151
|
Cheng CW, Jongwutiwes S, Putaporntip C, Jackson AP. Clinical expression and antigenic profiles of a Plasmodium vivax vaccine candidate: merozoite surface protein 7 (PvMSP-7). Malar J 2019; 18:197. [PMID: 31196098 PMCID: PMC6567670 DOI: 10.1186/s12936-019-2826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vivax malaria is the predominant form of malaria outside Africa, affecting about 14 million people worldwide, with about 2.5 billion people exposed. Development of a Plasmodium vivax vaccine is a priority, and merozoite surface protein 7 (MSP-7) has been proposed as a plausible candidate. The P. vivax genome contains 12 MSP-7 genes, which contribute to erythrocyte invasion during blood-stage infection. Previous analysis of MSP-7 sequence diversity suggested that not all paralogs are functionally equivalent. To explore MSP-7 functional diversity, and to identify the best vaccine candidate within the family, MSP-7 expression and antigenicity during bloodstream infections were examined directly from clinical isolates. Methods Merozoite surface protein 7 gene expression was profiled using RNA-seq data from blood samples isolated from ten human patients with vivax malaria. Differential expression analysis and co-expression cluster analysis were used to relate PvMSP-7 expression to genetic markers of life cycle stage. Plasma from vivax malaria patients was also assayed using a custom peptide microarray to measure antibody responses against the coding regions of 12 MSP-7 paralogs. Results Ten patients presented diverse transcriptional profiles that comprised four patient groups. Two MSP-7 paralogs, 7A and 7F, were expressed abundantly in all patients, while other MSP-7 genes were uniformly rare (e.g. 7J). MSP-7H and 7I were significantly more abundant in patient group 4 only, (two patients having experienced longer patency), and were co-expressed with a schizont-stage marker, while negatively associated with liver-stage and gametocyte-stage markers. Screening infections with a PvMSP-7 peptide array identified 13 linear B-cell epitopes in five MSP-7 paralogs that were recognized by plasma from all patients. Conclusions These results show that MSP-7 family members vary in expression profile during blood infections; MSP-7A and 7F are expressed throughout the intraerythrocytic development cycle, while expression of other paralogs is focused on the schizont. This may reflect developmental regulation, and potentially functional differentiation, within the gene family. The frequency of B-cell epitopes among paralogs also varies, with MSP-7A and 7L consistently the most immunogenic. Thus, MSP-7 paralogs cannot be assumed to have equal potential as vaccines. This analysis of clinical infections indicates that the most abundant and immunogenic paralog is MSP-7A. Electronic supplementary material The online version of this article (10.1186/s12936-019-2826-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
152
|
Adamou R, Dechavanne C, Sadissou I, d'Almeida T, Bouraima A, Sonon P, Amoussa R, Cottrell G, Le Port A, Theisen M, Remarque EJ, Longacre S, Moutairou K, Massougbodji A, Luty AJF, Nuel G, Migot-Nabias F, Sanni A, Garcia A, Milet J, Courtin D. Plasmodium falciparum merozoite surface antigen-specific cytophilic IgG and control of malaria infection in a Beninese birth cohort. Malar J 2019; 18:194. [PMID: 31185998 PMCID: PMC6560827 DOI: 10.1186/s12936-019-2831-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/04/2019] [Indexed: 12/02/2022] Open
Abstract
Background Substantial evidence indicates that cytophilic IgG responses to Plasmodium falciparum merozoite antigens play a role in protection from malaria. The specific targets mediating immunity remain unclear. Evaluating antibody responses in infants naturally-exposed to malaria will allow to better understand the establishment of anti-malarial immunity and to contribute to a vaccine development by identifying the most appropriate merozoite candidate antigens. Methods The study was based on parasitological and clinical active follow-up of infants from birth to 18 months of age conducted in the Tori Bossito area of southern Benin. For 399 infants, plasma levels of cytophilic IgG antibodies with specificity for five asexual stage malaria vaccine candidate antigens were determined by ELISA in infants’ peripheral blood at 6, 9, 12 and 15 months of age. Multivariate mixed logistic model was used to investigate the association between antibody levels and anti-malarial protection in the trimester following the IgG quantification. Moreover, the concentrations of merozoite antigen-specific IgG were compared between a group of infants apparently able to control asymptomatic malaria infection (CAIG) and a group of infants with no control of malaria infection (Control group (NCIG)). Protective effect of antibodies was also assessed after 15 months of malaria exposure with a Cox regression model adjusted on environmental risk. Results Cytophilic IgG responses to AMA1, MSP1, MSP2-3D7, MSP2-FC27, MSP3 and GLURP R2 were associated with increasing malarial infection risk in univariate analysis. The multivariate mixed model showed that IgG1 and IgG3 to AMA1 were associated with an increased risk of malarial infection. However infants from CAIG (n = 53) had significantly higher AMA1-, MSP2-FC27-, MSP3-specific IgG1 and AMA1-, MSP1-, MSP2-FC27-, MSP3 and GLURP-R2-specific IgG3 than those from NCIG (n = 183). The latter IgG responses were not associated with protection against clinical malaria in the whole cohort when protective effect is assessed after 15 months of malaria exposition. Conclusion In this cohort, merozoite antigen-specific cytophilic IgG levels represent a marker of malaria exposure in infants from 6 to 18 months of age. However, infants with resolution of asymptomatic infection (CAIG) seem to have acquired naturally immunity against P. falciparum. This observation is encouraging in the context of the development of multitarget P. falciparum vaccines.
Collapse
Affiliation(s)
- Rafiou Adamou
- MERIT, IRD, Université de Paris, 75006, Paris, France. .,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin. .,Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey Calavi, Benin.
| | | | - Ibrahim Sadissou
- MERIT, IRD, Université de Paris, 75006, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin.,Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.,Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Aziz Bouraima
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Paulin Sonon
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin.,Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.,Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Roukiyath Amoussa
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | | | - Agnès Le Port
- MERIT, IRD, Université de Paris, 75006, Paris, France
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Edmond J Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Shirley Longacre
- Laboratoire de Vaccinologie-Parasitaire, Institut Pasteur, Paris, France
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Adrian J F Luty
- MERIT, IRD, Université de Paris, 75006, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | - Gregory Nuel
- Laboratoire de Probabilités et Modèles aléatoires (LPMA), UMR CNRS 7599, UPMC, Paris, France
| | | | - Ambaliou Sanni
- Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Abomey Calavi, Benin
| | - André Garcia
- MERIT, IRD, Université de Paris, 75006, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Benin
| | | | - David Courtin
- MERIT, IRD, Université de Paris, 75006, Paris, France
| |
Collapse
|
153
|
Ebrahimzadeh Z, Mukherjee A, Crochetière MÈ, Sergerie A, Amiar S, Thompson LA, Gagnon D, Gaumond D, Stahelin RV, Dacks JB, Richard D. A pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosis. EMBO Rep 2019; 20:e47102. [PMID: 31097469 PMCID: PMC6549027 DOI: 10.15252/embr.201847102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Invasion of human red blood cells by the malaria parasite Plasmodium falciparum is an essential step in the development of the disease. Consequently, the molecular players involved in host cell invasion represent important targets for inhibitor design and vaccine development. The process of merozoite invasion is a succession of steps underlined by the sequential secretion of the organelles of the apical complex. However, little is known with regard to how their contents are exocytosed. Here, we identify a phosphoinositide-binding protein conserved in apicomplexan parasites and show that it is important for the attachment and subsequent invasion of the erythrocyte by the merozoite. Critically, removing the protein from its site of action by knock sideways preferentially prevents the secretion of certain types of micronemes. Our results therefore provide evidence for a role of phosphoinositide lipids in the malaria invasion process and provide further insight into the secretion of microneme organelle populations, which is potentially applicable to diverse apicomplexan parasites.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Angana Mukherjee
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Crochetière
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Audrey Sergerie
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - L Alexa Thompson
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dominic Gagnon
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - David Gaumond
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dave Richard
- Centre de Recherche en Infectiologie, CRCHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
154
|
Ray JE, Dobbs KR, Ogolla SO, Daud II, Vulule J, Sumba PO, Rochford R, Dent AE. Reduced Transplacental Transfer of Antimalarial Antibodies in Kenyan HIV-Exposed Uninfected Infants. Open Forum Infect Dis 2019; 6:ofz237. [PMID: 31214627 PMCID: PMC6563943 DOI: 10.1093/ofid/ofz237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Altered neonatal immune responses may contribute to the increased morbidity observed in HIV-exposed but uninfected (HEU) infants compared with HIV-unexposed uninfected (HUU) infants. We sought to examine the effects of prenatal HIV and malaria exposure on maternal and neonatal plasma cytokine profiles and transplacental antibody transfer. METHODS Forty-nine HIV+ and 50 HIV- women and their HIV-uninfected neonate pairs from Kenya were assessed. All HIV+ mothers received combination antiretroviral therapy. Maternal plasma and cord blood plasma samples at delivery were tested for 12 cytokines, total IgG, and IgG specific to 4 vaccine antigens and 14 Plasmodium falciparum antigens. RESULTS HIV+ mothers had lower levels of all 12 plasma cytokines at delivery compared with HIV- mothers, but there were no differences between HEU and HUU neonates. There were no differences in the cord-to-maternal ratios (CMRs) of vaccine-specific IgG between HIV+/HEU and HIV-/HUU maternal-neonate pairs. HIV+/HEU maternal-neonate pairs had significantly lower CMRs for 3 antimalarial IgGs-merozoite surface protein 9, circumsporozoite protein, and erythrocyte binding antigen 181-which remained statistically significant after adjustment for malaria in pregnancy. CONCLUSIONS In a cohort of optimally treated HIV-infected pregnant women, maternal HIV infection was associated with reduced transplacental transfer of antimalarial antibodies.
Collapse
Affiliation(s)
- Jessica E Ray
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Katherine R Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| | - Sidney O Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Ibrahim I Daud
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - John Vulule
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter O Sumba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, Ohio
| |
Collapse
|
155
|
Mensah-Brown HE, Aspeling-Jones H, Delimini RK, Asante KP, Amlabu E, Bah SY, Beeson JG, Wright GJ, Conway DJ, Awandare GA. Antibody Reactivity to Merozoite Antigens in Ghanaian Adults Correlates With Growth Inhibitory Activity Against Plasmodium falciparum in Culture. Open Forum Infect Dis 2019; 6:ofz254. [PMID: 31294045 PMCID: PMC6611546 DOI: 10.1093/ofid/ofz254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Background Plasmodium falciparum uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria. Methods We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay. Purified immunoglobulin (Ig)G from adult plasma samples was also tested for invasion inhibition against 7 different P falciparum culture lines, including clinical isolates. Results Antibodies against the antigens increased in an age-dependent manner in children. Breadth of reactivity to the different antigens was strongly associated with in vitro parasite growth inhibitory activity of IgG purified from the adults. The strongest predictors of breadth of antibody reactivity were age and transmission intensity, and a combination of reactivities to Rh2, Rh4, and Rh5 correlated strongly with invasion inhibition. Conclusions Growth inhibitory activity was significantly associated with breadth of antibody reactivity to merozoite antigens, encouraging the prospect of a multicomponent blood-stage vaccine.
Collapse
Affiliation(s)
- Henrietta E Mensah-Brown
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | | | - Rupert K Delimini
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - Emmanuel Amlabu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - James G Beeson
- The Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| | - Gavin J Wright
- Pathogens and Microbes Programme, Wellcome Trust Sanger Institute, United Kingdom
| | - David J Conway
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
156
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
157
|
Drew DR, Sanders PR, Weiss G, Gilson PR, Crabb BS, Beeson JG. Functional Conservation of the AMA1 Host-Cell Invasion Ligand Between P. falciparum and P. vivax: A Novel Platform to Accelerate Vaccine and Drug Development. J Infect Dis 2019; 217:498-507. [PMID: 29165651 DOI: 10.1093/infdis/jix583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax and P. falciparum malaria species have diverged significantly in receptor-ligand interactions and host-cell invasion. One protein common to both is the merozoite invasion ligand AMA1. While the general structure of AMA1 is similar between species, their sequences are divergent. Surprisingly, it was possible to genetically replace PfAMA1 with PvAMA1 in P. falciparum parasites. PvAMA1 complemented PfAMA1 function and supported invasion of erythrocytes by P. falciparum. Genetically modified P. falciparum expressing PvAMA1 evaded the invasion inhibitory effects of antibodies to PfAMA1, demonstrating species specificity of functional antibodies. We generated antibodies to recombinant PvAMA1 that effectively inhibited invasion, confirming the function of PvAMA1 in genetically modified parasites. Results indicate significant molecular flexibility in AMA1 enabling conserved function despite substantial sequence divergence across species. This provides powerful new tools to quantify the inhibitory activities of antibodies or drugs targeting PvAMA1, opening new opportunities for vaccine and therapeutic development against P. vivax.
Collapse
Affiliation(s)
| | | | | | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.,Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
158
|
PfMSA180 is a novel Plasmodium falciparum vaccine antigen that interacts with human erythrocyte integrin associated protein (CD47). Sci Rep 2019; 9:5923. [PMID: 30976034 PMCID: PMC6459815 DOI: 10.1038/s41598-019-42366-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Malaria symptoms and pathology are initiated by invasion of host erythrocytes by Plasmodium merozoites in a complex process that involves interactions between parasite and host erythrocyte proteins. Erythrocyte invasion presents attractive targets for malaria vaccine and drug development. Recently it was observed that antibodies against PfMSA180 (PF3D7_1014100) are associated with protection from symptomatic malaria, suggesting that this protein is a target of naturally acquired protective antibodies. Here we characterize PfMSA180, a ~170 kDa merozoite surface antigen that is potentially involved in erythrocyte invasion. PfMSA180 synthesized by the wheat germ cell-free system was used to raise antibodies in rabbits. Growth inhibition assays revealed that parasite invasion is inhibited by antibodies to the PfMSA180 C-terminal region, which contains an erythrocyte-binding domain. Surface plasmon resonance analysis showed that PfMSA180 specifically interacts with human erythrocyte integrin associated protein (CD47), suggesting that PfMSA180 plays a role during merozoite invasion of erythrocytes. Polymorphism analysis revealed that pfmsa180 is highly conserved among field isolates. We show that naturally acquired PfMSA180-specific antibodies responses are associated with protective immunity in a malaria-exposed Thai population. In sum, the data presented here supports further evaluation of the conserved erythrocyte-binding C-terminal region of PfMSA180 as an asexual blood-stage malaria vaccine candidate.
Collapse
|
159
|
Vimonpatranon S, Chotivanich K, Sukapirom K, Lertjuthaporn S, Khowawisetsut L, Pattanapanyasat K. Enumeration of the Invasion Efficiency of Plasmodium falciparum In Vitro in Four Different Red Blood Cell Populations Using a Three-Color Flow Cytometry-Based Method. Cytometry A 2019; 95:737-745. [PMID: 30924603 DOI: 10.1002/cyto.a.23750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
A novel in vitro culture system using variable concentrations of biotin/streptavidin to label red blood cells (RBCs) that allows for the simultaneous comparison of growth rates in Plasmodium falciparum malaria parasite in four heterogeneous target RBC populations is described. Donor RBCs containing both P. falciparum-infected RBCs and non-infected RBCs at 0.5% parasitemia were first labeled with 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) succinimidyl ester (DDAO-SE) followed by co-culture with a mixture of equal numbers of four differentially biotin/streptavidin labeled RBC populations. After two to three schizogonic growth cycles, co-cultures were harvested and stained with streptavidin-phycoerythrin (SA-PE) followed by staining of parasite-infected RBCs with nucleic acid fluorochrome SYBR Green I. To demonstrate the application of this method, some target RBC populations that had sialic acid residues removed using neuraminidase treatment were mixed with RBC populations without enzymatic treatment and incubated with donor parasitized RBCs strain W2 (sialic acid-dependent) or 3D7 (sialic acid-independent). Significant less susceptibility to malaria parasite invasion was obtained with enzyme-treated RBC populations when compared with non-treated RBCs in blood samples from the same individual when using malaria parasite strain W2, whereas no difference in percent parasitemias was noted following infection with malaria parasite strain 3D7. This novel malaria culture method is cheap and provides increased sensitivity for direct comparison of parasite growth over time of any of the four RBC populations under identical conditions and eliminates the experimental bias due to contaminated donor RBCs. The application of biotin-labeled RBCs will therefore provide a better understanding of invasion phenotype-specific host-parasite interactions and the extent of complex malaria invasion mechanism. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Sinmanus Vimonpatranon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasama Sukapirom
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakaorat Lertjuthaporn
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
160
|
Wilson KL, Pouniotis D, Hanley J, Xiang SD, Ma C, Coppel RL, Plebanski M. A Synthetic Nanoparticle Based Vaccine Approach Targeting MSP4/5 Is Immunogenic and Induces Moderate Protection Against Murine Blood-Stage Malaria. Front Immunol 2019; 10:331. [PMID: 30930890 PMCID: PMC6428706 DOI: 10.3389/fimmu.2019.00331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria remains a significant health problem in many tropical and sub-tropical regions. The development of vaccines against the clinically active blood-stage of infection needs to consider variability and polymorphism in target antigens, and an adjuvant system able to induce broad spectrum immunity comprising both antibodies and helper T cells. Moreover, recent studies have shown some conventional pro-inflammatory adjuvants can also promote expansion of immunosuppressive regulatory T cells (Treg) and myeloid derived suppressor cells (MDSC), both of which could negatively impact malaria disease progression. Herein, we explore the ability of a model nanoparticle delivery system (polystyrene nanoparticles; PSNPs), previously proven to not induce conventional inflammation, Treg or MDSC, to induce immunity to MSP4/5 from Plasmodium yoelii, a member of the MSP4 and MSP5 family of proteins which are highly conserved across diverse malaria species including P. falciparum. The results show PSNPs-MSP4/5 conjugates are highly immunogenic, inducing immune responses comprising both T helper 1 (Th1) and Th2 cellular immunity, and a spectrum of antibody subclasses including IgG1, IgG2a, and IgG2b. Benchmarked against Alum and Complete Freund's Adjuvant (CFA), the immune responses that were induced were of comparable or higher magnitude, for both T cell frequencies by ELISpot and antibody responses in terms of ELISA end titer. Importantly, immunization with PSNPs-MSP4/5 induced partial protection against malaria blood-stage infection (50–80%) shown to be mechanistically dependent on interferon gamma (IFN-γ) production. These results expand the scope of adjuvants considered for malaria blood-stage vaccine development to those that do not use conventional adjuvant pathways and emphasizes the critical role of cellular immunity and specifically IFN-γ producing cells in providing moderate protection against blood-stage malaria comparable to Freunds adjuvant.
Collapse
Affiliation(s)
- Kirsty L Wilson
- Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Dodie Pouniotis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jennifer Hanley
- Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sue D Xiang
- Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Charles Ma
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
161
|
Dobaño C, Santano R, Vidal M, Jiménez A, Jairoce C, Ubillos I, Dosoo D, Aguilar R, Williams NA, Díez-Padrisa N, Ayestaran A, Valim C, Asante KP, Owusu-Agyei S, Lanar D, Chauhan V, Chitnis C, Dutta S, Angov E, Gamain B, Coppel RL, Beeson JG, Reiling L, Gaur D, Cavanagh D, Gyan B, Nhabomba AJ, Campo JJ, Moncunill G. Differential Patterns of IgG Subclass Responses to Plasmodium falciparum Antigens in Relation to Malaria Protection and RTS,S Vaccination. Front Immunol 2019; 10:439. [PMID: 30930896 PMCID: PMC6428712 DOI: 10.3389/fimmu.2019.00439] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
Naturally acquired immunity (NAI) to Plasmodium falciparum malaria is mainly mediated by IgG antibodies but the subclasses, epitope targets and effector functions have not been unequivocally defined. Dissecting the type and specificity of antibody responses mediating NAI is a key step toward developing more effective vaccines to control the disease. We investigated the role of IgG subclasses to malaria antigens in protection against disease and the factors that affect their levels, including vaccination with RTS,S/AS01E. We analyzed plasma and serum samples at baseline and 1 month after primary vaccination with RTS,S or comparator in African children and infants participating in a phase 3 trial in two sites of different malaria transmission intensity: Kintampo in Ghana and Manhiça in Mozambique. We used quantitative suspension array technology (qSAT) to measure IgG1−4 responses to 35 P. falciparum pre-erythrocytic and blood stage antigens. Our results show that the pattern of IgG response is predominantly IgG1 or IgG3, with lower levels of IgG2 and IgG4. Age, site and RTS,S vaccination significantly affected antibody subclass levels to different antigens and susceptibility to clinical malaria. Univariable and multivariable analysis showed associations with protection mainly for cytophilic IgG3 levels to selected antigens, followed by IgG1 levels and, unexpectedly, also with IgG4 levels, mainly to antigens that increased upon RTS,S vaccination such as MSP5 and MSP1 block 2, among others. In contrast, IgG2 was associated with malaria risk. Stratified analysis in RTS,S vaccinees pointed to novel associations of IgG4 responses with immunity mainly involving pre-erythrocytic antigens upon RTS,S vaccination. Multi-marker analysis revealed a significant contribution of IgG3 responses to malaria protection and IgG2 responses to malaria risk. We propose that the pattern of cytophilic and non-cytophilic IgG antibodies is antigen-dependent and more complex than initially thought, and that mechanisms of both types of subclasses could be involved in protection. Our data also suggests that RTS,S efficacy is significantly affected by NAI, and indicates that RTS,S vaccination significantly alters NAI.
Collapse
Affiliation(s)
- Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - David Dosoo
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health, Boston, MA, United States
| | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana.,Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Evelina Angov
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Benoit Gamain
- Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, UMR_S1134, Inserm, INTS, Université Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | | | | | - Deepak Gaur
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - David Cavanagh
- Ashworth Laboratories, Centre for Immunity, Infection and Evolution, School of Biological Sciences, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Gyan
- Kintampo Health Research Centre, Kintampo, Ghana.,Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Joseph J Campo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| |
Collapse
|
162
|
Han JH, Cheng Y, Muh F, Ahmed MA, Cho JS, Nyunt MH, Jeon HY, Ha KS, Na S, Park WS, Hong SH, Shin HJ, Russell B, Han ET. Inhibition of parasite invasion by monoclonal antibody against epidermal growth factor-like domain of Plasmodium vivax merozoite surface protein 1 paralog. Sci Rep 2019; 9:3906. [PMID: 30846737 PMCID: PMC6405985 DOI: 10.1038/s41598-019-40321-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/30/2019] [Indexed: 01/04/2023] Open
Abstract
The Plasmodium vivax merozoite surface protein 1 paralog (PvMSP1P), which has epidermal growth factor (EGF)-like domains, was identified as a novel erythrocyte adhesive molecule. This EGF-like domain (PvMSP1P-19) elicited high level of acquired immune response in patients. Antibodies against PvMSP1P significantly reduced erythrocyte adhesion activity to its unknown receptor. To determine PvMSP1P-19-specific antibody function and B-cell epitopes in vivax patients, five monoclonal antibodies (mAbs) and 18-mer peptides were generated. The mAb functions were determined by erythrocyte-binding inhibition assay and invasion inhibition assay with P. knowlesi. B-cell epitopes of PvMSP1P-19 domains were evaluated by peptide microarray. The pvmsp1p-19 sequences showed limited polymorphism in P. vivax worldwide isolates. The 1BH9-A10 showed erythrocyte binding inhibitory by interaction with the N-terminus of PvMSP1P-19, while this mAb failed to recognize PkMSP1P-19 suggesting the species-specific for P. vivax. Other mAbs showed cross-reactivity with PkMSP1P-19. Among them, the 2AF4-A2 and 2AF4-A6 mAb significantly reduced parasite invasion through C-terminal recognition. The linear B-cell epitope in naturally exposed P. vivax patient was identified at three linear epitopes. In this study, PvMSP1P-19 N-terminal-specific 1BH9-A10 and C-terminal-specific 2AF4 mAbs showed functional activity for epitope recognition suggesting that PvMSP1P may be useful for vaccine development strategy for specific single epitope to prevent P. vivax invasion.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Md Atique Ahmed
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jee-Sun Cho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 117597, Singapore; Singapore Immunology Network (SIgN), A*STAR, Singapore, 138648, Singapore.,Jenner Institute Laboratories, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | | | - Hye-Yoon Jeon
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon national University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, and Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 117597, Singapore; Singapore Immunology Network (SIgN), A*STAR, Singapore, 138648, Singapore
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
163
|
Garcia-Longoria L, Marzal A, de Lope F, Garamszegi L. Host-parasite interaction explains variation in the prevalence of avian haemosporidians at the community level. PLoS One 2019; 14:e0205624. [PMID: 30840636 PMCID: PMC6402683 DOI: 10.1371/journal.pone.0205624] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Parasites are a selective force that shape host community structure and dynamics, but host communities can also influence parasitism. Understanding the dual nature from host-parasite interactions can be facilitated by quantifying the variation in parasite prevalence among host species and then comparing that variation to other ecological factors that are known to also shape host communities. Avian haemosporidian parasites (e.g. Plasmodium and Haemoproteus) are abundant and widespread representing an excellent model for the study of host-parasite interactions. Several geographic and environmental factors have been suggested to determine prevalence of avian haemosporidians in bird communities. However, it remains unknown whether host and parasite traits, represented by phylogenetic distances among species and degree of specialization in host-parasite relationships, can influence infection status. The aims of this study were to analyze factors affecting infection status in a bird community and to test whether the degree of parasite specialization on their hosts is determined by host traits. Our statistical analyses suggest that infection status is mainly determined by the interaction between host species and parasite lineages where tolerance and/or susceptibility to parasites plays an essential role. Additionally, we found that although some of the parasite lineages infected a low number of bird individuals, the species they infected were distantly related and therefore the parasites themselves should not be considered typical host specialists. Infection status was higher for generalist than for specialist parasites in some, but not all, host species. These results suggest that detected prevalence in a species mainly results from the interaction between host immune defences and parasite exploitation strategies wherein the result of an association between particular parasite lineages and particular host species is idiosyncratic.
Collapse
Affiliation(s)
- Luz Garcia-Longoria
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz (Spain)
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, Lund, Sweden
- * E-mail:
| | - Alfonso Marzal
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz (Spain)
| | - Florentino de Lope
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Badajoz (Spain)
| | - Laszlo Garamszegi
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Seville, Spain
- MTA-ELTE, Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
164
|
Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun 2019; 10:610. [PMID: 30723225 PMCID: PMC6363798 DOI: 10.1038/s41467-019-08528-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation. We identify merozoite targets of complement-fixing antibodies and identify antigen-specific complement-fixing antibodies that are strongly associated with protection from malaria in a longitudinal study of children. Using statistical modelling, combining three different antigens targeted by complement-fixing antibodies could increase the potential protective effect to over 95%, and we identify antigens that were common in the most protective combinations. Our findings support antibody-complement interactions against merozoite antigens as important anti-malaria immune mechanisms, and identify specific merozoite antigens for further evaluation as vaccine candidates. Antibodies against Plasmodium falciparum merozoites that fix complement can inhibit blood-stage replication. Here, Reiling et al. show that complement-fixing antibodies strongly correlate with protective immunity in children, identify the merozoite targets, and predict antigen combinations that should result in strong protection.
Collapse
|
165
|
Pritam M, Singh G, Swaroop S, Singh AK, Singh SP. Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinformatics 2019; 19:468. [PMID: 30717656 PMCID: PMC7394322 DOI: 10.1186/s12859-018-2482-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Background In the current scenario, designing of world-wide effective malaria vaccine against Plasmodium falciparum remain challenging despite the significant progress has been made in last few decades. Conventional vaccinology (isolate, inactivate and inject) approaches are time consuming, laborious and expensive; therefore, the use of computational vaccinology tools are imperative, which can facilitate the design of new and promising vaccine candidates. Results In current investigation, initially 5548 proteins of P. falciparum genome were carefully chosen for the incidence of signal peptide/ anchor using SignalP4.0 tool that resulted into 640 surface linked proteins (SLP). Out of these SLP, only 17 were predicted to contain GPI-anchors using PredGPI tool in which further 5 proteins were considered as malarial antigenic adhesins by MAAP and VaxiJen programs, respectively. In the subsequent step, T cell epitopes of 5 genome derived predicted antigenic adhesins (GDPAA) and 5 randomly selected known malarial adhesins (RSKMA) were analysed employing MHC class I and II tools of IEDB analysis resource. Finally, VaxiJen scored T cell epitopes from each antigen were considered for prediction of population coverage (PPC) analysis in the world-wide population including malaria endemic regions. The validation of the present in silico strategy was carried out by comparing the PPC of combined (MHC class I and II) predicted epitope ensemble among GDPAA (99.97%), RSKMA (99.90%) and experimentally known epitopes (EKE) of P. falciparum (97.72%) pertaining to world-wide human population. Conclusions The present study systematically screened 5 potential protective antigens from P. falciparum genome using bioinformatics tools. Interestingly, these GDPAA, RSKMA and EKE of P. falciparum epitope ensembles forecasted to contain highly promiscuous T cell epitopes, which are potentially effective for most of the world-wide human population with malaria endemic regions. Therefore, these epitope ensembles could be considered in near future for novel and significantly effective vaccine candidate against malaria. Electronic supplementary material The online version of this article (10.1186/s12859-018-2482-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Suchit Swaroop
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Akhilesh Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| |
Collapse
|
166
|
Barua P, Beeson JG, Maleta K, Ashorn P, Rogerson SJ. The impact of early life exposure to Plasmodium falciparum on the development of naturally acquired immunity to malaria in young Malawian children. Malar J 2019; 18:11. [PMID: 30658632 PMCID: PMC6339377 DOI: 10.1186/s12936-019-2647-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
Background Antibodies targeting malaria blood-stage antigens are important targets of naturally acquired immunity, and may act as valuable biomarkers of malaria exposure. Methods Six-hundred and one young Malawian children from a randomized trial of prenatal nutrient supplementation with iron and folic acid or pre- and postnatal multiple micronutrients or lipid-based nutrient supplements were followed up weekly at home and febrile episodes were investigated for malaria from birth to 18 months of age. Antibodies were measured for 601 children against merozoite surface proteins (MSP1 19kD, MSP2), erythrocyte binding antigen 175 (EBA175), reticulocyte binding protein homologue 2 (Rh2A9), schizont extract and variant surface antigens expressed by Plasmodium falciparum-infected erythrocytes (IE) at 18 months of age. The antibody measurement data was related to concurrent malaria infection and to documented episodes of clinical malaria. Results At 18 months of age, antibodies were significantly higher among parasitaemic than aparasitaemic children. Antibody levels against MSP1 19kD, MSP2, schizont extract, and IE variant surface antigens were significantly higher in children who had documented episodes of malaria than in children who did not. Antibody levels did not differ between children with single or multiple malaria episodes before 18 months, nor between children who had malaria before 6 months of age or between 6 and 18 months. Conclusions Antibodies to merozoite and IE surface antigens increased following infection in early childhood, but neither age at first infection nor number of malaria episodes substantially affected antibody acquisition. These findings have implications for malaria surveillance during early childhood in the context of elimination. Trials registration Clinical Trials Registration: NCT01239693 (Date of registration: 11-10-2010). URL: http://www.ilins.org
Collapse
Affiliation(s)
- Priyanka Barua
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - James G Beeson
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Burnet Institute, Melbourne, VIC, 3004, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | - Kenneth Maleta
- School of Public Health and Family Medicine, University of Malawi, Blantyre 3, Malawi
| | - Per Ashorn
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, 33100, Tampere, Finland.,Research and Development, Maternal, Newborn and Adolescent Health, World Health Organization, Geneva 27, 1211, Switzerland
| | - Stephen J Rogerson
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
167
|
Mbengue B, Fall MM, Varela ML, Loucoubar C, Joos C, Fall B, Niang MS, Niang B, Mbow M, Dieye A, Perraut R. Analysis of antibody responses to selected Plasmodium falciparum merozoite surface antigens in mild and cerebral malaria and associations with clinical outcomes. Clin Exp Immunol 2019; 196:86-96. [PMID: 30580455 DOI: 10.1111/cei.13254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/28/2022] Open
Abstract
Merozoite surface proteins (MSPs) are critical for parasite invasion; they represent attractive targets for antibody-based protection against clinical malaria. To identify protection-associated target MSPs, the present study analysed antibody responses to whole merozoite extract (ME) and to defined MSP recombinant antigens in hospitalized patients from a low endemic urban area as a function of disease severity (mild versus cerebral malaria). Sera from 110 patients with confirmed severe cerebral malaria (CM) and 91 patients with mild malaria (MM) were analysed (mean age = 29 years) for total and subclass immunoglobulin (Ig)G to ME and total IgG to MSP1p19, MSP2, MSP3, MSP4 and MSP5 by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were evaluated using the antibody-dependent respiratory burst (ADRB) assay in a subset of sera. There was a trend towards higher IgG1 and IgG4 levels to ME in CM compared to MM; only ME IgM responses differed significantly between fatal and surviving CM patients. Increased prevalence of IgG to individual MSPs was found in the CM compared to the MM group, including significantly higher levels of IgG to MSP4 and MSP5 in the former. Sera from fatal (24·5%) versus surviving cases showed significantly lower IgG to MSP1p19 and MSP3 (P < 0·05). ADRB assay readouts correlated with high levels of anti-MSP IgG, and trended higher in sera from patients with surviving compared to fatal CM outcome (P = 0·07). These results document strong differential antibody responses to MSP antigens as targets of protective immunity against CM and in particular MSP1p19 and MSP3 as prognostic indicators.
Collapse
Affiliation(s)
- B Mbengue
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal.,Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal
| | - M M Fall
- Service de Réanimation, Hôpital Principal de Dakar, HPD, Senegal
| | - M-L Varela
- Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| | - C Loucoubar
- Groupe de Biostatistique et Bioinformatique, IPD, Senegal
| | - C Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| | - B Fall
- Fédération des Laboratoires, Hôpital Principal de Dakar, HPD, Senegal
| | - M S Niang
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal
| | - B Niang
- Service de Réanimation, Hôpital Principal de Dakar, HPD, Senegal
| | - M Mbow
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal
| | - A Dieye
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal.,Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal
| | - R Perraut
- Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal.,Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| |
Collapse
|
168
|
Lu C, Zheng X, Zhang W, Zhao H, MacRaild CA, Norton RS, Zhuang Y, Wang J, Zhang X. Interaction of merozoite surface protein 2 with lipid membranes. FEBS Lett 2019; 593:288-295. [PMID: 30588612 DOI: 10.1002/1873-3468.13320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 11/07/2022]
Abstract
Merozoite surface protein 2 (MSP2) is a potential vaccine candidate against malaria, although its functional role is yet to be elucidated. Previous studies showed that MSP2 can interact with membranes, which may facilitate merozoite invasion into the host cell. The N-terminal 25 residues of MSP2 (MSP21-25 ), which may be aggregated on the merozoite surface, play a key role in the interaction with membranes. Here, we investigated the effects of MSP21-25 -membrane interactions on the conformation and aggregation of MSP21-25 and on membrane integrity, using nanodiscs and small unilamellar vesicles as mimetics of cell membranes. MSP21-25 -membrane interactions induced the peptide to form β-structure and to aggregate, depending on the lipid composition of the membrane. Nonfibrillar aggregates in turn disrupted the membrane.
Collapse
Affiliation(s)
- Chenghui Lu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Xue Zheng
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wei Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yonglong Zhuang
- Modern Experimental Technology Center, Anhui University, Hefei, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
169
|
Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan JA, Feng G, Good MF, Reiling L, Boyle MJ. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med 2019; 11:11/474/eaau1458. [DOI: 10.1126/scitranslmed.aau1458] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Although there has been major recent progress in malaria vaccine development, substantial challenges remain for achieving highly efficacious and durable vaccines against Plasmodium falciparum and Plasmodium vivax malaria. Greater knowledge of mechanisms and key targets of immunity are needed to accomplish this goal, together with new strategies for generating potent, long-lasting, functional immunity against multiple antigens. Implementation considerations in endemic areas will ultimately affect vaccine effectiveness, so innovations to simplify and enhance delivery are also needed. Whereas challenges remain, recent exciting progress and emerging knowledge promise hope for the future of malaria vaccines.
Collapse
|
170
|
Tan J, Piccoli L, Lanzavecchia A. The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies. Annu Rev Immunol 2018; 37:225-246. [PMID: 30566366 DOI: 10.1146/annurev-immunol-042617-053301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Collapse
Affiliation(s)
- Joshua Tan
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.,Current affiliation: National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,VIR Biotechnology, San Francisco, California 94158, USA
| |
Collapse
|
171
|
Swearingen KE, Lindner SE. Plasmodium Parasites Viewed through Proteomics. Trends Parasitol 2018; 34:945-960. [PMID: 30146456 PMCID: PMC6204299 DOI: 10.1016/j.pt.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
Early sequencing efforts that produced the genomes of several species of malaria parasites (Plasmodium genus) propelled transcriptomic and proteomic efforts. In this review, we focus upon some of the exciting proteomic advances from studies of Plasmodium parasites over approximately the past decade. With improvements to both instrumentation and data-processing capabilities, long-standing questions about the forms and functions of these important pathogens are rapidly being answered. In particular, global and subcellular proteomics, quantitative proteomics, and the detection of post-translational modifications have all revealed important features of the parasite's regulatory mechanisms. Finally, we provide our perspectives on future applications of proteomics to Plasmodium research, as well as suggestions for further improvement through standardization of data deposition, analysis, and accessibility.
Collapse
Affiliation(s)
- Kristian E Swearingen
- Institute for Systems Biology, Seattle, WA 98109, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
172
|
Quintana MDP, Ch’ng JH, Zandian A, Imam M, Hultenby K, Theisen M, Nilsson P, Qundos U, Moll K, Chan S, Wahlgren M. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One 2018; 13:e0201669. [PMID: 30092030 PMCID: PMC6084945 DOI: 10.1371/journal.pone.0201669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.
Collapse
Affiliation(s)
- Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch’ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Maryam Imam
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
173
|
Plasmodium falciparum MSP3 Exists in a Complex on the Merozoite Surface and Generates Antibody Response during Natural Infection. Infect Immun 2018; 86:IAI.00067-18. [PMID: 29760216 DOI: 10.1128/iai.00067-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum merozoite surface protein 3 (MSP3) is an abundantly expressed secreted merozoite surface protein and a leading malaria vaccine candidate antigen. However, it is unclear how MSP3 is retained on the surface of merozoites without a glycosylphosphatidylinositol (GPI) anchor or a transmembrane domain. In the present study, we identified an MSP3-associated network on the Plasmodium merozoite surface by immunoprecipitation of Plasmodium merozoite lysate using antibody to the N terminus of MSP3 (anti-MSP3N) followed by mass spectrometry analysis. The results suggested the association of MSP3 with other merozoite surface proteins: MSP1, MSP6, MSP7, RAP2, and SERA5. Protein-protein interaction studies by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) analysis showed that MSP3 complex consists of MSP1, MSP6, and MSP7 proteins. Immunological characterization of MSP3 revealed that MSP3N is strongly recognized by hyperimmune serum from African and Asian populations. Furthermore, we demonstrate that human antibodies, affinity purified against recombinant MSP3N (rMSP3N), promote opsonic phagocytosis of merozoites in cooperation with monocytes. At nonphysiological concentrations, anti-MSP3N antibodies inhibited the growth of P. falciparum in vitro Together, the data suggest that MSP3 and especially its N-terminal region containing known B/T cell epitopes are targets of naturally acquired immunity against malaria and also comprise an important candidate for a multisubunit malaria vaccine.
Collapse
|
174
|
A Thioredoxin Homologous Protein of Plasmodium falciparum Participates in Erythrocyte Invasion. Infect Immun 2018; 86:IAI.00289-18. [PMID: 29844242 PMCID: PMC6056854 DOI: 10.1128/iai.00289-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Invasion of erythrocytes by merozoites is required in the life cycle of malarial parasites. Proteins derived from the invasive merozoites are essential ligands for erythrocyte recognition and penetration. Invasion of erythrocytes by merozoites is required in the life cycle of malarial parasites. Proteins derived from the invasive merozoites are essential ligands for erythrocyte recognition and penetration. In this study, we report a novel protein that possesses a Trx domain-like structure of the thioredoxin family and is expressed on the surface of merozoites of the malaria parasite Plasmodium falciparum. This protein, namely, PfTrx-mero protein, displayed a mutated sequence character at the Trx domain, but with a specific binding activity to human erythrocytes. Specific antibodies to the protein inhibited merozoite invasion into human erythrocytes. Immunization with a homologous protein of Plasmodium berghei strain ANKA also showed significant protection against lethal infection in mice. These results suggested that the novel PfTrx-like-mero protein expressed on the surface of merozoites is an important ligand participating in erythrocyte invasion and a potential vaccine candidate.
Collapse
|
175
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
176
|
Glushakova S, Beck JR, Garten M, Busse BL, Nasamu AS, Tenkova-Heuser T, Heuser J, Goldberg DE, Zimmerberg J. Rounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes. Cell Microbiol 2018; 20:e12868. [PMID: 29900649 DOI: 10.1111/cmi.12868] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023]
Abstract
Because Plasmodium falciparum replicates inside of a parasitophorous vacuole (PV) within a human erythrocyte, parasite egress requires the rupture of two limiting membranes. Parasite Ca2+ , kinases, and proteases contribute to efficient egress; their coordination in space and time is not known. Here, the kinetics of parasite egress were linked to specific steps with specific compartment markers, using live-cell microscopy of parasites expressing PV-targeted fluorescent proteins, and specific egress inhibitors. Several minutes before egress, under control of parasite [Ca2+ ]i , the PV began rounding. Then after ~1.5 min, under control of PfPKG and SUB1, there was abrupt rupture of the PV membrane and release of vacuolar contents. Over the next ~6 min, there was progressive vacuolar membrane deterioration simultaneous with erythrocyte membrane distortion, lasting until the final minute of the egress programme when newly formed parasites mobilised and erythrocyte membranes permeabilised and then ruptured-a dramatic finale to the parasite cycle of replication.
Collapse
Affiliation(s)
- Svetlana Glushakova
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Josh R Beck
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, Missouri.,Department of Biomedical Sciences, Iowa State University, Ames, Iowa
| | - Matthias Garten
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Brad L Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Armiyaw S Nasamu
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, Missouri
| | - Tatyana Tenkova-Heuser
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - John Heuser
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, Missouri
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
177
|
Painter HJ, Chung NC, Sebastian A, Albert I, Storey JD, Llinás M. Genome-wide real-time in vivo transcriptional dynamics during Plasmodium falciparum blood-stage development. Nat Commun 2018; 9:2656. [PMID: 29985403 PMCID: PMC6037754 DOI: 10.1038/s41467-018-04966-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 01/12/2023] Open
Abstract
Genome-wide analysis of transcription in the malaria parasite Plasmodium falciparum has revealed robust variation in steady-state mRNA abundance throughout the 48-h intraerythrocytic developmental cycle (IDC), suggesting that this process is highly dynamic and tightly regulated. Here, we utilize rapid 4-thiouracil (4-TU) incorporation via pyrimidine salvage to specifically label, capture, and quantify newly-synthesized RNA transcripts at every hour throughout the IDC. This high-resolution global analysis of the transcriptome captures the timing and rate of transcription for each newly synthesized mRNA in vivo, revealing active transcription throughout all IDC stages. Using a statistical model to predict the mRNA dynamics contributing to the total mRNA abundance at each timepoint, we find varying degrees of transcription and stabilization for each mRNA corresponding to developmental transitions. Finally, our results provide new insight into co-regulation of mRNAs throughout the IDC through regulatory DNA sequence motifs, thereby expanding our understanding of P. falciparum mRNA dynamics. Transcriptomic analysis often doesn’t differentiate between newly synthesized and stabilized mRNAs. Using rapid 4-thiouracil incorporation, Painter et al. here define genome-wide active transcription throughout Plasmodium blood-stage developmental stages and identify associated regulatory DNA sequence motifs.
Collapse
Affiliation(s)
- Heather J Painter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Neo Christopher Chung
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John D Storey
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, 08544, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
178
|
Thomson-Luque R, Wang C, Ntumngia FB, Xu S, Szekeres K, Conway A, Adapa SR, Barnes SJ, Adams JH, Jiang RHY. In-depth phenotypic characterization of reticulocyte maturation using mass cytometry. Blood Cells Mol Dis 2018; 72:22-33. [PMID: 30007855 PMCID: PMC6097872 DOI: 10.1016/j.bcmd.2018.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
Abstract
Progress towards an in-depth understanding of the final steps of the erythroid lineage development is paramount for many hematological diseases. We have characterized the final stages of reticulocyte maturation from bone marrow to peripheral blood using for the first time single-cell Mass Cytometry (CyTOF). We were able to measure the expression of 31 surface markers within a single red blood cell (RBC). We demonstrate the validity of CyTOF for RBC phenotyping by confirming the progressive reduction of transferrin receptor 1 (CD71) during reticulocyte maturation to mature RBC. We highlight the high-dimensional nature of mass cytometry data by correlating the expression of multiple proteins on individual RBCs. We further describe a more drastic reduction pattern for a component of the alpha4/beta1 integrin CD49d at the very early steps of reticulocyte maturation in bone marrow and directly linked with the mitochondria remnants clearance pattern. The enhanced and accurate RBC phenotyping potential of CyTOF described herein could be beneficial to decipher RBC preferences, as well as still not well understood receptor-ligand interaction of some hemotropic parasites such as the malaria causing agent Plasmodium vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Shulin Xu
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Karoly Szekeres
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Amy Conway
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA.
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, USA.
| |
Collapse
|
179
|
Jagannathan P, Kakuru A, Okiring J, Muhindo MK, Natureeba P, Nakalembe M, Opira B, Olwoch P, Nankya F, Ssewanyana I, Tetteh K, Drakeley C, Beeson J, Reiling L, Clark TD, Rodriguez-Barraquer I, Greenhouse B, Wallender E, Aweeka F, Prahl M, Charlebois ED, Feeney ME, Havlir DV, Kamya MR, Dorsey G. Dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria during pregnancy and risk of malaria in early childhood: A randomized controlled trial. PLoS Med 2018; 15:e1002606. [PMID: 30016328 PMCID: PMC6049882 DOI: 10.1371/journal.pmed.1002606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment of malaria in pregnancy (IPTp) with dihydroartemisinin-piperaquine (IPTp-DP) has been shown to reduce the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (IPTp-SP). However, limited data exist on how IPTp regimens impact malaria risk during infancy. We conducted a double-blinded randomized controlled trial (RCT) to test the hypothesis that children born to mothers given IPTp-DP would have a lower incidence of malaria during infancy compared to children born to mothers who received IPTp-SP. METHODS AND FINDINGS We compared malaria metrics among children in Tororo, Uganda, born to women randomized to IPTp-SP given every 8 weeks (SP8w, n = 100), IPTp-DP every 8 weeks (DP8w, n = 44), or IPTp-DP every 4 weeks (DP4w, n = 47). After birth, children were given chemoprevention with DP every 12 weeks from 8 weeks to 2 years of age. The primary outcome was incidence of malaria during the first 2 years of life. Secondary outcomes included time to malaria from birth and time to parasitemia following each dose of DP given during infancy. Results are reported after adjustment for clustering (twin gestation) and potential confounders (maternal age, gravidity, and maternal parasitemia status at enrolment).The study took place between June 2014 and May 2017. Compared to children whose mothers were randomized to IPTp-SP8w (0.24 episodes per person year [PPY]), the incidence of malaria was higher in children born to mothers who received IPTp-DP4w (0.42 episodes PPY, adjusted incidence rate ratio [aIRR] 1.92; 95% CI 1.00-3.65, p = 0.049) and nonsignificantly higher in children born to mothers who received IPT-DP8w (0.30 episodes PPY, aIRR 1.44; 95% CI 0.68-3.05, p = 0.34). However, these associations were modified by infant sex. Female children whose mothers were randomized to IPTp-DP4w had an apparently 4-fold higher incidence of malaria compared to female children whose mothers were randomized to IPTp-SP8w (0.65 versus 0.20 episodes PPY, aIRR 4.39, 95% CI 1.87-10.3, p = 0.001), but no significant association was observed in male children (0.20 versus 0.28 episodes PPY, aIRR 0.66, 95% CI 0.25-1.75, p = 0.42). Nonsignificant increases in malaria incidence were observed among female, but not male, children born to mothers who received DP8w versus SP8w. In exploratory analyses, levels of malaria-specific antibodies in cord blood were similar between IPTp groups and sex. However, female children whose mothers were randomized to IPTp-DP4w had lower mean piperaquine (PQ) levels during infancy compared to female children whose mothers received IPTp-SP8w (coef 0.81, 95% CI 0.65-1.00, p = 0.048) and male children whose mothers received IPTp-DP4w (coef 0.72, 95% CI 0.57-0.91, p = 0.006). There were no significant sex-specific differences in PQ levels among children whose mothers were randomized to IPTp-SP8w or IPTp-DP8w. The main limitations were small sample size and childhood provision of DP every 12 weeks in infancy. CONCLUSIONS Contrary to our hypothesis, preventing malaria in pregnancy with IPTp-DP in the context of chemoprevention with DP during infancy does not lead to a reduced incidence of malaria in childhood; in this setting, it may be associated with an increased incidence of malaria in females. Future studies are needed to better understand the biological mechanisms of in utero drug exposure on drug metabolism and how this may affect the dosing of antimalarial drugs for treatment and prevention during infancy. TRIAL REGISTRATION ClinicalTrials.gov number NCT02163447.
Collapse
MESH Headings
- Adolescent
- Adult
- Antimalarials/administration & dosage
- Antimalarials/adverse effects
- Artemisinins/administration & dosage
- Artemisinins/adverse effects
- Child, Preschool
- Double-Blind Method
- Drug Administration Schedule
- Drug Combinations
- Female
- Humans
- Incidence
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical/prevention & control
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Pregnancy
- Pregnancy Complications, Parasitic/epidemiology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/prevention & control
- Pyrimethamine/administration & dosage
- Pyrimethamine/adverse effects
- Quinolines/administration & dosage
- Quinolines/adverse effects
- Sulfadoxine/administration & dosage
- Sulfadoxine/adverse effects
- Time Factors
- Treatment Outcome
- Uganda/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jaffer Okiring
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Paul Natureeba
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Miriam Nakalembe
- Department of Obstetrics and Gynecology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bishop Opira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Kevin Tetteh
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Tamara D. Clark
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Erika Wallender
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, California, United States of America
| | - Mary Prahl
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Edwin D. Charlebois
- Center for AIDS Prevention Studies, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
| | - Diane V. Havlir
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
180
|
Tijani MK, Reddy SB, Langer C, Beeson JG, Wahlgren M, Nwuba RI, Persson KEM. Factors influencing the induction of high affinity antibodies to Plasmodium falciparum merozoite antigens and how affinity changes over time. Sci Rep 2018; 8:9026. [PMID: 29899351 PMCID: PMC5998021 DOI: 10.1038/s41598-018-27361-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 01/16/2023] Open
Abstract
Understanding the functional characteristics of naturally acquired antibodies against P. falciparum merozoite antigens is crucial for determining the protective functions of antibodies. Affinity (measured as kd) of naturally acquired antibodies against two key targets of acquired immunity, EBA175 and PfRh2, was determined using Surface Plasmon Resonance (SPR) in a longitudinal survey in Nigeria. A majority of the participants, 79% and 67%, maintained stable antibody affinities to EBA175 and PfRh2, respectively, over time. In about 10% of the individuals, there was a reciprocal interaction with a reduction over time in antibody affinity for PfRh2 and an increase for EBA175. In general, PfRh2 elicited antibodies with higher affinity compared to EBA175. Individuals with higher exposure to malaria produced antibodies with higher affinity to both antigens. Younger individuals (5–15 years) produced comparable or higher affinity antibodies than adults (>15 years) against EBA175, but not for PfRh2. Correlation between total IgG (ELISA) and affinity varied between individuals, but PfRh2 elicited antibodies with a higher correlation in a majority of the participants. There was also a correlation between antibody inhibition of erythrocyte invasion by merozoites and PfRh2 affinity. This work gives new insights into the generation and maintenance of antibody affinity over time.
Collapse
Affiliation(s)
- Muyideen K Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Sreenivasulu B Reddy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Christine Langer
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James G Beeson
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Roseangela I Nwuba
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
181
|
Ubillos I, Jiménez A, Vidal M, Bowyer PW, Gaur D, Dutta S, Gamain B, Coppel R, Chauhan V, Lanar D, Chitnis C, Angov E, Beeson J, Cavanagh D, Campo JJ, Aguilar R, Dobaño C. Optimization of incubation conditions of Plasmodium falciparum antibody multiplex assays to measure IgG, IgG 1-4, IgM and IgE using standard and customized reference pools for sero-epidemiological and vaccine studies. Malar J 2018; 17:219. [PMID: 29859096 PMCID: PMC5984756 DOI: 10.1186/s12936-018-2369-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1–4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. Results Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1–4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. Conclusions With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study. Electronic supplementary material The online version of this article (10.1186/s12936-018-2369-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Paul W Bowyer
- Bacteriology Division, MHRA-NIBSC, South Mimms, Potter Bars, EN6 3QG, UK
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ross Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - David Lanar
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
182
|
Cheng CW, Putaporntip C, Jongwutiwes S. Polymorphism in merozoite surface protein-7E of Plasmodium vivax in Thailand: Natural selection related to protein secondary structure. PLoS One 2018; 13:e0196765. [PMID: 29718980 PMCID: PMC5931635 DOI: 10.1371/journal.pone.0196765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
Merozoite surface protein 7 (MSP-7) is a multigene family expressed during malaria blood-stage infection. MSP-7 forms complex with MSP-1 prior to merozoite egress from erythrocytes, and could affect merozoite invasion of erythrocytes. To characterize sequence variation in the orthologue in P. vivax (PvMSP-7), a gene member encoding PvMSP-7E was analyzed among 92 Thai isolates collected from 3 major endemic areas of Thailand (Northwest: Tak, Northeast: Ubon Ratchathani, and South: Yala and Narathiwat provinces). In total, 52 distinct haplotypes were found to circulate in these areas. Although population structure based on this locus was observed between each endemic area, no genetic differentiation occurred between populations collected from different periods in the same endemic area, suggesting spatial but not temporal genetic variation. Sequence microheterogeneity in both N- and C- terminal regions was predicted to display 4 and 6 α-helical domains, respectively. Signals of purifying selection were observed in α-helices II-X, suggesting structural or functional constraint in these domains. By contrast, α-helix-I spanning the putative signal peptide was under positive selection, in which amino acid substitutions could alter predicted CD4+ T helper cell epitopes. The central region of PvMSP-7E comprised the 5’-trimorphic and the 3’-dimorphic subregions. Positive selection was identified in the 3’ dimorphic subregion of the central domain. A consensus of intrinsically unstructured or disordered protein was predicted to encompass the entire central domain that contained a number of putative B cell epitopes and putative protein binding regions. Evidences of intragenic recombination were more common in the central region than the remainders of the gene. These results suggest that the extent of sequence variation, recombination events and selective pressures in the PvMSP-7E locus seem to be differentially affected by protein secondary structure.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
183
|
Singh SK, Tiendrebeogo RW, Chourasia BK, Kana IH, Singh S, Theisen M. Lactococcus lactis provides an efficient platform for production of disulfide-rich recombinant proteins from Plasmodium falciparum. Microb Cell Fact 2018; 17:55. [PMID: 29618355 PMCID: PMC5885415 DOI: 10.1186/s12934-018-0902-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The production of recombinant proteins with proper conformation, appropriate post-translational modifications in an easily scalable and cost-effective system is challenging. Lactococcus lactis has recently been identified as an efficient Gram positive cell factory for the production of recombinant protein. We and others have used this expression host for the production of selected malaria vaccine candidates. The safety of this production system has been confirmed in multiple clinical trials. Here we have explored L. lactis cell factories for the production of 31 representative Plasmodium falciparum antigens with varying sizes (ranging from 9 to 90 kDa) and varying degree of predicted structural complexities including eleven antigens with multiple predicted structural disulfide bonds, those which are considered difficult-to-produce proteins. RESULTS Of the 31 recombinant constructs attempted in the L. lactis expression system, the initial expression efficiency was 55% with 17 out of 31 recombinant gene constructs producing high levels of secreted recombinant protein. The majority of the constructs which failed to produce a recombinant protein were found to consist of multiple intra-molecular disulfide-bonds. We found that these disulfide-rich constructs could be produced in high yields when genetically fused to an intrinsically disorder protein domain (GLURP-R0). By exploiting the distinct biophysical and structural properties of the intrinsically disordered protein region we developed a simple heat-based strategy for fast purification of the disulfide-rich protein domains in yields ranging from 1 to 40 mg/l. CONCLUSIONS A novel procedure for the production and purification of disulfide-rich recombinant proteins in L. lactis is described.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Subhash Singh
- Indian Institute of Integrative Medicine, Jammu, India
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark. .,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
184
|
Protein-protein interaction studies reveal the Plasmodium falciparum merozoite surface protein-1 region involved in a complex formation that binds to human erythrocytes. Biochem J 2018; 475:1197-1209. [PMID: 29511044 DOI: 10.1042/bcj20180017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum merozoite surface protein (PfMSP) 1 has been studied extensively as a vaccine candidate antigen. PfMSP-1 undergoes proteolytic processing into four major products, such as p83, p30, p38, and p42, that are associated in the form of non-covalent complex(s) with other MSPs. To delineate MSP1 regions involved in the interaction with other MSPs, here we expressed recombinant proteins (PfMSP-165) encompassing part of p38 and p42 regions and PfMSP-119 PfMSP-165 interacted strongly with PfMSP-3, PfMSP-6, PfMSP-7, and PfMSP-9, whereas PfMSP-119 did not interact with any of these proteins. Since MSP-1 complex binds human erythrocytes, we examined the ability of these proteins to bind human erythrocyte. Among the proteins of MSP-1 complex, PfMSP-6 and PfMSP-9 bound to human erythrocytes. Serological studies showed that PfMSP-165 was frequently recognized by sera from malaria endemic regions, whereas this was not the case for PfMSP-119 In contrast, antibodies against PfMSP-119 showed much higher inhibition of merozoite invasion compared with antibodies against the larger PfMSP-165 fragment. Importantly, anti-PfMSP-119 antibodies recognized both recombinant proteins, PfMSP-119 and PfMSP-165; however, anti-PfMSP-165 antibody failed to recognize the PfMSP-119 protein. Taken together, these results demonstrate that PfMSP-1 sequences upstream of the 19 kDa C-terminal region are involved in molecular interactions with other MSPs, and these sequences may probably serve as a smoke screen to evade antibody response to the membrane-bound C-terminal 19 kDa region.
Collapse
|
185
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
186
|
Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev 2018. [PMID: 29540278 DOI: 10.1016/j.tmrv.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antigens of the Gerbich blood group system are expressed on glycophorin C (GPC) and glycophorin D (GPD), minor sialoglycoproteins of human erythrocytes. GPC and GPD help maintain erythrocyte shape of and contributes to the stability of its membrane. There are six high-prevalence Gerbich antigens: Ge2, Ge3, Ge4, GEPL (GE10), GEAT (GE11), GETI (GE12) and five low-prevalence Gerbich antigens: Wb (GE5), Lsa (GE6), Ana (GE7), Dha (GE8), GEIS (GE9). Some Gerbich antigens (Ge4, Wb, Dha, GEAT) are expressed only on GPC, two (Ge2, Ana) are expressed only on GPD, while others (Ge3, Lsa, GEIS, GEPL, GETI) are expressed on both GPC and GPD. Antibodies recognizing GPC/GPD may arise naturally (so-called "naturally-occurring RBC antibodies") or as the result of alloimmunization, and some of them may be clinically relevant. Gerbich antibodies usually do not cause serious hemolytic transfusion reactions (HTR); autoantibodies of anti-Ge2- or anti-Ge3 specificity can cause autoimmune hemolytic anemia (AIHA).
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland.
| | - Thierry Peyrard
- Institut National de la Transfusion Sanguine (INTS), Département Centre National de Référence pour les Groupes Sanguins (CNRGS), Paris, France; UMR_S1134 Inserm Université Paris Diderot, Paris, France; Laboratoire d'Excellence GR-Ex, Institut Imagine, Paris, France
| | - Radoslaw Kaczmarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agata Zerka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marlena Jodlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Czerwinski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland
| |
Collapse
|
187
|
Huang B, Tuo F, Liang Y, Wu W, Wu G, Huang S, Zhong Q, Su XZ, Zhang H, Li M, Bacar A, Abdallah KS, Mliva AMSA, Wang Q, Yang Z, Zheng S, Xu Q, Song J, Deng C. Temporal changes in genetic diversity of msp-1, msp-2, and msp-3 in Plasmodium falciparum isolates from Grande Comore Island after introduction of ACT. Malar J 2018; 17:83. [PMID: 29458365 PMCID: PMC5819244 DOI: 10.1186/s12936-018-2227-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Malaria is still one of the serious public health problems in Grande Comore Island, although the number of annual cases has been greatly reduced in recent years. A better understanding of malaria parasite population diversity and transmission dynamics is critical for assessing the effectiveness of malaria control measures. The objective of this study is to investigate temporal changes in genetic diversity of Plasmodium falciparum populations and multiplicity of infection (MOI) in Grande Comore 10 years after introduction of ACT. Methods A total of 232 P. falciparum clinical isolates were collected from the Grande Comore Island during two sampling periods (118 for 2006‒2007 group, and 114 for 2013‒2016 group). Parasite isolates were characterized for genetic diversity and complexity of infection by genotyping polymorphic regions in merozoite surface protein gene 1 (msp-1), msp-2, and msp-3 using nested PCR and DNA sequencing. Results Three msp-1 alleles (K1, MAD20, and RO33), two msp-2 alleles (FC27 and 3D7), and two msp-3 alleles (K1 and 3D7) were detected in parasites of both sampling periods. The RO33 allele of msp-1 (84.8%), 3D7 allele of msp-2 (90.8%), and K1 allele of msp-3 (66.7%) were the predominant allelic types in isolates from 2006–2007 group. In contrast, the RO33 allele of msp-1 (63.4%), FC27 allele of msp-2 (91.1%), and 3D7 allele of msp-3 (53.5%) were the most prevalent among isolates from the 2013–2016 group. Compared with the 2006‒2007 group, polyclonal infection rates of msp-1 (from 76.7 to 29.1%, P < 0.01) and msp-2 (from 62.4 to 28.3%, P < 0.01) allelic types were significantly decreased in those from 2013‒2016 group. Similarly, the MOIs for both msp-1 and msp-2 were higher in P. falciparum isolates in the 2006–2007 group than those in 2013–2016 group (MOI = 3.11 vs 1.63 for msp-1; MOI = 2.75 vs 1.35 for msp-2). DNA sequencing analyses also revealed reduced numbers of distinct sequence variants in the three genes from 2006‒2007 to 2013‒2016: msp-1, from 32 to 23 (about 28% decline); msp-2 from 29 to 21 (about 28% decline), and msp-3 from 11 to 3 (about 72% decline). Conclusions The present data showed dramatic reduction in genetic diversity and MOI among Grande Comore P. falciparum populations over the course of the study, suggesting a trend of decreasing malaria transmission intensity and genetic diversity in Grande Comore Island. These data provide valuable information for surveillance of P. falciparum infection and for assessing the appropriateness of the current malarial control strategies in the endemic area.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Fei Tuo
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Yuan Liang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Wanting Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Guangchao Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Qirun Zhong
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Mingqiang Li
- Artepharm, Co., Ltd, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Affane Bacar
- National Malaria Control Programme, BP 500, Moroni, Comoros
| | | | | | - Qi Wang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Zhaoli Yang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China
| | - Qin Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jianping Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| | - Changsheng Deng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China. .,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, Guangdong, People's Republic of China.
| |
Collapse
|
188
|
Thakre N, Fernandes P, Mueller AK, Graw F. Examining the Reticulocyte Preference of Two Plasmodium berghei Strains during Blood-Stage Malaria Infection. Front Microbiol 2018. [PMID: 29515528 PMCID: PMC5826286 DOI: 10.3389/fmicb.2018.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-stage of the Plasmodium parasite is one of the key phases within its life cycle that influences disease progression during a malaria infection. The efficiency of the parasite in infecting red blood cells (RBC) determines parasite load and parasite-induced hemolysis that is responsible for the development of anemia and potentially drives severe disease progression. However, the molecular factors defining the infectivity of Plasmodium parasites have not been completely identified so far. Using the Plasmodium berghei mouse model for malaria, we characterized and compared the blood-stage infection dynamics of PbANKA WT and a mutant parasite strain lacking a novel Plasmodium antigen, PbmaLS_05, that is well conserved in both human and animal Plasmodium parasite strains. Infection of mice with parasites lacking PbmaLS_05 leads to lower parasitemia levels and less severe disease progression in contrast to mice infected with the wildtype PbANKA strain. To specifically determine the effect of deleting PbmaLS_05 on parasite infectivity we developed a mathematical model describing erythropoiesis and malarial infection of RBC. By applying our model to experimental data studying infection dynamics under normal and drug-induced altered erythropoietic conditions, we found that both PbANKA and PbmaLS_05 (-) parasite strains differed in their infectivity potential during the early intra-erythrocytic stage of infection. Parasites lacking PbmaLS_05 showed a decreased ability to infect RBC, and immature reticulocytes in particular that are usually a preferential target of the parasite. These altered infectivity characteristics limit parasite burden and affect disease progression. Our integrative analysis combining mathematical models and experimental data suggests that deletion of PbmaLS_05 affects productive infection of reticulocytes, which makes this antigen a useful target to analyze the actual processes relating RBC preferences to the development of severe disease outcomes in malaria.
Collapse
Affiliation(s)
- Neha Thakre
- Centre for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| | - Priyanka Fernandes
- Parasitology Unit, Centre for Infectious Diseases, University Hospital, Heidelberg, Germany
| | - Ann-Kristin Mueller
- Parasitology Unit, Centre for Infectious Diseases, University Hospital, Heidelberg, Germany.,German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Frederik Graw
- Centre for Modeling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
189
|
Funwei RI, Thomas BN, Falade CO, Ojurongbe O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar J 2018; 17:1. [PMID: 29291736 PMCID: PMC5749027 DOI: 10.1186/s12936-017-2149-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023] Open
Abstract
Background Nigeria carries a high burden of malaria which makes continuous surveillance for current information on genetic diversity imperative. In this study, the merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) of Plasmodium falciparum collected from two communities representing rural and urban settings in Ibadan, southwestern Nigeria were analysed. Methods A total of 511 febrile children, aged 3–59 months, whose parents/guardians provided informed consent, were recruited into the study. Capillary blood was obtained for malaria rapid diagnostic test, thick blood smears for parasite count and blood spots on filter paper for molecular analysis. Results Three-hundred and nine samples were successfully genotyped for msp-1, msp-2 and glurp genes. The allelic distribution of the three genes was not significantly different in the rural and urban communities. R033 and 3D7 were the most prevalent alleles in both rural and urban communities for msp-1 and msp-2, respectively. Eleven of glurp RII region genotypes, coded I–XII, with sizes ranging from 500 to 1100 base pairs were detected in the rural setting. Genotype XI (1000–1050 bp) had the highest prevalence of 41.5 and 38.5% in rural and urban settings, respectively. Overall, 82.1 and 70.0% of samples had multiclonal infection with msp-1 gene resulting in a mean multiplicity of infection (MOI) of 2.8 and 2.6 for rural and urban samples, respectively. Msp-1 and msp-2 genes displayed higher levels of diversity and higher MOI rates than the glurp gene. Conclusion Significant genetic diversity was observed between rural and urban parasite populations in Ibadan, southwestern Nigeria. The results of this study show that malaria transmission intensity in these regions is still high. No significant difference was observed between rural and urban settings, except for a completely different msp-1 allele, compared to previous reports, thereby confirming the changing face of malaria transmission in these communities. This study provides important baseline information required for monitoring the impact of malaria elimination efforts in this region and data points useful in revising current protocols.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacy Technician Studies, Bayelsa State College of Health Technology, Yenagoa, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA.,Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training, University of Ibadan, Ibadan, Nigeria
| | - Olusola Ojurongbe
- Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria. .,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| |
Collapse
|
190
|
Goheen MM, Bah A, Wegmüller R, Verhoef H, Darboe B, Danso E, Prentice AM, Cerami C. Host iron status and erythropoietic response to iron supplementation determines susceptibility to the RBC stage of falciparum malaria during pregnancy. Sci Rep 2017; 7:17674. [PMID: 29247172 PMCID: PMC5732269 DOI: 10.1038/s41598-017-16896-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/14/2017] [Indexed: 01/14/2023] Open
Abstract
Anaemia and malaria are both common in pregnant women in Sub-Saharan Africa. Previous evidence has shown that iron supplementation may increase malaria risk. In this observational cohort study, we evaluated P. falciparum pathogenesis in vitro in RBCs from pregnant women during their 2nd and 3rd trimesters. RBCs were collected and assayed before (n = 327), 14 days (n = 82), 49 days (n = 112) and 84 days (n = 115) after iron supplementation (60 mg iron as ferrous fumarate daily). P. falciparum erythrocytic stage growth in vitro is reduced in anaemic pregnant women at baseline, but increased during supplementation. The elevated growth rates parallel increases in circulating CD71-positive reticulocytes and other markers of young RBCs. We conclude that Plasmodium growth in vitro is associated with elevated erythropoiesis, an obligate step towards erythroid recovery in response to supplementation. Our findings support current World Health Organization recommendations that iron supplementation be given in combination with malaria prevention and treatment services in malaria endemic areas.
Collapse
Affiliation(s)
- Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amat Bah
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Rita Wegmüller
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Hans Verhoef
- London School of Hygiene & Tropical Medicine, London, UK.,Division of Human Nutrition and Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Bakary Darboe
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Ebrima Danso
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Andrew M Prentice
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia.,London School of Hygiene & Tropical Medicine, London, UK
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia.
| |
Collapse
|
191
|
Mugyenyi CK, Elliott SR, Yap XZ, Feng G, Boeuf P, Fegan G, Osier FFH, Fowkes FJI, Avril M, Williams TN, Marsh K, Beeson JG. Declining Malaria Transmission Differentially Impacts the Maintenance of Humoral Immunity to Plasmodium falciparum in Children. J Infect Dis 2017; 216:887-898. [PMID: 28973483 DOI: 10.1093/infdis/jix370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022] Open
Abstract
Background We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. Methods In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, IE surface antigens, and antibody functional activities were quantified. Results Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 year and 1-3 years, respectively. However, 69%-74% of children maintained their seropositivity to AMA1 alleles and 42%-52% to MSP2 alleles. Levels and prevalence of antimerozoite antibodies were consistently associated with increasing age and concurrent parasitemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life, 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life, 4-10 years). Conclusions A decline in malaria transmission is associated with reduction in naturally acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development.
Collapse
Affiliation(s)
- Cleopatra K Mugyenyi
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Burnet Institute, Melbourne
| | | | - Xi Zen Yap
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | | | - Philippe Boeuf
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Gregory Fegan
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi
| | - Faith F H Osier
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Burnet Institute, Melbourne.,Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Germany
| | - Freya J I Fowkes
- Burnet Institute, Melbourne.,Department of Epidemiology and Preventive Medicine, Monash University.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Marion Avril
- Centre for Infectious Disease Research, Seattle, Washington
| | - Thomas N Williams
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Imperial College, London, United Kingdom
| | - Kevin Marsh
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi
| | - James G Beeson
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia.,Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
192
|
Zerka A, Kaczmarek R, Czerwinski M, Jaskiewicz E. Plasmodium reichenowi EBA-140 merozoite ligand binds to glycophorin D on chimpanzee red blood cells, shedding new light on origins of Plasmodium falciparum. Parasit Vectors 2017; 10:554. [PMID: 29115972 PMCID: PMC5678783 DOI: 10.1186/s13071-017-2507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022] Open
Abstract
Background All symptoms of malaria are caused by the intraerythrocytic proliferation of Plasmodium merozoites. Merozoites invade erythrocytes using multiple binding ligands that recognise specific surface receptors. It has been suggested that adaptation of Plasmodium parasites to infect specific hosts is driven by changes in genes encoding Plasmodium erythrocyte-binding ligands (EBL) and reticulocyte-binding ligands (RBL). Homologs of both EBL and RBL, including the EBA-140 merozoite ligand, have been identified in P. falciparum and P. reichenowi, which infect humans and chimpanzees, respectively. The P. falciparum EBA-140 was shown to bind human glycophorin C, a minor erythrocyte sialoglycoprotein. Until now, the erythrocyte receptor for the P. reichenowi EBA-140 remained unknown. Methods The baculovirus expression vector system was used to obtain the recombinant EBA-140 Region II, and flow cytometry and immunoblotting methods were applied to characterise its specificity. Results We showed that the chimpanzee glycophorin D is the receptor for the P. reichenowi EBA-140 ligand on chimpanzee red blood cells. Conclusions We propose that the development of glycophorin C specificity is spurred by the P. falciparum lineage. We speculate that the P. falciparum EBA-140 evolved to hijack GPC on human erythrocytes during divergence from its ape ancestor.
Collapse
Affiliation(s)
- Agata Zerka
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.,Faculty of Physiotherapy and Physical Education, Opole University of Technology, 45-758, Opole, Poland
| | - Ewa Jaskiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516, Zielona Góra, Poland.
| |
Collapse
|
193
|
Merozoite Surface Protein 1 from Plasmodium falciparum Is a Major Target of Opsonizing Antibodies in Individuals with Acquired Immunity against Malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00155-17. [PMID: 28877929 DOI: 10.1128/cvi.00155-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022]
Abstract
Naturally acquired immunity against malaria is largely mediated by serum antibodies controlling levels of blood-stage parasites. A limited understanding of the antigenic targets and functional mechanisms of protective antibodies has hampered the development of efficient malaria vaccines. Besides directly inhibiting the growth of Plasmodium parasites, antibodies can opsonize merozoites and recruit immune effector cells such as monocytes and neutrophils. Antibodies against the vaccine candidate merozoite surface protein 1 (MSP-1) are acquired during natural infections and have been associated with protection against malaria in several epidemiological studies. Here we analyzed serum antibodies from semi-immune individuals from Burkina Faso for their potential (i) to directly inhibit the growth of P. falciparum blood stages in vitro and (ii) to opsonize merozoites and to induce the antibody-dependent respiratory burst (ADRB) activity of neutrophils. While a few sera that directly inhibited the growth of P. falciparum blood stages were identified, immunoglobulin G (IgG) from all individuals clearly mediated the activation of neutrophils. The level of neutrophil activation correlated with levels of antibodies to MSP-1, and affinity-purified MSP-1-specific antibodies elicited ADRB activity. Furthermore, immunization of nonhuman primates with recombinant full-size MSP-1 induced antibodies that efficiently opsonized P. falciparum merozoites. Reversing the function by preincubation with recombinant antigens allowed us to quantify the contribution of MSP-1 to the antiparasitic effect of serum antibodies. Our data suggest that MSP-1, especially the partially conserved subunit MSP-183, is a major target of opsonizing antibodies acquired during natural exposure to malaria. Induction of opsonizing antibodies might be a crucial effector mechanism for MSP-1-based malaria vaccines.
Collapse
|
194
|
Aguilar R, Casabonne D, O’Callaghan-Gordo C, Vidal M, Campo JJ, Mutalima N, Angov E, Dutta S, Gaur D, Chitnis CE, Chauhan V, Michel A, de Sanjosé S, Waterboer T, Kogevinas M, Newton R, Dobaño C. Assessment of the Combined Effect of Epstein-Barr Virus and Plasmodium falciparum Infections on Endemic Burkitt Lymphoma Using a Multiplex Serological Approach. Front Immunol 2017; 8:1284. [PMID: 29123514 PMCID: PMC5662586 DOI: 10.3389/fimmu.2017.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is a necessary cause of endemic Burkitt lymphoma (eBL), while the role of Plasmodium falciparum in eBL remains uncertain. This study aimed to generate new hypotheses on the interplay between both infections in the development of eBL by investigating the IgG and IgM profiles against several EBV and P. falciparum antigens. Serum samples collected in a childhood study in Malawi (2005-2006) from 442 HIV-seronegative children (271 eBL cases and 171 controls) between 1.4 and 15 years old were tested by quantitative suspension array technology against a newly developed multiplex panel combining 4 EBV antigens [Z Epstein-Barr replication activator protein (ZEBRA), early antigen-diffuse component (EA-D), EBV nuclear antigen 1, and viral capsid antigen p18 subunit (VCA-p18)] and 15 P. falciparum antigens selected for their immunogenicity, role in malaria pathogenesis, and presence in different parasite stages. Principal component analyses, multivariate logistic models, and elastic-net regressions were used. As expected, elevated levels of EBV IgG (especially against the lytic antigens ZEBRA, EA-D, and VCA-p18) were strongly associated with eBL [high vs low tertile odds ratio (OR) = 8.67, 95% confidence interval (CI) = 4.81-15.64]. Higher IgG responses to the merozoite surface protein 3 were observed in children with eBL compared with controls (OR = 1.29, 95% CI = 1.02-1.64), showing an additive interaction with EBV IgGs (OR = 10.6, 95% CI = 5.1-22.2, P = 0.05). Using elastic-net regression models, eBL serological profile was further characterized by lower IgM levels against P. falciparum preerythrocytic-stage antigen CelTOS and EBV lytic antigen VCA-p18 compared with controls. In a secondary analysis, abdominal Burkitt lymphoma had lower IgM to EBV and higher IgG to EA-D levels than cases with head involvement. Overall, this exploratory study confirmed the strong role of EBV in eBL and identified differential IgG and IgM patterns to erythrocytic vs preerythrocytic P. falciparum antigens that suggest a more persistent/chronic malaria exposure and a weaker IgM immune response in children with eBL compared with controls. Future studies should continue exploring how the malaria infection status and the immune response to P. falciparum interact with EBV infection in the development of eBL.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Delphine Casabonne
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain
| | - Cristina O’Callaghan-Gordo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Joseph J. Campo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Nora Mutalima
- Department of Orthopaedic Surgery, Monash Health, Melbourne, VIC, Australia
- Department of Surgery, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | | | | | - Deepak Gaur
- ICGEB, Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | - Silvia de Sanjosé
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manolis Kogevinas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rob Newton
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
195
|
Identification of Heparin Modifications and Polysaccharide Inhibitors of Plasmodium falciparum Merozoite Invasion That Have Potential for Novel Drug Development. Antimicrob Agents Chemother 2017; 61:AAC.00709-17. [PMID: 28893781 DOI: 10.1128/aac.00709-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/03/2017] [Indexed: 11/20/2022] Open
Abstract
Despite recent successful control efforts, malaria remains a leading global health burden. Alarmingly, resistance to current antimalarials is increasing and the development of new drug families is needed to maintain malaria control. Current antimalarials target the intraerythrocytic developmental stage of the Plasmodium falciparum life cycle. However, the invasive extracellular parasite form, the merozoite, is also an attractive target for drug development. We have previously demonstrated that heparin-like molecules, including those with low molecular weights and low anticoagulant activities, are potent and specific inhibitors of merozoite invasion and blood-stage replication. Here we tested a large panel of heparin-like molecules and sulfated polysaccharides together with various modified chemical forms for their inhibitory activity against P. falciparum merozoite invasion. We identified chemical modifications that improve inhibitory activity and identified several additional sulfated polysaccharides with strong inhibitory activity. These studies have important implications for the further development of heparin-like molecules as antimalarial drugs and for understanding merozoite invasion.
Collapse
|
196
|
Valletta JJ, Recker M. Identification of immune signatures predictive of clinical protection from malaria. PLoS Comput Biol 2017; 13:e1005812. [PMID: 29065113 PMCID: PMC5669498 DOI: 10.1371/journal.pcbi.1005812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/03/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
Antibodies are thought to play an essential role in naturally acquired immunity to malaria. Prospective cohort studies have frequently shown how continuous exposure to the malaria parasite Plasmodium falciparum cause an accumulation of specific responses against various antigens that correlate with a decreased risk of clinical malaria episodes. However, small effect sizes and the often polymorphic nature of immunogenic parasite proteins make the robust identification of the true targets of protective immunity ambiguous. Furthermore, the degree of individual-level protection conferred by elevated responses to these antigens has not yet been explored. Here we applied a machine learning approach to identify immune signatures predictive of individual-level protection against clinical disease. We find that commonly assumed immune correlates are poor predictors of clinical protection in children. On the other hand, antibody profiles predictive of an individual's malaria protective status can be found in data comprising responses to a large set of diverse parasite proteins. We show that this pattern emerges only after years of continuous exposure to the malaria parasite, whereas susceptibility to clinical episodes in young hosts (< 10 years) cannot be ascertained by measured antibody responses alone.
Collapse
Affiliation(s)
- John Joseph Valletta
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, United Kingdom
- * E-mail:
| |
Collapse
|
197
|
McLean ARD, Stanisic D, McGready R, Chotivanich K, Clapham C, Baiwog F, Pimanpanarak M, Siba P, Mueller I, King CL, Nosten F, Beeson JG, Rogerson S, Simpson JA, Fowkes FJI. P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission. PLoS One 2017; 12:e0186577. [PMID: 29028827 PMCID: PMC5640245 DOI: 10.1371/journal.pone.0186577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023] Open
Abstract
Introduction During pregnancy, immunoglobulin G (IgG) is transferred from the mother to the fetus, providing protection from disease in early infancy. Plasmodium falciparum infections may reduce maternofetal antibody transfer efficiency, but mechanisms remain unclear. Methods Mother-cord paired serum samples collected at delivery from Papua New Guinea (PNG) and the Thailand-Myanmar Border Area (TMBA) were tested for IgG1 and IgG3 to four P. falciparum antigens and measles antigen, as well as total serum IgG. Multivariable linear regression was conducted to assess the association of peripheral P. falciparum infection during pregnancy or placental P. falciparum infection assessed at delivery with maternofetal antibody transfer efficiency. Path analysis assessed the extent to which associations between P. falciparum infection and antibody transfer were mediated by gestational age at delivery or levels of maternal total serum IgG. Results Maternofetal antibody transfer efficiency of IgG1 and IgG3 was lower in PNG compared to TMBA (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.88 to 0.09, median of -0.20 log2 units). Placental P. falciparum infections were associated with substantially lower maternofetal antibody transfer efficiency in PNG primigravid women (mean difference in cord antibody levels (controlling for maternal antibody levels) ranged from -0.62 to -0.10, median of -0.36 log2 units), but not multigravid women. The lower antibody transfer efficiency amongst primigravid women with placental infection was only partially mediated by gestational age at delivery (proportion indirect effect ranged from 0% to 18%), whereas no mediation effects of maternal total serum IgG were observed. Discussion Primigravid women may be at risk of impaired maternofetal antibody transport with placental P. falciparum infection. Direct effects of P. falciparum on the placenta, rather than earlier gestational age and elevated serum IgG, are likely responsible for the majority of the reduction in maternofetal antibody transfer efficiency with placental infection.
Collapse
Affiliation(s)
- Alistair R. D. McLean
- Burnet Institute, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Danielle Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Rose McGready
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Caroline Clapham
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Francesca Baiwog
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health & Immunity Division, WEHI, Parkville, Victoria, Australia
- Malaria: Parasites & Hosts Unit, Institut Pasteur, Paris, France
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University, and Veterans Affairs Medical Center, Cleveland, OH, United States of America
| | - François Nosten
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James G. Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Stephen Rogerson
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Freya J. I. Fowkes
- Burnet Institute, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
198
|
Dechavanne C, Dechavanne S, Sadissou I, Lokossou AG, Alvarado F, Dambrun M, Moutairou K, Courtin D, Nuel G, Garcia A, Migot-Nabias F, King CL. Associations between an IgG3 polymorphism in the binding domain for FcRn, transplacental transfer of malaria-specific IgG3, and protection against Plasmodium falciparum malaria during infancy: A birth cohort study in Benin. PLoS Med 2017; 14:e1002403. [PMID: 28991911 PMCID: PMC5633139 DOI: 10.1371/journal.pmed.1002403] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transplacental transfer of maternal immunoglobulin G (IgG) to the fetus helps to protect against malaria and other infections in infancy. Recent studies have emphasized the important role of malaria-specific IgG3 in malaria immunity, and its transfer may reduce the risk of malaria in infancy. Human IgGs are actively transferred across the placenta by binding the neonatal Fc receptor (FcRn) expressed within the endosomes of the syncytiotrophoblastic membrane. Histidine at position 435 (H435) provides for optimal Fc-IgG binding. In contrast to other IgG subclasses, IgG3 is highly polymorphic and usually contains an arginine at position 435, which reduces its binding affinity to FcRn in vitro. The reduced binding to FcRn is associated with reduced transplacental transfer and reduced half-life of IgG3 in vivo. Some haplotypes of IgG3 have histidine at position 435. This study examines the hypotheses that the IgG3-H435 variant promotes increased transplacental transfer of malaria-specific antibodies and a prolonged IgG3 half-life in infants and that its presence correlates with protection against clinical malaria during infancy. METHODS AND FINDINGS In Benin, 497 mother-infant pairs were included in a longitudinal birth cohort. Both maternal and cord serum samples were assayed for levels of IgG1 and IgG3 specific for MSP119, MSP2 (both allelic families, 3D7 and FC27), MSP3, GLURP (both regions, R0 and R2), and AMA1 antigens of Plasmodium falciparum. Cord:maternal ratios were calculated. The maternal IgG3 gene was sequenced to identify the IgG3-H435 polymorphism. A multivariate logistic regression was used to examine the association between maternal IgG3-H435 polymorphism and transplacental transfer of IgG3, adjusting for hypergammaglobulinemia, maternal malaria, and infant malaria exposure. Twenty-four percent of Beninese women living in an area highly endemic for malaria had the IgG3-H435 allele (377 women homozygous for the IgG3-R435 allele, 117 women heterozygous for the IgG3-R/H alleles, and 3 women homozygous for the IgG3-H435 allele). Women with the IgG3-H435 allele had a 78% (95% CI 17%, 170%, p = 0.007) increased transplacental transfer of GLURP-R2 IgG3 compared to those without the IgG3-H435 allele. Furthermore, in infants born to mothers with the IgG3-H435 variant, a 28% longer IgG3 half-life was noted (95% CI 4%, 59%, p = 0.02) compared to infants born to mothers homozygous for the IgG3-R435 allele. Similar findings were observed for AMA1, MSP2-3D7, MSP3, GLURP-R0, and GLURP-R2 but not for MSP119 and MSP2-FC27. Infants born to women with IgG3-H435 had a 32% lower risk of symptomatic malaria during infancy (incidence rate ratio [IRR] = 0.68 [95% CI 0.51, 0.91], p = 0.01) compared to infants born to mothers homozygous for IgG3-R435. We did not find a lower risk of asymptomatic malaria in infants born to women with or without IgG3-H435. Limitations of the study were the inability to determine (i) the actual amount of IgG3-H435 relative to IgG-R435 in serum samples and (ii) the proportion of malaria-specific IgG produced by infants versus acquired from their mothers. CONCLUSIONS An arginine-to-histidine replacement at residue 435 in the binding domain of IgG3 to FcRn increases the transplacental transfer and half-life of malaria-specific IgG3 in young infants and is associated with reduced risk of clinical malaria during infancy. The IgG3-H435 allele may be under positive selection, given its relatively high frequency in malaria endemic areas.
Collapse
Affiliation(s)
- Celia Dechavanne
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (CD); (CLK)
| | - Sebastien Dechavanne
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ibrahim Sadissou
- Mère et Enfant Face aux Infections Tropicales, UMR 216, Institut de Recherche pour le Développement, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Adjimon Gatien Lokossou
- Mère et Enfant Face aux Infections Tropicales, UMR 216, Institut de Recherche pour le Développement, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
- Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche Sciences Biomédicales et Environnement, École Polytechnique d’Abomey Calavi, Université d’Abomey Calavi, Abomey Calavi, Benin
| | - Fernanda Alvarado
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Magalie Dambrun
- Mère et Enfant Face aux Infections Tropicales, UMR 216, Institut de Recherche pour le Développement, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey Calavi, Benin
| | - David Courtin
- Mère et Enfant Face aux Infections Tropicales, UMR 216, Institut de Recherche pour le Développement, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
| | - Gregory Nuel
- Laboratoire de Mathématiques Appliquées, UMR CNRS 8145, Université Paris Descartes, Paris, France
| | - Andre Garcia
- Mère et Enfant Face aux Infections Tropicales, UMR 216, Institut de Recherche pour le Développement, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
| | - Florence Migot-Nabias
- Mère et Enfant Face aux Infections Tropicales, UMR 216, Institut de Recherche pour le Développement, Paris, France
- Faculté de Pharmacie, Université Paris Descartes, COMUE Sorbonne Paris Cité, Paris, France
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Veterans Affairs Research Service, Cleveland, Ohio, United States of America
- * E-mail: (CD); (CLK)
| |
Collapse
|
199
|
França CT, White MT, He WQ, Hostetler JB, Brewster J, Frato G, Malhotra I, Gruszczyk J, Huon C, Lin E, Kiniboro B, Yadava A, Siba P, Galinski MR, Healer J, Chitnis C, Cowman AF, Takashima E, Tsuboi T, Tham WH, Fairhurst RM, Rayner JC, King CL, Mueller I. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. eLife 2017; 6:28673. [PMID: 28949293 PMCID: PMC5655538 DOI: 10.7554/elife.28673] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
The study of antigenic targets of naturally-acquired immunity is essential to identify and prioritize antigens for further functional characterization. We measured total IgG antibodies to 38 P. vivax antigens, investigating their relationship with prospective risk of malaria in a cohort of 1–3 years old Papua New Guinean children. Using simulated annealing algorithms, the potential protective efficacy of antibodies to multiple antigen-combinations, and the antibody thresholds associated with protection were investigated for the first time. High antibody levels to multiple known and newly identified proteins were strongly associated with protection (IRR 0.44–0.74, p<0.001–0.041). Among five-antigen combinations with the strongest protective effect (>90%), EBP, DBPII, RBP1a, CyRPA, and PVX_081550 were most frequently identified; several of them requiring very low antibody levels to show a protective association. These data identify individual antigens that should be prioritized for further functional testing and establish a clear path to testing a multicomponent P. vivax vaccine.
Collapse
Affiliation(s)
- Camila Tenorio França
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael T White
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia.,MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Wen-Qiang He
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Jessica B Hostetler
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Jessica Brewster
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Gabriel Frato
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, United States
| | - Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, United States
| | - Jakub Gruszczyk
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Christele Huon
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France
| | - Enmoore Lin
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Yagaum, Papua New Guinea
| | - Benson Kiniboro
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Yagaum, Papua New Guinea
| | - Anjali Yadava
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, United States
| | - Peter Siba
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Yagaum, Papua New Guinea
| | - Mary R Galinski
- International Center for Malaria Research, Education, and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, United States.,Infectious Diseases Division, Department of Medicine, Emory University, Atlanta, United States
| | - Julie Healer
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Chetan Chitnis
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France.,International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Alan F Cowman
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Eizo Takashima
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, United States
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, United States
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Malaria Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Barcelona Institute of Global Health, Barcelona, Spain
| |
Collapse
|
200
|
Glushakova S, Busse BL, Garten M, Beck JR, Fairhurst RM, Goldberg DE, Zimmerberg J. Exploitation of a newly-identified entry pathway into the malaria parasite-infected erythrocyte to inhibit parasite egress. Sci Rep 2017; 7:12250. [PMID: 28947749 PMCID: PMC5612957 DOI: 10.1038/s41598-017-12258-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
While many parasites develop within host cells to avoid antibody responses and to utilize host cytoplasmic resources, elaborate egress processes have evolved to minimize the time between escaping and invading the next cell. In human erythrocytes, malaria parasites perforate their enclosing erythrocyte membrane shortly before egress. Here, we show that these pores clearly function as an entry pathway into infected erythrocytes for compounds that inhibit parasite egress. The natural glycosaminoglycan heparin surprisingly inhibited malaria parasite egress, trapping merozoites within infected erythrocytes. Labeled heparin neither bound to nor translocated through the intact erythrocyte membrane during parasite development, but fluxed into erythrocytes at the last minute of the parasite lifecycle. This short encounter was sufficient to significantly inhibit parasite egress and dispersion. Heparin blocks egress by interacting with both the surface of intra-erythrocytic merozoites and the inner aspect of erythrocyte membranes, preventing the rupture of infected erythrocytes but not parasitophorous vacuoles, and independently interfering with merozoite disaggregation. Since this action of heparin recapitulates that of neutralizing antibodies, membrane perforation presents a brief opportunity for a new strategy to inhibit parasite egress and replication.
Collapse
Affiliation(s)
- Svetlana Glushakova
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brad L Busse
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthias Garten
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Josh R Beck
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases; National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|