R, Kuroda S, Horie Y, Förster I, Mak TW, Yonekawa H, Penninger JM, Kanaho Y, Suzuki A, Sasaki T. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 2006; 9:36-44. [PMID: 17173042 DOI: 10.1038/ncb1515] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/23/2006] [Indexed: 01/01/2023]
Abstract
Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.
Collapse
Affiliation(s)
- Miki Nishio
- Department of Pathology and Immunology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Han JW, Leeper L, Rivero F, Chung CY. Role of RacC for the regulation of WASP and phosphatidylinositol 3-kinase during chemotaxis of Dictyostelium. J Biol Chem 2006; 281:35224-34. [PMID: 16968699 PMCID: PMC2853593 DOI: 10.1074/jbc.m605997200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
WASP family proteins are key players for connecting multiple signaling pathways to F-actin polymerization. To dissect the highly integrated signaling pathways controlling WASP activity, we identified a Rac protein that binds to the GTPase binding domain of WASP. Using two-hybrid and FRET-based functional assays, we identified RacC as a major regulator of WASP. RacC stimulates F-actin assembly in cell-free systems in a WASP-dependent manner. A FRET-based microscopy approach showed local activation of RacC at the leading edge of chemotaxing cells. Cells overexpressing RacC exhibit a significant increase in the level of F-actin polymerization upon cAMP stimulation, which can be blocked by a phosphatidylinositol (PI) 3-kinase inhibitor. Membrane translocation of PI 3-kinase and PI 3,4,5-trisphosphate reporter is absent in racC null cells. Cells overexpressing dominant negative RacC mutants and racC null cells move at a significantly slower speed and show a poor directionality during chemotaxis. Our results suggest that RacC plays an important role in PI 3-kinase activation and WASP activation for dynamic regulation of F-actin assembly during Dictyostelium chemotaxis.
Collapse
Affiliation(s)
- Ji W. Han
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Laura Leeper
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Francisco Rivero
- Zentrum für Biochemie and Zentrum für Molekulare Medizin, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | - Chang Y. Chung
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| |
Collapse
|
181
|
Miyanaga Y, Matsuoka S, Yanagida T, Ueda M. Stochastic signal inputs for chemotactic response in Dictyostelium cells revealed by single molecule imaging techniques. Biosystems 2006; 88:251-60. [PMID: 17184903 DOI: 10.1016/j.biosystems.2006.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 07/20/2006] [Indexed: 10/23/2022]
Abstract
Chemotactic cells can exhibit extreme sensitivity to chemical gradients. Theoretical estimations of the signal inputs required for chemotaxis suggest that the response can be achieved under the strong influence of stochastic input noise generated by the receptors during the transmembrane signaling. This arises a fundamental question regarding the mechanisms for directional sensing: how do cells obtain reliable information regarding gradient direction by using stochastically operating receptors and the downstream molecules? To address this question, we have developed single molecule imaging techniques to visualize signaling molecules responsible for chemotaxis in living Dictyostelium cells, allowing us to monitor the stochastic signaling processes directly. Single molecule imaging of a chemoattractant bound to a receptor demonstrates that signal inputs fluctuate with time and space. Downstream signaling molecules, such as PTEN and a PH domain-containing protein that are constituent parts of chemotactic signaling system, can also be followed at single molecule level in living cells, illuminating the stochastic nature of chemotactic signaling processes. In this report, we start with a brief introduction of chemotactic response of the eukaryotic cells, followed by an explanation for single molecule imaging techniques, and finally discuss these applications to chemotactic signaling system of Dictyostelium cells.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
182
|
Abstract
To perform the vital functions of motility and division, cells must undergo dramatic shifts in cell polarity. Recent evidence suggests that polarized distributions of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, which are clearly important for regulating cell morphology during migration, also play an important role during the final event in cell division, which is cytokinesis. Thus, there is a critical interplay between the membrane phosphoinositides and the cytoskeletal cortex that regulates the complex series of cell shape changes that accompany these two processes.
Collapse
Affiliation(s)
- Chris Janetopoulos
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
183
|
Abstract
Sch9 appears to be the Saccharomyces cerevisiae homolog of protein kinase B and is involved in the control of numerous nutrient-sensitive processes, including regulation of cell size, cell cycle progression, and stress resistance. Sch9 has also been implicated in the regulation of replicative and chronological life span. Systematic comparison of the phenotypes of sch9 and other AGC kinase mutants in fungal species with their counterparts in model eukaryotic organisms provides insight into the functions of AGC kinases. The availability of data from global studies of protein-protein interactions now makes it possible to predict and validate functional connections between Sch9, its putative substrates, and other proteins. This review highlights several emerging paradigms of AGC kinase signaling that are relevant for growth, development, and aging.
Collapse
Affiliation(s)
- Alex Sobko
- Iogen Corporation, 310 Hunt Club Road East, Ottawa, Ontario, K1V 1C1, Canada.
| |
Collapse
|
184
|
Myers SA, Leeper LR, Chung CY. WASP-interacting protein is important for actin filament elongation and prompt pseudopod formation in response to a dynamic chemoattractant gradient. Mol Biol Cell 2006; 17:4564-75. [PMID: 16899512 PMCID: PMC1635341 DOI: 10.1091/mbc.e05-10-0994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of WASP-interacting protein (WIP) in the process of F-actin assembly during chemotaxis of Dictyostelium was examined. Mutations of the WH1 domain of WASP led to a reduction in binding to WIPa, a newly identified homolog of mammalian WIP, a reduction of F-actin polymerization at the leading edge, and a reduction in chemotactic efficiency. WIPa localizes to sites of new pseudopod protrusion and colocalizes with WASP at the leading edge. WIPa increases F-actin elongation in vivo and in vitro in a WASP-dependent manner. WIPa translocates to the cortical membrane upon uniform cAMP stimulation in a time course that parallels F-actin polymerization. WIPa-overexpressing cells exhibit multiple microspike formation and defects in chemotactic efficiency due to frequent changes of direction. Reduced expression of WIPa by expressing a hairpin WIPa (hp WIPa) construct resulted in more polarized cells that exhibit a delayed response to a new chemoattractant source due to delayed extension of pseudopod toward the new gradient. These results suggest that WIPa is required for new pseudopod protrusion and prompt reorientation of cells toward a new gradient by initiating localized bursts of actin polymerization and/or elongation.
Collapse
Affiliation(s)
- Scott A Myers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | |
Collapse
|
185
|
Bolourani P, Spiegelman GB, Weeks G. Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum. Mol Biol Cell 2006; 17:4543-50. [PMID: 16885420 PMCID: PMC1635367 DOI: 10.1091/mbc.e05-11-1019] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On starvation, the cellular slime mold Dictyostelium discoideum initiates a program of development leading to formation of multicellular structures. The initial cell aggregation requires chemotaxis to cyclic AMP (cAMP) and relay of the cAMP signal by the activation of adenylyl cyclase (ACA), and it has been shown previously that the Ras protein RasC is involved in both processes. Insertional inactivation of the rasG gene resulted in delayed aggregation and a partial inhibition of early gene expression, suggesting that RasG also has a role in early development. Both chemotaxis and ACA activation were reduced in the rasG- cells, but the effect on chemotaxis was more pronounced. When the responses of rasG- cells to cAMP were compared with the responses of rasC- and rasC- rasG- strains, generated in otherwise isogenic backgrounds, these studies revealed that signal transduction through RasG is more important in chemotaxis and early gene expression, but that signal transduction through RasC is more important in ACA activation. Because the loss of either of the two Ras proteins alone did not result in a total loss of signal output down either of the branches of the cAMP signal-response pathway, there appears to be some overlap of function.
Collapse
Affiliation(s)
- Parvin Bolourani
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - George B. Spiegelman
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Gerald Weeks
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
186
|
Charest PG, Firtel RA. Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 2006; 16:339-47. [PMID: 16806895 DOI: 10.1016/j.gde.2006.06.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/09/2006] [Indexed: 01/17/2023]
Abstract
Chemotactic cells translate shallow chemoattractant gradients into a highly polarized intracellular response that includes the localized production of PI(3,4,5)P(3) on the side of the cell facing the highest chemoattractant concentration. Research over the past decade began to uncover the molecular mechanisms involved in this localized signal amplification controlling the leading edge of chemotaxing cells. These mechanisms have been shown to involve multiple positive feedback loops, in which the PI(3,4,5)P(3) signal amplifies itself independently of the original stimulus, as well as inhibitory signals that restrict PI(3,4,5)P(3) to the leading edge, thereby creating a steep intracellular PI(3,4,5)P(3) gradient. Molecules involved in positive feedback signaling at the leading edge include the small G-proteins Rac and Ras, phosphatidylinositol-3 kinase and F-actin, as part of interlinked feedback loops that lead to a robust production of PI(3,4,5)P(3).
Collapse
Affiliation(s)
- Pascale G Charest
- Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
187
|
Samadani A, Mettetal J, van Oudenaarden A. Cellular asymmetry and individuality in directional sensing. Proc Natl Acad Sci U S A 2006; 103:11549-54. [PMID: 16864788 PMCID: PMC1544207 DOI: 10.1073/pnas.0601909103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It is generally assumed that single cells in an isogenic population, when exposed to identical environments, exhibit the same behavior. However, it is becoming increasingly clear that, even in a genetically identical population, cellular behavior can vary significantly among cells. Here we explore this variability in the gradient-sensing response of Dictyostelium cells when exposed to repeated spatiotemporal pulses of chemoattractant. Our experiments show the response of a single cell to be highly reproducible from pulse to pulse. In contrast, a large variability in the response direction and magnitude is observed from cell to cell, even when different cells are exposed to the same pulse. First, these results indicate that the gradient-sensing network has inherent asymmetries that can significantly impact the ability of cells to faithfully sense the direction of extracellular signals (cellular asymmetry). Second, we find that the magnitude of this asymmetry varies greatly among cells. Some cells are able to accurately follow the direction of an extracellular stimulus, whereas, in other cells, the intracellular asymmetry dominates, resulting in a polarization axis that is independent of the direction of the extracellular cue (cellular individuality). We integrate these experimental findings into a model that treats the effective signal a cell detects as the product of the extracellular signal and the asymmetric intracellular signal. With this model we successfully predict the population response. This cellular individuality and asymmetry might fundamentally limit the fidelity of signal detection; in contrast, however, it might be beneficial by diversifying phenotypes in isogenic populations.
Collapse
Affiliation(s)
- Azadeh Samadani
- Department of Physics and G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jerome Mettetal
- Department of Physics and G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alexander van Oudenaarden
- Department of Physics and G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
188
|
Levine H, Kessler DA, Rappel WJ. Directional sensing in eukaryotic chemotaxis: a balanced inactivation model. Proc Natl Acad Sci U S A 2006; 103:9761-6. [PMID: 16782813 PMCID: PMC1502527 DOI: 10.1073/pnas.0601302103] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Indexed: 12/21/2022] Open
Abstract
Many eukaryotic cells, including Dictyostelium discoideum amoebae, fibroblasts, and neutrophils, are able to respond to chemoattractant gradients with high sensitivity. Recent studies have demonstrated that, after the introduction of a chemoattractant gradient, several chemotaxis pathway components exhibit a subcellular reorganization that cannot be described as a simple amplification of the external gradient. Instead, this reorganization has the characteristics of a switch, leading to a well defined front and back. Here, we propose a directional sensing mechanism in which two second messengers are produced at equal rates. The diffusion of one of them, coupled with an inactivation scheme, ensures a switch-like response to external gradients for a large range of gradient steepness and average concentration. Furthermore, our model is able to reverse the subcellular organization rapidly, and its response to multiple simultaneous chemoattractant sources is in good agreement with recent experimental results. Finally, we propose that the dynamics of a heterotrimeric G protein might allow for a specific biochemical realization of our model.
Collapse
Affiliation(s)
- Herbert Levine
- *Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093; and
| | - David A. Kessler
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Wouter-Jan Rappel
- *Center for Theoretical Biological Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093; and
| |
Collapse
|
189
|
Franca-Koh J, Kamimura Y, Devreotes P. Navigating signaling networks: chemotaxis in Dictyostelium discoideum. Curr Opin Genet Dev 2006; 16:333-8. [PMID: 16782326 DOI: 10.1016/j.gde.2006.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/08/2006] [Indexed: 01/21/2023]
Abstract
Studies of chemotaxis in the social amoeba Dictyostelium discoideum have revealed numerous conserved signaling networks that are activated by chemoattractants. In the presence of a uniformly distributed stimulus, these pathways are transiently activated, but in a gradient they are activated persistently and can be localized to either the front or the back of the cell. Recent studies have begun to elucidate how chemoattractant signaling regulates the three main components of chemotaxis: directional sensing, pseudopod extension, and polarization.
Collapse
Affiliation(s)
- Jonathan Franca-Koh
- Johns Hopkins University, School of Medicine, Department of Cell Biology, 725 North Wolfe Street, 114 WBSB, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
190
|
Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol 2006; 85:873-95. [PMID: 16740339 DOI: 10.1016/j.ejcb.2006.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, Natural Sciences Building, Room 6316, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
191
|
Abstract
The discovery in 1947 of directed cell movement in Dictyostelium discoideum quietly gave a birth to a new line of investigation into the molecular basis of chemotaxis. Some 60 years later, D. discoideum continues to be a key model system for the study of eukaryotic chemotaxis as well as an array of other important biological processes. As one of the most influential scientists, Guenther Gerisch has inspired several generations of researchers with his insightful and rigorous approaches applied to this model system. His studies have greatly contributed to current knowledge of many fundamental processes, such as cell-cell adhesion, phagocytosis, endocytosis, cytokinesis, cell signaling and chemotaxis. In this review, we wish to look back at the journey that has led to our current understanding of chemotaxis of eukaryotic cells.
Collapse
Affiliation(s)
- Tian Jin
- Chemotaxis Signal Section, Laboratories of Immunogenetics, NIAID, NIH, Rockville, MD 20852, USA.
| | | |
Collapse
|
192
|
Bandala-Sanchez E, Annesley SJ, Fisher PR. A phototaxis signalling complex in Dictyostelium discoideum. Eur J Cell Biol 2006; 85:1099-106. [PMID: 16735078 DOI: 10.1016/j.ejcb.2006.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phototaxis has been studied in a variety of organisms belonging to all three major taxonomic domains - the bacteria, the archaea and the eukarya. Dictyostelium discoideum is one of a small number of eukaryotic organisms which are amenable to studying the signalling pathways involved in phototaxis. In this study we provide evidence based on protein coimmunoprecipitation for a phototaxis signalling complex in Dictyostelium that includes the proteins RasD, filamin, ErkB, GRP125 and PKB.
Collapse
|
193
|
Meier-Schellersheim M, Xu X, Angermann B, Kunkel EJ, Jin T, Germain RN. Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method. PLoS Comput Biol 2006; 2:e82. [PMID: 16854213 PMCID: PMC1513273 DOI: 10.1371/journal.pcbi.0020082] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 05/23/2006] [Indexed: 01/11/2023] Open
Abstract
The signaling network underlying eukaryotic chemosensing is a complex combination of receptor-mediated transmembrane signals, lipid modifications, protein translocations, and differential activation/deactivation of membrane-bound and cytosolic components. As such, it provides particularly interesting challenges for a combined computational and experimental analysis. We developed a novel detailed molecular signaling model that, when used to simulate the response to the attractant cyclic adenosine monophosphate (cAMP), made nontrivial predictions about Dictyostelium chemosensing. These predictions, including the unexpected existence of spatially asymmetrical, multiphasic, cyclic adenosine monophosphate–induced PTEN translocation and phosphatidylinositol-(3,4,5)P3 generation, were experimentally verified by quantitative single-cell microscopy leading us to propose significant modifications to the current standard model for chemoattractant-induced biochemical polarization in this organism. Key to this successful modeling effort was the use of “Simmune,” a new software package that supports the facile development and testing of detailed computational representations of cellular behavior. An intuitive interface allows user definition of complex signaling networks based on the definition of specific molecular binding site interactions and the subcellular localization of molecules. It automatically translates such inputs into spatially resolved simulations and dynamic graphical representations of the resulting signaling network that can be explored in a manner that closely parallels wet lab experimental procedures. These features of Simmune were critical to the model development and analysis presented here and are likely to be useful in the computational investigation of many aspects of cell biology. Cells can orient their migration in response to small local differences in the concentration of extracellular chemicals (chemoattractants). Understanding this process (chemosensing) requires analyzing the time and position-dependent behavior of the signaling molecules within the responding cell, making it an especially interesting challenge for both experimental and computational investigation. Here, the authors report the development and testing of a new detailed molecular model of the chemosensing apparatus of the amoeba Dictyostelium discoidium reacting to the chemoattractant cyclic adenosine monophosphate. Computer simulations performed using this model predicted unexpected and previously unreported patterns of changes in the concentration and location of two important intracellular signaling molecules. These predictions were experimentally verified using microscopy, suggesting the need for modifications to the current “standard” model of eukaryotic chemosensing. The high degree of detail in their model was made possible by a new software suite called “Simmune,” which allows biologists to enter information about molecular interactions using a graphical interface. Without requiring the user to write any equations, the software automatically constructs the overall reaction network, simulates the model, and provides several ways to view the biochemistry of simulated cells. This new tool should help biologists to translate qualitative representations of cell biological processes into quantitative, predictive models.
Collapse
Affiliation(s)
- Martin Meier-Schellersheim
- Lymphocyte Biology Section and Program in Systems Immunology and Infectious Disease Modeling, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (RNG, general correspondence); (MMS, specific correspondence about Simmune)
| | - Xuehua Xu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Bethesda, Maryland, United States of America
| | - Bastian Angermann
- Lymphocyte Biology Section and Program in Systems Immunology and Infectious Disease Modeling, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute for Theoretical Physics, Faculty for Mathematics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Eric J Kunkel
- BioSeek, Inc., Burlingame, California, United States of America
| | - Tian Jin
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Bethesda, Maryland, United States of America
| | - Ronald N Germain
- Lymphocyte Biology Section and Program in Systems Immunology and Infectious Disease Modeling, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (RNG, general correspondence); (MMS, specific correspondence about Simmune)
| |
Collapse
|
194
|
Anjard C, Loomis WF. GABA induces terminal differentiation of Dictyostelium through a GABAB receptor. Development 2006; 133:2253-61. [PMID: 16672332 DOI: 10.1242/dev.02399] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When prespore cells approach the top of the stalk in a Dictyostelium fruiting body, they rapidly encapsulate in response to the signalling peptide SDF-2. Glutamate decarboxylase, the product of the gadA gene, generates GABA from glutamate. gadA is expressed exclusively in prespore cells late in development. We have found that GABA induces the release of the precursor of SDF-2, AcbA, from prespore cells. GABA also induces exposure of the protease domain of TagC on the surface of prestalk cells where it can convert AcbA to SDF-2. The receptor for GABA in Dictyostelium, GrlE, is a seven-transmembrane G-protein-coupled receptor that is most similar to GABA(B) receptors. The signal transduction pathway from GABA/GrlE appears to be mediated by PI3 kinase and the PKB-related protein kinase PkbR1. Glutamate acts as a competitive inhibitor of GABA functions in Dictyostelium and is also able to inhibit induction of sporulation by SDF-2. The signal transduction pathway from SDF-2 is independent of the GABA/glutamate signal transduction pathway, but the two appear to converge to control release of AcbA and exposure of TagC protease. These results indicate that GABA is not only a neurotransmitter but also an ancient intercellular signal.
Collapse
Affiliation(s)
- Christophe Anjard
- Center for Molecular Genetics, Division of Biological Sciences, University of California San Diego, La Jolla, 92093-0368, USA
| | | |
Collapse
|
195
|
Quinn CC, Pfeil DS, Chen E, Stovall EL, Harden MV, Gavin MK, Forrester WC, Ryder EF, Soto MC, Wadsworth WG. UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/lamellipodin. Curr Biol 2006; 16:845-53. [PMID: 16563765 DOI: 10.1016/j.cub.2006.03.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 03/09/2006] [Accepted: 03/10/2006] [Indexed: 12/30/2022]
Abstract
BACKGROUND Axon migrations are guided by extracellular cues that can act as repellants or attractants. However, the logic underlying the manner through which attractive and repulsive responses are determined is unclear. Many extracellular guidance cues, and the cellular components that mediate their signals, have been implicated in both types of responses. RESULTS Genetic analyses indicate that MIG-10/RIAM/lamellipodin, a cytoplasmic adaptor protein, functions downstream of the attractive guidance cue UNC-6/netrin and the repulsive guidance cue SLT-1/slit to direct the ventral migration of the AVM and PVM axons in C. elegans. Furthermore, overexpression of MIG-10 in the absence of UNC-6 and SLT-1 induces a multipolar phenotype with undirected outgrowths. Addition of either UNC-6 or SLT-1 causes the neurons to become monopolar. Moreover, the ability of UNC-6 or SLT-1 to direct the axon ventrally is enhanced by the MIG-10 overexpression. We also demonstrate that an interaction between MIG-10 and UNC-34, a protein that promotes actin-filament extension, is important in the response to guidance cues and that MIG-10 colocalizes with actin in cultured cells, where it can induce the formation of lamellipodia. CONCLUSIONS We conclude that MIG-10 mediates the guidance of AVM and PVM axons in response to the extracellular UNC-6 and SLT-1 guidance cues. The attractive and repulsive guidance cues orient MIG-10-dependant axon outgrowth to cause a directional response.
Collapse
Affiliation(s)
- Christopher C Quinn
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Matsuoka S, Iijima M, Watanabe TM, Kuwayama H, Yanagida T, Devreotes PN, Ueda M. Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein. J Cell Sci 2006; 119:1071-9. [PMID: 16507590 DOI: 10.1242/jcs.02824] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Molecular mechanisms of chemotactic response are highly conserved among many eukaryotic cells including human leukocytes and Dictyostelium discoideum cells. The cells can sense the differences in chemoattractant concentration across the cell body and respond by extending pseudopods from the cell side facing to a higher concentration. Pseudopod formation is regulated by binding of pleckstrin homology (PH)-domain-containing proteins to phosphatidylinositol 3,4,5-trisphosphates [PtdIns(3,4,5)P3] localized at the leading edge of chemotaxing cells. However, molecular mechanisms underlying dynamic features of a pseudopod have not been fully explained by the known properties of PH-domain-containing proteins. To investigate the mechanisms, we visualized single molecules of green fluorescent protein tagged to Crac (Crac-GFP), a PH-domain-containing protein in D. discoideum cells. Whereas populations of Crac molecules exhibited a stable steady-state localization at pseudopods, individual molecules bound transiently to PtdIns(3,4,5)P3 for approximately 120 milliseconds, indicating dynamic properties of the PH-domain-containing protein. Receptor stimulation did not alter the binding stability but regulated the number of bound PH-domain molecules by metabolism of PtdIns(3,4,5)P3. These results demonstrate that the steady-state localization of PH-domain-containing proteins at the leading edge of chemotaxing cells is dynamically maintained by rapid recycling of individual PH-domain-containing proteins. The short interaction between PH domains and PtdIns(3,4,5)P3 contributes to accurate and sensitive chemotactic movements through the dynamic redistributions. These dynamic properties might be a common feature of signaling components involved in chemotaxis.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
197
|
Khosla M, Kriebel P, Parent CA, Spiegelman GB, Weeks G. A secondary disruption of the dmpA gene encoding a large membrane protein allows aggregation defective Dictyostelium rasC- cells to form multicellular structures. Dev Biol 2006; 292:68-78. [PMID: 16490188 DOI: 10.1016/j.ydbio.2005.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 12/14/2005] [Accepted: 12/29/2005] [Indexed: 11/22/2022]
Abstract
The disruption of the gene encoding the Dictyostelium Ras subfamily protein, RasC, results in a strain that does not aggregate and has defects in both cAMP signal relay and cAMP chemotaxis. Disruption of a second gene in the rasC(-) strain by Restriction Enzyme Mediated Integration produced cells that were capable of forming multicellular structures in plaques on bacterial lawns. The disrupted gene (dmpA) encoded a novel membrane protein that was designated Dmp1. Although the rasC(-)/dmpA(-) cells progressed through early development, they did not form aggregation streams on a plastic surface under submerged starvation conditions. Phosphorylation of PKB in response to cAMP, which is significantly reduced in rasC(-) cells, remained low in the rasC(-)/dmpA(-) cells. However, in spite of this low PKB phosphorylation, the rasC(-)/dmpA(-) cells underwent efficient chemotaxis to cAMP in a spatial gradient. Cyclic AMP accumulation, which was greatly reduced in the rasC(-) cells, was restored in the rasC(-)/dmpA(-) strain, but cAMP relay in these cells was not apparent. These data indicate that although the rasC(-)/dmpA(-) cells were capable of associating to form multicellular structures, normal aggregative cell signaling was clearly not restored. Disruption of the dmpA gene in a wild-type background resulted in cells that exhibited a slight defect in aggregation and a more substantial defect in late development. These results indicate that, in addition to the role played by Dmp1 in aggregation, it is also involved in late development.
Collapse
Affiliation(s)
- Meenal Khosla
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
198
|
Wessels D, Srikantha T, Yi S, Kuhl S, Aravind L, Soll DR. The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod ofDictyosteliumamoebae during chemotaxis. J Cell Sci 2006; 119:370-9. [PMID: 16410554 DOI: 10.1242/jcs.02753] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Shwachman-Bodian-Diamond syndrome (SBDS) is an autosomal disorder with multisystem defects. The Shwachman-Bodian-Diamond syndrome gene (SBDS), which contains mutations in a majority of SBDS patients, encodes a protein of unknown function, although it has been strongly implicated in RNA metabolism. There is also some evidence that it interacts with molecules that regulate cytoskeletal organization. Recently, it has been demonstrated by computer-assisted methods that the single behavioral defect of polymorphonuclear leukocytes (PMNs) of SBDS patients is the incapacity to orient correctly in a spatial gradient of chemoattractant. We considered using the social amoeba Dictyostelium discoideum, a model for PMN chemotaxis, an excellent system for elucidating the function of the SBDS protein. We first identified the homolog of SBDS in D. discoideum and found that the amino acids that are altered in human disease were conserved. Given that several proteins involved in chemotactic orientation localize to the pseudopods of cells undergoing chemotaxis, we tested whether the SBDS gene product did the same. We produced an SBDS-GFP chimeric in-frame fusion gene, and generated transformants either with multiple ectopic insertions of the fusion gene or multiple copies of a non-integrated plasmid carrying the fusion gene. In both cases, the SBDS-GFP protein was dispersed equally through the cytoplasm and pseudopods of cells migrating in buffer. However, we observed differential enrichment of SBDS in the pseudopods of cells treated with the chemoattractant cAMP, suggesting that the SBDS protein may play a role in chemotaxis. In light of these results, we discuss how SBDS might function during chemotaxis.
Collapse
Affiliation(s)
- Deborah Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
A fundamental property of multicellular organisms is signal relay, the process by which information is transmitted from one cell to another. The integration of external information, such as nutritional status or developmental cues, is critical to the function of organisms. In addition, the spatial organizations of multicellular organisms require intricate signal relay mechanisms. Signal relay is remarkably exhibited during the life cycle of the social amoebae Dictyostelium discoideum, a eukaryote that retains a simple way of life, yet it has greatly contributed to our knowledge of the mechanisms cells use to communicate and integrate information. This chapter focuses on the molecules and mechanisms that Dictyostelium employs during its life cycle to relay temporal and spatial cues that are required for survival.
Collapse
Affiliation(s)
- Dana C Mahadeo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
200
|
Schneider IC, Haugh JM. Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts. ACTA ACUST UNITED AC 2005; 171:883-92. [PMID: 16314431 PMCID: PMC2171296 DOI: 10.1083/jcb.200509028] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Migration of eukaryotic cells toward a chemoattractant often relies on their ability to distinguish receptor-mediated signaling at different subcellular locations, a phenomenon known as spatial sensing. A prominent example that is seen during wound healing is fibroblast migration in platelet-derived growth factor (PDGF) gradients. As in the well-characterized chemotactic cells Dictyostelium discoideum and neutrophils, signaling to the cytoskeleton via the phosphoinositide 3-kinase pathway in fibroblasts is spatially polarized by a PDGF gradient; however, the sensitivity of this process and how it is regulated are unknown. Through a quantitative analysis of mathematical models and live cell total internal reflection fluorescence microscopy experiments, we demonstrate that PDGF detection is governed by mechanisms that are fundamentally different from those in D. discoideum and neutrophils. Robust PDGF sensing requires steeper gradients and a much narrower range of absolute chemoattractant concentration, which is consistent with a simpler system lacking the feedback loops that yield signal amplification and adaptation in amoeboid cells.
Collapse
Affiliation(s)
- Ian C Schneider
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|