151
|
Accurate and comprehensive analysis of single nucleotide variants and large deletions of the human mitochondrial genome in DNA and single cells. Eur J Hum Genet 2017; 25:1229-1236. [PMID: 28832570 DOI: 10.1038/ejhg.2017.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 01/18/2023] Open
Abstract
Massive parallel sequencing (MPS) can accurately quantify mitochondrial DNA (mtDNA) single nucleotide variants (SNVs), but no MPS methods are currently validated to simultaneously and accurately establish the breakpoints and frequency of large deletions at low heteroplasmic loads. Here we present the thorough validation of an MPS protocol to quantify the load of very low frequency, large mtDNA deletions in bulk DNA and single cells, along with SNV calling by standard methods. We used a set of well-characterized DNA samples, DNA mixes and single cells to thoroughly control the study. We developed a custom script for the detection of mtDNA rearrangements that proved to be more accurate in detecting and quantifying deletions than pre-existing tools. We also show that PCR conditions and primersets must be carefully chosen to avoid biases in the retrieved variants and an increase in background noise, and established a lower detection limit of 0.5% heteroplasmic load for large deletions, and 1.5 and 2% for SNVs, for bulk DNA and single cells, respectively. Finally, the analysis of different single cells provided novel insights into mtDNA cellular mosaicism.
Collapse
|
152
|
Manczak M, Kandimalla R, Fry D, Sesaki H, Reddy PH. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 2017; 25:5148-5166. [PMID: 27677309 DOI: 10.1093/hmg/ddw330] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of our study was to understand the protective effects of reduced expression of dynamin-related protein (Drp1) against amyloid beta (Aβ) induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD) progression and pathogenesis. Our recent molecular and biochemical studies revealed that impaired mitochondrial dynamics-increased mitochondrial fragmentation and decreased fusion-in neurons from autopsy brains of AD patients and from transgenic AD mice and neurons expressing Aβ, suggesting that Aβ causes mitochondrial fragmentation in AD. Further, our recent co-immunoprecipitation and immunostaining analysis revealed that the mitochondrial fission protein Drp1 interacted with Aβ, and this interaction increased as AD progressed. Based on these findings, we hypothesize that a partial deficiency of Drp1 inhibits Drp1-Aβ interactions and protects Aβ-induced mitochondrial and synaptic toxicities, and maintains mitochondrial dynamics and neuronal function in AD neurons. We crossed Drp1+/- mice with APP transgenic mice (Tg2576 line) and created double mutant (APPXDrp1+/-) mice. Using real-time RT-PCR and immunoblotting analyses, we measured mRNA expressions and protein levels of genes related to the mitochondrial dynamics, mitochondrial biogenesis and synapses from 6-month-old Drp1+/-, APP, APPXDrp1+/- and wild-type (WT) mice. Using biochemical methods, we also studied mitochondrial function and measured soluble Aβ in brain tissues from all lines of mice in our study. Decreased mRNA expressions and protein levels of Drp1 and Fis1 (fission) and CypD (matrix) genes, and increased levels of Mfn1, Mfn2 and Opa1 (fusion), Nrf1, Nrf2, PGC1α, TFAM (biogenesis) and synaptophysin, PSD95, synapsin 1, synaptobrevin 1, neurogranin, GAP43 and synaptopodin (synaptic) were found in 6-month-old APPXDrp1+/- mice relative to APP mice. Mitochondrial functional assays revealed that mitochondrial dysfunction is reduced in APPXDrp1+/- mice relative to APP mice, suggesting that reduced Drp1enhances mitochondrial function in AD neurons. Sandwich ELISA assay revealed that soluble Aβ levels were significantly reduced in APPXDrp1+/- mice relative to APP mice, indicating that reduced Drp1 decreases soluble Aβ production in AD progression. These findings suggest that a partial reduction of Drp1 reduces Aβ production, reduces mitochondrial dysfunction, and maintains mitochondrial dynamics, enhances mitochondrial biogenesis and synaptic activity in APP mice. These findings may have implications for the development of Drp1 based therapeutics for AD patients.
Collapse
Affiliation(s)
- Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Hiromi Sesaki
- Cell Biology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Cell Biology & Biochemistry Department.,Pharmacology & Neuroscience Department.,Neurology Department.,Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
153
|
Abstract
Huntington's disease (HD) as an inherited neurodegenerative disorder leads to neuronal loss in striatum. Progressive motor dysfunction, cognitive decline, and psychiatric disturbance are the main clinical symptoms of the HD. This disease is caused by expansion of the CAG repeats in exon 1 of the huntingtin which encodes Huntingtin protein (Htt). Various cellular and molecular events play role in the pathology of HD. Mitochondria as important organelles play crucial roles in the most of neurodegenerative disorders like HD. Critical roles of the mitochondria in neurons are ATP generation, Ca2+ buffering, ROS generation, and antioxidant activity. Neurons as high-demand energy cells closely related to function, maintenance, and dynamic of mitochondria. In the most neurological disorders, mitochondrial activities and dynamic are disrupted which associate with high ROS level, low ATP generation, and apoptosis. Accumulation of mutant huntingtin (mHtt) during this disease may evoke mitochondrial dysfunction. Here, we review recent findings to support this hypothesis that mHtt could cause mitochondrial defects. In addition, by focusing normal huntingtin functions in neurons, we purpose mitochondria and Huntingtin association in normal condition. Moreover, mHtt affects various cellular signaling which ends up to mitochondrial biogenesis. So, it could be a potential candidate to decline ATP level in HD. We conclude how mitochondrial biogenesis plays a central role in the neuronal survival and activity and how mHtt affects mitochondrial trafficking, maintenance, integrity, function, dynamics, and hemostasis and makes neurons vulnerable to degeneration in HD.
Collapse
|
154
|
Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, Klima J, Ellederova Z, Pavlok A, Howland DS, Zeman J, Motlik J, Hansikova H. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. NEURODEGENER DIS 2017. [PMID: 28633139 DOI: 10.1159/000475467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington disease (HD) is a fatal neurodegenerative disorder involving reduced muscle coordination, mental and behavioral changes, and testicular degeneration. In order to further clarify the decreased fertility and penetration ability of the spermatozoa of transgenic HD minipig boars (TgHD), we applied a set of mitochondrial metabolism (MM) parameter measurements to this promising biological material, which can be collected noninvasively in longitudinal studies. OBJECTIVE We aimed to optimize methods for MM measurements in spermatozoa and to establish possible biomarkers of HD in TgHD spermatozoa expressing the N-terminal part of mutated human huntingtin. METHODS Semen samples from 12 TgHD and wild-type animals, aged 12-65 months, were obtained repeatedly during the study. Respiration was measured by polarography, MM was assessed by the detection of oxidation of radiolabeled substrates (mitochondrial energy-generating system; MEGS), and the content of the oxidative phosphorylation system subunits was detected by Western blot. Three possibly interfering factors were statistically analyzed: the effect of HD, generation and aging. RESULTS We found 5 MM parameters which were significantly diminished in TgHD spermatozoa and propose 3 specific MEGS incubations and complex I-dependent respiration as potential biomarkers of HD in TgHD spermatozoa. CONCLUSIONS Our results suggest a link between the gain of toxic function of mutated huntingtin in TgHD spermatozoa and the observed MM and/or glycolytic impairment. We determined 4 biomarkers useful for HD phenotyping and experimental therapy monitoring studies in TgHD minipigs.
Collapse
Affiliation(s)
- Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Li MX, Mu DZ. [Mitophagy and nervous system disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:724-729. [PMID: 28606244 PMCID: PMC7390300 DOI: 10.7499/j.issn.1008-8830.2017.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
Mitophagy is a process during which the cell selectively removes the mitochondria via the mechanism of autophagy. It is crucial to the functional completeness of the whole mitochondrial network and determines cell survival and death. On the one hand, the damaged mitochondria releases pro-apoptotic factors which induce cell apoptosis; on the other hand, the damaged mitochondria eliminates itself via autophagy, which helps to maintain cell viability. Mitophagy is of vital importance for the development and function of the nervous system. Neural cells rely on autophagy to control protein quality and eliminate the damaged mitochondria, and under normal circumstances, mitophagy can protect the neural cells. Mutations in genes related to mitophagy may cause the development and progression of neurodegenerative diseases. An understanding of the role of mitophagy in nervous system diseases may provide new theoretical bases for clinical treatment. This article reviews the research advances in the relationship between mitophagy and different types of nervous system diseases.
Collapse
Affiliation(s)
- Ming-Xi Li
- Department of Pediatrics, West China Second Hospital, Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education/Key Laboratory of Development and Related Diseases of Women and Children, Chengdu 610041, China.
| | | |
Collapse
|
156
|
Buck E, Bayer H, Lindenberg KS, Hanselmann J, Pasquarelli N, Ludolph AC, Weydt P, Witting A. Comparison of Sirtuin 3 Levels in ALS and Huntington's Disease-Differential Effects in Human Tissue Samples vs. Transgenic Mouse Models. Front Mol Neurosci 2017; 10:156. [PMID: 28603486 PMCID: PMC5445120 DOI: 10.3389/fnmol.2017.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are characterized by distinct patterns of neuronal loss. In amyotrophic lateral sclerosis (ALS) upper and lower motoneurons degenerate whereas in Huntington’s disease (HD) medium spiny neurons in the striatum are preferentially affected. Despite these differences the pathophysiological mechanisms and risk factors are remarkably similar. In addition, non-neuronal features, such as weight loss implicate a dysregulation in energy metabolism. Mammalian sirtuins, especially the mitochondrial NAD+ dependent sirtuin 3 (SIRT3), regulate mitochondrial function and aging processes. SIRT3 expression depends on the activity of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a modifier of ALS and HD in patients and model organisms. This prompted us to systematically probe Sirt3 mRNA and protein levels in mouse models of ALS and HD and to correlate these with patient tissue levels. We found a selective reduction of Sirt3 mRNA levels and function in the cervical spinal cord of end-stage ALS mice (superoxide dismutase 1, SOD1G93A). In sharp contrast, a tendency to increased Sirt3 mRNA levels was found in the striatum in HD mice (R6/2). Cultured primary neurons express the highest levels of Sirt3 mRNA. In primary cells from PGC-1α knock-out (KO) mice the Sirt3 mRNA levels were highest in astrocytes. In human post mortem tissue increased mRNA and protein levels of Sirt3 were found in the spinal cord in ALS, while Sirt3 levels were unchanged in the human HD striatum. Based on these findings we conclude that SIRT3 mediates the different effects of PGC-1α during the course of transgenic (tg) ALS and HD and in the human conditions only partial aspects Sirt3 dysregulation manifest.
Collapse
Affiliation(s)
- Eva Buck
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Hanna Bayer
- Department of Neurology, Ulm UniversityUlm, Germany
| | | | | | | | | | - Patrick Weydt
- Department of Neurology, Ulm UniversityUlm, Germany.,Department of Neurodegenerative Disorders and Gerontopsychiatry, Bonn UniversityBonn, Germany
| | - Anke Witting
- Department of Neurology, Ulm UniversityUlm, Germany
| |
Collapse
|
157
|
Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants (Basel) 2017; 6:antiox6020025. [PMID: 28379197 PMCID: PMC5488005 DOI: 10.3390/antiox6020025] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are incurable and devastating neurological disorders characterized by the progressive loss of the structure and function of neurons in the central nervous system or peripheral nervous system. Mitochondria, organelles found in most eukaryotic cells, are essential for neuronal survival and are involved in a number of neuronal functions. Mitochondrial dysfunction has long been demonstrated as a common prominent early pathological feature of a variety of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). Mitochondria are highly dynamic organelles that undergo continuous fusion, fission, and transport, the processes of which not only control mitochondrial morphology and number but also regulate mitochondrial function and location. The importance of mitochondrial dynamics in the pathogenesis of neurodegenerative diseases has been increasingly unraveled after the identification of several key fusion and fission regulators such as Drp1, OPA1, and mitofusins. In this review, after a brief discussion of molecular mechanisms regulating mitochondrial fusion, fission, distribution, and trafficking, as well as the important role of mitochondrial dynamics for neuronal function, we review previous and the most recent studies about mitochondrial dynamic abnormalities observed in various major neurodegenerative diseases and discuss the possibility of targeting mitochondrial dynamics as a likely novel therapeutic strategy for neurodegenerative diseases.
Collapse
|
158
|
Cherubini M, Ginés S. Mitochondrial fragmentation in neuronal degeneration: Toward an understanding of HD striatal susceptibility. Biochem Biophys Res Commun 2017; 483:1063-1068. [DOI: 10.1016/j.bbrc.2016.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 12/31/2022]
|
159
|
Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington's disease R6/2 fragment model. Exp Neurol 2017; 288:167-175. [DOI: 10.1016/j.expneurol.2016.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 12/23/2022]
|
160
|
Valadão PAC, de Aragão BC, Andrade JN, Magalhães-Gomes MPS, Foureaux G, Joviano-Santos JV, Nogueira JC, Ribeiro FM, Tapia JC, Guatimosim C. Muscle atrophy is associated with cervical spinal motoneuron loss in BACHD mouse model for Huntington's disease. Eur J Neurosci 2017; 45:785-796. [PMID: 27992085 DOI: 10.1111/ejn.13510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/26/2022]
Abstract
Involuntary choreiform movements are clinical hallmark of Huntington's disease, an autosomal dominant neurodegenerative disorder caused by an increased number of CAG trinucleotide repeats in the huntingtin gene. Involuntary movements start with an impairment of facial muscles and then affect trunk and limbs muscles. Huntington's disease symptoms are caused by changes in cortex and striatum neurons induced by mutated huntingtin protein. However, little is known about the impact of this abnormal protein in spinal cord motoneurons that control movement. Therefore, in this study we evaluated abnormalities in the motor unit (spinal cervical motoneurons, motor axons, neuromuscular junctions and muscle) in a mouse model for Huntington's disease (BACHD). Using light, fluorescence, confocal, and electron microscopy, we showed significant changes such as muscle fibers atrophy, fragmentation of neuromuscular junctions, axonal alterations, and motoneurons death in BACHD mice. Noteworthy, the surviving motoneurons from BACHD spinal cords were smaller than WT. We suggest that this loss of larger putative motoneurons is accompanied by a decrease in the expression of fast glycolytic muscle fibers in this model for Huntington's disease. These observations show spinal cord motoneurons loss in BACHD that might help to understand neuromuscular changes in Huntington's disease.
Collapse
Affiliation(s)
- Priscila Aparecida Costa Valadão
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Bárbara Campos de Aragão
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Jéssica Neves Andrade
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Matheus Proença S Magalhães-Gomes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Giselle Foureaux
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | - José Carlos Nogueira
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Fabíola Mara Ribeiro
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juan Carlos Tapia
- Department of Biomedical Sciences, University of Talca, Talca, Chile
| | - Cristina Guatimosim
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
161
|
Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:15-28. [PMID: 28947113 DOI: 10.1016/b978-0-12-801893-4.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CAG repeat expansion mutation that causes Huntington Disease (HD) was discovered more than 20 years ago, yet no treatment has yet been developed to stop the relentless course of the disease. Nonetheless, substantial progress has been made in understanding HD pathogenesis. We review insights that have been gleaned from HD genetics, metabolism, and pathology; HD mouse and cell models; the structure, function and post-translational modification of normal and mutant huntingtin (htt) protein; gene expression profiles in HD cells and tissue; the neurotoxicy of mutant htt RNA; and the expression of an antisense transcript from the HD locus. We conclude that rationale therapeutics for HD is within sight, though many questions remain to be answered.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Laboratory of Genetic Neurobiology and Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
162
|
Bryan MR, Bowman AB. Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. ADVANCES IN NEUROBIOLOGY 2017; 18:113-142. [PMID: 28889265 PMCID: PMC6559248 DOI: 10.1007/978-3-319-60189-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
Collapse
Affiliation(s)
- Miles R Bryan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
163
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
164
|
Kandimalla R, Manczak M, Fry D, Suneetha Y, Sesaki H, Reddy PH. Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 2016; 25:4881-4897. [PMID: 28173111 PMCID: PMC6078590 DOI: 10.1093/hmg/ddw312] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/13/2022] Open
Abstract
The purpose of our study was to understand the protective effects of a partial reduction of dynamin-related protein 1 (Drp1) in Alzheimer’s disease (AD) progression and pathogenesis. Increasing evidence suggests that phosphorylated Tau and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline, in patients with AD. In the current study, we investigated whether a partial reduction of Drp1 protect neurons from phosphorylated Tau-induced mitochondrial and synaptic toxicities in AD progression. We crossed Drp1+/− mice with Tau transgenic mice (P301L line) and created double mutant (TauXDrp1+/−) mice. Using real-time RT-PCR, immunoblotting and immunostaining analyses, we measured mRNA expressions and protein levels of genes related to the mitochondrial dynamics—Drp1 and Fis1 (fission), Mfn1, Mfn2 and Opa1 (fusion), CypD (matrix), mitochondrial biogenesis—Nrf1, Nrf2, PGC1α and TFAM and synaptic—synaptophysin, PSD95, synapsin 1, synaptobrevin 1, neurogranin, GAP43 and synaptopodin in brain tissues from 6-month-old Drp1+/−, Tau, TauXDrp1+/− and wild-type mice. Using biochemical and immunoblotting methods, mitochondrial function and phosphorylated Tau were measured. Decreased mRNA and protein levels of fission and matrix and increased levels of fusion, mitochondrial biogenesis, and synaptic genes were found in 6-month-old TauXDrp1+/− mice relative to Tau mice. Mitochondrial dysfunction was reduced in TauXDrp1+/− mice relative to Tau mice. Phosphorylated Tau found to be reduced in TauXDrp1+/− mice relative to Tau mice. These findings suggest that a partial reduction of Drp1 decreases the production of phosphorylated Tau, reduces mitochondrial dysfunction, and maintains mitochondrial dynamics, enhances mitochondrial biogenesis and synaptic activity in Tau mice. Findings of this study may have implications for the development of Drp1 based therapeutics for patients with AD and other tauopathies.
Collapse
Affiliation(s)
- Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - David Fry
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Yeguvapalli Suneetha
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| | - Hiromi Sesaki
- Cell Biology Department, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 109 Hunterian, Baltimore, MD 21205, USA
| | - P. Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
- Cell Biology & Biochemistry Department
- Neuroscience & Pharmacology Department
- Neurology Department
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, USA
| |
Collapse
|
165
|
Disatnik MH, Joshi AU, Saw NL, Shamloo M, Leavitt BR, Qi X, Mochly-Rosen D. Potential biomarkers to follow the progression and treatment response of Huntington's disease. J Exp Med 2016; 213:2655-2669. [PMID: 27821553 PMCID: PMC5110026 DOI: 10.1084/jem.20160776] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/16/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
Disatnik et al. identify mitochondrial DNA levels, 8-OHdG, and inflammation factors as potential peripheral biomarkers to follow progression and treatment response of Huntington’s disease. Huntington’s disease (HD) is a rare genetic disease caused by expanded polyglutamine repeats in the huntingtin protein resulting in selective neuronal loss. Although genetic testing readily identifies those who will be affected, current pharmacological treatments do not prevent or slow down disease progression. A major challenge is the slow clinical progression and the inability to biopsy the affected tissue, the brain, making it difficult to design short and effective proof of concept clinical trials to assess treatment benefit. In this study, we focus on identifying peripheral biomarkers that correlate with the progression of the disease and treatment benefit. We recently developed an inhibitor of pathological mitochondrial fragmentation, P110, to inhibit neurotoxicity in HD. Changes in levels of mitochondrial DNA (mtDNA) and inflammation markers in plasma, a product of DNA oxidation in urine, mutant huntingtin aggregates, and 4-hydroxynonenal adducts in muscle and skin tissues were all noted in HD R6/2 mice relative to wild-type mice. Importantly, P110 treatment effectively reduced the levels of these biomarkers. Finally, abnormal levels of mtDNA were also found in plasma of HD patients relative to control subjects. Therefore, we identified several potential peripheral biomarkers as candidates to assess HD progression and the benefit of intervention for future clinical trials.
Collapse
Affiliation(s)
- Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
166
|
Ni CL, Seth D, Fonseca FV, Wang L, Xiao TS, Gruber P, Sy MS, Stamler JS, Tartakoff AM. Polyglutamine Tract Expansion Increases S-Nitrosylation of Huntingtin and Ataxin-1. PLoS One 2016; 11:e0163359. [PMID: 27658206 PMCID: PMC5033456 DOI: 10.1371/journal.pone.0163359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
Expansion of the polyglutamine (polyQ) tract in the huntingtin (Htt) protein causes Huntington’s disease (HD), a fatal inherited movement disorder linked to neurodegeneration in the striatum and cortex. S-nitrosylation and S-acylation of cysteine residues regulate many functions of cytosolic proteins. We therefore used a resin-assisted capture approach to identify these modifications in Htt. In contrast to many proteins that have only a single S-nitrosylation or S-acylation site, we identified sites along much of the length of Htt. Moreover, analysis of cells expressing full-length Htt or a large N-terminal fragment of Htt shows that polyQ expansion strongly increases Htt S-nitrosylation. This effect appears to be general since it is also observed in Ataxin-1, which causes spinocerebellar ataxia type 1 (SCA1) when its polyQ tract is expanded. Overexpression of nitric oxide synthase increases the S-nitrosylation of normal Htt and the frequency of conspicuous juxtanuclear inclusions of Htt N-terminal fragments in transfected cells. Taken together with the evidence that S-nitrosylation of Htt is widespread and parallels polyQ expansion, these subcellular changes show that S-nitrosylation affects the biology of this protein in vivo.
Collapse
Affiliation(s)
- Chun-Lun Ni
- Cell Biology Program, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Divya Seth
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Fabio Vasconcelos Fonseca
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Phillip Gruber
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, United States of America
| | - Alan M. Tartakoff
- Cell Biology Program, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, 44106, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, United States of America
- * E-mail:
| |
Collapse
|
167
|
Kunkanjanawan T, Carter RL, Prucha MS, Yang J, Parnpai R, Chan AWS. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington's Disease Monkey Neural Cells. PLoS One 2016; 11:e0162788. [PMID: 27631085 PMCID: PMC5025087 DOI: 10.1371/journal.pone.0162788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics.
Collapse
Affiliation(s)
- Tanut Kunkanjanawan
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Melinda S. Prucha
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Jinjing Yang
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anthony W. S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| |
Collapse
|
168
|
Dabrowska A, Venero JL, Iwasawa R, Hankir MK, Rahman S, Boobis A, Hajji N. PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity. Aging (Albany NY) 2016; 7:629-47. [PMID: 26363853 PMCID: PMC4600622 DOI: 10.18632/aging.100790] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to its role in regulation of mitochondrial function, PGC1α is emerging as an important player in ageing and neurodegenerative disorders. PGC1α exerts its neuroprotective effects by promoting mitochondrial biogenesis (MB) and functioning. However, the precise regulatory role of PGC1α in the control of mitochondrial dynamics (MD) and neurotoxicity is still unknown. Here we elucidate the role of PGC1α in vitro and in vivo in the regulatory context of MB and MD in response to lead (II) acetate as a relevant model of neurotoxicity. We show that there is an adaptive response (AR) to lead, orchestrated by the BAP31-calcium signalling system operating between the ER and mitochondria. We find that this hormetic response is controlled by a cell-tolerated increase of PGC1α expression, which in turn induces a balanced expression of fusion/fission genes by binding to their promoters and implying its direct role in regulation of MD. However, dysregulation of PGC1α expression through either stable downregulation or overexpression, renders cells more susceptible to lead insult leading to mitochondrial fragmentation and cell death. Our data provide novel evidence that PGC1α expression is a key regulator of MD and the maintenance of tolerated PGC1α expression may offer a promising strategy for neuroprotective therapies.
Collapse
Affiliation(s)
- Aleksandra Dabrowska
- Imperial College London, Centre for Pharmacology and Therapeutics, Department of Medicine, London, United Kingdom
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular. Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González, Sevilla, Spain
| | - Ryota Iwasawa
- Imperial College London, Centre for Pharmacology and Therapeutics, Department of Medicine, London, United Kingdom
| | - Mohammed-Khair Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Sunniyat Rahman
- Imperial College London, Centre for Pharmacology and Therapeutics, Department of Medicine, London, United Kingdom
| | - Alan Boobis
- Imperial College London, Centre for Pharmacology and Therapeutics, Department of Medicine, London, United Kingdom
| | - Nabil Hajji
- Imperial College London, Centre for Pharmacology and Therapeutics, Department of Medicine, London, United Kingdom
| |
Collapse
|
169
|
Hwang S, Disatnik MH, Mochly-Rosen D. Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington's disease. EMBO Mol Med 2016; 7:1307-26. [PMID: 26268247 PMCID: PMC4604685 DOI: 10.15252/emmm.201505256] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in multiple neurodegenerative diseases. In order to maintain a healthy population of functional mitochondria in cells, defective mitochondria must be properly eliminated by lysosomal machinery in a process referred to as mitophagy. Here, we uncover a new molecular mechanism underlying mitophagy driven by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under the pathological condition of Huntington’s disease (HD) caused by expansion of polyglutamine repeats. Expression of expanded polyglutamine tracts catalytically inactivates GAPDH (iGAPDH), which triggers its selective association with damaged mitochondria in several cell culture models of HD. Through this mechanism, iGAPDH serves as a signaling molecule to induce direct engulfment of damaged mitochondria into lysosomes (micro-mitophagy). However, abnormal interaction of mitochondrial GAPDH with long polyglutamine tracts stalled GAPDH-mediated mitophagy, leading to accumulation of damaged mitochondria, and increased cell death. We further demonstrated that overexpression of inactive GAPDH rescues this blunted process and enhances mitochondrial function and cell survival, indicating a role for GAPDH-driven mitophagy in the pathology of HD.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
170
|
Brustovetsky N. Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling. Mol Neurobiol 2016; 53:2944-2953. [PMID: 25941077 PMCID: PMC4635103 DOI: 10.1007/s12035-015-9188-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/22/2015] [Indexed: 01/13/2023]
Abstract
Elongation of a polyglutamine (polyQ) stretch in huntingtin protein (Htt) is linked to Huntington's disease (HD) pathogenesis. The mutation in Htt correlates with neuronal dysfunction in the striatum and cerebral cortex and eventually leads to neuronal cell death. The exact mechanisms of the injurious effect of mutant Htt (mHtt) on neurons are not completely understood but might include aberrant gene transcription, defective autophagy, abnormal mitochondrial biogenesis, anomalous mitochondrial dynamics, and trafficking. In addition, deficiency in oxidative metabolism and defects in mitochondrial Ca(2+) handling are considered essential contributing factors to neuronal dysfunction in HD and, consequently, in HD pathogenesis. Since the discovery of the mutation in Htt, the questions whether mHtt affects oxidative metabolism and mitochondrial Ca(2+) handling and, if it does, what mechanisms could be involved were in focus of numerous investigations. However, despite significant research efforts, the detrimental effect of mHtt and the mechanisms by which mHtt might impair oxidative metabolism and mitochondrial Ca(2+) handling remain elusive. In this paper, I will briefly review studies aimed at clarifying the consequences of mHtt interaction with mitochondria and discuss experimental results supporting or arguing against the mHtt effects on oxidative metabolism and mitochondrial Ca(2+) handling.
Collapse
Affiliation(s)
- Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr., Medical Science Bldg 547, Indianapolis, IN, 46202, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
171
|
Kanlikilicer P, Zhang D, Dragomir A, Akay YM, Akay M. Gene expression profiling of midbrain dopamine neurons upon gestational nicotine exposure. Med Biol Eng Comput 2016; 55:467-482. [PMID: 27255453 DOI: 10.1007/s11517-016-1531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
Maternal smoking during pregnancy is associated with low birth weight, increased risk of stillbirth, conduct disorder, attention-deficit/hyperactivity disorder and neurocognitive deficits. Ventral tegmental area dopamine (DA) neurons in the mesocorticolimbic pathway were suggested to play a critical role in these pathological mechanisms induced by nicotine. Nicotine-mediated changes in genetic expression during pregnancy are of great interest for current researchers. We used patch clamp methods to identify and harvest DA and non-DA neurons separately and assayed them using oligonucleotide arrays to elucidate the alterations in gene expressions in these cells upon gestational nicotine exposure. Microarray analysis identified a set of 135 genes as significantly differentially expressed between DA and non-DA neurons. Some of the genes were found to be related to neurological disease pathways, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Significantly up-/down-regulated genes found in DA neurons were mostly related to G-protein-coupled protein receptor signaling and developmental processes. These alterations in gene expressions may explain, partially at least, the possible pathological mechanisms for the diseases induced by maternal smoking.
Collapse
Affiliation(s)
- Pınar Kanlikilicer
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Die Zhang
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Andrei Dragomir
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
172
|
Metformin Protects Cells from Mutant Huntingtin Toxicity Through Activation of AMPK and Modulation of Mitochondrial Dynamics. Neuromolecular Med 2016; 18:581-592. [PMID: 27225841 DOI: 10.1007/s12017-016-8412-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/14/2016] [Indexed: 01/08/2023]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease caused by the pathological elongation of the CAG repeats in the huntingtin gene. Caloric restriction (CR) has been the most reproducible environmental intervention to improve health and prolong life span. We have demonstrated that CR delayed onset and slowed disease progression in a mouse model of HD. Metformin, an antidiabetic drug, mimics CR by acting on cell metabolism at multiple levels. Long-term administration of metformin improved health and life span in mice. In this study, we showed that metformin rescued cells from mutant huntingtin (HTT)-induced toxicity, as indicated by reduced lactate dehydrogenase (LDH) release from cells and preserved ATP levels in cells expressing mutant HTT. Further mechanistic study indicated that metformin activated AMP-activated protein kinase (AMPK) and that inhibition of AMPK activation reduced its protective effects on mutant HTT toxicity, suggesting that AMPK mediates the protection of metformin in HD cells. Furthermore, metformin treatment prevented mitochondrial membrane depolarization and excess fission and modulated the disturbed mitochondrial dynamics in HD cells. We confirmed that metformin crossed the blood-brain barrier after oral administration and activated AMPK in the mouse brain. Our results urge further evaluation of the clinical potential for use of metformin in HD treatment.
Collapse
|
173
|
Lou S, Lepak VC, Eberly LE, Roth B, Cui W, Zhu XH, Öz G, Dubinsky JM. Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress. Hum Mol Genet 2016; 25:2813-2826. [PMID: 27193167 DOI: 10.1093/hmg/ddw138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023] Open
Abstract
In vivo evidence for brain mitochondrial dysfunction in animal models of Huntington disease (HD) is scarce. We applied the novel 17O magnetic resonance spectroscopy (MRS) technique on R6/2 mice to directly determine rates of oxygen consumption (CMRO2) and assess mitochondrial function in vivo Basal respiration and maximal CMRO2 in the presence of the mitochondrial uncoupler dinitrophenol (DNP) were compared using 16.4 T in isoflurane anesthetized wild type (WT) and HD mice at 9 weeks. At rest, striatal CMRO2 of R6/2 mice was equivalent to that of WT, indicating comparable mitochondrial output despite onset of motor symptoms in R6/2. After DNP injection, the maximal CMRO2 in both striatum and cortex of R6/2 mice was significantly lower than that of WT, indicating less spare energy generating capacity. In a separate set of mice, oligomycin injection to block ATP generation decreased CMRO2 equally in brains of R6/2 and WT mice, suggesting oxidative phosphorylation capacity and respiratory coupling were equivalent at rest. Expression levels of representative mitochondrial proteins were compared from harvested tissue samples. Significant differences between R6/2 and WT included: in striatum, lower VDAC and the mitochondrially encoded cytochrome oxidase subunit I relative to actin; in cortex, lower tricarboxylic acid cycle enzyme aconitase and higher protein carbonyls; in both, lower glycolytic enzyme enolase. Therefore in R6/2 striatum, lowered CMRO2 may be attributed to a decrease in mitochondria while the cortical CMRO2 decrease may result from constraints upstream in energetic pathways, suggesting regionally specific changes and possibly rates of metabolic impairment.
Collapse
Affiliation(s)
| | | | | | | | - Weina Cui
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Xiao-Hong Zhu
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
174
|
Zebrafish Tg(hb9:MTS-Kaede): a new in vivo tool for studying the axonal movement of mitochondria. Biochim Biophys Acta Gen Subj 2016; 1860:1247-55. [PMID: 26968460 DOI: 10.1016/j.bbagen.2016.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Deregulation of axonal transport in neurons is emerging as the major cause of many neurodegenerative diseases in human, such as Charcot-Marie-Tooth (CMT) neuropathy. However, little is known about how mitochondria move in vivo and whether cell culture systems truly represent what happens in living animals. Here we describe the generation of a new zebrafish transgenic line that specifically allows to study mitochondrial dynamics in motor neurons and its application to analyse mitochondrial movement in zebrafish models expressing CMT2A causing mutations. METHODS The Tol2 transposon system was used to generate a transgenic zebrafish line expressing the photoconvertible fluorescent protein Kaede in mitochondria of motor neurons. Mitochondrial shape and movement were monitored by time-lapse confocal live imaging and measured by kymograph analysis. The effects of two well-known CMT causing mutations, L76P and R94Q substitutions in MFN2, were then investigated with the same methods. RESULTS We generated the transgenic zebrafish Tg(hb9:MTS-Kaede) line with genetically labelled mitochondria in motor neurons. Kaede protein was correctly and stably targeted to mitochondrial matrix while retaining its photoconvertibility, thus qualifying this model for in vivo studies. Expression of the L76P and R94Q mutations reduced mitochondrial movement in axons and altered mitochondrial distribution in distinct ways. CONCLUSIONS AND GENERAL SIGNIFICANCE These findings confirm previously published data obtained in cell cultures and strengthen the hypothesis of different mechanism of action of the two MFN2 mutations. Considering the number of neurodegenerative diseases associated to mitochondrial dynamics, the Tg(hb9:MTS-Kaede) zebrafish line is a promising model to study in vivo alterations of mitochondrial transport underlying human diseases.
Collapse
|
175
|
Chan F, Lax NZ, Davies CH, Turnbull DM, Cunningham MO. Neuronal oscillations: A physiological correlate for targeting mitochondrial dysfunction in neurodegenerative diseases? Neuropharmacology 2016; 102:48-58. [DOI: 10.1016/j.neuropharm.2015.10.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022]
|
176
|
Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease. Hum Mol Genet 2016; 25:1739-53. [PMID: 26908605 DOI: 10.1093/hmg/ddw045] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondria-targeted molecules MitoQ and SS31 in striatal neurons that stably express mutant huntingtin (Htt) (STHDhQ111/Q111) in Huntington's disease (HD). We studied mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, mitochondrial function, and ultra-structural changes in MitoQ- and SS31-treated mutant Htt neurons relative to untreated mutant Htt neurons. We used gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods. In the MitoQ- and SS31-treated mutant Htt neurons, fission genes Drp1 and Fis1 were down-regulated, and fusion genes Mfn1, Mfn2 and Opa1 were up-regulated relative to untreated neurons, suggesting that mitochondria-targeted molecules reduce fission activity. Interestingly, the mitochondrial biogenesis genes PGC1α, PGC1β, Nrf1, Nrf2 and TFAM were up-regulated in MitoQ- and SS31-treated mutant Htt neurons. The synaptic genes synaptophysin and PSD95 were up-regulated, and mitochondrial function was normal in the MitoQ- and SS31-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with the mRNA findings. TEM studies revealed decreased numbers of structurally intact mitochondria in MitoQ- and SS31-treated mutant Htt neurons. These findings suggest that mitochondria-targeted molecules MitoQ and SS31 are protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons, and these mitochondria-targeted molecules are potential therapeutic molecules for the treatment of HD neurons.
Collapse
Affiliation(s)
| | | | - P Hemachandra Reddy
- Garrison Institute on Aging, Cell Biology and Biochemistry, Neuroscience & Pharmacology, Neurology and Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, USA
| |
Collapse
|
177
|
Creatine for neuroprotection in neurodegenerative disease: end of story? Amino Acids 2016; 48:1929-40. [PMID: 26748651 DOI: 10.1007/s00726-015-2165-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/24/2015] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) is a natural compound that plays an important role in cellular energy homeostasis. In addition, it ameliorates oxidative stress, glutamatergic excitotoxicity, and apoptosis in vitro as well as in vivo. Since these pathomechanisms are implicated to play a role in several neurodegenerative diseases, Cr supplementation as a neuroprotective strategy has received a lot of attention with several positive animal studies in models of Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). This has led to a number of randomized clinical trials (RCT) with oral Cr supplementation, with durations up to 5 years. In this paper, we review the evidence and consequences stemming from these trials. In the case of PD, the initial phase II RCT was promising and led to a large and well-designed phase III trial, which, however, turned out to be negative for all outcome measures. None of the RCTs that have examined effects of Cr in ALS patients showed any clinical benefit. In HD, Cr in high doses (up to 30 g/day) was shown to slow down brain atrophy in premanifest Huntingtin mutation carriers. In spite of this, proof is still lacking that Cr can also have beneficial clinical effects in this group of patients, who will go on to develop HD symptoms. Taken together, the use of Cr supplementation has so far proved disappointing in clinical studies with a number of symptomatic neurodegenerative diseases.
Collapse
|
178
|
Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders. Rejuvenation Res 2015; 19:21-40. [PMID: 26087000 DOI: 10.1089/rej.2015.1704] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Tanveer Ali Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Aashiq Hussain Bhat
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Khalid B Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Suhail Anees
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | | | - Akbar Masood
- 2 Department of Biochemistry, University of Kashmir Srinagar , India
| |
Collapse
|
179
|
Manczak M, Reddy PH. Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington's disease. Hum Mol Genet 2015; 24:7308-25. [PMID: 26464486 DOI: 10.1093/hmg/ddv429] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to determine the protective effects of the mitochondrial division inhibitor 1 (Mdivi1) in striatal neurons that stably express mutant Htt (STHDhQ111/Q111) and wild-type (WT) Htt (STHDhQ7/Q7). Using gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods, we studied (i) mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, (ii) mitochondrial function and (iii) ultra-structural changes in mutant Htt neurons relative to WT Htt neurons. We also studied these parameters in Mdivil-treated and untreated WT and mutant Htt neurons. Increased expressions of mitochondrial fission genes, decreased expression of fusion genes and synaptic genes were found in the mutant Htt neurons relative to the WT Htt neurons. Electron microscopy of the mutant Htt neurons revealed a significantly increased number of mitochondria, indicating that mutant Htt fragments mitochondria. Biochemical analysis revealed defective mitochondrial functioning. In the Mdivil-treated mutant Htt neurons, fission genes were down-regulated, and fusion genes were up-regulated, suggesting that Mdivil decreases fission activity. Synaptic genes were up-regulated, and mitochondrial function was normal in the Mdivi1-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with mRNA findings. The TEM studies revealed that increased numbers of structurally intact mitochondria were present in Mdivi1-treated mutant Htt neurons. Increased synaptic and mitochondrial fusion genes and decreased fission genes were found in the Mdivi1-treated WT Htt neurons, indicating that Mdivi1 beneficially affects healthy neurons. Taken together, these findings suggest that Mdivi1 is protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons and that Mdivi1 may be a promising molecule for the treatment of HD patients.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Garrison Institute on Aging and Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
180
|
Naia L, Rego AC. Sirtuins: double players in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2183-94. [DOI: 10.1016/j.bbadis.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
|
181
|
Guedes-Dias P, Pinho BR, Soares TR, de Proença J, Duchen MR, Oliveira JMA. Mitochondrial dynamics and quality control in Huntington's disease. Neurobiol Dis 2015; 90:51-7. [PMID: 26388396 DOI: 10.1016/j.nbd.2015.09.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD.
Collapse
Affiliation(s)
- Pedro Guedes-Dias
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João de Proença
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
182
|
Kim KY, Perkins GA, Shim MS, Bushong E, Alcasid N, Ju S, Ellisman MH, Weinreb RN, Ju WK. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis 2015; 6:e1839. [PMID: 26247724 PMCID: PMC4558491 DOI: 10.1038/cddis.2015.180] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness and is characterized by slow and progressive degeneration of the optic nerve head axons and retinal ganglion cell (RGC), leading to loss of visual function. Although oxidative stress and/or alteration of mitochondrial (mt) dynamics induced by elevated intraocular pressure (IOP) are associated with this neurodegenerative disease, the mechanisms that regulate mt dysfunction-mediated glaucomatous neurodegeneration are poorly understood. Using a mouse model of glaucoma, DBA/2J (D2), which spontaneously develops elevated IOP, as well as an in vitro RGC culture system, we show here that oxidative stress, as evidenced by increasing superoxide dismutase 2 (SOD2) and mt transcription factor A (Tfam) protein expression, triggers mt fission and loss by increasing dynamin-related protein 1 (DRP1) in the retina of glaucomatous D2 mice as well as in cultured RGCs exposed to elevated hydrostatic pressure in vitro. DRP1 inhibition by overexpressing DRP1 K38A mutant blocks mt fission and triggers a subsequent reduction of oxidative stress, as evidenced by decreasing SOD2 and Tfam protein expression. DRP1 inhibition promotes RGC survival by increasing phosphorylation of Bad at serine 112 in the retina and preserves RGC axons by maintaining mt integrity in the glial lamina of glaucomatous D2 mice. These findings demonstrate an important vicious cycle involved in glaucomatous neurodegeneration that starts with elevated IOP producing oxidative stress; the oxidative stress then leads to mt fission and a specific form of mt dysfunction that generates further oxidative stress, thus perpetuating the cycle. Our findings suggest that DRP1 is a potential therapeutic target for ameliorating oxidative stress-mediated mt fission and dysfunction in RGC and its axons during glaucomatous neurodegeneration. Thus, DRP1 inhibition may provide a new therapeutic strategy for protecting both RGCs and their axons in glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- K-Y Kim
- Department of Neuroscience, Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - G A Perkins
- Department of Neuroscience, Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - M S Shim
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California, San Diego, La Jolla, CA, USA
| | - E Bushong
- Department of Neuroscience, Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - N Alcasid
- Department of Neuroscience, Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - S Ju
- Department of Neuroscience, Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - M H Ellisman
- Department of Neuroscience, Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - R N Weinreb
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California, San Diego, La Jolla, CA, USA
| | - W-K Ju
- Laboratory for Optic Nerve Biology, Department of Ophthalmology, Hamilton Glaucoma Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
183
|
Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:498401. [PMID: 26301042 PMCID: PMC4537740 DOI: 10.1155/2015/498401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.
Collapse
|
184
|
Shahni R, Cale CM, Anderson G, Osellame LD, Hambleton S, Jacques TS, Wedatilake Y, Taanman JW, Chan E, Qasim W, Plagnol V, Chalasani A, Duchen MR, Gilmour KC, Rahman S. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain 2015; 138:2834-46. [PMID: 26122121 PMCID: PMC5808733 DOI: 10.1093/brain/awv182] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023] Open
Abstract
Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1(S616)), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1(S637)), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-DRP1(S616) levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1(S616) levels. Taken together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimer's, Huntington's and Parkinson's diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Rojeen Shahni
- 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK
| | - Catherine M Cale
- 2 Molecular Immunology Unit, Great Ormond Street Hospital, London, UK
| | - Glenn Anderson
- 3 Histopathology Unit, Great Ormond Street Hospital, London, UK
| | - Laura D Osellame
- 4 Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Sophie Hambleton
- 5 Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, UK
| | - Thomas S Jacques
- 3 Histopathology Unit, Great Ormond Street Hospital, London, UK 6 Developmental Neurosciences, UCL Institute of Child Health, London, UK
| | - Yehani Wedatilake
- 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK
| | - Jan-Willem Taanman
- 7 Department of Clinical Neurosciences, UCL Institute of Neurology, Rowland Hill Street, London, UK
| | - Emma Chan
- 2 Molecular Immunology Unit, Great Ormond Street Hospital, London, UK
| | - Waseem Qasim
- 2 Molecular Immunology Unit, Great Ormond Street Hospital, London, UK
| | | | - Annapurna Chalasani
- 9 Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael R Duchen
- 10 Cell and Developmental Biology, University College London, UK
| | | | - Shamima Rahman
- 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK 1 Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, Guilford Street, London, UK
| |
Collapse
|
185
|
Török R, Kónya JA, Zádori D, Veres G, Szalárdy L, Vécsei L, Klivényi P. mRNA expression levels of PGC-1α in a transgenic and a toxin model of Huntington's disease. Cell Mol Neurobiol 2015; 35:293-301. [PMID: 25319408 DOI: 10.1007/s10571-014-0124-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator-1 alpha (PGC-1α) is involved in the regulation of mitochondrial biogenesis, respiration, and adaptive thermogenesis. The full-length PGC-1α (FL-PGC-1α) comprises multiple functional domains interacting with several transcriptional regulatory factors such as nuclear respiratory factors, estrogen-related receptors, and PPARs; however, a number of PGC-1α splice variants have also been reported recently. In this study, we examined the expression levels of FL-PGC-1α and N-truncated PGC-1α (NT-PGC-1α), a shorter but functionally active splice variant of PGC-1α protein, in N171-82Q transgenic and 3-nitropropionic acid-induced murine model of Huntington's disease (HD). The expression levels were determined by RT-PCR in three brain areas (striatum, cortex, and cerebellum) in three age groups (8, 12, and 16 weeks). Besides recapitulating prior findings that NT-PGC-1α is preferentially increased in 16 weeks of age in transgenic HD animals, we detected age-dependent alterations in both models, including a cerebellum-predominant upregulation of both PGC-1α variants in transgenic mice, and a striatum-predominant upregulation of both PGC-1α variants after acute 3-nitropropionic acid intoxication. The possible relevance of this expression pattern is discussed. Based on our results, we assume that increased expression of PGC-1α may serve as a compensatory mechanism in response to mitochondrial damage in transgenic and toxin models of HD, which may be of therapeutic relevance.
Collapse
Affiliation(s)
- Rita Török
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | | | | | | | | | |
Collapse
|
186
|
Hering T, Birth N, Taanman JW, Orth M. Selective striatal mtDNA depletion in end-stage Huntington's disease R6/2 mice. Exp Neurol 2015; 266:22-9. [PMID: 25682918 DOI: 10.1016/j.expneurol.2015.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/20/2015] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
In Huntington's disease (HD) the striatum and cortex seem particularly vulnerable. Mitochondrial dysfunction can also cause neurodegeneration with prominent striatal involvement very similar to HD. We first examined if mitochondrial biogenesis, mitochondrial DNA (mtDNA) transcription, and the implications for mitochondrial respiratory chain (MRC) assembly and function differ between the striatum and cortex compared with the whole brain average in the healthy mouse brain. We then examined the effects of the mutant huntingtin transgene in end-stage R6/2 mice. In wild-type mice, mitochondrial mass (citrate synthase levels, mtDNA copy number) was higher in the striatum than in the cortex or whole brain average. PGC-1α and TFAM mRNA levels were also higher in the striatum than the whole brain average and cortex. mRNA reserve for MRC Complex proteins was higher in the striatum and cortex. In addition, in the cortex a greater part of mitochondrial mass was dedicated to the generation of ATP by oxidative phosphorylation than in the striatum or on average in the brain. In the HD transgenic striatum there was selective mtDNA depletion without evidence that this translated to abnormalities of steady-state MRC function. Our data indicate that in mice the striatum differs from the cortex, or whole brain average, in potentially important aspects of mitochondrial biology. This may contribute to the increased vulnerability of the striatum to insults such as the HD mutation, causing selective striatal mtDNA depletion in end-stage R6/2 mice.
Collapse
Affiliation(s)
- Tanja Hering
- Department of Neurology, Ulm University, Germany
| | | | - Jan-Willem Taanman
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, UK
| | - Michael Orth
- Department of Neurology, Ulm University, Germany
| |
Collapse
|
187
|
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 2015; 21:92-105. [PMID: 25667951 DOI: 10.1016/j.mito.2015.02.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present.
Collapse
Affiliation(s)
- Natalia P Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Fernanda Lourido
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Carlos M Carrasco
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
188
|
PGC-1α provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J Neurosci 2015; 34:14375-87. [PMID: 25339750 DOI: 10.1523/jneurosci.1222-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence strongly implicates the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in the pathophysiology of multiple neurological disorders, but the downstream gene targets of PGC-1α in the brain have remained enigmatic. Previous data demonstrate that PGC-1α is primarily concentrated in inhibitory neurons and that PGC-1α is required for the expression of the interneuron-specific Ca(2+)-binding protein parvalbumin (PV) throughout the cortex. To identify other possible transcriptional targets of PGC-1α in neural tissue, we conducted a microarray on neuroblastoma cells overexpressing PGC-1α, mined results for genes with physiological relevance to interneurons, and measured cortical gene and protein expression of these genes in mice with underexpression and overexpression of PGC-1α. We observed bidirectional regulation of novel PGC-1α-dependent transcripts spanning synaptic [synaptotagmin 2 (Syt2) and complexin 1 (Cplx1)], structural [neurofilament heavy chain (Nefh)], and metabolic [neutral cholesterol ester hydrolase 1 (Nceh1), adenylate kinase 1 (Ak1), inositol polyphosphate 5-phosphatase J (Inpp5j), ATP synthase mitochondrial F1 complex O subunit (Atp5o), phytanol-CoA-2hydroxylase (Phyh), and ATP synthase mitrochondrial F1 complex α subunit 1 (Atp5a1)] functions. The neuron-specific genes Syt2, Cplx1, and Nefh were developmentally upregulated in an expression pattern consistent with that of PGC-1α and were expressed in cortical interneurons. Conditional deletion of PGC-1α in PV-positive neurons significantly decreased cortical transcript expression of these genes, promoted asynchronous GABA release, and impaired long-term memory. Collectively, these data demonstrate that PGC-1α is required for normal PV-positive interneuron function and that loss of PGC-1α in this interneuron subpopulation could contribute to cortical dysfunction in disease states.
Collapse
|
189
|
PINK1-induced mitophagy promotes neuroprotection in Huntington's disease. Cell Death Dis 2015; 6:e1617. [PMID: 25611391 PMCID: PMC4669776 DOI: 10.1038/cddis.2014.581] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by aberrant expansion of CAG repeat in the huntingtin gene. Mutant Huntingtin (mHtt) alters multiple cellular processes, leading to neuronal dysfunction and death. Among those alterations, impaired mitochondrial metabolism seems to have a major role in HD pathogenesis. In this study, we used the Drosophila model system to further investigate the role of mitochondrial damages in HD. We first analyzed the impact of mHtt on mitochondrial morphology, and surprisingly, we revealed the formation of abnormal ring-shaped mitochondria in photoreceptor neurons. Because such mitochondrial spheroids were previously detected in cells where mitophagy is blocked, we analyzed the effect of PTEN-induced putative kinase 1 (PINK1), which controls Parkin-mediated mitophagy. Consistently, we found that PINK1 overexpression alleviated mitochondrial spheroid formation in HD flies. More importantly, PINK1 ameliorated ATP levels, neuronal integrity and adult fly survival, demonstrating that PINK1 counteracts the neurotoxicity of mHtt. This neuroprotection was Parkin-dependent and required mitochondrial outer membrane proteins, mitofusin and the voltage-dependent anion channel. Consistent with our observations in flies, we demonstrated that the removal of defective mitochondria was impaired in HD striatal cells derived from HdhQ111 knock-in mice, and that overexpressing PINK1 in these cells partially restored mitophagy. The presence of mHtt did not affect Parkin-mediated mitochondrial ubiquitination but decreased the targeting of mitochondria to autophagosomes. Altogether, our findings suggest that mitophagy is altered in the presence of mHtt and that increasing PINK1/Parkin mitochondrial quality control pathway may improve mitochondrial integrity and neuroprotection in HD.
Collapse
|
190
|
Reddy PH. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction. J Alzheimers Dis 2015; 40:245-56. [PMID: 24413616 DOI: 10.3233/jad-132060] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are essential cytoplasmic organelles, critical for cell survival and death. Recent mitochondrial research revealed that mitochondrial dynamics-the balance of fission and fusion in normal mitochondrial dynamics--is an important cellular mechanism in eukaryotic cell and is involved in the maintenance of mitochondrial morphology, structure, number, distribution, and function. Research into mitochondria and cell function has revealed that mitochondrial dynamics is impaired in a large number of aging and neurodegenerative diseases, and in several inherited mitochondrial diseases, and that this impairment involves excessive mitochondrial fission, resulting in mitochondrial structural changes and dysfunction, and cell damage. Attempts have been made to develop molecules to reduce mitochondrial fission while maintaining normal mitochondrial fusion and function in those diseases that involve excessive mitochondrial fission. This review article discusses mechanisms of mitochondrial fission in normal and diseased states of mammalian cells and discusses research aimed at developing therapies, such as Mdivi, Dynasore and P110, to prevent or to inhibit excessive mitochondrial fission.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
191
|
Abstract
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.
Collapse
Affiliation(s)
- Le Chen
- Molecular & Cellular Cardiology, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA,
| | | | | |
Collapse
|
192
|
Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet 2014; 10:e1004579. [PMID: 25299344 PMCID: PMC4191884 DOI: 10.1371/journal.pgen.1004579] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Post-translational modification of proteins by small ubiquitin-related modifier (SUMO) is reversible and highly evolutionarily conserved from yeasts to humans. Unlike ubiquitination with a well-established role in protein degradation, sumoylation may alter protein function, activity, stability and subcellular localization. Members of SUMO-specific protease (SENP) family, capable of SUMO removal, are involved in the reversed conjugation process. Although SUMO-specific proteases are known to reverse sumoylation in many well-defined systems, their importance in mammalian development and pathogenesis remains largely elusive. In patients with neurodegenerative diseases, aberrant accumulation of SUMO-conjugated proteins has been widely described. Several aggregation-prone proteins modulated by SUMO have been implicated in neurodegeneration, but there is no evidence supporting a direct involvement of SUMO modification enzymes in human diseases. Here we show that mice with neural-specific disruption of SENP2 develop movement difficulties which ultimately results in paralysis. The disruption induces neurodegeneration where mitochondrial dynamics is dysregulated. SENP2 regulates Drp1 sumoylation and stability critical for mitochondrial morphogenesis in an isoform-specific manner. Although dispensable for development of neural cell types, this regulatory mechanism is necessary for their survival. Our findings provide a causal link of SUMO modification enzymes to apoptosis of neural cells, suggesting a new pathogenic mechanism for neurodegeneration. Exploring the protective effect of SENP2 on neuronal cell death may uncover important preventive and therapeutic strategies for neurodegenerative diseases.
Collapse
|
193
|
Altuntas S, D'Eletto M, Rossin F, Hidalgo LD, Farrace MG, Falasca L, Piredda L, Cocco S, Mastroberardino PG, Piacentini M, Campanella M. Type 2 Transglutaminase, mitochondria and Huntington's disease: menage a trois. Mitochondrion 2014; 19 Pt A:97-104. [PMID: 25262960 DOI: 10.1016/j.mito.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/07/2023]
Abstract
Mitochondria produce the bulk of cellular energy and work as decisional "hubs" for cellular responses by integrating different input signals. The determinant in the physiopathology of mammals, they attract major attention, nowadays, for their contribution to brain degeneration. How they can withstand or succumb to insults leading to neuronal death is an object of great attention increasing the need for a better understanding of the interplay between inner and outer mitochondrial pathways residing in the cytosol. Of the latter, those dictating protein metabolism and therefore influencing the quality function and control of the organelle are of our most immediate interest and here we describe the Transglutaminase type 2 (TG2) contribution to mitochondrial function, dysfunction and neurodegeneration. Besides reviewing the latest evidences we share also the novel ones on the IF1 pathway depicting a molecular conduit governing mitochondrial turnover and homeostasis relevant to envisaging preventive and therapeutic strategies to respectively predict and counteract deficiencies associated with deregulated mitochondrial function in neuropathology.
Collapse
Affiliation(s)
- Sara Altuntas
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Laura Diaz Hidalgo
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | | | - Laura Falasca
- National Institute for Infectious Diseases I.R.C.C.S. 'L. Spallanzani', Rome 00149, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Stefania Cocco
- European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome 00143, Italy
| | | | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy; National Institute for Infectious Diseases I.R.C.C.S. 'L. Spallanzani', Rome 00149, Italy.
| | - Michelangelo Campanella
- Department of Biology, University of Rome 'Tor Vergata', Rome 00133, Italy; European Brain Research Institute (EBRI), Rita Levi-Montalcini Foundation, Rome 00143, Italy; Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, UCL Consortium for Mitochondrial Research (CfMR), London, NW1 0TU, UK.
| |
Collapse
|
194
|
Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med 2014; 74:129-44. [PMID: 24992836 DOI: 10.1016/j.freeradbiomed.2014.06.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/01/2014] [Accepted: 06/21/2014] [Indexed: 12/17/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.
Collapse
Affiliation(s)
- Márcio Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tatiana R Rosenstock
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana M Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Catarina R Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
195
|
Duan W, Jiang M, Jin J. Metabolism in HD: still a relevant mechanism? Mov Disord 2014; 29:1366-74. [PMID: 25124273 DOI: 10.1002/mds.25992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022] Open
Abstract
The polyglutamine expansion within huntingtin is the causative factor in the pathogenesis of Huntington's disease (HD). Although the underlying mechanisms by which mutant huntingtin causes neuronal dysfunction and degeneration have not been fully elucidated, compelling evidence suggests that mitochondrial dysfunction and compromised energy metabolism are key players in HD pathogenesis. Longitudinal studies of HD subjects have shown reductions in glucose utilization before the disease clinical onset. Preferential striatal neurodegeneration, a hallmark of HD pathogenesis, also has been associated with interrupted energy metabolism. Data from genetic HD models indicate that mutant huntingtin disrupts mitochondrial bioenergetics and prevents adenosine triphosphate (ATP) generation, implying altered energy metabolism as an important component of HD pathogenesis. Here we revisit the evidence of abnormal energy metabolism in the central nervous system of HD patients, review our current understanding of the molecular mechanisms underlying abnormal metabolism induced by mutant huntingtin, and discuss the promising therapeutic development by halting abnormal metabolism in HD.
Collapse
Affiliation(s)
- Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
196
|
Yano H, Baranov SV, Baranova OV, Kim J, Pan Y, Yablonska S, Carlisle DL, Ferrante RJ, Kim AH, Friedlander RM. Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 2014; 17:822-31. [PMID: 24836077 PMCID: PMC4174557 DOI: 10.1038/nn.3721] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/17/2014] [Indexed: 11/09/2022]
Abstract
Mitochondrial dysfunction is associated with neuronal loss in Huntington's disease (HD), a neurodegenerative disease caused by an abnormal polyglutamine expansion in huntingtin (Htt). However, the mechanisms linking mutant Htt and mitochondrial dysfunction in HD remain unknown. We identify an interaction between mutant Htt and the TIM23 mitochondrial protein import complex. Remarkably, recombinant mutant Htt directly inhibited mitochondrial protein import in vitro. Furthermore, mitochondria from brain synaptosomes of presymptomatic HD model mice and from mutant Htt-expressing primary neurons exhibited a protein import defect, suggesting that deficient protein import is an early event in HD. The mutant Htt-induced mitochondrial import defect and subsequent neuronal death were attenuated by overexpression of TIM23 complex subunits, demonstrating that deficient mitochondrial protein import causes mutant Htt-induced neuronal death. Collectively, these findings provide evidence for a direct link between mutant Htt, mitochondrial dysfunction and neuronal pathology, with implications for mitochondrial protein import-based therapies in HD.
Collapse
Affiliation(s)
- Hiroko Yano
- 1] Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2] Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA. [3] Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA. [4] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sergei V Baranov
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oxana V Baranova
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jinho Kim
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanchun Pan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Svitlana Yablonska
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane L Carlisle
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert J Ferrante
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Albert H Kim
- 1] Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA. [3] Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert M Friedlander
- 1] Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2] University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
197
|
Activation of IGF-1 and Insulin Signaling Pathways Ameliorate Mitochondrial Function and Energy Metabolism in Huntington’s Disease Human Lymphoblasts. Mol Neurobiol 2014; 51:331-48. [DOI: 10.1007/s12035-014-8735-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
|
198
|
Petersen MH, Budtz-Jørgensen E, Sørensen SA, Nielsen JE, Hjermind LE, Vinther-Jensen T, Nielsen SMB, Nørremølle A. Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion 2014; 17:14-21. [PMID: 24836434 DOI: 10.1016/j.mito.2014.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/03/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterised by movement disorder, cognitive symptoms and psychiatric symptoms with predominantly adult-onset. The mutant huntingtin protein leads to mitochondrial dysfunction in blood leukocytes. This discovery led to the investigation of the mitochondrial DNA (mtDNA) copy number relative to nuclear DNA (nDNA) in leukocytes from carriers of the HD mutation compared to healthy individuals. We found significantly reduced mtDNA/nDNA in HD mutation carriers compared to controls. A longitudinal study of archive DNA sample pairs from HD patients revealed a biphasic pattern of increasing mtDNA/nDNA before onset of motor symptoms and decreasing mtDNA/nDNA after.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Esben Budtz-Jørgensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sven Asger Sørensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jørgen Erik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Lena Elisabeth Hjermind
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Tua Vinther-Jensen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Neurogenetics Clinic, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | - Signe Marie Borch Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
199
|
Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:175062. [PMID: 24900954 PMCID: PMC4036420 DOI: 10.1155/2014/175062] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 01/26/2023]
Abstract
Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and reactive oxygen species (ROS), and this can be an early stage of several mitochondrial disorders, including neurodegenerative diseases. Mitochondrial dysfunctions may be caused by both mutations in mitochondrial or nuclear DNA that code mitochondrial components and by environmental causes. In the following review, common aspects of mitochondrial impairment concerned about neurodegenerative diseases are summarized including ROS production, impaired mitochondrial dynamics, and apoptosis. Also, damaged function of electron transport chain complexes and interactions between pathological proteins and mitochondria are described for AD particularly and marginally for PD and HD.
Collapse
|
200
|
Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today 2014; 19:951-5. [PMID: 24681059 DOI: 10.1016/j.drudis.2014.03.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/20/2014] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a fatal, progressive neurodegenerative disease with an autosomal dominant inheritance, characterized by chorea, involuntary movements of the limbs and cognitive impairments. Since identification of the HD gene in 1993, tremendous progress has been made in identifying underlying mechanisms involved in HD pathogenesis and progression, and in developing and testing molecular therapeutic targets, using cell and animal models of HD. Recent studies have found that mutant Huntingtin (mHtt) interacts with Dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria, leading to abnormal mitochondrial dynamics and neuronal damage in HD-affected neurons. Some progress has been made in developing molecules that can reduce excessive mitochondrial fission while maintaining both the normal balance between mitochondrial fusion and fission, and normal mitochondrial function in diseases in which excessive mitochondrial fission has been implicated. In this article, we highlight investigations that are determining the involvement of excessive mitochondrial fission in HD pathogenesis, and that are developing inhibitors of excessive mitochondrial fission for potential therapeutic applications.
Collapse
|