151
|
Chen L, Wang X, Cui L, Li Y, Liang Y, Wang S, Chen Y, Zhou L, Zhang Y, Li F. Transcriptome and metabolome analyses reveal anthocyanins pathways associated with fruit color changes in plum ( Prunus salicina Lindl.). PeerJ 2022; 10:e14413. [PMID: 36530399 PMCID: PMC9756864 DOI: 10.7717/peerj.14413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Plum (Prunus salicina Lindl.) is one of the most widely cultivated and important fruit trees in temperate and cold regions. Fruit color is a significant trait relating to fruit quality in plum. However, its development mechanism has not been studied from the aspects of transcriptional regulation and metabolomic progress. To reveal the mechanism of fruit color developments in plums, we selected the fruits of two plum cultivars, 'Changli84' (Ch84, red fruit) and 'Dahuangganhe' (D, yellow fruit) as plant materials for transcriptome sequencing and metabolomic analysis were performed. Based on the data of transcriptome and metabolome at three fruit developmental stages, young fruit stage, color-change stage, and maturation stage, we identified 2,492 differentially expressed genes (DEGs) and 54 differential metabolites (DMs). The KEGG analysis indicated that "Flavonoid biosynthesis" was significantly enriched during three fruit development stages. Some DEGs in the "Flavonoid biosynthesis" pathway, had opposite trends between Ch84 and D, including chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR) and flavonol synthase (FLS). Also, the genes encoding MYB-bHLH-WD (MBW) protein complexes, especially MYBs and bHLHs, showed a close relationship with plum fruit color. In the current study, DMs like procyanidin B1, cyanidin 3-glucoside, and cyanidin-3-O-alpha-arabinopyranoside were key pigments (or precursors), while the carotene and carotenoids did not show key relationships with fruit color. In conclusion, the anthocyanins dominate the color change of plum fruit. Carotenes and carotenoids might be related to the color of plum fruit, but do not play a dominate role.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Xuesong Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Long Cui
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yuebo Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yinghai Liang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Shanshan Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yubo Chen
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Lan Zhou
- Academy of Agricultural Sciences of Yanbian, Longjing, Jilin Province, China
| | - Yanbo Zhang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Feng Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| |
Collapse
|
152
|
Falcioni R, Moriwaki T, Gibin MS, Vollmann A, Pattaro MC, Giacomelli ME, Sato F, Nanni MR, Antunes WC. Classification and Prediction by Pigment Content in Lettuce ( Lactuca sativa L.) Varieties Using Machine Learning and ATR-FTIR Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2022; 11:3413. [PMID: 36559526 PMCID: PMC9783279 DOI: 10.3390/plants11243413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 05/14/2023]
Abstract
Green or purple lettuce varieties produce many secondary metabolites, such as chlorophylls, carotenoids, anthocyanins, flavonoids, and phenolic compounds, which is an emergent search in the field of biomolecule research. The main objective of this study was to use multivariate and machine learning algorithms on Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)-based spectra to classify, predict, and categorize chemometric attributes. The cluster heatmap showed the highest efficiency in grouping similar lettuce varieties based on pigment profiles. The relationship among pigments was more significant than the absolute contents. Other results allow classification based on ATR-FTIR fingerprints of inflections associated with structural and chemical components present in lettuce, obtaining high accuracy and precision (>97%) by using principal component analysis and discriminant analysis (PCA-LDA)-associated linear LDA and SVM machine learning algorithms. In addition, PLSR models were capable of predicting Chla, Chlb, Chla+b, Car, AnC, Flv, and Phe contents, with R2P and RPDP values considered very good (0.81−0.88) for Car, Anc, and Flv and excellent (0.91−0.93) for Phe. According to the RPDP metric, the models were considered excellent (>2.10) for all variables estimated. Thus, this research shows the potential of machine learning solutions for ATR-FTIR spectroscopy analysis to classify, estimate, and characterize the biomolecules associated with secondary metabolites in lettuce.
Collapse
Affiliation(s)
- Renan Falcioni
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Thaise Moriwaki
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mariana Sversut Gibin
- Optical Spectroscopy and Thermophysical Properties Research Group, Graduate Program in Physics, Department of Physics, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Alessandra Vollmann
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mariana Carmona Pattaro
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Marina Ellen Giacomelli
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Francielle Sato
- Optical Spectroscopy and Thermophysical Properties Research Group, Graduate Program in Physics, Department of Physics, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Marcos Rafael Nanni
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Werner Camargos Antunes
- Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| |
Collapse
|
153
|
Luo C, Liu L, Zhao J, Xu Y, Liu H, Chen D, Cheng X, Gao J, Hong B, Huang C, Ma C. CmHY5 functions in apigenin biosynthesis by regulating flavone synthase II expression in chrysanthemum flowers. PLANTA 2022; 257:7. [PMID: 36478305 DOI: 10.1007/s00425-022-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives. CmHY5 participates in apigenin biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum. Chrysanthemum (Chrysanthemum morifolium) flowers have been used for centuries as functional food and in herbal tea and traditional medicine. The chrysanthemum flower contains significant amounts of the biologically active compound flavones, which has medicinal properties. However, the mechanism regulating flavones biosynthesis in chrysanthemum flowers organs is still unclear. Here, we compared the transcriptomes and metabolomes of different floral organs between two cultivars with contrasting flavone levels in their flowers. We identified 186 flavonoids by metabolome analysis. The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives, of which the contents are highly correlated with the expression of flavones synthase II gene CmFNSII-1. We also determined that CmHY5 is a direct upstream regulator of CmFNSII-1 transcription. We showed that CmHY5 RNAi interference lines in chrysanthemum have lower contents of apigenin compared to wild-type chrysanthemum. Our results demonstrated that CmHY5 participates in flavone biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum.
Collapse
Affiliation(s)
- Chang Luo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Xi Cheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China.
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
154
|
Anthocyanins Profiling Analysis and RNA-Seq Revealed the Dominating Pigments and Coloring Mechanism in Cyclamen Flowers. BIOLOGY 2022; 11:biology11121721. [PMID: 36552231 PMCID: PMC9774537 DOI: 10.3390/biology11121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Pigments in cyclamen (Cyclamen purpurascens) endows flowers with great ornamental and medicinal values. However, little is known about the biosynthetic pathways of pigments, especially anthocyanins, in cyclamen flowers. Herein, anthocyanins profiling and RNA-Seq were used to decipher the molecular events using cyclamen genotypes of red (HXK) or white (BXK) flowers. We found that red cyclamen petals are rich in cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-O-glucoside, and ruti. In addition, our transcriptomics data revealed 3589 up-regulated genes and 2788 down-regulated genes comparing the BXK to HXK. Our rich dataset also identified eight putative key genes for anthocyanin synthesis, including four chalcone synthase (CHS, g13809_i0, g12097_i0, g18851_i0, g36714_i0), one chalcone isomerase (CHI, g26337_i0), two flavonoid 3-hydroxylase (F3'H, g14710_i0 and g15005_i0), and one anthocyanidin synthase (ANS, g18981_i0). Importantly, we found a 2.5 order of magnitude higher expression of anthocyanin 3-O-glucosyltransferase (g8206_i0), which encodes a key gene in glycosylation of anthocyanins, in HXK compared to BXK. Taken together, our multiomics approach demonstrated massive changes in gene regulatory networks and anthocyanin metabolism in controlling cyclamen flower color.
Collapse
|
155
|
Sun W, Hao J, Fan S, Liu C, Han Y. Transcriptome and Metabolome Analysis Revealed That Exogenous Spermidine-Modulated Flavone Enhances the Heat Tolerance of Lettuce. Antioxidants (Basel) 2022; 11:antiox11122332. [PMID: 36552540 PMCID: PMC9774108 DOI: 10.3390/antiox11122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Lettuce is sensitive to high temperature, and exogenous spermidine can improve heat tolerance in lettuce, but its intrinsic mechanism is still unclear. We analyzed the effects of exogenous spermidine on the leaf physiological metabolism, transcriptome and metabolome of lettuce seedlings under high-temperature stress using the heat-sensitive lettuce variety 'Beisansheng No. 3' as the material. The results showed that exogenous spermidine increased the total fresh weight, total dry weight, root length, chlorophyll content and total flavonoid content, increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and decreased malondialdehyde (MDA) content in lettuce under high temperature stress. Transcriptome and metabolome analyses revealed 818 differentially expressed genes (DEGs) and 393 metabolites between water spray and spermidine spray treatments under high temperature stress, and 75 genes from 13 transcription factors (TF) families were included in the DEGs. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of DEG contains pathways for plant-pathogen interactions, photosynthesis-antennal proteins, mitogen-activated protein kinase (MAPK) signaling pathway and flavonoid biosynthesis. A total of 19 genes related to flavonoid synthesis were detected. Most of these 19 DEGs were down-regulated under high temperature stress and up-regulated after spermidine application, which may be responsible for the increase in total flavonoid content. We provide a possible source and conjecture for exploring the mechanism of exogenous spermidine-mediated heat tolerance in lettuce.
Collapse
Affiliation(s)
- Wenjing Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jinghong Hao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Shuangxi Fan
- Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Chaojie Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (C.L.); (Y.H.)
| | - Yingyan Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (C.L.); (Y.H.)
| |
Collapse
|
156
|
Lu Y, Wang H, Liu Z, Zhang T, Li Z, Cao L, Wu S, Liu Y, Yu S, Zhang Q, Zheng Z. A naturally-occurring phenomenon of flower color change during flower development in Xanthoceras sorbifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:1072185. [PMID: 36457525 PMCID: PMC9706096 DOI: 10.3389/fpls.2022.1072185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Xanthoceras sorbifolium (yellowhorn) is originated in China and is a unique tree in northern China. Yellowhorn is very popular because of the gradual color change of its flower at different flower developmental stages. During flowering development, the color at the base of yellowhorn flower petals gradually changes from yellow to purple. The mechanism of this miraculous phenomenon is still unclear. Here we show that anthocyanin accumulation during flowering development is the main reason for this color change. RT-PCR results show that the expression level of a variety of anthocyanin biosynthesis genes changes in different flower developmental stages. Realtime results show that the expression changes of these anthocyanin biosynthesis genes are positively regulated by a cluster of R2R3-MYB transcription factor genes, XsMYB113s. Furthermore, the DNA methylation analysis showed that CHH methylation status on the transposon element near the XsMYB113-1 influence its transcript level during flowering development. Our results suggest that dynamic epigenetic regulation of the XsMYB113-1 leads to the accumulation of anthocyanins during yellowhorn flower color change. These findings reemphasize the role of epigenetic regulation in flower development and provide a foundation for further studies of epigenetic regulation in long-lived woody perennials.
Collapse
Affiliation(s)
- Yanan Lu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hanhui Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhi Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Zongjian Li
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Li Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Siyao Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yueying Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Song Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
157
|
Wang Y, Yin H, Long Z, Zhu W, Yin J, Song X, Li C. DhMYB2 and DhbHLH1 regulates anthocyanin accumulation via activation of late biosynthesis genes in Phalaenopsis-type Dendrobium. FRONTIERS IN PLANT SCIENCE 2022; 13:1046134. [PMID: 36457536 PMCID: PMC9705975 DOI: 10.3389/fpls.2022.1046134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Phalaenopsis-type Dendrobium is a popular orchid with good ornamental and market value. Despite their popularity, molecular regulation of anthocyanin biosynthesis during flower development remains poorly understood. In this study, we systematically investigated the regulatory roles of the transcription factors DhMYB2 and DhbHLH1 in anthocyanins biosynthesis. Gene expression analyses indicated that both DhMYB2 and DhbHLH1 are specifically expressed in flowers and have similar expression patterns, showing high expression in purple floral tissues with anthocyanin accumulation. Transcriptomic analyses showed 29 differentially expressed genes corresponding to eight enzymes in anthocyanin biosynthesis pathway have similar expression patterns to DhMYB2 and DhbHLH1, with higher expression in the purple lips than the yellow petals and sepals of Dendrobium 'Suriya Gold'. Further gene expression analyses and Pearson correlation matrix analyses of Dendrobium hybrid progenies revealed expression profiles of DhMYB2 and DhbHLH1 were positively correlated with the structural genes DhF3'H1, DhF3'5'H2, DhDFR, DhANS, and DhGT4. Yeast one-hybrid and dual-luciferase reporter assays revealed DhMYB2 and DhbHLH1 can bind to promoter regions of DhF3'H1, DhF3'5'H2, DhDFR, DhANS and DhGT4, suggesting a role as transcriptional activators. These results provide new evidence of the molecular mechanisms of DhMYB2 and DhbHLH1 in anthocyanin biosynthesis in Phalaenopsis-type Dendrobium.
Collapse
Affiliation(s)
- Yachen Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Hantai Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Zongxing Long
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Wenjuan Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Junmei Yin
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, School of Life Sciences, Hainan University, Haikou, China
| | - Chonghui Li
- Haikou Experimental Station, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou, China
- The Engineering Technology Research Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou, China
| |
Collapse
|
158
|
Xu Y, Zhang K, Zhang Z, Liu Y, Lv F, Sun P, Gao S, Wang Q, Yu C, Jiang J, Li C, Song M, Gao Z, Sui C, Li H, Jin Y, Guo X, Wei J. A chromosome-level genome assembly for Dracaena cochinchinensis reveals the molecular basis of its longevity and formation of dragon's blood. PLANT COMMUNICATIONS 2022; 3:100456. [PMID: 36196059 PMCID: PMC9700203 DOI: 10.1016/j.xplc.2022.100456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Dracaena, a remarkably long-lived and slowly maturing species of plant, is world famous for its ability to produce dragon's blood, a precious traditional medicine used by different cultures since ancient times. However, there is no detailed and high-quality genome available for this species at present; thus, the molecular mechanisms that underlie its important traits are largely unknown. These factors seriously limit the protection and regeneration of this rare and endangered plant resource. Here, we sequenced and assembled the genome of Dracaena cochinchinensis at the chromosome level. The D. cochinchinensis genome covers 1.21 Gb with a scaffold N50 of 50.06 Mb and encodes 31 619 predicted protein-coding genes. Analysis showed that D. cochinchinensis has undergone two whole-genome duplications and two bursts of long terminal repeat insertions. The expansion of two gene classes, cis-zeatin O-glucosyltransferase and small auxin upregulated RNA, were found to account for its longevity and slow growth. Two transcription factors (bHLH and MYB) were found to be core regulators of the flavonoid biosynthesis pathway, and reactive oxygen species were identified as the specific signaling molecules responsible for the injury-induced formation of dragon's blood. Our study provides high-quality genomic information relating to D. cochinchinensis and significant insight into the molecular mechanisms responsible for its longevity and formation of dragon's blood. These findings will facilitate resource protection and sustainable utilization of Dracaena.
Collapse
Affiliation(s)
- Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Kaijian Zhang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong 666100, China
| | - Yang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Feifei Lv
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Peiwen Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shixi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qiuling Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cuicui Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jiemei Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Chuangjun Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meifang Song
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong 666100, China
| | - Zhihui Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Chun Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Haitao Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong 666100, China
| | - Yue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
159
|
Yang S, Yang R, Zhou X, Yang S, Liao F, Yao B, Zhu B, Pongchan NL. Effects of dietary supplementation of flavonoids from Moringa leaves on growth and laying performance, immunological and antioxidant activities in laying ducks. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
160
|
Investigation of flavonoid components and their associated antioxidant capacity in different pigmented rice varieties. Food Res Int 2022; 161:111726. [DOI: 10.1016/j.foodres.2022.111726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
|
161
|
Wang L, Li L, Zhao W, Fan L, Meng H, Zhang G, Wu W, Shi J, Wu G. Integrated metabolomic and transcriptomic analysis of the anthocyanin and proanthocyanidin regulatory networks in red walnut natural hybrid progeny leaves. PeerJ 2022; 10:e14262. [PMID: 36285329 PMCID: PMC9588303 DOI: 10.7717/peerj.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background Walnuts are among the most important dry fruit crops worldwide, typically exhibiting green leaves and yellow-brown or gray-yellow seed coats. A specific walnut accession with red leaves and seed coats, 'RW-1', was selected for study because of its high anthocyanin and proanthocyanidin (PA) contents. Anthocyanins and PAs are important secondary metabolites and play key roles in plant responses to biotic and abiotic stresses. However, few studies have focused on the molecular mechanism of anthocyanin biosynthesis in walnuts. Methods In this study, we determined the anthocyanin and PA components and their contents in different color leaves of 'RW-1' natural hybrid progenies at various developmental stages. Integrated transcriptome and metabolome analyses were used to identify the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs). We also performed conjoint analyses on DEGs and DAMs to ascertain the degree pathways, and explore the regulation of anthocyanin and PA biosynthesis. Results The results of widely targeted metabolome profiling and anthocyanin detection revealed 395 substances, including four PAs and 26 anthocyanins, in red (SR) and green leaves (SG) of 'RW-1' natural hybrid progenies. From the research, the contents of all anthocyanin components in SR were higher than that in SG. Among them, the contents of delphinidin 3-O-galactoside, cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside and cyanidin 3-O-glucoside were significantly higher than others, and they were considered as the main types of anthocyanins. However, nine anthocyanins were detected only in SR. For PAs, the content of procyanidin C1 was higher in SR compared with SG, while procyanidin B1 and procyanidin B3 were higher in SR-1 and SR-3 but downregulated in SR-2 compared with the controls. Furthermore, transcriptome analysis revealed that the expressions of structural genes (C4H, F3H, F3'5'H, UFGT, LAR and ANR), three MYBs predicted as the activators of anthocyanin and PA biosynthesis, two MYBs predicted as the repressors of anthocyanin biosynthesis, and five WD40s in the anthocyanin and PA biosynthetic pathways were significantly higher in the SR walnuts. Gene-metabolite correlation analyses revealed a core set of 31 genes that were strongly correlated with four anthocyanins and one PA metabolites. The alteration of gene coding sequence altered the binding or regulation of regulatory factors to structural genes in different color leaves, resulting in the effective increase of anthocyanins and PAs accumulation in red walnut. Conclusions This study provides valuable information on anthocyanin and PA metabolites and candidate genes for anthocyanin and PA biosynthesis, yielding new insights into anthocyanin and PA biosynthesis in walnuts.
Collapse
Affiliation(s)
- Lei Wang
- Henan Agricultural University, Zhengzhou, China
| | - Lin Li
- Henan Agricultural University, Zhengzhou, China
| | - Wei Zhao
- Henan Agricultural University, Zhengzhou, China
| | - Lu Fan
- Henan Agricultural University, Zhengzhou, China
| | - Haijun Meng
- Henan Agricultural University, Zhengzhou, China
| | | | - Wenjiang Wu
- Henan Agricultural University, Zhengzhou, China
| | - Jiangli Shi
- Henan Agricultural University, Zhengzhou, China
| | - Guoliang Wu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
162
|
Zhang F, Li X, Wu Q, Lu P, Kang Q, Zhao M, Wang A, Dong Q, Sun M, Yang Z, Gao Z. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat ( Triticum aestivum L.) Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13431-13444. [PMID: 36198089 DOI: 10.1021/acs.jafc.2c04868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Selenium (Se) biofortification in wheat reduces the risk of Se deficiency in humans. Se biofortification increases the concentration of Se and anthocyanins in wheat grains. However, it is unknown whether Se biofortification can enhance flavonoids other than anthocyanins and the mechanism underlying flavonoid accumulation in wheat grains. Here, foliar application of selenite solution in wheat was conducted 10 days after flowering. Metabolite profiling and transcriptome sequencing were performed in Se-treated grains. A significant increase in the total contents of Se, anthocyanins, and flavonoids was observed in Se-treated mature grains. Twenty-seven significantly increased flavonoids were identified in Se-treated immature grains. The significant accumulation of flavones (tricin, tricin derivatives, and chrysoeriol derivatives) was detected, and six anthocyanins, dihydroquercetin (the precursor for anthocyanin biosynthesis) and catechins were also increased. Integrated analysis of metabolites and transcriptome revealed that Se application enhanced the biosynthesis of flavones, dihydroquercetin, anthocyanins, and catechins by increasing the expression levels of seven key structural genes in flavonoid biosynthesis (two TaF3Hs, two TaDFRs, one TaF3'5'H, one TaOMT, and one TaANR). Our findings shed new light on the molecular mechanism underlying the enhancement in flavonoid accumulation by Se supplementation and pave the way for further enhancing the nutritional value of wheat grains.
Collapse
Affiliation(s)
- Fengjie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xueyin Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qiangqiang Wu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Qingfang Kang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyao Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Aiping Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Qi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
163
|
Wang X, Wang W, Chen S, Lian Y, Wang S. Tropaeolum majus R2R3 MYB Transcription Factor TmPAP2 Functions as a Positive Regulator of Anthocyanin Biosynthesis. Int J Mol Sci 2022; 23:12395. [PMID: 36293253 PMCID: PMC9604057 DOI: 10.3390/ijms232012395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Anthocyanins are an important group of water-soluble and non-toxic natural pigments with antioxidant and anti-inflammatory properties that can be found in flowers, vegetables, and fruits. Anthocyanin biosynthesis is regulated by several different types of transcription factors, including the WD40-repeat protein Transparent Testa Glabra 1 (TTG1), the bHLH transcription factor Transparent Testa 8 (TT8), Glabra3 (GL3), Enhancer of GL3 (EGL3), and the R2R3 MYB transcription factor Production of Anthocyanin Pigment 1 (PAP1), PAP2, MYB113, and MYB114, which are able to form MYB-bHLH-WD40 (MBW) complexes to regulate the expression of late biosynthesis genes (LBGs) in the anthocyanin biosynthesis pathway. Nasturtium (Tropaeolum majus) is an edible flower plant that offers many health benefits, as it contains numerous medicinally important ingredients, including anthocyanins. By a comparative examination of the possible anthocyanin biosynthesis regulator genes in nasturtium varieties with different anthocyanin contents, we found that TmPAP2, an R2R3 MYB transcription factor gene, is highly expressed in "Empress of India", a nasturtium variety with high anthocyanin content, while the expression of TmPAP2 in Arabidopsis led to the overproduction of anthocyanins. Protoplast transfection shows that TmPAP2 functions as a transcription activator; consistent with this finding, some of the biosynthesis genes in the general phenylpropanoid pathway and anthocyanin biosynthesis pathway were highly expressed in "Empress of India" and the 35S:TmPAP2 transgenic Arabidopsis plants. However, protoplast transfection indicates that TmPAP2 may not be able to form an MBW complex with TmGL3 and TmTTG1. These results suggest that TmPAP2 may function alone as a key regulator of anthocyanin biosynthesis in nasturtiums.
Collapse
Affiliation(s)
| | | | | | | | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
164
|
Lim SH, Kim DH, Lee JY. RsTTG1, a WD40 Protein, Interacts with the bHLH Transcription Factor RsTT8 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Raphanus sativus. Int J Mol Sci 2022; 23:ijms231911973. [PMID: 36233274 PMCID: PMC9570178 DOI: 10.3390/ijms231911973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
MBW complexes, consisting of MYB, basic helix–loop–helix (bHLH), and WD40 proteins, regulate multiple traits in plants, including anthocyanin and proanthocyanidin (PA) biosynthesis and the determination of epidermal cell fate. Here, a WD40 gene from Raphanus sativus, designated TRANSPARENT TESTA GLABRA 1 (RsTTG1), was cloned and functionally characterized. Heterologous expression of RsTTG1 in the Arabidopsis thaliana mutant ttg1-22 background restored accumulation of anthocyanin and PA in the mutant and rescued trichome development. In radish, RsTTG1 was abundantly expressed in all root and leaf tissues, independently of anthocyanin accumulation, while its MBW partners RsMYB1 and TRANSPARENT TESTA 8 (RsTT8) were expressed at higher levels in pigment-accumulating tissues. In yeast two-hybrid analysis, the full-length RsTTG1 protein interacted with RsTT8. Moreover, transient protoplast co-expression assays demonstrated that RsTTG1, which localized to both the cytoplasm and nucleus, moves from the cytoplasm to the nucleus in the presence of RsTT8. When co-expressed with RsMYB1 and RsTT8, RsTTG1 stably activated the promoters of the anthocyanin biosynthesis genes CHALCONE SYNTHASE (RsCHS) and DIHYDROFLAVONOL 4-REDUCTASE (RsDFR). Transient expression of RsTTG1 in tobacco leaves exhibited an increase in anthocyanin accumulation due to activation of the expression of anthocyanin biosynthesis genes when simultaneously expressed with RsMYB1 and RsTT8. These results indicate that RsTTG1 is a vital regulator of pigmentation and trichome development as a functional homolog of AtTTG1.
Collapse
Affiliation(s)
- Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5105
| | - Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
165
|
Zhang H, Zhao Y, Zhao X, Zhang Z, Liu J, Shi M, Song B. Methylation level of potato gene OMT30376 regulates tuber anthocyanin transformations. FRONTIERS IN PLANT SCIENCE 2022; 13:1021617. [PMID: 36275587 PMCID: PMC9585915 DOI: 10.3389/fpls.2022.1021617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
After anthocyanin synthesis, a variety of anthocyanin compounds are produced through further methylation, glycosylation, and acylation. However, the effect of the potato methylase gene on anthocyanin biosynthesis has not been reported. Red and purple mutation types appear in tubers of the potato cultivar 'Purple Viking' with chimeric skin phenotypes. In this study, transcriptome and anthocyanin metabolome analyses were performed on skin of Purple Viking tubers and associated mutants. According to the metabolome analysis, the transformation of delphinidin into malvidin-3-O-glucoside and petunidin 3-O-glucoside and that of cyanidin into rosinidin O-hexoside and peonidin-3-O-glucoside were hindered in red tubers. Expression of methyltransferase gene OMT30376 was significantly lower in red tubers than in purple ones, whereas the methylation level of OMT30376 was significantly higher in red tubers. In addition, red skin appeared in tubers from purple tuber plants treated with S-adenosylmethionine (SAM), indicating the difference between purple and red was caused by the methylation degree of the gene OMT30376. Thus, the results of the study suggest that the OMT30376 gene is involved in the transformation of anthocyanins in potato tubers. The results also provide an important reference to reveal the regulatory mechanisms of anthocyanin biosynthesis and transformation.
Collapse
Affiliation(s)
- Huiling Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yanan Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xijuan Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Zhonghua Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Ju Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Minghui Shi
- Yichang Agricultural Technology Extension Center, Yichang, China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
166
|
Ye J, Yang K, Li Y, Xu F, Cheng S, Zhang W, Liao Y, Yang X, Wang L, Wang Q. Genome-wide transcriptome analysis reveals the regulatory network governing terpene trilactones biosynthesis in Ginkgo biloba. TREE PHYSIOLOGY 2022; 42:2068-2085. [PMID: 35532090 DOI: 10.1093/treephys/tpac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Ginkgo biloba L. is currently the only remaining gymnosperm of the Ginkgoaceae Ginkgo genus, and its history can be traced back to the Carboniferous 200 million years ago. Terpene trilactones (TTLs) are one of the main active ingredients in G. biloba, including ginkgolides and bilobalide. They have a good curative effect on cardiovascular and cerebrovascular diseases because of their special antagonistic effect on platelet-activating factors. Therefore, it is necessary to deeply mine genes related to TTLs and to analyze their transcriptional regulation mechanism, which will hold vitally important scientific and practical significance for quality improvement and regulation of G. biloba. In this study, we performed RNA-Seq on the root, stem, immature leaf, mature leaf, microstrobilus, ovulate strobilus, immature fruit and mature fruit of G. biloba. The TTL regulatory network of G. biloba in different organs was revealed by different transcriptomic analysis strategies. Weighted gene co-expression network analysis (WGCNA) revealed that the five modules were closely correlated with organs. The 12 transcription factors, 5 structural genes and 24 Cytochrome P450 (CYP450) were identified as candidate regulators for TTL accumulation by WGCNA and cytoscape visualization. Finally, 6 APETALA2/ethylene response factors, 2 CYP450s and bHLH were inferred to regulate the metabolism of TTLs by correlation analysis. This study is the comprehensive in authenticating transcription factors, structural genes and CYP450 involved in TTL biosynthesis, thereby providing molecular evidence for revealing the comprehensive regulatory network involved in TTL metabolism in G. biloba.
Collapse
Affiliation(s)
- Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Ke Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuting Li
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei 445000, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
167
|
Jan R, Khan M, Asaf S, Lubna, Asif S, Kim KM. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. PLANTS (BASEL, SWITZERLAND) 2022; 11:2623. [PMID: 36235488 PMCID: PMC9571405 DOI: 10.3390/plants11192623] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 07/25/2023]
Abstract
Plant secondary metabolites, especially flavonoids, are major metabolites widely found in plants that play several key roles in plant defence and signalling in response to stress conditions. The most studied among these flavonoids are kaempferol and quercetin due to their anti-oxidative potential and their key roles in the defence system, making them more critical for plant adaptation in stress environments. Kaempferol and quercetin in plants have great therapeutic potential for human health. Despite being well-studied, some of their functional aspects regarding plants and human health need further evaluation. This review summarizes the emerging potential of kaempferol and quercetin in terms of antimicrobial activity, bioavailability and bioactivity in the human body as well as in the regulation of plant defence in response to stresses and as a signalling molecule in terms of hormonal modulation under stress conditions. We also evaluated the safe use of both metabolites in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
168
|
Wan D, Wan Y, Zhang T, Wang R, Ding Y. Multi-omics analysis reveals the molecular changes accompanying heavy-grazing-induced dwarfing of Stipa grandis. FRONTIERS IN PLANT SCIENCE 2022; 13:995074. [PMID: 36407579 PMCID: PMC9673880 DOI: 10.3389/fpls.2022.995074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Heavy grazing significantly reduces Stipa grandis growth. To enhance our understanding of plant responses to heavy grazing, we conducted transcriptomic, proteomic, and metabolic analyses of the leaves of non-grazed plants (NG) and heavy-grazing-induced dwarf plants (HG) of S. grandis. A total of 101 metabolites, 167 proteins, and 1,268 genes differed in abundance between the HG and NG groups. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways among differentially accumulated metabolites (DAMs) revealed that the most enriched pathways were flavone and flavonol biosynthesis, tryptophan metabolism, and phenylpropanoid biosynthesis. An integrative analysis of differentially expressed genes (DEGs) and proteins, and DAMs in these three pathways was performed. Heavy-grazing-induced dwarfism decreased the accumulation of DAMs enriched in phenylpropanoid biosynthesis, among which four DAMs were associated with lignin biosynthesis. In contrast, all DAMs enriched in flavone and flavonol biosynthesis and tryptophan metabolism showed increased accumulation in HG compared with NG plants. Among the DAMs enriched in tryptophan metabolism, three were involved in tryptophan-dependent IAA biosynthesis. Some of the DEGs and proteins enriched in these pathways showed different expression trends. The results indicated that these pathways play important roles in the regulation of growth and grazing-associated stress adaptions of S. grandis. This study enriches the knowledge of the mechanism of heavy-grazing-induced growth inhibition of S. grandis and provides valuable information for restoration of the productivity in degraded grassland.
Collapse
Affiliation(s)
- Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yongqing Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Tongrui Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
169
|
Pu Q, He Z, Xiang C, Shi S, Zhang L, Yang P. Integration of metabolome and transcriptome analyses reveals the mechanism of anthocyanin accumulation in purple radish leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1799-1811. [PMID: 36484029 PMCID: PMC9723021 DOI: 10.1007/s12298-022-01245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Anthocyanins are natural pigments and play significant roles in multiple growth, development, and stress response processes in plants. The vegetables with high anthocyanin content have better colours, higher antioxidant activity than green vegetables and are potent antioxidants with health benefits. However, the mechanism of anthocyanin accumulation in purple and green leaves of Raphanus sativus (radish) is poorly understood and needs further investigation. In the present study, the pigment content in a green leaf cultivar "RA9" and a purple-leaf cultivar "MU17" was characterized and revealed that the MU17 had significantly increased accumulation of anthocyanins and reduced content of chlorophyll and carotenoid compared with that in RA9. Meanwhile, these two cultivars were subjected to a combination of metabolomic and transcriptome studies. A total of 52 massively content-changed metabolites and 3463 differentially expressed genes were discovered in MU17 compared with RA9. In addition, the content of significantly increased flavonoids (such as pelargonidin and cyanidin) was identified in MU17 compared to RA9 using an integrated analysis of metabolic and transcriptome data. Moreover, the quantitative real-time polymerase chain reaction results also confirmed the differences in the expression of genes related to pathways of flavonoids and anthocyanin metabolism in MU17 leaves. The present findings provide valuable information for anthocyanin metabolism and further genetic manipulation of anthocyanin biosynthesis in radish leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01245-w.
Collapse
Affiliation(s)
- Quanming Pu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000 Sichuan China
| | - Zihan He
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000 Sichuan China
| | - Chengyong Xiang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000 Sichuan China
| | - Songmei Shi
- College of Resource and Environment, Southwest University, Chongqing, 400716 China
| | - Lincheng Zhang
- College of Life Sciences, Guizhou University, Guiyang, 550025 China
| | - Peng Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000 Sichuan China
| |
Collapse
|
170
|
Lv Y, Chen J, Zhu M, Liu Y, Wu X, Xiao X, Yuyama N, Liu F, Jing H, Cai H. Wall-associated kinase-like gene RL1 contributes to red leaves in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:135-150. [PMID: 35942607 DOI: 10.1111/tpj.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Red leaves are common in trees but rare in cereal crops. Red leaves can be used as raw materials for anthocyanin extraction and may have some adaptive significance for plants. In this study, we discovered a red leaf phenotype in the F1 hybrids derived from a cross between two sorghum accessions with green leaf. Histological analysis of red leaves and green leaves showed that red compounds accumulate in mesophyll cells and gradually spreads to the entire leaf blade. In addition, we found chloroplasts degraded more quickly in red leaves than in green leaves based on transmission electron microscopy. Metabolic analysis revealed that flavonoids including six anthocyanins are more abundant in red leaves. Moreover, transcriptome analysis revealed that expression of flavonoid biosynthesis genes was upregulated in red leaves. These observations indicate that flavonoids and anthocyanins in particular, are ideal candidates for the red compounds accumulating in red leaves. Segregation analysis of the red leaf phenotype suggested a genetic architecture consisting of three dominant genes, one (RL1 for RED LEAF1) of which we mapped to a 55-kb region on chromosome 7 containing seven genes. Sequencing, reverse transcription-polymerase chain reaction, and transcriptome analysis suggested Sobic.007G214300, encoding a wall-associated kinase, as the most likely candidate for RL1. Fine mapping the red leaf gene and identifying the metabolites that cause red leaf in sorghum provide us with a better understanding of the red leaf phenotype in the natural population of sorghum.
Collapse
Affiliation(s)
- Ya Lv
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Jun Chen
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Mengjiao Zhu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yishan Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Xiaoyuan Wu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Xiao
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Nana Yuyama
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, 329-2742, Japan
| | - Fengxia Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongwei Cai
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, 329-2742, Japan
| |
Collapse
|
171
|
Xie L, Wang J, Liu F, Zhou H, Chen Y, Pan L, Xiao W, Luo Y, Mi B, Sun X, Xiong C. Integrated analysis of multi-omics and fine-mapping reveals a candidate gene regulating pericarp color and flavonoids accumulation in wax gourd ( Benincasa hispida). FRONTIERS IN PLANT SCIENCE 2022; 13:1019787. [PMID: 36226283 PMCID: PMC9549291 DOI: 10.3389/fpls.2022.1019787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/02/2023]
Abstract
Wax gourd (Benincasa hispida), a popular fruit of the Cucurbitaceae (cucurbits) family, contains many nutrients with health benefits and is widely grown in China and other tropical areas. In this study, a wax gourd mutant hfc12 with light-color pericarp was obtained through ethane methylsulfonate (EMS) mutagenesis. Integrative analysis of the metabolome and transcriptome identified 31 differentially accumulated flavonoids (DAFs; flavonoids or flavonoid glycosides) and 828 differentially expressed genes (DEGs) between the hfc12 mutant and wild-type 'BWT'. Furthermore, BSA-seq and kompetitive allele specific PCR (KASP) analysis suggested that the light-color pericarp and higher flavonoid content was controlled by a single gene BhiPRR6 (Bhi12M000742), a typical two-component system (TCS) pseudo-response regulator (PRR). Genetic analysis detected only one nonsynonymous mutation (C-T) in the second exon region of the BhiPRR6. Weighted correlation network analysis (WGCNA) identified the downstream target genes of BhiPRR6, probably regulated by light and were intermediated in the regulatory enzyme reaction of flavonoid biosynthetic pathway. Thus, these results speculated that the transcription factor BhiPRR6, interacting with multiple genes, regulates the absorption of light signals and thereby changes the pericarp color and synthesis of flavonoids in wax gourd.
Collapse
Affiliation(s)
- Lingling Xie
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jin Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Huoqiang Zhou
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ying Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luzhao Pan
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wei Xiao
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yin Luo
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Baobin Mi
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaowu Sun
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Cheng Xiong
- College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
172
|
Integrative Analysis of the Metabolome and Transcriptome Provides Insights into the Mechanisms of Flavonoid Biosynthesis in Quinoa Seeds at Different Developmental Stages. Metabolites 2022; 12:metabo12100887. [PMID: 36295789 PMCID: PMC9609036 DOI: 10.3390/metabo12100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a crop with high nutritional and health benefits. Quinoa seeds are rich in flavonoid compounds; however, the mechanisms behind quinoa flavonoid biosynthesis remain unclear. We independently selected the high-generation quinoa strain ‘Dianli-3260′, and used its seeds at the filling, milk ripening, wax ripening, and mature stages for extensive targeted metabolome analysis combined with joint transcriptome analysis. The results showed that the molecular mechanism of flavonoid biosynthesis in quinoa seeds was mainly concentrated in two pathways: “flavonoid biosynthesis pathway” and “flavone and flavonol biosynthesis pathway”. Totally, 154 flavonoid-related metabolites, mainly flavones and flavonols, were detected in the four development stages. Moreover, 39,738 genes were annotated with KEGG functions, and most structural genes of flavonoid biosynthesis were differentially expressed during grain development. We analyzed the differential flavonoid metabolites and transcriptome changes between the four development stages of quinoa seeds and found that 11 differential flavonoid metabolites and 22 differential genes were the key factors for the difference in flavonoid biosynthesis. This study provides important information on the mechanisms underlying quinoa flavonoid biosynthesis, the screening of potential quinoa flavonoid biosynthesis regulation target genes, and the development of quinoa products.
Collapse
|
173
|
Shi Z, Han X, Wang G, Qiu J, Zhou LJ, Chen S, Fang W, Chen F, Jiang J. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1003635. [PMID: 36186082 PMCID: PMC9515547 DOI: 10.3389/fpls.2022.1003635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Temperature is an important environmental factor affecting plant anthocyanin synthesis. High temperatures are associated with decreased anthocyanin pigmentation in chrysanthemum. To reveal the effects of high temperature on anthocyanin biosynthesis in chrysanthemum, ray florets of the heat-sensitive cultivar "Nannong Ziyunying" (ZYY) were subjected to RNA sequencing. A total of 18,286 unigenes were differentially expressed between the control and treatment groups. Functional annotation and enrichment analyses of these unigenes revealed that the heat shock response and flavonoid pathways were significantly enriched, suggesting that the expression of these genes in response to high temperature is associated with the fading of chrysanthemum flower color. In addition, genes related to anthocyanin synthesis and heat shock response were differentially expressed under high-temperature stress. Finally, to further investigate the molecular mechanism of discoloration under high-temperature stress and facilitate the use of marker-assisted breeding for developing novel heat-tolerant cultivars, these results were used to mine candidate genes by analyzing changes in their transcription levels in chrysanthemum.
Collapse
|
174
|
Wang C, Li J, Zhou T, Zhang Y, Jin H, Liu X. Transcriptional regulation of proanthocyanidin biosynthesis pathway genes and transcription factors in Indigofera stachyodes Lindl. roots. BMC PLANT BIOLOGY 2022; 22:438. [PMID: 36096752 PMCID: PMC9469613 DOI: 10.1186/s12870-022-03794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), and RootII (two-year-old root). RESULTS In this study, a total of 110,779 non-redundant unigenes were obtained, of which 63,863 could be functionally annotated. Simultaneously, 75 structural genes that regulate PA biosynthesis were identified, of these 6 structural genes (IsF3'H1, IsANR2, IsLAR2, IsUGT72L1-3, IsMATE2, IsMATE3) may play an important role in the synthesis of PAs in I. stachyodes roots. Furthermore, co-expression network analysis revealed that 34 IsMYBs, 18 IsbHLHs, 15 IsWRKYs, 9 IsMADSs, and 3 IsWIPs hub TFs are potential regulators for PA accumulation. Among them, IsMYB24 and IsMYB79 may be closely involved in the PA biosynthesis in I. stachyodes roots. CONCLUSIONS The biosynthesis of PAs in I. stachyodes roots is mainly produced by the subsequent pathway of cyanidin. Our work provides new insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout different tissues.
Collapse
Affiliation(s)
- Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
175
|
Xu P, Wu T, Ali A, Wang J, Fang Y, Qiang R, Liu Y, Tian Y, Liu S, Zhang H, Liao Y, Chen X, Shoaib F, Sun C, Xu Z, Xia D, Zhou H, Wu X. Rice β-Glucosidase 4 (Os1βGlu4) Regulates the Hull Pigmentation via Accumulation of Salicylic Acid. Int J Mol Sci 2022; 23:10646. [PMID: 36142555 PMCID: PMC9504040 DOI: 10.3390/ijms231810646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Salicylic acid (SA) is a stress hormone synthesized in phenylalanine ammonia-lyase (PAL) and the branching acid pathway. SA has two interconvertible forms in plants: SAG (SA O-β-glucoside) and SA (free form). The molecular mechanism of conversion of SA to SAG had been reported previously. However, which genes regulate SAG to SA remained unknown. Here, we report a cytoplasmic β-glucosidase (β-Glu) which participates in the SA pathway and is involved in the brown hull pigmentation in rice grain. In the current study, an EMS-generated mutant brown hull 1 (bh1) displayed decreased contents of SA in hulls, a lower photosynthesis rate, and high-temperature sensitivity compared to the wild type (WT). A plaque-like phenotype (brown pigmentation) was present on the hulls of bh1, which causes a significant decrease in the seed setting rate. Genetic analysis revealed a mutation in LOC_Os01g67220, which encodes a cytoplasmic Os1βGlu4. The knock-out lines displayed the phenotype of brown pigmentation on hulls and decreased seed setting rate comparable with bh1. Overexpression and complementation lines of Os1βGlu4 restored the phenotype of hulls and normal seed setting rate comparable with WT. Subcellular localization revealed that the protein of Os1βGlu4 was localized in the cytoplasm. In contrast to WT, bh1 could not hydrolyze SAG into SA in vivo. Together, our results revealed the novel role of Os1βGlu4 in the accumulation of flavonoids in hulls by regulating the level of free SA in the cellular pool.
Collapse
Affiliation(s)
- Peizhou Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingkai Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinhao Wang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongqiong Fang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runrun Qiang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Yutong Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Tian
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Su Liu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongyu Zhang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxiang Liao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqiong Chen
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Farwa Shoaib
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Changhui Sun
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Duo Xia
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Zhou
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianjun Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
176
|
Hong S, Wang J, Wang Q, Zhang G, Zhao Y, Ma Q, Wu Z, Ma J, Gu C. Decoding the formation of diverse petal colors of Lagerstroemia indica by integrating the data from transcriptome and metabolome. FRONTIERS IN PLANT SCIENCE 2022; 13:970023. [PMID: 36161015 PMCID: PMC9490092 DOI: 10.3389/fpls.2022.970023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Lagerstroemia indica has great economic value due to its ecological, medicinal, and ornamental properties. Because its bloom color is one of the most essential characteristics, research into its color development is a hot topic. In this study, five representative colored cultivars were chosen, each representing a different color, such as white, red, pink, violet, and purple. Fully bloomed flowers were used to detect flavonoids in the petals. Anthocyanin is the main factor for the color formation of L. indica. 14 anthocyanins were discovered among the 299 flavonoids. Among 14 anthocyanins, malvidin-3,5-di-O-glucoside varied greatly among four colored samples and is the main contributor to color diversity. Transcriptome sequencing revealed that compared to white flowers, Anthocyanin pathway genes appear to be more active in colored samples. Analyzing the correlation network between metabolites and differential expressed genes, 53 key structural genes, and 24 TFs were detected that may play an essential role in the formation of color in L. indica flowers. Among these, the differential expression of F3'5'H and F3'H between all samples are contributors to color diversity. These findings lay the foundation for discovering the molecular mechanism of L. indica flower color diversity.
Collapse
Affiliation(s)
- Sidan Hong
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Jie Wang
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture, Foshan, China
| | - Jin Ma
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
177
|
Zhang B, Yang H, Qu D, Zhu Z, Yang Y, Zhao Z. The MdBBX22-miR858-MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1683-1700. [PMID: 35527510 PMCID: PMC9398380 DOI: 10.1111/pbi.13839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Hui‐Juan Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Dong Qu
- Shaanxi Key Laboratory Bio‐resourcesCollege of Bioscience and EngineeringShaanxi University of TechnologyHanzhongShaanxiChina
| | - Zhen‐Zhen Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Ya‐Zhou Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| | - Zheng‐Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Shaanxi Research Center of Apple Engineering and TechnologyYanglingShaanxiChina
| |
Collapse
|
178
|
Bai Q. Comparative transcriptomics of Pinus massoniana organs provides insights on terpene biosynthesis regulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13791. [PMID: 36169876 DOI: 10.1111/ppl.13791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Terpenoids are the most important natural products collected from conifer species. However, the molecular mechanisms and core factors underlying terpenoid biosynthesis in Pinus massoniana remain unclear. To clarify these mechanisms, this study aimed to identify potential genes that might participate in the terpenoid biosynthesis of P. massoniana. In this study, single molecule real-time (SMRT) sequencing and expression analysis were used to confirm the expression patterns of genes involved in the cones, immature needles, mature needles, immature branches, and mature branches of P. massoniana. A total of 31,331 lncRNAs and 71,240 mRNAs were identified from these organs, and the greatest number of differentially expressed genes (DEGs) was discovered between needles and branches. Weighted gene coexpression network analysis (WGCNA) classified all expressed genes into nine typical modules with 11 kinds of transcription factors (TFs), namely, AP2-ERF, ARF, AUX-IAA, C2H2, Dof, F-box, SBP, WRKY, bHLH, bZIP, and GRAS, and seven kinds of functional genes, namely, ABC transporter, cellulose synthase (CesA), leucine-rich repeats (LRR), cytochrome P450 (CYT P450), pathogenesis-related protein (PR), terpene synthase (TPS), and chlorophyllase enzyme. A molecular network was constructed for hub genes, TFs, and functional genes in three modules. The potential function of eight candidate genes, including PmbHLH2, PmERF1, PmRGA, PmGAI, PmbZIP1, PmLOB1, PmMADS1, and PmMYB1, was validated through correlation analysis between terpenoid contents and expression levels, subcellular localization, and transcriptional activation activity, which provides us with probable regulators of terpenoid biosynthesis in conifers.
Collapse
Affiliation(s)
- Qingsong Bai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
179
|
Fu H, Chao H, Zhao X, Wang H, Li H, Zhao W, Sun T, Li M, Huang J. Anthocyanins identification and transcriptional regulation of anthocyanin biosynthesis in purple Brassica napus. PLANT MOLECULAR BIOLOGY 2022; 110:53-68. [PMID: 35723867 DOI: 10.1007/s11103-022-01285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The main anthocyanin components were identified, and the transcriptional regulation pattern of anthocyanin related genes in leaves and stem bark was elucidated in a purple B. napus. Brassica napus is one of the most important oil crops planted worldwide, and developing varieties of dual-purpose for oil and vegetable is beneficial to improve economic benefits. Anthocyanins are a class of secondary metabolites that not only make plants present beautiful colors, but have a variety of important physiological functions and biological activities. Therefore, increasing the accumulation of anthocyanin in vegetative organs can improve vegetable value of rapeseed. However, anthocyanin enriched varieties in vegetative organs are rare, and there are few studies on category identification and accumulation mechanism of anthocyanin, which limits the utilization of anthocyanins in B. napus. In this study, 157 anthocyanin biosynthesis related genes (ABGs) were identified in B. napus genome by homology comparison and collinearity analysis of genes related to anthocyanin synthesis and regulation in Arabidopsis. Moreover, five anthocyanins were identified in the stem bark and leaves of the purple B. napus PR01 by high performance liquid chromatography-mass spectrometry (HPLC-MS), and the expression characteristics of ABGs in the leaves and stem bark of PR01 were analyzed and compared with the green cultivar ZS11 by RNA-Seq. Combining further weighted gene co-expression network analysis (WGCNA), the up-regulation of transcript factors BnaA07. PAP2 and BnaC06. PAP2 were identified as the key to the up-regulation of most of anthocyanin synthesis genes that promoted anthocyanin accumulation in PR01. This study is helpful to understand the transcriptional regulation of anthocyanin biosynthesis in B. napus and provides the theoretical basis for breeding novel varieties of dual-purpose for oil and vegetable.
Collapse
Affiliation(s)
- Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoyi Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
180
|
Zhou T, Sun J, Zhai Y, Gao C, Ruhsam M, Wang X. Transcriptome profiles of yellowish-white and fuchsia colored flowers in the Rheum palmatum complex reveal genes related to color polymorphism. PLANT MOLECULAR BIOLOGY 2022; 110:187-197. [PMID: 35943640 DOI: 10.1007/s11103-022-01299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Flower color variation is ubiquitous in many plant species, and several studies have been conducted to elucidate the underlying molecular mechanism. There are two flower color variants (yellowish-white and fuchsia) in the Rheum palmatum complex, however, few studies have investigated this phenomenon. Here, we used transcriptome sequencing of the two color variants to shed light on the molecular and biochemical basis for these color morphs. Comparison of the two transcriptomes identified 9641 differentially expressed unigenes (DEGs), including 6477 up-regulated and 3163 down-regulated genes. Functional analyses indicated that several DEGs were related to the anthocyanin biosynthesis pathway, and the expression profiles of these DEGs were coincident with the qRT-PCR validation results, indicating that expression levels of structural genes have a profound effect on the color variation in the R. palmatum complex. Our results suggested that the interaction of transcription factors (MYB, bHLH and WRKY) also regulated the anthocyanin biosynthesis in the R. palmatum complex. Estimation of selection pressures using the dN/dS ratio showed that 1106 pairs of orthologous genes have undergone positive selection. Of these positively selected genes, 21 were involved in the anthocyanin biosynthetic pathway, indicating that they may encode the proteins for structural alteration and affect flower color in the R. palmatum complex.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiangyan Sun
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunyan Zhai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenxi Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
181
|
Xing A, Wang X, Nazir MF, Zhang X, Wang X, Yang R, Chen B, Fu G, Wang J, Ge H, Peng Z, Jia Y, He S, Du X. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton (Gossypium arboreum L.). BMC PLANT BIOLOGY 2022; 22:416. [PMID: 36038835 PMCID: PMC9425979 DOI: 10.1186/s12870-022-03800-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Asian cotton (Gossypium arboreum L.), as a precious germplasm resource of cotton with insect resistance and stress tolerance, possesses a broad spectrum of phenotypic variation related to pigmentation. Flower color affects insect pollination and the ornamental value of plants. Studying flower color of Asian cotton varieties improves the rate of hybridization and thus enriches the diversity of germplasm resources. Meanwhile, it also impacts the development of the horticultural industry. Unfortunately, there is a clear lack of studies concerning intricate mechanisms of cotton flower-color differentiation. Hereby, we report an integrative approach utilizing transcriptome and metabolome concerning flower color variation in three Gossypium arboreum cultivars. RESULTS A total of 215 differentially accumulated metabolites (DAMs) were identified, including 83 differentially accumulated flavonoids (DAFs). Colorless kaempferol was more abundant in white flowers, while gossypetin-fer showed specificity in white flowers. Quercetin and gossypetin were the main contributors to yellow petal formation. Pelargonidin 3-O-beta-D-glucoside and cyanidin-3-O-(6''-Malonylglucoside) showed high accumulation levels in purple petals. Quercetin and gossypetin pigments also promoted purple flower coloration. Moreover, 8178 differentially expressed genes (DEGs) were identified by RNA sequencing. The correlation results between total anthocyanins and DEGs were explored, indicating that 10 key structural genes and 29 transcription factors promoted anthocyanin biosynthesis and could be candidates for anthocyanin accumulation. Ultimately, we constructed co-expression networks of key DAFs and DEGs and demonstrated the interactions between specific metabolites and transcripts in different color flowers. CONCLUSION This study provides new insights into elucidating the regulatory mechanisms of cotton flower color and lays a potential foundation for generate cotton varieties with highly attractive flowers for pollinators.
Collapse
Affiliation(s)
- Aishuang Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiuxiu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ru Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hao Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou Henan, 450001, China.
| |
Collapse
|
182
|
Zhou Y, Lv J, Yu Z, Wang Z, Li Y, Li M, Deng Z, Xu Q, Cui F, Zhou W. Integrated metabolomics and transcriptomic analysis of the flavonoid regulatory networks in Sorghum bicolor seeds. BMC Genomics 2022; 23:619. [PMID: 36028813 PMCID: PMC9414139 DOI: 10.1186/s12864-022-08852-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to reveal the flavonoid biosynthesis pathway in white (Z6), red (Z27) and black (HC4) seeds of the sweet sorghum (Sorghum bicolor) using metabolomics and transcriptomics, to identify different flavonoid metabolites, and to analyze the differentially expressed genes involved in flavonoid biosynthesis. Results We analyzed the metabolomics and transcriptomics data of sweet sorghum seeds. Six hundred and fifty-one metabolites including 171 flavonoids were identified in three samples. Integrated analysis of transcriptomics and metabolomics showed that 8 chalcone synthase genes (gene19114, gene19115, gene19116, gene19117, gene19118, gene19120, gene19122 and gene19123) involved in flavonoid biosynthesis, were identified and play central role in change of color. Six flavanone including homoeriodictyol, naringin, prunin, naringenin, hesperetin and pinocembrin were main reason for the color difference. Conclusions Our results provide valuable information on the flavonoid metabolites and the candidate genes involved in the flavonoid biosynthesis pathway in sweet sorghum seeds.
Collapse
Affiliation(s)
- Yaxing Zhou
- Agricultural College, Inner Mongolia Minzu University, No. 996 Xilamulun Street, Kerqin District, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Jingbo Lv
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Zhonghao Yu
- Agricultural College, Inner Mongolia Minzu University, No. 996 Xilamulun Street, Kerqin District, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Zhenguo Wang
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Yan Li
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Mo Li
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Zhilan Deng
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Qingquan Xu
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Fengjuan Cui
- Tongliao Agriculture and Animal Husbandry Research Institute, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Wei Zhou
- Agricultural College, Inner Mongolia Minzu University, No. 996 Xilamulun Street, Kerqin District, Tongliao, 028000, Inner Mongolia, People's Republic of China.
| |
Collapse
|
183
|
Cao H, Li H, Chen X, Zhang Y, Lu L, Li S, Tao X, Zhu W, Wang J, Ma L. Insight into the molecular mechanisms of leaf coloration in Cymbidium ensifolium. Front Genet 2022; 13:923082. [PMID: 36035180 PMCID: PMC9413228 DOI: 10.3389/fgene.2022.923082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cymbidiumensifolium L. is a significant ornamental plant in Orchidaceae. Aside from its attractive flowers, its leaf coloration is also an important ornamental trait. However, there is an apparent lack of studies concerning the intricate mechanism of leaf coloration in C. ensifolium. In this study, we report a systematic evaluation of leaf coloration utilizing transcriptome and metabolome profiles of purple, yellow, and green leaves. In total, 40 anthocyanins and 67 flavonoids were quantified along with chlorophyll content. The tissue–transcriptome profile identified 26,499 differentially expressed genes (DEGs). The highest chlorophyll contents were identified in green leaves, followed by yellow and purple leaves. We identified key anthocyanins and flavonoids associated with leaf coloration, including cyanidin-3-O-sophoroside, naringenin-7-O-glucoside, delphinidin, cyanidin, petunidin, and quercetin, diosmetin, sinensetin, and naringenin chalcone. Moreover, genes encoding UDP-glucoronosyl, UDP-glucosyl transferase, chalcone synthesis, flavodoxin, cytochrome P450, and AMP-binding enzyme were identified as key structural genes affecting leaf coloration in C. ensifolium. In summary, copigmentation resulting from several key metabolites modulated by structural genes was identified as governing leaf coloration in C. ensifolium. Further functional verification of the identified DEGs and co-accumulation of metabolites can provide a tool to modify leaf color and improve the aesthetic value of C. ensifolium.
Collapse
Affiliation(s)
- Hua Cao
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Han Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Chen
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Yuying Zhang
- Yunnan Agricultural University College of Horticulture and Landscape, Kunming, China
| | - Lin Lu
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Shenchong Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Tao
- Yunnan Agriculture Academy Science, Kunming, China
| | - WeiYin Zhu
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Jihua Wang
- Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| | - Lulin Ma
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| |
Collapse
|
184
|
Li JL, Weng Z, Li XY, Xu B, Gao YF, Rong LP. De novo transcriptome revealed genes involved in anthocyanin biosynthesis, transport, and regulation in a mutant of Acer pseudosieboldianum. BMC Genomics 2022; 23:567. [PMID: 35941547 PMCID: PMC9361605 DOI: 10.1186/s12864-022-08815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acer pseudosieboldianum is a kind of excellent color-leafed plants, and well known for its red leaves in autumn. At the same time, A. pseudosieboldianum is one of the native tree species in the northeast of China, and it plays an important role in improving the lack of color-leafed plants in the north. In previous study, we found a mutant of the A. pseudosieboldianum that leaves intersect red and green in spring and summer. However, it is unclear which genes cause the color change of mutant leaves. RESULTS In order to study the molecular mechanism of leaf color formation, we analyzed the leaves of the mutant group and the control group from A. pseudosieboldianum by RNA deep sequencing in this study. Using an Illumina sequencing platform, we obtained approximately 276,071,634 clean reads. After the sequences were filtered and assembled, the transcriptome data generated a total of 70,014 transcripts and 54,776 unigenes, of which 34,486 (62.96%) were successfully annotated in seven public databases. There were 8,609 significant DEGs identified between the control and mutant groups, including 4,897 upregulated and 3,712 downregulated genes. We identified 13 genes of DEGs for leaf color synthesis that was involved in the flavonoid pathway, 26 genes that encoded transcription factors, and eight genes associated with flavonoid transport. CONCLUSION Our results provided comprehensive gene expression information about A. pseudosieboldianum transcriptome, and directed the further study of accumulation of anthocyanin in A. pseudosieboldianum, aiming to provide insights into leaf coloring of it through transcriptome sequencing and analysis.
Collapse
Affiliation(s)
- Jia-Lin Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Zhuo Weng
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Xin-Yu Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Bo Xu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Yu-Fu Gao
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Li-Ping Rong
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
185
|
Su M, Zuo W, Wang Y, Liu W, Zhang Z, Wang N, Chen X. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples ( Malus domestica). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:799-809. [PMID: 35577345 DOI: 10.1071/fp21146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins play important roles in plant secondary metabolism. Although previous studies have identified many transcription factors (TFs) that participate in the synthetic pathway of anthocyanins, the regulation mechanism of the pathway remain poorly understood. In this study, we identified a WRKY Group IIc TF, MdWRKY75, which contained a typical WRKYGQK heptapeptide sequence and a C2 H2 -zinc finger structure. Subcellular localisation assays found that MdWRKY75 was located in the nucleus. Overexpression of MdWRKY75 promoted the accumulation of anthocyanins in apple (Malus domestica L.) 'Orin' calli. MdWRKY75 mainly stimulated the accumulation of anthocyanins by binding to the promoter of MYB transcription factor, MdMYB1 . Our research could provide new insights into how WRKY TFs regulate the accumulation of anthocyanins in apples.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Weifang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| |
Collapse
|
186
|
Transcriptional Comparison of New Hybrid Progenies and Clone-Cultivars of Tea (Camellia sinensis L.) Associated to Catechins Content. PLANTS 2022; 11:plants11151972. [PMID: 35956452 PMCID: PMC9370121 DOI: 10.3390/plants11151972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Heterosis or hybrid vigor is the improved performance of a desirable quality in hybrid progeny. Hybridization between high-productive Assam type and high-quality Chinese type clone-cultivar is expected to develop elite tea plant progenies with high quality and productivity. Comparative transcriptomics analyses of leaves from the F1 hybrids and their parental clone-cultivars were conducted to explore molecular mechanisms related to catechin content using a high-throughput next-generation RNA-seq strategy and high-performance liquid chromatography (HPLC). The content of EGCG (epigallocatechin gallate) and C (catechin) was higher in ‘Kiara-8’ × ‘Sukoi’, ‘Tambi-2’ × ‘Suka Ati’, and ‘Tambi-2’ × ‘TRI-2025’ than the other hybrid and clone-cultivars. KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analysis found that most pathways associated with catechins content were enriched. Significant differentially expressed genes (DEGs) mainly associated with phenylpropanoid, flavonoid, drug metabolism-cytochrome P450, and transcription factor (MYB, bHLH, LOB, and C2H2) pathways appeared to be responsible for the high accumulation of secondary metabolites in ‘Kiara-8’ × ‘Sukoi’, ‘Tambi-2’ × ‘Suka Ati’, and ‘Tambi-2’ × ‘TRI-2025’ as were detected in EGCG and catechin content. Several structural genes related to the above pathways have been obtained, which will be used as candidate genes in the screening of breeding materials.
Collapse
|
187
|
Chen W, Miao Y, Ayyaz A, Hannan F, Huang Q, Ulhassan Z, Zhou Y, Islam F, Hong Z, Farooq MA, Zhou W. Purple stem Brassica napus exhibits higher photosynthetic efficiency, antioxidant potential and anthocyanin biosynthesis related genes expression against drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:936696. [PMID: 35968110 PMCID: PMC9366039 DOI: 10.3389/fpls.2022.936696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 05/09/2023]
Abstract
Purple-stem Brassica napus (B. napus) is a phenotype with unique color because of its high anthocyanins content. Anthocyanins are naturally occurring plant pigments that have antioxidants activity and play important role in plant defense against abiotic and biotic stresses. In the present study, drought induced effects on plants were investigated in hydroponically grown seedlings of green stem (GS) and purple stem (PS) genotypes of B. napus. The results of this study showed that the major function of anthocyanins accumulation during drought was to enhance the antioxidant capability and stress tolerance in B. napus plants. Our results showed that drought significantly inhibited the plant growth in terms of decreased biomass accumulation in both genotypes, although marked decline was observed in GS genotype. The reduction in photosynthetic attributes was more noticeable in the GS genotype, whereas the PS genotype showed better performance under drought stress. Under stressful conditions, both the genotype showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher levels of antioxidant enzymes activities. Under drought conditions, the GS genotype showed apparent damages on chloroplast deformation like in thylakoid membrane and grana structural distortion and fewer starch grains and bigger plastoglobuli. Moreover, during drought stress, the PS genotype exhibited maximum expression levels of anthocyanins biosynthesis genes and antioxidant enzymes accompanied by higher stress tolerance relative to GS genotype. Based on these findings, it can be concluded that GS genotype found more sensitive to drought stress than the PS genotype. Furthermore this research paper also provides practical guidance for plant biologists who are developing stress-tolerant crops by using anthocyanin biosynthesis or regulatory genes.
Collapse
Affiliation(s)
- Weiqi Chen
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Yilin Miao
- Agricultural Technology and Water Conservancy Service Center, Jiaxing, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Yingying Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Faisal Islam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Zheyuan Hong
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
188
|
Sun X, Zhang Z, Li J, Zhang H, Peng Y, Li Z. Uncovering Hierarchical Regulation among MYB-bHLH-WD40 Proteins and Manipulating Anthocyanin Pigmentation in Rice. Int J Mol Sci 2022; 23:8203. [PMID: 35897779 PMCID: PMC9332703 DOI: 10.3390/ijms23158203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins accumulate in various organs of rice, and the regulatory genes involved in pigmentation of specific organs, such as pericarp, hull, leaf, apiculus, and stigma have been elucidated. However, the corresponding gene for rice culm pigmentation has not been clarified. The well-known MYB-bHLH-WD40 (MBW) complex plays vital role in regulating the anthocyanin biosynthesis pathway in plants. However, the core members of MBW and the hierarchical regulation between these members are not fully elucidated in rice. Here, by map-based cloning, we identified the culm-specific pigmentation gene S1 whose alleles are also known for hull/pericarp pigmentation. We also clarified that one WD40 protein encoding gene, WA1, is indispensable for anthocyanin biosynthesis in rice. In the cascading regulation among MBW members, S1 (bHLH) acts as the master gene by activating the expression of C1 (MYB), and then C1 activates the expression of WA1 (WD40), which is unique in plant species. This enables MBW members to be coordinated in a common way to efficiently regulate anthocyanin biosynthesis genes. Based on these studies, we explored the minimal gene set required for anthocyanin biosynthesis in rice. These findings will help us design new rice varieties with anthocyanin accumulation in specific organs as needed.
Collapse
Affiliation(s)
- Xingming Sun
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Youliang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
189
|
Guo C, Chen Y, Wang M, Du Y, Wu D, Chu J, Yao X. Exogenous brassinolide improves the antioxidant capacity of Pinellia ternata by enhancing the enzymatic and nonenzymatic defense systems under non-stress conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:917301. [PMID: 35958199 PMCID: PMC9358693 DOI: 10.3389/fpls.2022.917301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Brassinolide (BR) improves the antioxidant capacity of plants under various abiotic stresses. However, it is not clear about the effect of BR on the antioxidant capacity in plants under non-stress conditions. In the present study, the antioxidant defense response of Pinellia ternata was to be assessed by applying BR and propiconazole (Pcz) under non-stress conditions. BR treatment enhanced the flavonoid content, peroxidase, and ascorbate peroxidase (APX) activity by 12.31, 30.62, and 25.08% and led to an increase in 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity by 4.31% and a decrease in malondialdehyde content by 1.04%. Exogenous application of BR improved the expression levels of PAL, CHS, CHI, and DFR genes by 3. 18-, 3. 39-, 2. 21-, and 0.87-fold in flavonoid biosynthesis, PGI, PMI, and GME genes by 6. 60-, 1437. 79-, and 3.11-fold in ascorbic acid (ASA), biosynthesis, and γECs and GSHS genes by 6.08- and 2.61-fold in glutathione (GSH) biosynthesis pathway, and the expression of these genes were inhibited by Pcz treatment. In addition, BR treatment promoted the ASA-GSH cycle by enhancing the expression of APX, DHAR, and MDHAR genes, which were enhanced by 3. 33-, 157. 85-, and 154.91-fold, respectively. These results provided novel insights into the effect of BR on the antioxidant capacity in bulbil of P. ternata under non-stress conditions and useful knowledge of applying BR to enhance the antioxidant capacity of plants.
Collapse
Affiliation(s)
- Chenchen Guo
- School of Life Sciences, Hebei University, Baoding, China
| | - Ying Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Mengyue Wang
- School of Life Sciences, Hebei University, Baoding, China
| | - Yu Du
- School of Life Sciences, Hebei University, Baoding, China
| | - Dengyun Wu
- School of Life Sciences, Hebei University, Baoding, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
190
|
Meng Y, Zhang H, Fan Y, Yan L. Anthocyanins accumulation analysis of correlated genes by metabolome and transcriptome in green and purple peppers (Capsicum annuum). BMC PLANT BIOLOGY 2022; 22:358. [PMID: 35869427 PMCID: PMC9308287 DOI: 10.1186/s12870-022-03746-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/11/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND In order to clarify the the molecular mechanism of anthocyanin accumulation in green and purple fruits of pepper using metabolomics and transcriptomics,to identify different anthocyanin metabolites,and to analyze the differentially expressed genes involved in anthocyanin biosynthesis.. RESULTS We analyzed the anthocyanin metabolome and transcriptome data of the fruits of 2 purple pepper and 1 green pepper. A total of 5 anthocyanin metabolites and 2224 differentially expressed genes were identified between the green and purple fruits of pepper. Among the 5 anthocyanin metabolites,delphin chloride was unique to purple pepper fruits,which is the mainly responsible for the purple fruit color of pepper. A total of 59 unigenes encoding 7 enzymes were identified as candidate genes involved in anthocyanin biosynthesis in pepper fruit. The six enzymes (PAL,C4H,CHI,DFR,ANS,UFGT) had higher expression levels except the F3H gene in purple compared with green fruits. In addition,seven transcription factors were also found in this study. These transcription factors may contribute to anthocyanin metabolite biosynthesis in the fruits of pepper. One of differentially expressed gene novel.2098 was founded. It was not annotated in NCBI. Though blast analysis we preliminarily considered that this gene related to MYB transcription factor and was involved in anthocyanin biosynthesis in pepper fruit. CONCLUSIONS Overall, the results of this study provide useful information for understanding anthocyanin accumulation and the molecular mechanism of anthocyanin biosynthesis in peppers.
Collapse
Affiliation(s)
- Yaning Meng
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 Hebei China
| | - Hongxiao Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 Hebei China
| | - Yanqin Fan
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 Hebei China
| | - Libin Yan
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051 Hebei China
| |
Collapse
|
191
|
Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT. Postharvest High-CO 2 Treatments on the Quality of Soft Fruit Berries: An Integrated Transcriptomic, Proteomic, and Metabolomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8593-8597. [PMID: 35792090 PMCID: PMC9305969 DOI: 10.1021/acs.jafc.2c01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft fruits are appreciated for their taste qualities and for being a source of health-promoting compounds. However, their postharvest is affected by their high respiratory rates and susceptibility to fungal decay. Our aim here is to provide a perspective on the application of short-term high-CO2 treatments at a low temperature to maintain the postharvest quality of soft fruits. This work also suggests using a multi-omics approach to better understand the role of the cell wall and phenolic compounds in maintaining quality. Finally, the contribution of high-throughput transcriptomic technologies to understand the mechanisms modulated by the short-term gaseous treatments is also highlighted.
Collapse
|
192
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. AcMYB1 Interacts With AcbHLH1 to Regulate Anthocyanin Biosynthesis in Aglaonema commutatum. FRONTIERS IN PLANT SCIENCE 2022; 13:886313. [PMID: 35928704 PMCID: PMC9344012 DOI: 10.3389/fpls.2022.886313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Aglaonema commutatum is one of the most popular foliage plants with abundant leaf phenotypes; therefore, anthocyanin coloration is a vital economic trait in A. commutatum. However, the molecular mechanisms underlying anthocyanin biosynthesis and its regulation remain unclear. In this study, AcMYB1 and AcbHLH1, transcription factor genes related to an R2R3-myeloblast (MYB) and a basic helix-loop-helix (bHLH), respectively, were isolated from A. commutatum "Red Valentine" and functionally characterized. AcMYB1 and AcbHLH1 were found to interact by Y2H and BiFC assay. AcMYB1 was grouped into the AN2 subgroup and shared high homology with the known regulators of anthocyanin biosynthesis. Gene expression analysis showed that both AcMYB1 and AcbHLH1 have similar expression patterns to anthocyanin structural genes and correlate with anthocyanin distribution in different tissues of A. commutatum. Light strongly promoted anthocyanin accumulation by upregulating the expression of anthocyanin-related genes in A. commutatum leaves. Ectopic expression of AcMYB1 in tobacco remarkably increased anthocyanin accumulation in both vegetative and reproductive tissues at various developmental stages. These results provide insights into the regulation of anthocyanin biosynthesis in A. commutatum and are useful for breeding new A. commutatum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
193
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
194
|
Xiong J, Tang X, Wei M, Yu W. Comparative full-length transcriptome analysis by Oxford Nanopore Technologies reveals genes involved in anthocyanin accumulation in storage roots of sweet potatoes ( Ipomoea batatas L.). PeerJ 2022; 10:e13688. [PMID: 35846886 PMCID: PMC9285475 DOI: 10.7717/peerj.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Storage roots of sweet potatoes (Ipomoea batatas L.) with different colors vary in anthocyanin content, indicating different economically agronomic trait. As the newest DNA/RNA sequencing technology, Oxford Nanopore Technologies (ONT) have been applied in rapid transcriptome sequencing for investigation of genes related to nutrient metabolism. At present, few reports concern full-length transcriptome analysis based on ONT for study on the molecular mechanism of anthocyanin accumulation leading to color change of tuberous roots of sweet potato cultivars. Results The storage roots of purple-fleshed sweet potato (PFSP) and white-fleshed sweet potato (WFSP) at different developmental stages were subjected to anthocyanin content comparison by UV-visible spectroscopy as well as transcriptome analysis at ONT MinION platform. UV-visible spectrophotometric measurements demonstrated the anthocyanin content of PFSP was much higher than that of WFSP. ONT RNA-Seq results showed each sample generated average 2.75 GB clean data with Full-Length Percentage (FL%) over 70% and the length of N50 ranged from 1,192 to 1,395 bp, indicating reliable data for transcriptome analysis. Subsequent analysis illustrated intron retention was the most prominent splicing event present in the resulting transcripts. As compared PFSP with WFSP at the relative developmental stages with the highest (PH vs. WH) and the lowest (PL vs. WL) anthocyanin content, 282 and 216 genes were up-regulated and two and 11 genes were down-regulated respectively. The differential expression genes involved in flavonoid biosynthesis pathway include CCoAOMT, PpLDOX, DFR, Cytochrome P450, CHI, and CHS. The genes encoding oxygenase superfamily were significantly up-regulated when compared PFSP with WFSP at the relative developmental stages. Conclusions Comparative full-length transcriptome analysis based on ONT serves as an effective approach to detect the differences in anthocyanin accumulation in the storage roots of different sweet potato cultivars at transcript level, with noting that some key genes can now be closely related to flavonoids biosynthesis. This study helps to improve understanding of molecular mechanism for anthocyanin accumulation in sweet potatoes and also provides a theoretical basis for high-quality sweet potato breeding.
Collapse
Affiliation(s)
- Jun Xiong
- Agricultural College, Guangxi University, Nanning, China,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuhua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Minzheng Wei
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjin Yu
- Agricultural College, Guangxi University, Nanning, China
| |
Collapse
|
195
|
Muthuramalingam P, Jeyasri R, Selvaraj A, Shin H, Chen JT, Satish L, Wu QS, Ramesh M. Global Integrated Genomic and Transcriptomic Analyses of MYB Transcription Factor Superfamily in C3 Model Plant Oryza sativa (L.) Unravel Potential Candidates Involved in Abiotic Stress Signaling. Front Genet 2022; 13:946834. [PMID: 35873492 PMCID: PMC9305833 DOI: 10.3389/fgene.2022.946834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Plant transcription factors (TFs) are significant players in transcriptional regulations, signal transduction, and constitute an integral part of signaling networks. MYB TFs are major TF superfamilies that play pivotal roles in regulation of transcriptional reprogramming, physiological processes, and abiotic stress (AbS) responses. To explore the understanding of MYB TFs, genome and transcriptome-wide identification was performed in the C3 model plant, Oryza sativa (OsMYB). This study retrieved 114 OsMYB TFs that were computationally analyzed for their expression profiling, gene organization, cis-acting elements, and physicochemical properties. Based on the microarray datasets, six OsMYB genes which were sorted out and identified by a differential expression pattern were noted in various tissues. Systematic expression profiling of OsMYB TFs showed their meta-differential expression of different AbS treatments, spatio-temporal gene expression of various tissues and their growth in the field, and gene expression profiling in responses to phytohormones. In addition, the circular ideogram of OsMYB genes in related C4 grass plants conferred the gene synteny. Protein–protein interactions of these genes revealed the molecular crosstalk of OsMYB TFs. Transcriptional analysis (qPCR) of six OsMYB players in response to drought and salinity stress suggested the involvement in individual and combined AbS responses. To decipher how these OsMYB play functional roles in AbS dynamics, further research is a prerequisite.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, South Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Hyunsuk Shin, ; Manikandan Ramesh,
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- *Correspondence: Hyunsuk Shin, ; Manikandan Ramesh,
| |
Collapse
|
196
|
Shoji T, Umemoto N, Saito K. Genetic divergence in transcriptional regulators of defense metabolism: insight into plant domestication and improvement. PLANT MOLECULAR BIOLOGY 2022; 109:401-411. [PMID: 34114167 DOI: 10.1007/s11103-021-01159-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 05/23/2023]
Abstract
A number of mutational changes in transcriptional regulators of defense metabolism have occurred during plant domestication and improvement. Plant domestication and improvement entail genetic changes that underlie divergence in development and metabolism, providing a tremendous model of biological evolution. Plant metabolism produces numerous specialized alkaloids, terpenoids, phenolics, and cyanogenic glucosides with indispensable roles in defense against herbivory and microbial infection. Many compounds toxic or deterrent to predators have been eliminated through domestication and breeding. Series of genes involved in defense metabolism are coordinately regulated by transcription factors that specifically recognize cis-regulatory elements in promoter regions of downstream target genes. Recent developments in DNA sequencing technologies and genomic approaches have facilitated studies of the metabolic and genetic changes in chemical defense that have occurred via human-mediated selection, many of which result from mutations in transcriptional regulators of defense metabolism. In this article, we review such examples in almond (Prunus dulcis), cucumber (Cucumis sativus), pepper (Capsicum spp.), potato (Solanum tuberosum), quinoa (Chenopodium quinoa), sorghum (Sorghum bicolor), and related species and discuss insights into the evolution and regulation of metabolic pathways for specialized defense compounds.
Collapse
Affiliation(s)
- Tsubasa Shoji
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Molecular Science Center, Chiba University, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
197
|
Jin Z, Jiang W, Luo Y, Huang H, Yi D, Pang Y. Analyses on Flavonoids and Transcriptome Reveals Key MYB Gene for Proanthocyanidins Regulation in Onobrychis Viciifolia. FRONTIERS IN PLANT SCIENCE 2022; 13:941918. [PMID: 35812930 PMCID: PMC9263696 DOI: 10.3389/fpls.2022.941918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 05/31/2023]
Abstract
Onobrychis viciifolia (sainfoin) is one of the most high-quality legume forages, which is rich in proanthocyanidins that is beneficial for the health and production of animals. In this study, proanthocyanidins and total flavonoids in leaves of 46 different sainfoin germplasm resources were evaluated, and it showed that soluble proanthocyanidin contents varied greatly in these sainfoin germplasm resources, but total flavonoids did not show significant difference. Transcriptome sequencing with high and low proanthocyanidins sainfoin resulted in the identification of totally 52,926 unigenes in sainfoin, and they were classed into different GOC categories. Among them, 1,608 unigenes were differentially expressed in high and low proanthocyanidins sainfoin samples, including 1,160 genes that were upregulated and 448 genes that were downregulated. Analysis on gene enrichment via KEGG annotation revealed that the differentially expressed genes were mainly enriched in the phenylpropanoid biosynthetic pathway and the secondary metabolism pathway. We also analyzed the expression levels of structural genes of the proanthocyanidin/flavonoid pathway in roots, stems, and leaves in the high proanthocyanidin sainfoin via RT-qPCR and found that these genes were differentially expressed in these tissues. Among them, the expression levels of F3'5'H and ANR were higher in leaves than in roots or stems, which is consistent with proanthocyanidins content in these tissues. Among MYB genes that were differentially expressed, the expression of OvMYBPA2 was relatively high in high proanthocyanidin sainfoin. Over-expression level of OvMYBPA2 in alfalfa hairy roots resulted in decreased anthocyanin content but increased proanthocyanidin content. Our study provided transcriptome information for further functional characterization of proanthocyanidin biosynthesis-related genes in sainfoin and candidate key MYB genes for bioengineering of proanthocyanidins in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongzhen Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
198
|
Dong Q, Zou QC, Mao LH, Tian DQ, Hu W, Cao XR, Ding HQ. The Chromosome-Scale Assembly of the Curcuma alismatifolia Genome Provides Insight Into Anthocyanin and Terpenoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:899588. [PMID: 35783929 PMCID: PMC9241516 DOI: 10.3389/fpls.2022.899588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Curcuma alismatifolia, a bulbous flower known for its showy bracts, is widely used around the world as a cut flower, potted, and garden plant. Besides its ornamental value, this species is rich in terpenoid metabolites and could serve as a resource for essential oils. Here, we report a chromosome-level genome assembly of C. alismatifolia and describe its biosynthetic pathways for anthocyanins and terpenoids. This high-quality, assembled genome size is 991.3 Mb with a scaffold N50 value of 56.7 Mb. Evolutionary analysis of the genome suggests that C. alismatifolia diverged from Zingiber officinale about 9.7 million years ago, after it underwent a whole-genome duplication. Transcriptome analysis was performed on bracts at five developmental stages. Nine highly expressed genes were identified, encoding for six enzymes downstream of the anthocyanin biosynthetic pathway. Of these, one gene encoding F3'5'H might be a key node in the regulation of bract color formation. Co-expression network analysis showed that MYB, bHLH, NAC, and ERF transcription factors collectively regulated color formation in the bracts. Characterization of terpenoid biosynthesis genes revealed their dispersal and tandem duplications, both of which contributed greatly to the increase in the number of terpene synthase genes in C. alismatifolia, especially to species-specific expansion of sesquiterpene synthase genes. This work facilitates understanding of genetic basis of anthocyanin and terpenoid biosynthesis and could accelerate the selective breeding of C. alismatifolia varieties with higher ornamental and medicinal value.
Collapse
|
199
|
Genome-wide identification of R2R3-MYB gene family and association with anthocyanin biosynthesis in Brassica species. BMC Genomics 2022; 23:441. [PMID: 35701743 PMCID: PMC9199147 DOI: 10.1186/s12864-022-08666-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica species include important oil crops and vegetables in the world. The R2R3-MYB gene participates in a variety of plant functions, including the activation or inhibition of anthocyanin biosynthesis. Although previous studies have reported its phylogenetic relationships, gene structures, and expression patterns in Arabidopsis, the number and sequence variation of this gene family in Brassica crops and its involvement in the natural quantitative variation in anthocyanin biosynthesis regulation are still largely unknown. In this study, by using whole genome sequences and comprehensive genome-wide comparative analysis among the six cultivated Brassica species, 2120 R2R3-MYB genes were identified in six Brassica species, in total These R2R3-MYB genes were phylogenetically clustered into 12 groups. The R2R3-MYB family between A and C subgenomes showed better collinearity than between B and C and between A and B. From comparing transcriptional changes of five Brassica species with the purple and green leaves for the detection of the R2R3-MYB genes associated with anthocyanin biosynthesis, 7 R2R3-MYB genes were co-differentially expressed. The promoter and structure analysis of these genes showed that some variations between non-coding region, but they were highly conserved at the protein level and spatial structure. Co-expression analysis of anthocyanin-related genes and R2R3-MYBs indicated that MYB90 was strongly co-expressed with TT8, and they were co-expressed with structural genes F3H, LDOX, ANS and UF3GT at the same time. These results further clarified the roles of the R2R3-MYBs for leaf coloration in Brasica species, which provided new insights into the functions of the R2R3-MYB gene family in Brasica species.
Collapse
|
200
|
Xue L, Huang X, Zhang Z, Lin Q, Zhong Q, Zhao Y, Gao Z, Xu C. An Anthocyanin-Related Glutathione S-Transferase, MrGST1, Plays an Essential Role in Fruit Coloration in Chinese Bayberry ( Morella rubra). FRONTIERS IN PLANT SCIENCE 2022; 13:903333. [PMID: 35755659 PMCID: PMC9213753 DOI: 10.3389/fpls.2022.903333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 05/31/2023]
Abstract
Chinese bayberry (Morella rubra) is a fruit tree economically important in China and accumulates abundant amounts of anthocyanins in fruit as it ripens. Owing to the fact that all anthocyanin containing fruit tissues in Chinese bayberry are edible and anthocyanins can provide various health benefits in human body, the mechanisms underpinning anthocyanin accumulation in this fruit are worthy of investigation. It has been known that in plants anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum and subsequently transported into the vacuole for storage, and glutathione S-transferases (GSTs) have been verified to be involved in this process. But the characterization and functionalization of the GST counterpart in Chinese bayberry is not available. The GST anthocyanin transporter MrGST1 was discovered to be related with anthocyanin accumulation in fruit from distinct developmental stages of "Biqi," a staple cultivar that accumulates over 1 mg/g anthocyanins in ripe fruit. The expression of MrGST1 was well associated with anthocyanin accumulation either in fruit collected at six developmental stages or in ripe fruit from 12 cultivars. MrGST1 was found to be responsible for the transport of anthocyanins but not proanthocyanidins when the Arabidopsis tt19 mutant was functionally complemented. Transient ectopic expression of MrGST1 in combination with MrMYB1.1 and MrbHLH1 dramatically boosted pigmentation in Nicotiana tabacum leaves in contrast to MrMYB1.1 and MrbHLH1. The promoter of MrGST1 comprised eight MYB binding sites (MBSs) according to cis-element analysis. Data from yeast one-hybrid assay and dual-luciferase tests demonstrated that MrMYB1.1 exerted considerable transactivation effect on the MrGST1 promoter by recognizing the MBS4, the fourth MBS from the ATG start site. Our results together provided molecular evidence for the contribution of MrGST1 in regulating anthocyanin accumulation in Chinese bayberry fruit.
Collapse
Affiliation(s)
- Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xiaorong Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Zehuang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qihua Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiuzhen Zhong
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yun Zhao
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhongshan Gao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|