151
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
152
|
Anaguano D, Dedkhad W, Brooks CF, Cobb DW, Muralidharan V. Time-resolved proximity biotinylation implicates a porin protein in export of transmembrane malaria parasite effectors. J Cell Sci 2023; 136:jcs260506. [PMID: 37772444 PMCID: PMC10651097 DOI: 10.1242/jcs.260506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
The malaria-causing parasite, Plasmodium falciparum completely remodels its host red blood cell (RBC) through the export of several hundred parasite proteins, including transmembrane proteins, across multiple membranes to the RBC. However, the process by which these exported membrane proteins are extracted from the parasite plasma membrane for export remains unknown. To address this question, we fused the exported membrane protein, skeleton binding protein 1 (SBP1), with TurboID, a rapid, efficient and promiscuous biotin ligase (SBP1TbID). Using time-resolved proximity biotinylation and label-free quantitative proteomics, we identified two groups of SBP1TbID interactors - early interactors (pre-export) and late interactors (post-export). Notably, two promising membrane-associated proteins were identified as pre-export interactors, one of which possesses a predicted translocon domain, that could facilitate the export of membrane proteins. Further investigation using conditional mutants of these candidate proteins showed that these proteins were essential for asexual growth and localize to the host-parasite interface during early stages of the intraerythrocytic cycle. These data suggest that they might play a role in ushering membrane proteins from the parasite plasma membrane for export to the host RBC.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Watcharatip Dedkhad
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Carrie F. Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - David W. Cobb
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
153
|
Butterworth S, Kordova K, Chandrasekaran S, Thomas KK, Torelli F, Lockyer EJ, Edwards A, Goldstone R, Koshy AA, Treeck M. High-throughput identification of Toxoplasma gondii effector proteins that target host cell transcription. Cell Host Microbe 2023; 31:1748-1762.e8. [PMID: 37827122 PMCID: PMC12033024 DOI: 10.1016/j.chom.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Intracellular pathogens and other endosymbionts reprogram host cell transcription to suppress immune responses and recalibrate biosynthetic pathways. This reprogramming is critical in determining the outcome of infection or colonization. We combine pooled CRISPR knockout screening with dual host-microbe single-cell RNA sequencing, a method we term dual perturb-seq, to identify the molecular mediators of these transcriptional interactions. Applying dual perturb-seq to the intracellular pathogen Toxoplasma gondii, we are able to identify previously uncharacterized effector proteins and directly infer their function from the transcriptomic data. We show that TgGRA59 contributes to the export of other effector proteins from the parasite into the host cell and identify an effector, TgSOS1, that is necessary for sustained host STAT6 signaling and thereby contributes to parasite immune evasion and persistence. Together, this work demonstrates a tool that can be broadly adapted to interrogate host-microbe transcriptional interactions and reveal mechanisms of infection and immune evasion.
Collapse
Affiliation(s)
- Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kristina Kordova
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | | | - Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Eloise J Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.
| |
Collapse
|
154
|
Dort EN, Layne E, Feau N, Butyaev A, Henrissat B, Martin FM, Haridas S, Salamov A, Grigoriev IV, Blanchette M, Hamelin RC. Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal phytopathogenic lifestyles and traits. Sci Rep 2023; 13:17203. [PMID: 37821494 PMCID: PMC10567782 DOI: 10.1038/s41598-023-44005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Invasive plant pathogenic fungi have a global impact, with devastating economic and environmental effects on crops and forests. Biosurveillance, a critical component of threat mitigation, requires risk prediction based on fungal lifestyles and traits. Recent studies have revealed distinct genomic patterns associated with specific groups of plant pathogenic fungi. We sought to establish whether these phytopathogenic genomic patterns hold across diverse taxonomic and ecological groups from the Ascomycota and Basidiomycota, and furthermore, if those patterns can be used in a predictive capacity for biosurveillance. Using a supervised machine learning approach that integrates phylogenetic and genomic data, we analyzed 387 fungal genomes to test a proof-of-concept for the use of genomic signatures in predicting fungal phytopathogenic lifestyles and traits during biosurveillance activities. Our machine learning feature sets were derived from genome annotation data of carbohydrate-active enzymes (CAZymes), peptidases, secondary metabolite clusters (SMCs), transporters, and transcription factors. We found that machine learning could successfully predict fungal lifestyles and traits across taxonomic groups, with the best predictive performance coming from feature sets comprising CAZyme, peptidase, and SMC data. While phylogeny was an important component in most predictions, the inclusion of genomic data improved prediction performance for every lifestyle and trait tested. Plant pathogenicity was one of the best-predicted traits, showing the promise of predictive genomics for biosurveillance applications. Furthermore, our machine learning approach revealed expansions in the number of genes from specific CAZyme and peptidase families in the genomes of plant pathogens compared to non-phytopathogenic genomes (saprotrophs, endo- and ectomycorrhizal fungi). Such genomic feature profiles give insight into the evolution of fungal phytopathogenicity and could be useful to predict the risks of unknown fungi in future biosurveillance activities.
Collapse
Affiliation(s)
- E N Dort
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - E Layne
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - N Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - A Butyaev
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - B Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F M Martin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE, Grand Est-Nancy, Université de Lorraine, Champenoux, France
| | - S Haridas
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - A Salamov
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I V Grigoriev
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - M Blanchette
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - R C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
155
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. The commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.528774. [PMID: 37090671 PMCID: PMC10120700 DOI: 10.1101/2023.03.06.528774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.
Collapse
|
156
|
Rosa C, Singh P, Chen P, Sinha A, Claës A, Preiser PR, Dedon PC, Baumgarten S, Scherf A, Bryant JM. Cohesin contributes to transcriptional repression of stage-specific genes in the human malaria parasite. EMBO Rep 2023; 24:e57090. [PMID: 37592911 PMCID: PMC10561359 DOI: 10.15252/embr.202357090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
The complex life cycle of the human malaria parasite, Plasmodium falciparum, is driven by specific transcriptional programs, but it is unclear how most genes are activated or silenced at specific times. There is an association between transcription and spatial organization; however, the molecular mechanisms behind genome organization are unclear. While P. falciparum lacks key genome-organizing proteins found in metazoans, it has all core components of the cohesin complex. To investigate the role of cohesin in P. falciparum, we functionally characterize the cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3). SMC3 knockdown during early stages of the intraerythrocytic developmental cycle (IDC) upregulates a subset of genes involved in erythrocyte egress and invasion, which are normally expressed at later stages. ChIP-seq analyses reveal that during the IDC, SMC3 enrichment at the promoter regions of these genes inversely correlates with gene expression and chromatin accessibility. These data suggest that SMC3 binding contributes to the repression of specific genes until their appropriate time of expression, revealing a new mode of stage-specific gene repression in P. falciparum.
Collapse
Affiliation(s)
- Catarina Rosa
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
- Sorbonne Université, Collège Doctoral Complexité du Vivant ED515ParisFrance
| | - Parul Singh
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Patty Chen
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Ameya Sinha
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Aurélie Claës
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Peter R Preiser
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore‐MIT Alliance for Research and TechnologySingaporeSingapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | - Artur Scherf
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| | - Jessica M Bryant
- Institut Pasteur, Université Paris Cité, INSERM U1201, CNRS EMR9195, Biology of Host‐Parasite Interactions UnitParisFrance
| |
Collapse
|
157
|
O'Mara SP, Broz K, Schwister EM, Singh L, Dong Y, Elmore JM, Kistler HC. The Fusarium graminearum Transporters Abc1 and Abc6 Are Important for Xenobiotic Resistance, Trichothecene Accumulation, and Virulence to Wheat. PHYTOPATHOLOGY 2023; 113:1916-1923. [PMID: 37260101 DOI: 10.1094/phyto-09-22-0345-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The plant pathogenic fungus Fusarium graminearum is the causal agent of Fusarium head blight (FHB) disease on small-grain cereals. F. graminearum produces trichothecene mycotoxins such as deoxynivalenol (DON) that are required for full virulence. DON must be exported outside the cell to cause FHB disease, a process that may require the involvement of membrane-bound transporters. In this study, we show that the deletion of membrane-bound transporters results in reduced DON accumulation as well as reduced FHB symptoms on wheat. Deletion of the ATP-binding cassette (ABC) transporter gene Abc1 results in the greatest reduction in DON accumulation and virulence. Deletion of another ABC transporter gene, Abc6, also reduces FHB symptoms to a lesser degree. Combining deletions fails to reduce DON accumulation or virulence in an additive fashion, even when a ∆abc1 deletion is included. Heterologous expression of F. graminearum transporters in a DON-sensitive strain of yeast confirms Abc1 as a major DON resistance mechanism; furthermore, it suggests that Abc1 is directly participating in DON transport rather than facilitating DON transport though other means. Yeast expression further indicates that multiple transporters, including Abc1, play an important role in resistance to the wheat phytoalexin 2-benzoxazolinone (BOA) and other xenobiotics. Thus, Abc1 may contribute to virulence on wheat both by facilitating export of DON and by providing resistance to the wheat phytoalexin BOA. This research provides useful information that may aid in designing novel management techniques of FHB or other destructive plant diseases.
Collapse
Affiliation(s)
- Sean P O'Mara
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Karen Broz
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | - Erin M Schwister
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
| | - Lovepreet Singh
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - J Mitch Elmore
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - H Corby Kistler
- U.S. Department of Agriculture-Agricultural Research Service Cereal Disease Laboratory, St. Paul, MN 55108
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
158
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
159
|
Davies H, Belda H, Broncel M, Dalimot J, Treeck M. PerTurboID, a targeted in situ method reveals the impact of kinase deletion on its local protein environment in the cytoadhesion complex of malaria-causing parasites. eLife 2023; 12:e86367. [PMID: 37737226 PMCID: PMC10564455 DOI: 10.7554/elife.86367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the Plasmodium falciparum-exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria-causing parasite, PfEMP1. We generated independent TurboID fusions of two proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jill Dalimot
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Cell Biology of Host-Pathogen Interaction Laboratory, Gulbenkian Institute of ScienceOeirasPortugal
| |
Collapse
|
160
|
Rolandelli A, Laukaitis-Yousey HJ, Bogale HN, Singh N, Samaddar S, O’Neal AJ, Ferraz CR, Butnaru M, Mameli E, Xia B, Mendes MT, Butler LR, Marnin L, Cabrera Paz FE, Valencia LM, Rana VS, Skerry C, Pal U, Mohr SE, Perrimon N, Serre D, Pedra JH. Tick hemocytes have pleiotropic roles in microbial infection and arthropod fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555785. [PMID: 37693411 PMCID: PMC10491215 DOI: 10.1101/2023.08.31.555785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Uncovering the complexity of systems in non-model organisms is critical for understanding arthropod immunology. Prior efforts have mostly focused on Dipteran insects, which only account for a subset of existing arthropod species in nature. Here, we describe immune cells or hemocytes from the clinically relevant tick Ixodes scapularis using bulk and single cell RNA sequencing combined with depletion via clodronate liposomes, RNA interference, Clustered Regularly Interspaced Short Palindromic Repeats activation (CRISPRa) and RNA-fluorescence in situ hybridization (FISH). We observe molecular alterations in hemocytes upon tick infestation of mammals and infection with either the Lyme disease spirochete Borrelia burgdorferi or the rickettsial agent Anaplasma phagocytophilum. We predict distinct hemocyte lineages and reveal clusters exhibiting defined signatures for immunity, metabolism, and proliferation during hematophagy. Furthermore, we perform a mechanistic characterization of two I. scapularis hemocyte markers: hemocytin and astakine. Depletion of phagocytic hemocytes affects hemocytin and astakine levels, which impacts blood feeding and molting behavior of ticks. Hemocytin specifically affects the c-Jun N-terminal kinase (JNK) signaling pathway, whereas astakine alters hemocyte proliferation in I. scapularis. Altogether, we uncover the heterogeneity and pleiotropic roles of hemocytes in ticks and provide a valuable resource for comparative biology in arthropods.
Collapse
Affiliation(s)
- Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Camila R. Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Baolong Xia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
161
|
Heinig R, Reeves LE, Lucas KJ. Aedes Tortilis, Culex Declarator, and Culex Tarsalis: New County Records for Mosquito Species in Collier County, Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:149-156. [PMID: 37603394 DOI: 10.2987/23-7129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Understanding the distribution of mosquito species is an important element of surveillance. This is especially true in Florida, where detections of nonnative mosquitoes have been increasing. Collier Mosquito Control District performs routine adult mosquito surveillance for operational purposes throughout the year. Here, we report records for 3 species collected in 2021 that had not been documented previously in Collier County, FL: Aedes tortilis, Culex declarator, and Cx. tarsalis. Specimens were initially identified based on morphology, then each species was confirmed by comparing the cytochrome c oxidase subunit I gene sequences to those of other related mosquito species. Although Ae. tortilis and Cx. declarator were collected at multiple sites, Cx. tarsalis was collected only once, making it unclear whether this species has established a permanent population within the county.
Collapse
|
162
|
Téfit MA, Budiman T, Dupriest A, Yew JY. Environmental microbes promote phenotypic plasticity in reproduction and sleep behaviour. Mol Ecol 2023; 32:5186-5200. [PMID: 37577956 PMCID: PMC10544802 DOI: 10.1111/mec.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life-history traits and behaviour, we inoculated axenic Drosophila melanogaster with microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution.
Collapse
Affiliation(s)
- Mélisandre A Téfit
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Tifanny Budiman
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Adrianna Dupriest
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Joanne Y Yew
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
163
|
Fleck K, McNutt S, Chu F, Jeffers V. An apicomplexan bromodomain protein, TgBDP1, associates with diverse epigenetic factors to regulate essential transcriptional processes in Toxoplasma gondii. mBio 2023; 14:e0357322. [PMID: 37350586 PMCID: PMC10470533 DOI: 10.1128/mbio.03573-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
The protozoan pathogen Toxoplasma gondii relies on tight regulation of gene expression to invade and establish infection in its host. The divergent gene regulatory mechanisms of Toxoplasma and related apicomplexan pathogens rely heavily on regulators of chromatin structure and histone modifications. The important contribution of histone acetylation for Toxoplasma in both acute and chronic infection has been demonstrated, where histone acetylation increases at active gene loci. However, the direct consequences of specific histone acetylation marks and the chromatin pathway that influences transcriptional regulation in response to the modification are unclear. As a reader of lysine acetylation, the bromodomain serves as a mediator between the acetylated histone and transcriptional regulators. Here we show that the bromodomain protein, TgBDP1, which is conserved among Apicomplexa and within the Alveolata superphylum, is essential for Toxoplasma asexual proliferation. Using cleavage under targets and tagmentation, we demonstrate that TgBDP1 is recruited to transcriptional start sites of a large proportion of parasite genes. Transcriptional profiling during TgBDP1 knockdown revealed that loss of TgBDP1 leads to major dysregulation of gene expression, implying multiple roles for TgBDP1 in both gene activation and repression. This is supported by interactome analysis of TgBDP1 demonstrating that TgBDP1 forms a core complex with two other bromodomain proteins and an ApiAP2 factor. This core complex appears to interact with other epigenetic factors such as nucleosome remodeling complexes. We conclude that TgBDP1 interacts with diverse epigenetic regulators to exert opposing influences on gene expression in the Toxoplasma tachyzoite. IMPORTANCE Histone acetylation is critical for proper regulation of gene expression in the single-celled eukaryotic pathogen Toxoplasma gondii. Bromodomain proteins are "readers" of histone acetylation and may link the modified chromatin to transcription factors. Here, we show that the bromodomain protein TgBDP1 is essential for parasite survival and that loss of TgBDP1 results in global dysregulation of gene expression. TgBDP1 is recruited to the promoter region of a large proportion of parasite genes, forms a core complex with two other bromodomain proteins, and interacts with different transcriptional regulatory complexes. We conclude that TgBDP1 is a key factor for sensing specific histone modifications to influence multiple facets of transcriptional regulation in Toxoplasma gondii.
Collapse
Affiliation(s)
- Krista Fleck
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Seth McNutt
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Feixia Chu
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Victoria Jeffers
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
164
|
Deák G, Wapenaar H, Sandoval G, Chen R, Taylor MRD, Burdett H, Watson J, Tuijtel M, Webb S, Wilson M. Histone divergence in trypanosomes results in unique alterations to nucleosome structure. Nucleic Acids Res 2023; 51:7882-7899. [PMID: 37427792 PMCID: PMC10450195 DOI: 10.1093/nar/gkad577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gorka Sandoval
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ruofan Chen
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
165
|
Simmons C, Gibbons J, Wang C, Pires CV, Zhang M, Siddiqui F, Oberstaller J, Casandra D, Seyfang A, Cui L, Otto TD, Adams JH. A novel Modulator of Ring Stage Translation (MRST) gene alters artemisinin sensitivity in Plasmodium falciparum. mSphere 2023; 8:e0015223. [PMID: 37219373 PMCID: PMC10449512 DOI: 10.1128/msphere.00152-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The implementation of artemisinin (ART) combination therapies (ACTs) has greatly decreased deaths caused by Plasmodium falciparum malaria, but increasing ACT resistance in Southeast Asia and Africa could reverse this progress. Parasite population genetic studies have identified numerous genes, single-nucleotide polymorphisms (SNPs), and transcriptional signatures associated with altered artemisinin activity with SNPs in the Kelch13 (K13) gene being the most well-characterized artemisinin resistance marker. However, there is an increasing evidence that resistance to artemisinin in P. falciparum is not related only to K13 SNPs, prompting the need to characterize other novel genes that can alter ART responses in P. falciparum. In our previous analyses of P. falciparum piggyBac mutants, several genes of unknown function exhibited increased sensitivity to artemisinin that was similar to a mutant of K13. Further analysis of these genes and their gene co-expression networks indicated that the ART sensitivity cluster was functionally linked to DNA replication and repair, stress responses, and maintenance of homeostatic nuclear activity. In this study, we have characterized PF3D7_1136600, another member of the ART sensitivity cluster. Previously annotated as a conserved Plasmodium gene of unknown function, we now provide putative annotation of this gene as a Modulator of Ring Stage Translation (MRST). Our findings reveal that the mutagenesis of MRST affects gene expression of multiple translation-associated pathways during the early ring stage of asexual development via putative ribosome assembly and maturation activity, suggesting an essential role of MRST in protein biosynthesis and another novel mechanism of altering the parasite's ART drug response.IMPORTANCEPlasmodium falciparum malaria killed more than 600,000 people in 2021, though ACTs have been critical in reducing malaria mortality as a first-line treatment for infection. However, ACT resistance in Southeast Asia and emerging resistance in Africa are detrimental to this progress. Mutations to Kelch13 (K13) have been identified to confer increased artemisinin tolerance in field isolates, however, genes other than K13 are implicated in altering how the parasite responds to artemisinin prompts additional analysis. Therefore, in this study we have characterized a P. falciparum mutant clone with altered sensitivity to artemisinin and identified a novel gene (PF3D7_1136600) that is associated with alterations to parasite translational metabolism during critical timepoints for artemisinin drug response. Many genes of the P. falciparum genome remain unannotated, posing a challenge for drug-gene characterizations in the parasite. Therefore, through this study, we have putatively annotated PF3D7_1136600 as a novel MRST gene and have identified a potential link between MRST and parasite stress response mechanisms.
Collapse
Affiliation(s)
- Caroline Simmons
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Faiza Siddiqui
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Debora Casandra
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Andreas Seyfang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Liwang Cui
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
166
|
Sánchez-Salvador A, González-de la Fuente S, Aguado B, Yates PA, Requena JM. Refinement of Leishmania donovani Genome Annotations in the Light of Ribosome-Protected mRNAs Fragments (Ribo-Seq Data). Genes (Basel) 2023; 14:1637. [PMID: 37628688 PMCID: PMC10454037 DOI: 10.3390/genes14081637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Advances in next-generation sequencing methodologies have facilitated the assembly of an ever-increasing number of genomes. Gene annotations are typically conducted via specialized software, but the most accurate results require additional manual curation that incorporates insights derived from functional and bioinformatic analyses (e.g., transcriptomics, proteomics, and phylogenetics). In this study, we improved the annotation of the Leishmania donovani (strain HU3) genome using publicly available data from the deep sequencing of ribosome-protected mRNA fragments (Ribo-Seq). As a result of this analysis, we uncovered 70 previously non-annotated protein-coding genes and improved the annotation of around 600 genes. Additionally, we present evidence for small upstream open reading frames (uORFs) in a significant number of transcripts, indicating their potential role in the translational regulation of gene expression. The bioinformatics pipelines developed for these analyses can be used to improve the genome annotations of other organisms for which Ribo-Seq data are available. The improvements provided by these studies will bring us closer to the ultimate goal of a complete and accurately annotated L. donovani genome and will enhance future transcriptomics, proteomics, and genetics studies.
Collapse
Affiliation(s)
- Alejandro Sánchez-Salvador
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Sandra González-de la Fuente
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain; (S.G.-d.l.F.); (B.A.)
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain; (S.G.-d.l.F.); (B.A.)
| | - Phillip A. Yates
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jose M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
167
|
Gilchrist CA, Campo JJ, Pablo JV, Ma JZ, Teng A, Oberai A, Shandling AD, Alam M, Kabir M, Faruque A, Haque R, Petri WA. Specific Cryptosporidium antigens associate with reinfection immunity and protection from cryptosporidiosis. J Clin Invest 2023; 133:e166814. [PMID: 37347553 PMCID: PMC10425216 DOI: 10.1172/jci166814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
There is no vaccine to protect from cryptosporidiosis, a leading cause of diarrhea in infants in low- and middle-income countries. Here, we comprehensively identified parasite antigens associated with protection from reinfection. A Cryptosporidium protein microarray was constructed by in vitro transcription and translation of 1,761 C. parvum, C. hominis, or C. meleagridis antigens, including proteins with a signal peptide and/or a transmembrane domain. Plasma IgG and/or IgA from Bangladeshi children longitudinally followed for cryptosporidiosis from birth to 3 years of age allowed for identification of 233 seroreactive proteins. Seven of these were associated with protection from reinfection. These included Cp23, Cp17, Gp900, and 4 additional antigens - CpSMP1, CpMuc8, CpCorA and CpCCDC1. Infection in the first year of life, however, often resulted in no detectable antigen-specific antibody response, and antibody responses, when detected, were specific to the infecting parasite genotype and decayed in the months after infection. In conclusion, humoral immune responses against specific parasite antigens were associated with acquired immunity. While antibody decay over time and parasite genotype-specificity may limit natural immunity, this work serves as a foundation for antigen selection for vaccine design.
Collapse
Affiliation(s)
- Carol A. Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Jennie Z. Ma
- Public Health Science, University of Virginia, Charlottesville, Virginia, USA
| | - Andy Teng
- Antigen Discovery Inc, Irvine, California, USA
| | - Amit Oberai
- Antigen Discovery Inc, Irvine, California, USA
| | | | - Masud Alam
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - A.S.G. Faruque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - William A. Petri
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Microbiology, Immunology and Cancer Biology, and
- Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
168
|
Hanna JC, Corpas-Lopez V, Seizova S, Colon BL, Bacchetti R, Hall GMJ, Sands EM, Robinson L, Baragaña B, Wyllie S, Pawlowic MC. Mode of action studies confirm on-target engagement of lysyl-tRNA synthetase inhibitor and lead to new selection marker for Cryptosporidium. Front Cell Infect Microbiol 2023; 13:1236814. [PMID: 37600947 PMCID: PMC10436570 DOI: 10.3389/fcimb.2023.1236814] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.
Collapse
Affiliation(s)
- Jack C. Hanna
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victor Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simona Seizova
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ross Bacchetti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Grant M. J. Hall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Emma M. Sands
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lee Robinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Beatriz Baragaña
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mattie C. Pawlowic
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
169
|
Vallintine T, van Ooij C. Timing of dense granule biogenesis in asexual malaria parasites. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001389. [PMID: 37647112 PMCID: PMC10482371 DOI: 10.1099/mic.0.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Malaria is an important infectious disease that continues to claim hundreds of thousands of lives annually. The disease is caused by infection of host erythrocytes by apicomplexan parasites of the genus Plasmodium. The parasite contains three different apical organelles - micronemes, rhoptries and dense granules (DGs) - whose contents are secreted to mediate binding to and invasion of the host cell and the extensive remodelling of the host cell that occurs following invasion. Whereas the roles of micronemes and rhoptries in binding and invasion of the host erythrocyte have been studied in detail, the roles of DGs in Plasmodium parasites are poorly understood. They have been proposed to control host cell remodelling through regulated protein secretion after invasion, but many basic aspects of the biology of DGs remain unknown. Here we describe DG biogenesis timing for the first time, using RESA localization as a proxy for the timing of DG formation. We show that DG formation commences approximately 37 min prior to schizont egress, as measured by the recruitment of the DG marker RESA. Furthermore, using a bioinformatics approach, we aimed to predict additional cargo of the DGs and identified the J-dot protein HSP40 as a DG protein, further supporting the very early role of these organelles in the interaction of the parasite with the host cell.
Collapse
Affiliation(s)
- Tansy Vallintine
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christiaan van Ooij
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
170
|
Kina UY, Kamil M, Deveci G, Rafiqi AM, Matuschewski K, Aly ASI. A Candidate Bacterial-Type Amino Acid Decarboxylase Is Essential for Male Gamete Exflagellation and Mosquito Transmission of the Malaria Parasite. Infect Immun 2023; 91:e0016723. [PMID: 37260388 PMCID: PMC10353352 DOI: 10.1128/iai.00167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023] Open
Abstract
A frequent side effect of chemotherapy against malaria parasite blood infections is a dramatic induction of the sexual blood stages, thereby enhancing the risk of future malaria transmissions. The polyamine biosynthesis pathway has been suggested as a candidate target for transmission-blocking anti-malarial drug development. Herein, we describe the role of a bacterial-type amino acid decarboxylase (AAD) in the life cycle of the malaria model parasite Plasmodium yoelii. Hallmarks of AAD include a conserved catalytic lysine residue and high-level homology to arginine/lysine/ornithine decarboxylases of pathogenic bacteria. By targeted gene deletion, we show that AAD plays an essential role in the exflagellation of microgametes, resulting in complete absence of sporozoites in the mosquito vector. These data highlight the central role of the biosysthesis of polyamines in the final steps of male gamete sexual development of the malaria parasite and, hence, onward transmission to mosquitoes.
Collapse
Affiliation(s)
- Umit Y. Kina
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Mohd Kamil
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gozde Deveci
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ab. Matteen Rafiqi
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Ahmed S. I. Aly
- Aly lab, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| |
Collapse
|
171
|
Morano AA, Rudlaff RM, Dvorin JD. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat Commun 2023; 14:3916. [PMID: 37400439 DOI: 10.1038/s41467-023-39435-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
During its asexual blood stage, P. falciparum replicates via schizogony, wherein dozens of daughter cells are formed within a single parent. The basal complex, a contractile ring that separates daughter cells, is critical for schizogony. In this study, we identify a Plasmodium basal complex protein essential for basal complex maintenance. Using multiple microscopy techniques, we demonstrate that PfPPP8 is required for uniform basal complex expansion and maintenance of its integrity. We characterize PfPPP8 as the founding member of a novel family of pseudophosphatases with homologs in other Apicomplexan parasites. By co-immunoprecipitation, we identify two additional new basal complex proteins. We characterize the unique temporal localizations of these new basal complex proteins (late-arriving) and of PfPPP8 (early-departing). In this work, we identify a novel basal complex protein, determine its specific role in segmentation, identify a new pseudophosphatase family, and establish that the P. falciparum basal complex is a dynamic structure.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
172
|
Kelani AA, Bruch A, Rivieccio F, Visser C, Krüger T, Weaver D, Pan X, Schäuble S, Panagiotou G, Kniemeyer O, Bromley MJ, Bowyer P, Barber AE, Brakhage AA, Blango MG. Disruption of the Aspergillus fumigatus RNA interference machinery alters the conidial transcriptome. RNA (NEW YORK, N.Y.) 2023; 29:1033-1050. [PMID: 37019633 PMCID: PMC10275271 DOI: 10.1261/rna.079350.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.
Collapse
Affiliation(s)
- Abdulrahman A Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Flora Rivieccio
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Corissa Visser
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Danielle Weaver
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Amelia E Barber
- Junior Research Group Fungal Informatics, Friedrich Schiller University, 07745 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| |
Collapse
|
173
|
Taconet P, Zogo B, Soma DD, Ahoua Alou LP, Mouline K, Dabiré RK, Amanan Koffi A, Pennetier C, Moiroux N. Anopheles sampling collections in the health districts of Korhogo (Côte d'Ivoire) and Diébougou (Burkina Faso) between 2016 and 2018. GIGABYTE 2023; 2023:gigabyte83. [PMID: 37408730 PMCID: PMC10318348 DOI: 10.46471/gigabyte.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Characterizing the entomological profile of malaria transmission at fine spatiotemporal scales is essential for developing and implementing effective vector control strategies. Here, we present a fine-grained dataset of Anopheles mosquitoes (Diptera: Culicidae) collected in 55 villages of the rural districts of Korhogo (Northern Côte d'Ivoire) and Diébougou (South-West Burkina Faso) between 2016 and 2018. In the framework of a randomized controlled trial, Anopheles mosquitoes were periodically collected by Human Landing Catches experts inside and outside households, and analyzed individually to identify the genus and, for a subsample, species, insecticide resistance genetic mutations, Plasmodium falciparum infection, and parity status. More than 3,000 collection sessions were carried out, achieving about 45,000 h of sampling efforts. Over 60,000 Anopheles were collected (mainly A. gambiae s.s., A. coluzzii, and A. funestus). The dataset is published as a Darwin Core archive in the Global Biodiversity Information Facility, comprising four files: events, occurrences, mosquito characterizations, and environmental data.
Collapse
Affiliation(s)
- Paul Taconet
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Barnabas Zogo
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), BP 1500, Bouaké, Côte d’Ivoire
| | - Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé (IRSS), BP 545, Bobo Dioulasso, Burkina Faso
- Institut Supérieur des Sciences de la Santé, Université Nazi Boni, BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Ludovic P. Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), BP 1500, Bouaké, Côte d’Ivoire
| | - Karine Mouline
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Roch Kounbobr Dabiré
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), BP 1500, Bouaké, Côte d’Ivoire
| | - Alphonsine Amanan Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), BP 1500, Bouaké, Côte d’Ivoire
| | - Cédric Pennetier
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), BP 1500, Bouaké, Côte d’Ivoire
| | - Nicolas Moiroux
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
174
|
Tachibana Y, Hashizaki E, Sasai M, Yamamoto M. Host genetics highlights IFN-γ-dependent Toxoplasma genes encoding secreted and non-secreted virulence factors in in vivo CRISPR screens. Cell Rep 2023; 42:112592. [PMID: 37269286 DOI: 10.1016/j.celrep.2023.112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Secreted virulence factors of Toxoplasma to survive in immune-competent hosts have been extensively explored by classical genetics and in vivo CRISPR screen methods, whereas their requirements in immune-deficient hosts are incompletely understood. Those of non-secreted virulence factors are further enigmatic. Here we develop an in vivo CRISPR screen system to enrich not only secreted but also non-secreted virulence factors in virulent Toxoplasma-infected C57BL/6 mice. Notably, combined usage of immune-deficient Ifngr1-/- mice highlights genes encoding various non-secreted proteins as well as well-known effectors such as ROP5, ROP18, GRA12, and GRA45 as interferon-γ (IFN-γ)-dependent virulence genes. The screen results suggest a role of GRA72 for normal GRA17/GRA23 localization and the IFN-γ-dependent role of UFMylation-related genes. Collectively, our study demonstrates that host genetics can complement in vivo CRISPR screens to highlight genes encoding IFN-γ-dependent secreted and non-secreted virulence factors in Toxoplasma.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Emi Hashizaki
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
175
|
Muthye V, Wasmuth JD. Proteome-wide comparison of tertiary protein structures reveals molecular mimicry in Plasmodium-human interactions. FRONTIERS IN PARASITOLOGY 2023; 2:1162697. [PMID: 39816809 PMCID: PMC11732093 DOI: 10.3389/fpara.2023.1162697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/05/2023] [Indexed: 01/18/2025]
Abstract
Introduction Molecular mimicry is a strategy used by parasites to evade the host's immune system and facilitate transmission to a new host. To date, high-throughput examples of molecular mimicry have been limited to comparing protein sequences. However, recent advances in the prediction of tertiary structural models, led by Deepmind's AlphaFold, enable the comparison of thousands of proteins from parasites and their hosts at the structural level, allowing for the identification of more mimics. Here, we present the first proteome-level search for tertiary structure similarity between proteins from Plasmodium falciparum, a malaria-causing parasite, and humans. Methods We assembled a database of experimentally-characterized protein tertiary structures (from the Protein Data Bank) and AlphaFold-generated protein tertiary structures from P. falciparum, human, and 15 negative control species, i.e., species not infected by P. falciparum. We aligned human and control structures to the parasite structures using Foldseek. Results We identified molecular mimicry in three proteins that have been previously proposed as mediators of Plasmodium-human interactions. By extending this approach to all P. falciparum proteins, we identified an additional 41 potential mimics that are supported by additional experimental data. Discussion Our findings demonstrate a valuable application of AlphaFold-derived tertiary structural models, and we discuss key considerations for its effective use in other host-parasite systems.
Collapse
Affiliation(s)
- Viraj Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
176
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
177
|
Soudi S, Crepeau M, Collier TC, Lee Y, Cornel AJ, Lanzaro GC. Genomic signatures of local adaptation in recent invasive Aedes aegypti populations in California. BMC Genomics 2023; 24:311. [PMID: 37301847 PMCID: PMC10257851 DOI: 10.1186/s12864-023-09402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored. RESULTS Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations. Patterns of population structure, as inferred using principal components and admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows selective sweep and recent positive selection acting on these genomic regions. CONCLUSIONS Our results provide a genome wide perspective on the distribution of adaptive loci and lay the foundation for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and how such adaptation could help or hinder efforts at population control.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Anthony J Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, University of California, Parlier, CA, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
178
|
Rodriguez Araya E, Merli ML, Cribb P, de Souza VC, Serra E. Deciphering Divergent Trypanosomatid Nuclear Complexes by Analyzing Interactomic Datasets with AlphaFold2 and Genetic Approaches. ACS Infect Dis 2023; 9:1267-1282. [PMID: 37167453 DOI: 10.1021/acsinfecdis.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acetylation signaling pathways in trypanosomatids, a group of early branching organisms, are poorly understood due to highly divergent protein sequences. To overcome this challenge, we used interactomic datasets and AlphaFold2 (AF2)-multimer to predict direct interactions and validated them using yeast two and three-hybrid assays. We focused on MORF4 related gene (MRG) domain-containing proteins and their interactions, typically found in histone acetyltransferase/deacetylase complexes. The results identified a structurally conserved complex, TcTINTIN, which is orthologous to human and yeast trimer independent of NuA4 for transcription interaction (TINTIN) complexes; and another trimeric complex involving an MRG domain, only seen in trypanosomatids. The identification of a key component of TcTINTIN, TcMRGBP, would not have been possible through traditional homology-based methods. We also conducted molecular dynamics simulations, revealing a conformational change that potentially affects its affinity for TcBDF6. The study also revealed a novel way in which an MRG domain participates in simultaneous interactions with two MRG binding proteins binding two different surfaces, a phenomenon not previously reported. Overall, this study demonstrates the potential of using AF2-processed interactomic datasets to identify protein complexes in deeply branched eukaryotes, which can be challenging to study based on sequence similarity. The findings provide new insights into the acetylation signaling pathways in trypanosomatids, specifically highlighting the importance of MRG domain-containing proteins in forming complexes, which may have important implications for understanding the biology of these organisms and developing new therapeutics. On the other hand, our validation of AF2 models for the determination of multiprotein complexes illuminates the power of using such artificial intelligence-derived tools in the future development of biology.
Collapse
Affiliation(s)
- Elvio Rodriguez Araya
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| | - Marcelo L Merli
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| | | | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| |
Collapse
|
179
|
Si W, Fang C, Liu C, Yin M, Xu W, Li Y, Yan X, Shen Y, Cao J, Sun J. Why is Babesia not killed by artemisinin like Plasmodium? Parasit Vectors 2023; 16:193. [PMID: 37291657 DOI: 10.1186/s13071-023-05783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/21/2023] [Indexed: 06/10/2023] Open
Abstract
Babesia spp. are intraerythrocytic apicomplexans that digest and utilize red blood cells in a similar way to intraerythrocytic Plasmodium spp., but unlike the latter, are not sensitive to artemisinin. A comparison of Babesia and Plasmodium genomes revealed that Babesia genomes, which are smaller than those of Plasmodium, lack numerous genes, and especially haem synthesis-related genes, that are found in the latter. Single-cell sequencing analysis showed that the different treatment groups of Babesia microti with expressed pentose phosphate pathway-related, DNA replication-related, antioxidation-related, glycolysis-related, and glutathione-related genes were not as sensitive to artemether as Plasmodium yoelii 17XNL. In particular, pentose phosphate pathway-related, DNA replication-related, and glutathione-related genes, which were actively expressed in P. yoelii 17XNL, were not actively expressed in B. microti. Supplying iron in vivo can promote the reproduction of B. microti. These results suggest that Babesia spp. lack a similar mechanism to that of malaria parasites through which the haem or iron in hemoglobin is utilized, and that this likely leads to their insensitivity to artemisinin.
Collapse
Affiliation(s)
- Wenwen Si
- Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chuantao Fang
- Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, People's Republic of China
- Shanghai Tenth People's Hospital, Tenth peoples hospital of Tongji university, Shanghai, People's Republic of China
| | - Chuang Liu
- Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Meng Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Yanna Li
- Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoli Yan
- Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China
| | - Jun Sun
- Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
180
|
Orosz F. p25alpha Domain-Containing Proteins of Apicomplexans and Related Taxa. Microorganisms 2023; 11:1528. [PMID: 37375031 DOI: 10.3390/microorganisms11061528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
TPPP (tubulin polymerization promoting protein)-like proteins contain one or more p25alpha (Pfam05517) domains. TPPP-like proteins occur in different types as determined by their length (e.g., long-, short-, truncated-, and fungal-type TPPP) and include the protein apicortin, which possesses another domain, doublecortin (DCX, Pfam 03607). These various TPPP-like proteins are found in various phylogenomic groups. In particular, short-type TPPPs and apicortin are well-represented in the Myzozoa, which include apicomplexans and related taxa, chrompodellids, dinoflagellates, and perkinsids. The long-, truncated-, and fungal-type TPPPs are not found in the myzozoans. Apicortins are found in all apicomplexans except one piroplasmid species, present in several other myzozoans, and seem to be correlated with the conoid and apical complex. Short-type TPPPs are predominantly found in myzozoans that have flagella, suggesting a role in flagellum assembly or structure.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
181
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544103. [PMID: 37333187 PMCID: PMC10274773 DOI: 10.1101/2023.06.07.544103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening infection caused by species in the ubiquitous fungal genus Aspergillus . While leukocyte-generated reactive oxygen species (ROS) are critical for the clearance of fungal conidia from the lung and resistance to IPA, the processes that govern ROS-dependent fungal cell death remain poorly defined. Using a flow cytometric approach that monitors two independent cell death markers, an endogenous histone H2A:mRFP nuclear integrity reporter and Sytox Blue cell impermeable (live/dead) stain, we observed that loss of A. fumigatus cytochrome c ( cycA ) results in reduced susceptibility to cell death from hydrogen peroxide (H 2 O 2 ) treatment. Consistent with these observations in vitro , loss of cycA confers resistance to both NADPH-oxidase -dependent and -independent killing by host leukocytes. Fungal ROS resistance is partly mediated in part by Bir1, a homolog to survivin in humans, as Bir1 overexpression results in decreased ROS-induced conidial cell death and reduced killing by innate immune cells in vivo . We further report that overexpression of the Bir1 N-terminal BIR domain in A. fumigatus conidia results in altered expression of metabolic genes that functionally converge on mitochondrial function and cytochrome c ( cycA ) activity. Together, these studies demonstrate that cycA in A. fumigatus contributes to cell death responses that are induced by exogenous H 2 O 2 and by host leukocytes. Importance Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk of IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with Chronic Granulomatous Disease (CGD). However, treatments for Aspergillus infections remains limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization (WHO) classified A. fumigatus as a critical priority fungal pathogen. Our research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
|
182
|
McCoy CJ, Paupelin-Vaucelle H, Gorilak P, Beneke T, Varga V, Gluenz E. ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell 2023; 34:ar66. [PMID: 36989043 PMCID: PMC10295485 DOI: 10.1091/mbc.e22-06-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Unc-51-like kinase (ULK) family serine-threonine protein kinase homologues have been linked to the function of motile cilia in diverse species. Mutations in Fused/STK36 and ULK4 in mice resulted in hydrocephalus and other phenotypes consistent with ciliary defects. How either protein contributes to the assembly and function of motile cilia is not well understood. Here we studied the phenotypes of ULK4 and Fused gene knockout (KO) mutants in the flagellated protist Leishmania mexicana. Both KO mutants exhibited a variety of structural defects of the flagellum cytoskeleton. Biochemical approaches indicate spatial proximity of these proteins and indicate a direct interaction between the N-terminus of LmxULK4 and LmxFused. Both proteins display a dispersed localization throughout the cell body and flagellum, with enrichment near the flagellar base and tip. The stable expression of LmxULK4 was dependent on the presence of LmxFused. Fused/STK36 was previously shown to localize to mammalian motile cilia, and we demonstrate here that ULK4 also localizes to the motile cilia in mouse ependymal cells. Taken together these data suggest a model where the pseudokinase ULK4 is a positive regulator of the kinase Fused/ STK36 in a pathway required for stable assembly of motile cilia.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
183
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
184
|
Campbell PC, de Graffenried CL. Morphogenesis in Trypanosoma cruzi epimastigotes proceeds via a highly asymmetric cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542100. [PMID: 37293088 PMCID: PMC10245916 DOI: 10.1101/2023.05.24.542100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypanosoma cruzi is a protist parasite that is the causative agent of Chagas' disease, a neglected tropical disease endemic to the Americas. T. cruzi cells are highly polarized and undergo morphological changes as they cycle within their insect and mammalian hosts. Work on related trypanosomatids has described cell division mechanisms in several life-cycle stages and identified a set of essential morphogenic proteins that serve as markers for key events during trypanosomatid division. Here, we use Cas9-based tagging of morphogenic genes, live-cell imaging, and expansion microscopy to study the cell division mechanism of the insect-resident epimastigote form of T. cruzi, which represents an understudied trypanosomatid morphotype. We find that T. cruzi epimastigote cell division is highly asymmetric, producing one daughter cell that is significantly smaller than the other. Daughter cell division rates differ by 4.9 h, which may be a consequence of this size disparity. Many of the morphogenic proteins identified in T. brucei have altered localization patterns in T. cruzi epimastigoes, which may reflect fundamental differences in the cell division mechanism of this life cycle stage, which widens and shortens the cell body to accommodate the duplicated organelles and cleavage furrow rather than elongating the cell body along the long axis of the cell, as is the case in life-cycle stages that have been studied in T. brucei. This work provides a foundation for further investigations of T. cruzi cell division and shows that subtle differences in trypansomatid cell morphology can alter how these parasites divide.
Collapse
Affiliation(s)
- Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | |
Collapse
|
185
|
Halliday C, Dean S, Sunter JD, Wheeler RJ. Subcellular protein localisation of Trypanosoma brucei bloodstream form-upregulated proteins maps stage-specific adaptations. Wellcome Open Res 2023; 8:46. [PMID: 37251657 PMCID: PMC10209625 DOI: 10.12688/wellcomeopenres.18586.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Genome-wide subcellular protein localisation in Trypanosoma brucei, through our TrypTag project, has comprehensively dissected the molecular organisation of this important pathogen. Powerful as this resource is , T. brucei has multiple developmental forms and we previously only analysed the procyclic form. This is an insect life cycle stage, leaving the mammalian bloodstream form unanalysed. The expectation is that between life stages protein localisation would not change dramatically (completely unchanged or shifting to analogous stage-specific structures). However, this has not been specifically tested. Similarly, which organelles tend to contain proteins with stage-specific expression can be predicted from known stage specific adaptations but has not been comprehensively tested. Methods: We used endogenous tagging with mNG to determine the sub-cellular localisation of the majority of proteins encoded by transcripts significantly upregulated in the bloodstream form, and performed comparison to the existing localisation data in procyclic forms. Results: We have confirmed the localisation of known stage-specific proteins and identified the localisation of novel stage-specific proteins. This gave a map of which organelles tend to contain stage specific proteins: the mitochondrion for the procyclic form, and the endoplasmic reticulum, endocytic system and cell surface in the bloodstream form. Conclusions: This represents the first genome-wide map of life cycle stage-specific adaptation of organelle molecular machinery in T. brucei.
Collapse
Affiliation(s)
- Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | |
Collapse
|
186
|
Goodswen SJ, Kennedy PJ, Ellis JT. A state-of-the-art methodology for high-throughput in silico vaccine discovery against protozoan parasites and exemplified with discovered candidates for Toxoplasma gondii. Sci Rep 2023; 13:8243. [PMID: 37217589 DOI: 10.1038/s41598-023-34863-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Vaccine discovery against eukaryotic parasites is not trivial as highlighted by the limited number of known vaccines compared to the number of protozoal diseases that need one. Only three of 17 priority diseases have commercial vaccines. Live and attenuated vaccines have proved to be more effective than subunit vaccines but adversely pose more unacceptable risks. One promising approach for subunit vaccines is in silico vaccine discovery, which predicts protein vaccine candidates given thousands of target organism protein sequences. This approach, nonetheless, is an overarching concept with no standardised guidebook on implementation. No known subunit vaccines against protozoan parasites exist as a result of this approach, and consequently none to emulate. The study goal was to combine current in silico discovery knowledge specific to protozoan parasites and develop a workflow representing a state-of-the-art approach. This approach reflectively integrates a parasite's biology, a host's immune system defences, and importantly, bioinformatics programs needed to predict vaccine candidates. To demonstrate the workflow effectiveness, every Toxoplasma gondii protein was ranked in its capacity to provide long-term protective immunity. Although testing in animal models is required to validate these predictions, most of the top ranked candidates are supported by publications reinforcing our confidence in the approach.
Collapse
Affiliation(s)
- Stephen J Goodswen
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Paul J Kennedy
- School of Computer Science, Faculty of Engineering and Information Technology and the Australian Artificial Intelligence Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - John T Ellis
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
187
|
Heslop R, Gao M, Brito Lira A, Sternlieb T, Loock M, Sanghi SR, Cestari I. Genome-Wide Libraries for Protozoan Pathogen Drug Target Screening Using Yeast Surface Display. ACS Infect Dis 2023; 9:1078-1091. [PMID: 37083339 PMCID: PMC10187560 DOI: 10.1021/acsinfecdis.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 04/22/2023]
Abstract
The lack of genetic tools to manipulate protozoan pathogens has limited the use of genome-wide approaches to identify drug or vaccine targets and understand these organisms' biology. We have developed an efficient method to construct genome-wide libraries for yeast surface display (YSD) and developed a YSD fitness screen (YSD-FS) to identify drug targets. We show the efficacy of our method by generating genome-wide libraries for Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia parasites. Each library has a diversity of ∼105 to 106 clones, representing ∼6- to 30-fold of the parasite's genome. Nanopore sequencing confirmed the libraries' genome coverage with multiple clones for each parasite gene. Western blot and imaging analysis confirmed surface expression of the G. lamblia library proteins in yeast. Using the YSD-FS assay, we identified bonafide interactors of metronidazole, a drug used to treat protozoan and bacterial infections. We also found enrichment in nucleotide-binding domain sequences associated with yeast increased fitness to metronidazole, indicating that this drug might target multiple enzymes containing nucleotide-binding domains. The libraries are valuable biological resources for discovering drug or vaccine targets, ligand receptors, protein-protein interactions, and pathogen-host interactions. The library assembly approach can be applied to other organisms or expression systems, and the YSD-FS assay might help identify new drug targets in protozoan pathogens.
Collapse
Affiliation(s)
- Rhiannon Heslop
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
- Faculté
de Pharmacie de Tours, 31, Avenue Monge, 37200 Tours, France
| | - Mengjin Gao
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Andressa Brito Lira
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Tamara Sternlieb
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Mira Loock
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Sahil Rao Sanghi
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
| | - Igor Cestari
- Institute
of Parasitology, McGill University, Ste Anne de Bellevue, Montreal, QC H9X 3V9, Canada
- Division
of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
188
|
Briggs EM, Marques CA, Oldrieve GR, Hu J, Otto TD, Matthews KR. Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single-cell transcriptomics. eLife 2023; 12:e86325. [PMID: 37166108 PMCID: PMC10212563 DOI: 10.7554/elife.86325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Catarina A Marques
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jihua Hu
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
189
|
Vomáčková Kykalová B, Sassù F, Volf P, Telleria EL. RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection. Front Physiol 2023; 14:1182141. [PMID: 37265840 PMCID: PMC10230645 DOI: 10.3389/fphys.2023.1182141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Production of different antimicrobial peptides (AMPs) is one of the insect's prominent defense strategies, regulated mainly by Toll and immune deficiency (IMD) humoral pathways. Here we focused mainly on two AMPs of Phlebotomus papatasi, vector of Leishmania major parasites, their association with the relish transcription factor and the effective participation on Leishmania infection. Methods and results: We further characterized the role of previously described gut-specific P. papatasi defensin (PpDef1) and identified the second defensin (PpDef2) expressed in various sand fly tissues. Using the RNAi-mediated gene silencing, we report that the silencing of PpDef1 gene or simultaneous silencing of both defensin genes (PpDef1 and PpDef2) resulted in increased parasite levels in the sand fly (detectable by PCR) and higher sand fly mortality. In addition, we knocked down relish, the sole transcription factor of the IMD pathway, to evaluate the association of the IMD pathway with AMPs expression in P. papatasi. We demonstrated that the relish gene knockdown reduced the expression of PpDef2 and attacin, another AMP abundantly expressed in the sand fly body. Conclusions: Altogether, our experiments show the importance of defensins in the sand fly response toward L. major and the role of the IMD pathway in regulating AMPs in P. papatasi.
Collapse
|
190
|
Kelsen A, Kent RS, Snyder AK, Wehri E, Bishop SJ, Stadler RV, Powell C, Martorelli di Genova B, Rompikuntal PK, Boulanger MJ, Warshaw DM, Westwood NJ, Schaletzky J, Ward GE. MyosinA is a druggable target in the widespread protozoan parasite Toxoplasma gondii. PLoS Biol 2023; 21:e3002110. [PMID: 37155705 PMCID: PMC10185354 DOI: 10.1371/journal.pbio.3002110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.
Collapse
Affiliation(s)
- Anne Kelsen
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Anne K. Snyder
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Stephen J. Bishop
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Cameron Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Bruno Martorelli di Genova
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Pramod K. Rompikuntal
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
191
|
Koreny L, Mercado-Saavedra BN, Klinger CM, Barylyuk K, Butterworth S, Hirst J, Rivera-Cuevas Y, Zaccai NR, Holzer VJC, Klingl A, Dacks JB, Carruthers VB, Robinson MS, Gras S, Waller RF. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat Commun 2023; 14:2167. [PMID: 37061511 PMCID: PMC10105704 DOI: 10.1038/s41467-023-37431-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Apicomplexan parasites have immense impacts on humanity, but their basic cellular processes are often poorly understood. Where endocytosis occurs in these cells, how conserved this process is with other eukaryotes, and what the functions of endocytosis are across this phylum are major unanswered questions. Using the apicomplexan model Toxoplasma, we identified the molecular composition and behavior of unusual, fixed endocytic structures. Here, stable complexes of endocytic proteins differ markedly from the dynamic assembly/disassembly of these machineries in other eukaryotes. We identify that these endocytic structures correspond to the 'micropore' that has been observed throughout the Apicomplexa. Moreover, conserved molecular adaptation of this structure is seen in apicomplexans including the kelch-domain protein K13 that is central to malarial drug-resistance. We determine that a dominant function of endocytosis in Toxoplasma is plasma membrane homeostasis, rather than parasite nutrition, and that these specialized endocytic structures originated early in infrakingdom Alveolata likely in response to the complex cell pellicle that defines this medically and ecologically important ancient eukaryotic lineage.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Victoria J C Holzer
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Simon Gras
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| |
Collapse
|
192
|
Singh P, Lonardi S, Liang Q, Vydyam P, Khabirova E, Fang T, Gihaz S, Thekkiniath J, Munshi M, Abel S, Ciampossin L, Batugedara G, Gupta M, Lu XM, Lenz T, Chakravarty S, Cornillot E, Hu Y, Ma W, Gonzalez LM, Sánchez S, Estrada K, Sánchez-Flores A, Montero E, Harb OS, Le Roch KG, Mamoun CB. Babesia duncani multi-omics identifies virulence factors and drug targets. Nat Microbiol 2023; 8:845-859. [PMID: 37055610 PMCID: PMC10159843 DOI: 10.1038/s41564-023-01360-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.
| | - Qihua Liang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Pratap Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | - Tiffany Fang
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Shalev Gihaz
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jose Thekkiniath
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Muhammad Munshi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Loic Ciampossin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Sakshar Chakravarty
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), and Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
| | - Yangyang Hu
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California, Riverside, CA, USA
| | - Luis Miguel Gonzalez
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sergio Sánchez
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Omar S Harb
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
193
|
Camacho E, González-de la Fuente S, Solana JC, Tabera L, Carrasco-Ramiro F, Aguado B, Requena JM. Leishmania infantum (JPCM5) Transcriptome, Gene Models and Resources for an Active Curation of Gene Annotations. Genes (Basel) 2023; 14:genes14040866. [PMID: 37107624 PMCID: PMC10137940 DOI: 10.3390/genes14040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Leishmania infantum is one of the causative agents of visceral leishmaniases, the most severe form of leishmaniasis. An improved assembly for the L. infantum genome was published five years ago, yet delineation of its transcriptome remained to be accomplished. In this work, the transcriptome annotation was attained by a combination of both short and long RNA-seq reads. The good agreement between the results derived from both methodologies confirmed that transcript assembly based on Illumina RNA-seq and further delimitation according to the positions of spliced leader (SAS) and poly-A (PAS) addition sites is an adequate strategy to annotate the transcriptomes of Leishmania, a procedure previously used for transcriptome annotation in other Leishmania species and related trypanosomatids. These analyses also confirmed that the Leishmania transcripts boundaries are relatively slippery, showing extensive heterogeneity at the 5′- and 3′-ends. However, the use of RNA-seq reads derived from the PacBio technology (referred to as Iso-Seq) allowed the authors to uncover some complex transcription patterns occurring at particular loci that would be unnoticed by the use of short RNA-seq reads alone. Thus, Iso-Seq analysis provided evidence that transcript processing at particular loci would be more dynamic than expected. Another noticeable finding was the observation of a case of allelic heterozygosity based on the existence of chimeric Iso-Seq reads that might be generated by an event of intrachromosomal recombination. In addition, we are providing the L. infantum gene models, including both UTRs and CDS regions, that would be helpful for undertaking whole-genome expression studies. Moreover, we have built the foundations of a communal database for the active curation of both gene/transcript models and functional annotations for genes and proteins.
Collapse
Affiliation(s)
- Esther Camacho
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Jose Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Tabera
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain
| | - Fernando Carrasco-Ramiro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Genomic and NGS Facility (GENGS), 28049 Madrid, Spain
| | - Jose M. Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
194
|
McGee JP, Armache JP, Lindner SE. Ribosome heterogeneity and specialization of Plasmodium parasites. PLoS Pathog 2023; 19:e1011267. [PMID: 37053161 PMCID: PMC10101515 DOI: 10.1371/journal.ppat.1011267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Affiliation(s)
- James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, Pennsylvania, United States of America
| |
Collapse
|
195
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
196
|
Mead ME, de Castro PA, Steenwyk JL, Gangneux JP, Hoenigl M, Prattes J, Rautemaa-Richardson R, Guegan H, Moore CB, Lass-Flörl C, Reizine F, Valero C, Van Rhijn N, Bromley MJ, Rokas A, Goldman GH, Gago S, on behalf of the ECMM CAPA Study Group. COVID-19-Associated Pulmonary Aspergillosis Isolates Are Genomically Diverse but Similar to Each Other in Their Responses to Infection-Relevant Stresses. Microbiol Spectr 2023; 11:e0512822. [PMID: 36946762 PMCID: PMC10100753 DOI: 10.1128/spectrum.05128-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
Secondary infections caused by the pulmonary fungal pathogen Aspergillus fumigatus are a significant cause of mortality in patients with severe coronavirus disease 19 (COVID-19). Even though epithelial cell damage and aberrant cytokine responses have been linked to susceptibility to COVID-19-associated pulmonary aspergillosis (CAPA), little is known about the mechanisms underpinning copathogenicity. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries. CAPA isolates did not cluster based on geographic origin in a genome-scale phylogeny of representative A. fumigatus isolates. Phenotypically, CAPA isolates were more similar to the A. fumigatus A1160 reference strain than to the Af293 strain when grown in infection-relevant stresses, except for interactions with human immune cells wherein macrophage responses were similar to those induced by the Af293 reference strain. Collectively, our data indicate that CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses. A larger number of isolates from CAPA patients should be studied to better understand the molecular epidemiology of CAPA and to identify genetic drivers of copathogenicity and antifungal resistance in patients with COVID-19. IMPORTANCE Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) has been globally reported as a life-threatening complication in some patients with severe COVID-19. Most of these infections are caused by the environmental mold Aspergillus fumigatus, which ranks third in the fungal pathogen priority list of the WHO. However, little is known about the molecular epidemiology of Aspergillus fumigatus CAPA strains. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries, and carried out phenotypic analyses with a view to understanding the pathophysiology of the disease. Our data indicate that A. fumigatus CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses.
Collapse
Affiliation(s)
- Matthew E. Mead
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jacob L. Steenwyk
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Biotech Med, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester University, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hélène Guegan
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Caroline B. Moore
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester University, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Cornelia Lass-Flörl
- European Excellence Center for Medical Mycology (ECMM), Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Florian Reizine
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
- Medical Intensive Care Unit, Rennes University Hospital, Rennes, France
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael J. Bromley
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sara Gago
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - on behalf of the ECMM CAPA Study Group
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Biotech Med, Graz, Austria
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester University, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- European Excellence Center for Medical Mycology (ECMM), Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
- Medical Intensive Care Unit, Rennes University Hospital, Rennes, France
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
197
|
Guérin A, Strelau KM, Barylyuk K, Wallbank BA, Berry L, Crook OM, Lilley KS, Waller RF, Striepen B. Cryptosporidium uses multiple distinct secretory organelles to interact with and modify its host cell. Cell Host Microbe 2023; 31:650-664.e6. [PMID: 36958336 DOI: 10.1016/j.chom.2023.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Cryptosporidium is a leading cause of diarrheal disease in children and an important contributor to early childhood mortality. The parasite invades and extensively remodels intestinal epithelial cells, building an elaborate interface structure. How this occurs at the molecular level and the contributing parasite factors are largely unknown. Here, we generated a whole-cell spatial proteome of the Cryptosporidium sporozoite and used genetic and cell biological experimentation to discover the Cryptosporidium-secreted effector proteome. These findings reveal multiple organelles, including an original secretory organelle, and generate numerous compartment markers by tagging native gene loci. We show that secreted proteins are delivered to the parasite-host interface, where they assemble into different structures including a ring that anchors the parasite into its unique epicellular niche. Cryptosporidium thus uses a complex set of secretion systems during and following invasion that act in concert to subjugate its host cell.
Collapse
Affiliation(s)
- Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine M Strelau
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurence Berry
- LPHI, CNRS, Université de Montpellier, Montpellier 34095, France
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
198
|
Bopp S, Pasaje CFA, Summers RL, Magistrado-Coxen P, Schindler KA, Corpas-Lopez V, Yeo T, Mok S, Dey S, Smick S, Nasamu AS, Demas AR, Milne R, Wiedemar N, Corey V, Gomez-Lorenzo MDG, Franco V, Early AM, Lukens AK, Milner D, Furtado J, Gamo FJ, Winzeler EA, Volkman SK, Duffey M, Laleu B, Fidock DA, Wyllie S, Niles JC, Wirth DF. Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation. Nat Commun 2023; 14:1455. [PMID: 36927839 PMCID: PMC10020447 DOI: 10.1038/s41467-023-36921-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.
Collapse
Affiliation(s)
- Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | | | - Robert L Summers
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Pamela Magistrado-Coxen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoriano Corpas-Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Smick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Armiyaw S Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison R Demas
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Rachel Milne
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria Corey
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria De Gracia Gomez-Lorenzo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Virginia Franco
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Danny Milner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francisco-Javier Gamo
- Tres Cantos Medicines Research and Development Campus, Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Elizabeth A Winzeler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA
| | | | - Benoît Laleu
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
199
|
Jackson KM, Ding M, Nielsen K. Importance of Clinical Isolates in Cryptococcus neoformans Research. J Fungi (Basel) 2023; 9:364. [PMID: 36983532 PMCID: PMC10056780 DOI: 10.3390/jof9030364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogenic fungus Cryptococcus neoformans is a global health concern. Previous research in the field has focused on studies using reference strains to identify virulence factors, generate mutant libraries, define genomic structures, and perform functional studies. In this review, we discuss the benefits and drawbacks of using reference strains to study C. neoformans, describe how the study of clinical isolates has expanded our understanding of pathogenesis, and highlight how studies using clinical isolates can further develop our understanding of the host-pathogen interaction during C. neoformans infection.
Collapse
Affiliation(s)
| | | | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
200
|
Polino AJ, Hasan MM, Floyd K, Avila-Cruz Y, Yang Y, Goldberg DE. An essential endoplasmic reticulum-resident N-acetyltransferase ortholog in Plasmodium falciparum. J Cell Sci 2023; 136:286919. [PMID: 36744402 PMCID: PMC10038149 DOI: 10.1242/jcs.260551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
N-terminal acetylation is a common eukaryotic protein modification that involves the addition of an acetyl group to the N-terminus of a polypeptide. This modification is largely performed by cytosolic N-terminal acetyltransferases (NATs). Most associate with the ribosome, acetylating nascent polypeptides co-translationally. In the malaria parasite Plasmodium falciparum, exported effectors are thought to be translated into the endoplasmic reticulum (ER), processed by the aspartic protease plasmepsin V and then N-acetylated, despite having no clear access to cytosolic NATs. Here, we used inducible gene deletion and post-transcriptional knockdown to investigate the primary ER-resident NAT candidate, Pf3D7_1437000. We found that it localizes to the ER and is required for parasite growth. However, depletion of Pf3D7_1437000 had no effect on protein export or acetylation of the exported proteins HRP2 and HRP3. Despite this, Pf3D7_1437000 depletion impedes parasite development within the host red blood cell and prevents parasites from completing genome replication. Thus, this work provides further proof of N-terminal acetylation of secretory system proteins, a process unique to apicomplexan parasites, but strongly discounts a promising candidate for this post-translational modification.
Collapse
Affiliation(s)
- Alexander J Polino
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Muhammad M Hasan
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Katherine Floyd
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yolotzin Avila-Cruz
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yujuan Yang
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Daniel E Goldberg
- Division of Infectious Diseases, Department of Medicine, and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|