151
|
Metformin as a Potential Agent in the Treatment of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175957. [PMID: 32825027 PMCID: PMC7503488 DOI: 10.3390/ijms21175957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, a synthetic derivative of guanidine, is commonly used as an oral antidiabetic agent and is considered a multi-vector application agent in the treatment of other inflammatory diseases. Recent studies have confirmed the beneficial effect of metformin on immune cells, with special emphasis on immunological mechanisms. Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by various clinical courses. Although the pathophysiology of MS remains unknown, it is most likely a combination of disturbances of the immune system and biochemical pathways with a disruption of blood-brain barrier (BBB), and it is strictly related to injury of intracerebral blood vessels. Metformin has properties which are greatly desirable for MS therapy, including antioxidant, anti-inflammatory or antiplatelet functions. The latest reports relating to the cardiovascular disease confirm an increased risk of ischemic events in MS patients, which are directly associated with a coagulation cascade and an elevated pro-thrombotic platelet function. Hence, this review examines the potential favourable effects of metformin in the course of MS, its role in preventing inflammation and endothelial dysfunction, as well as its potential antiplatelet role.
Collapse
|
152
|
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48:1043-1056. [PMID: 32710488 PMCID: PMC7754492 DOI: 10.1111/ceo.13834] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023]
Abstract
Age‐related macular degeneration (AMD) is a progressive degenerative disease that is the leading cause of vision loss in the elderly population. Degeneration/dysregulation of the retinal pigment epithelium (RPE), a supportive monolayer of cells underlying the photoreceptors, is commonly seen in patients with AMD. While treatment exists for the neovascular/wet form of AMD, there is currently no cure for the non‐exudative/dry form of AMD, making it imperative to understand the pathogenesis of this disease. Although our understanding of the aetiology of AMD has increased over the years, the underlying disease mechanism has not yet been identified, mainly due to the multifactorial nature of this disease. Herein, we review some of the commonly proposed degeneration pathways of RPE cells and their role in the pathogenesis of AMD; including activation of the complement cascade, oxidative stress‐induced cell death mechanisms, dysfunctional mitochondria and the role of crystallins in AMD disease progression.
Collapse
Affiliation(s)
- Shreya Somasundaran
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
153
|
Vyas CM, Ogata S, Reynolds CF, Mischoulon D, Chang G, Cook NR, Manson JE, Crous-Bou M, De Vivo I, Okereke OI. Lifestyle and behavioral factors and mitochondrial DNA copy number in a diverse cohort of mid-life and older adults. PLoS One 2020; 15:e0237235. [PMID: 32785256 PMCID: PMC7423118 DOI: 10.1371/journal.pone.0237235] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) is a putative biomarker of oxidative stress and biological aging. Modifiable factors, including physical activity (PA), avoidance of heavy alcohol use and smoking, and maintaining good mental health, may reduce oxidative stress and promote healthy aging. Yet, limited data exist regarding how these factors are associated with mtDNAcn or whether age, sex or race/ethnicity moderate associations. In this cross-sectional study, we selected 391 adults (183 non-Hispanic White, 110 Black and 98 Hispanic; mean = 67 years) from the VITAL-DEP (VITamin D and OmegA-3 TriaL-Depression Endpoint Prevention) ancillary to the VITAL trial. We estimated associations between lifestyle and behavioral factors (PA, alcohol consumption, cigarette smoking and depression) and log-transformed mtDNAcn using multivariable linear regression models. MtDNAcn was not correlated with chronological age; women had ~17% higher mtDNAcn compared to men. There were no significant associations between PA measures (frequency, amount or intensity) or alcohol consumption with mtDNAcn. Cigarette smoking (per 5 pack-years) was significantly associated with mtDNAcn (percent difference = -2.9% (95% confidence interval (CI) = -5.4%, -0.4%)); a large contrast was observed among heavy vs. non-smokers (≥30 vs. 0 pack-years): percent difference = -28.5% (95% CI = -44.2%, -8.3%). The estimate of mtDNAcn was suggestively different for past vs. no depression history (percent difference = -15.1% 95% CI = -30.8%, 4.1%), but this difference was not statistically significant. The association between smoking and log-mtDNAcn varied by sex and race/ethnicity; it was stronger in men and Black participants. While chance findings cannot be excluded, results from this study support associations of smoking, but not chronological age, with mtDNAcn and suggest nuanced considerations of mtDNAcn as indicative of varying oxidative stress states vs. biological aging itself.
Collapse
Affiliation(s)
- Chirag M. Vyas
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soshiro Ogata
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles F. Reynolds
- Department of Psychiatry, UPMC and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Grace Chang
- Department of Psychiatry, VA Boston Healthcare System, Brockton, Massachusetts, United States of America
| | - Nancy R. Cook
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marta Crous-Bou
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Olivia I. Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
154
|
Fu Y, Tigano M, Sfeir A. Safeguarding mitochondrial genomes in higher eukaryotes. Nat Struct Mol Biol 2020; 27:687-695. [PMID: 32764737 DOI: 10.1038/s41594-020-0474-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Mitochondria respond to DNA damage and preserve their own genetic material in a manner distinct from that of the nucleus but that requires organized mito-nuclear communication. Failure to resolve mtDNA breaks leads to mitochondrial dysfunction and affects host cells and tissues. Here, we review the pathways that safeguard mitochondrial genomes and examine the insights gained from studies of cellular and tissue-wide responses to mtDNA damage and mito-nuclear genome incompatibility.
Collapse
Affiliation(s)
- Yi Fu
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Tigano
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU Grossman School of Medicine, New York, NY, USA
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
155
|
Yang K, Forman MR, Monahan PO, Graham BH, Chan AT, Zhang X, De Vivo I, Giovannucci EL, Tabung FK, Nan H. Insulinemic Potential of Lifestyle Is Inversely Associated with Leukocyte Mitochondrial DNA Copy Number in US White Adults. J Nutr 2020; 150:2156-2163. [PMID: 32492151 PMCID: PMC7398789 DOI: 10.1093/jn/nxaa146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Poor lifestyles have been linked to insulin insensitivity/hyperinsulinemia, which may contribute to downstream changes such as inflammation and oxidative damage and the development of chronic diseases. As a biomarker of intracellular oxidative stress, leukocyte mitochondrial DNA copy number (mtDNA-CN) has been related to lifestyle factors including diet and weight. No epidemiologic study has examined the relation between combined insulinemic potential of lifestyle and mtDNA-CN. OBJECTIVES Our aim was to examine the association between Empirical Lifestyle Index for Hyperinsulinemia (ELIH) and leukocyte mtDNA-CN in US men and women. METHODS This cross-sectional analysis included 2835 white adults without cancers, diabetes, or cardiovascular disease at blood collection, including 2160 women from the Nurses' Health Study and 675 men from the Health Professionals Follow-Up Study. ELIH is an index based on plasma C-peptide that characterizes the insulinemic potential of lifestyle (diet, body weight, and physical activity). Relative mtDNA-CN in peripheral blood leukocytes was measured by qPCR-based assay. RESULTS We found a significant inverse association between ELIH and mtDNA-CN. In multivariable-adjusted linear models, absolute least squares means ± SDs of mtDNA-CN z score across ELIH quintiles in women were as follows: Q1: 0.14 ± 0.05; Q2: 0.04 ± 0.06; Q3: 0.008 ± 0.05; Q4: 0.01 ± 0.05; and Q5: -0.06 ± 0.05 (P-trend = 0.006). Means ± SDs in men were as follows: Q1: 0.25 ± 0.09; Q2: 0.23 ± 0.09; Q3: 0.07 ± 0.09; Q4: 0.02 ± 0.09; and Q5: -0.04 ± 0.09 (P-trend = 0.007). Means ± SDs in all participants were as follows: Q1: 0.16 ± 0.05; Q2: 0.07 ± 0.05; Q3: 0.01 ± 0.05; Q4: 0.01 ± 0.05; and Q5: -0.05 ± 0.05 (P-trend = 0.0004). CONCLUSIONS Hyperinsulinemic lifestyles (i.e., higher ELIH) were associated with lower leukocyte mtDNA-CN among subjects without major diseases, suggesting that the difference in lifestyle insulinemic potential may be related to excessive oxidative stress damage.
Collapse
Affiliation(s)
- Keming Yang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, College of Health and Human Science, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Patrick O Monahan
- Department of Biostatistics, School of Medicine and Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, OH, USA,Address correspondence to FKT (e-mail: )
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA,Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA,IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA,Address correspondence to HN (e-mail: )
| |
Collapse
|
156
|
Kim SY, Hwangbo H, Lee H, Park C, Kim GY, Moon SK, Yun SJ, Kim WJ, Cheong J, Choi YH. Induction of Apoptosis by Coptisine in Hep3B Hepatocellular Carcinoma Cells through Activation of the ROS-Mediated JNK Signaling Pathway. Int J Mol Sci 2020; 21:E5502. [PMID: 32752099 PMCID: PMC7432186 DOI: 10.3390/ijms21155502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and treatment is very limited due to its high recurrence and low diagnosis rate, and therefore there is an increasing need to develop more effective drugs to treat HCC. Coptisine is one of the isoquinoline alkaloids, and it has various pharmacological effects. However, the evidence for the molecular mechanism of the anticancer efficacy is still insufficient. Therefore, this study investigated the antiproliferative effect of coptisine on human HCC Hep3B cells and identified the action mechanism. Our results showed that coptisine markedly increased DNA damage and apoptotic cell death, which was associated with induction of death receptor proteins. Coptisine also significantly upregulated expression of proapoptotic Bax protein, downregulated expression of anti-apoptotic Bcl-2 protein, and activated caspase-3, -8, and -9. In addition, coptisine remarkably increased the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and release of cytochrome c into the cytoplasm. However, N-acetylcysteine (NAC), a ROS scavenger, significantly attenuated the apoptosis-inducing effect of coptisine. It is worth noting that coptisine significantly upregulated phosphorylation of ROS-dependent c-Jun N-terminal kinase (JNK), whereas treatment with JNK inhibitor could suppress an apoptosis-related series event. Taken together, our results suggest that coptisine has an anticancer effect in Hep3B cells through ROS-mediated activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Korea;
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.J.Y.); (W.-J.K.)
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.J.Y.); (W.-J.K.)
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
157
|
Hoong BYD, Gan YH, Liu H, Chen ES. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget 2020; 11:2930-2955. [PMID: 32774773 PMCID: PMC7392626 DOI: 10.18632/oncotarget.27673] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
The host innate immunity offers the first line of defense against infection. However, recent evidence shows that the host innate immunity is also critical in sensing the presence of cytoplasmic DNA derived from genomic instability events, such as DNA damage and defective cell cycle progression. This is achieved through the cyclic GMP-AMP synthase (cGAS)/Stimulator of interferon (IFN) genes (STING) pathway. Here we discuss recent insights into the regulation of this pathway in cancer immunosurveillance, and the downstream signaling cascades that coordinate immune cell recruitment to the tumor microenvironment to destroy transformed cells through cellular senescence or cell death programs. Its central role in immunosurveillance positions the cGAS-STING pathway as an attractive anti-cancer immunotherapeutic drug target for chemical agonists or vaccine adjuvants and suggests a key node to be targeted in a synthetic lethal approach. We also discuss adaptive mechanisms used by cancer cells to circumvent cGAS-STING signaling and present evidence linking chronic cGAS-STING activation to inflammation-induced carcinogenesis, cautioning against the use of activating the cGAS-STING pathway as an anti-tumor immunotherapy. A deeper mechanistic understanding of the cGAS-STING pathway will aid in the identification of potentially efficacious anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Brandon Yi Da Hoong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- Wong Hock Boon Society, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yunn Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- NUS Graduate School of Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| | - Haiyan Liu
- National University Health System (NUHS), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System (NUHS), Singapore
- NUS Graduate School of Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
158
|
Yang K, Forman MR, Graham BH, Monahan PO, Giovannucci EL, De Vivo I, Chan AT, Nan H. Association between pre-diagnostic leukocyte mitochondrial DNA copy number and survival among colorectal cancer patients. Cancer Epidemiol 2020; 68:101778. [PMID: 32674053 DOI: 10.1016/j.canep.2020.101778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNAcn) is considered a biomarker for mitochondrial function and oxidative stress. Although previous studies have suggested a potential relationship between mtDNAcn at the time of colorectal cancer (CRC) diagnosis and CRC prognosis, findings have been inconsistent, and no study has specifically investigated the association of pre-diagnostic mtDNAcn with CRC survival. METHODS We examined the association of pre-diagnostic leukocyte mtDNAcn (measured by qPCR) with overall and CRC-specific survival among 587 patients in Nurses' Health Study and Health Professionals Follow-Up Study. Cox models were constructed to estimate hazard ratios (HRs) and 95 % confidence intervals (95 % CIs). RESULTS During a mean follow-up of 10.5 years, 395 deaths were identified; 180 were due to CRC. Overall, we did not observe significant associations between mtDNAcn and either overall or CRC-specific survival among all cases or by cancer location, grade, or stage. In an exploratory stratified analysis, a suggestive inverse association of mtDNAcn and overall death risk appeared among current smokers [HR (95 % CI) for 1 SD decrease in mtDNAcn = 1.50 (0.98, 2.32), P-trend = 0.06]. Reduced mtDNAcn and lower CRC-specific death risk was observed among patients aged ≤ 70.5 at diagnosis [HR (95 % CI) for 1 SD decrease of mtDNAcn = 0.71 (0.52, 0.97), P-trend = 0.03], ≤ 5 years from blood collection to diagnosis [HR (95 % CI) for 1 SD decrease in mtDNAcn = 0.65 (0.44, 0.96), P-trend = 0.03] and those consuming a low-inflammatory diet [HR (95 % CI) for 1 SD decrease in mtDNAcn = 0.61 (0.42, 0.88), P-trend = 0.009]. CONCLUSION no significant associations between pre-diagnostic leukocyte mtDNAcn and either overall or CRC-specific survival appeared but exploratory analysis identified potential sub-group associations.
Collapse
Affiliation(s)
- Keming Yang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, College of Health and Human Science, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick O Monahan
- Department of Biostatistics, School of Medicine and Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA; Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA; IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
159
|
Sun W, Qin X, Zhou J, Xu M, Lyu Z, Li X, Zhang K, Dai M, Li N, Hang D. Mitochondrial DNA copy number in cervical exfoliated cells and risk of cervical cancer among HPV-positive women. BMC WOMENS HEALTH 2020; 20:139. [PMID: 32615963 PMCID: PMC7331179 DOI: 10.1186/s12905-020-01001-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/25/2020] [Indexed: 01/05/2023]
Abstract
Background Although human papillomavirus (HPV) infection has been regarded as the cause of cervical cancer in over 99% of cases, only a small fraction of HPV-infected women develop this malignancy. Emerging evidence suggests that alterations of mitochondrial DNA copy number (mtCN) may contribute to carcinogenesis. However, the relationship between mtCN and cervical cancer remains undetermined. Methods The current study included 591 cervical cancer cases and 373 cancer-free controls, all of whom were infected with high-risk HPV. Relative mtCN in cervical cancer exfoliated cells was measured by qRT-PCR assays, and logistic regression analysis was performed to compute odds ratios (ORs) and 95% confidence intervals (CIs). Interaction between mtCN and HPV types was assessed by using the Wald test in logistic regression models. Results HPV16, 18, 52, and 58 were the most common types in both case and control groups. Median mtCN in cases was significantly higher than that in controls (1.63 vs. 1.23, P = 0.03). After adjustment for age and HPV types, the highest quartile of mtCN was associated with increased odds of having cervical cancer (OR = 1.77, 95% CI = 1.19, 2.62; P < 0.01), as compared to the lowest quartile. A dose-response effect of mtCN on cervical cancer was also observed (Ptrend < 0.001). The interaction between mtCN and HPV types was statistically nonsignificant. Conclusions In women who test HPV positive, the increase of mtCN in cervical exfoliated cells is associated with cervical cancer. This suggests a potential role of mtCN in cervical carcinogenesis.
Collapse
Affiliation(s)
- Wei Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Ave, Jiangning District, Nanjing, 211166, China.,Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, China
| | - Xueyun Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Ave, Jiangning District, Nanjing, 211166, China
| | - Jing Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Ave, Jiangning District, Nanjing, 211166, China
| | - Mingjing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Ave, Jiangning District, Nanjing, 211166, China
| | - Zhangyan Lyu
- National Office for Cancer Prevention and Control, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xin Li
- National Office for Cancer Prevention and Control, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kai Zhang
- National Office for Cancer Prevention and Control, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China.,Department of Cancer Prevention, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Min Dai
- National Office for Cancer Prevention and Control, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ni Li
- National Office for Cancer Prevention and Control, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dong Hang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Ave, Jiangning District, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
160
|
Kim HK, Han J. Tetrahydrobiopterin in energy metabolism and metabolic diseases. Pharmacol Res 2020; 157:104827. [PMID: 32348841 DOI: 10.1016/j.phrs.2020.104827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for various enzymatic conversions of essential biomolecules including nitric oxide, tyrosine, dopamine, serotonin and phenylalanine. Depending on the physiological functions of these molecules, BH4 plays multiple roles in the cardiovascular, immune, nervous and endocrine systems. A deficiency of BH4 or an imbalance of the redox state of biopterin has been implicated in various cardiovascular and metabolic diseases. Therefore, supplementation with BH4 is considered as a therapeutic option for these diseases. In addition to the classical nitric oxide synthase (NOS)-dependent role of BH4, recent studies proposed novel NOS-independent roles of BH4 in health and disease conditions. This article reviews the updated role of BH4 in mitochondrial regulation, energy metabolism and cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea; Smart Marine Therapeutics Center, Inje Univeristy, Busan, 47392, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea; Smart Marine Therapeutics Center, Inje Univeristy, Busan, 47392, Republic of Korea.
| |
Collapse
|
161
|
Li M, Luo X, Long X, Jiang P, Jiang Q, Guo H, Chen Z. Potential role of mitochondria in synoviocytes. Clin Rheumatol 2020; 40:447-457. [PMID: 32613391 DOI: 10.1007/s10067-020-05263-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Synoviocytes are located in the synovium lining layer, which is composed of macrophage-like synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) with different characteristics. Mitochondria, which exist in most cells, are two membrane-covered organelles. In addition to providing the necessary ATP for synoviocytes, mitochondria are involved in the regulation of redox homeostasis and the integration of synoviocytes death signals. In recent years, mitochondrial dysfunction has been found in rheumatoid arthritis (RA) and osteoarthritis (OA). Interestingly, recent studies have started uncovering that mitochondria that were previously reported to play a role in chondrocytes or immune cells, but not known to have pronounced roles in synoviocytes, can actually play crucial roles in the regulation of the pathological properties of the synoviocytes. The purpose of this review is to summarize our current understanding of the key role of mitochondria in synoviocytes, including mitochondrial dysfunction in synoviocytes can induce and aggravate inflammatory responses and changes in mitochondrial structure and function with the involvement of multiple cytokines, signal pathway, and hypoxic state of synovial tissue alter the response of synoviocytes to apoptotic stimulation. Also, mitochondrial abnormalities in synoviocytes promote the synoviocytes invasion and proliferation.
Collapse
Affiliation(s)
- Muzhe Li
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xuling Luo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xin Long
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Peishi Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Qin Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Heng Guo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Zhiwei Chen
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
162
|
Zhao L, Sumberaz P. Mitochondrial DNA Damage: Prevalence, Biological Consequence, and Emerging Pathways. Chem Res Toxicol 2020; 33:2491-2502. [PMID: 32486637 DOI: 10.1021/acs.chemrestox.0c00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria have a plethora of functions within a eukaryotic cell, ranging from energy production, cell signaling, and protein cofactor synthesis to various aspects of metabolism. Mitochondrial dysfunction is known to cause over 200 named disorders and has been implicated in many human diseases and aging. Mitochondria have their own genetic material, mitochondrial DNA (mtDNA), which encodes 13 protein subunits in the oxidative phosphorylation system and a full set of transfer and rRNAs. Although more than 99% of the proteins in mitochondria are nuclear DNA (nDNA)-encoded, the integrity of mtDNA is critical for mitochondrial functions, as evidenced by mitochondrial diseases sourced from mtDNA mutations and depletions and the vital role of fragmented mtDNA molecules in cell signaling pathways. Previous research has shown that mtDNA is an important target of genotoxic assaults by a variety of chemical and physical factors. This Perspective discusses the prevalence of mtDNA damage by comparing the abundance of lesions in mDNA and nDNA and summarizes current knowledge on the biological pathways to cope with mtDNA damage, including mtDNA repair, mtDNA degradation, and mitochondrial fission and fusion. Also, emerging roles of mtDNA damage in mutagenesis and immune responses are reviewed.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| | - Philip Sumberaz
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
163
|
Mitochondrial Energetics and Ca2 +-Activated ATPase in Obstructive Hypertrophic Cardiomyopathy. J Clin Med 2020; 9:jcm9061799. [PMID: 32527005 PMCID: PMC7356244 DOI: 10.3390/jcm9061799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the myocardium associated to mutations in sarcomeric genes, but the link between genotype and phenotype remains poorly understood. Magnetic resonance spectroscopy studies have demonstrated impaired cardiac energetics in patients with HCM, and altered mitochondria were described in biopsies, but little is known about possible perturbations of mitochondrial function and adenosine triphosphate (ATP) production/consumption. The aim of this study was to investigate possible abnormalities in mitochondrial enzymes generating/scavenging reactive oxygen species, and changes in the Ca2+-activated ATPases in myocardial tissue from patients with obstructive HCM undergoing surgical myectomy compared to unused donor hearts (CTRL). Methods and Results: Both the amount and activity of mitochondrial Complex I (nicotinamide adenine dinucleotide -reduced form, NADH, dehydrogenase) were upregulated in HCM vs. CTRL, whilst the activity of Complex V (ATP synthase) was not reduced and ATP levels were significantly higher in HCM vs. CTRL. Antioxidant Mn-activated superoxide dismutase (SOD2) and (m)-aconitase activities were increased in HCM vs. CTRL. The Cu/Zn-activated superoxide dismutase (SOD1) amount and mtDNA copy number were unaltered in HCM. Total Ca2+-activated ATPase activity and absolute amount were not different HCM vs. CTRL, but the ratio between ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting type 2 (ATP2A2) and type 1 (ATP2A1), ATP2A2/ATP2A1, was increased in HCM in favor of the slow isoform (ATP2A2). Conclusion: HCM is characterized by mitochondrial Complex I hyperactivity and preserved Ca2+-activated ATPase activity with a partial switch towards slow ATP2A2. This data may give insight into the abnormal cellular energetics observed in HCM cardiomyopathy but other studies would need to be performed to confirm the observations described here.
Collapse
|
164
|
Gyllenhammer LE, Entringer S, Buss C, Wadhwa PD. Developmental programming of mitochondrial biology: a conceptual framework and review. Proc Biol Sci 2020; 287:20192713. [PMID: 32345161 PMCID: PMC7282904 DOI: 10.1098/rspb.2019.2713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on mechanisms underlying the phenomenon of developmental programming of health and disease has focused primarily on processes that are specific to cell types, organs and phenotypes of interest. However, the observation that exposure to suboptimal or adverse developmental conditions concomitantly influences a broad range of phenotypes suggests that these exposures may additionally exert effects through cellular mechanisms that are common, or shared, across these different cell and tissue types. It is in this context that we focus on cellular bioenergetics and propose that mitochondria, bioenergetic and signalling organelles, may represent a key cellular target underlying developmental programming. In this review, we discuss empirical findings in animals and humans that suggest that key structural and functional features of mitochondrial biology exhibit developmental plasticity, and are influenced by the same physiological pathways that are implicated in susceptibility for complex, common age-related disorders, and that these targets of mitochondrial developmental programming exhibit long-term temporal stability. We conclude by articulating current knowledge gaps and propose future research directions to bridge these gaps.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Charité-Universitätsmedizin Berlin, Institute of Medical Psychology, Berlin, Germany
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, School of Medicine, Irvine, CA, USA.,Department of Psychiatry and Human Behaviour, School of Medicine, Irvine, CA, USA.,Department of Obstetrics and Gynecology, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
165
|
Ramos KS, Brundel BJJM. DNA Damage, an Innocent Bystander in Atrial Fibrillation and Other Cardiovascular Diseases? Front Cardiovasc Med 2020; 7:67. [PMID: 32411727 PMCID: PMC7198718 DOI: 10.3389/fcvm.2020.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 11/30/2022] Open
Abstract
Atrial Fibrillation (AF) is the most common clinical tachyarrhythmia with a strong tendency to progress in time. AF is difficult to treat and therefore there is a great need to dissect root causes of AF with the ultimate goal to develop mechanism-based (drug) therapies. New findings related to mechanisms driving AF progression indicate a prime role for DNA damage-induced metabolic remodeling. A recent study uncovered that AF results in oxidative DNA damage and consequently excessive poly-ADP-ribose polymerase 1 (PARP1) activation and nicotinamide adenine dinucleotide (NAD+) depletion and finally atrial cardiomyocyte electrical and contractile dysfunction. This newly elucidated role of DNA damage in AF opens opportunities for novel therapeutic strategies. Recently developed PARP inhibitors, such as ABT-888 and olaparib, provide beneficial effects in limiting experimental AF, and are also found to limit atherosclerotic coronary artery disease and heart failure. Another therapeutic option to protect against AF is to replenish the NAD+ pool by supplementation with NAD+ or its precursors, such as nicotinamide and nicotinamide riboside. In this review, we describe the role of DNA damage-mediated metabolic remodeling in AF and other cardiovascular diseases, discuss novel druggable targets for AF and highlight future directions for clinical trials with drugs directed at PARP1-NAD+ pathway with the ultimate aim to preserve quality of life and to attenuate severe complications such as heart failure or stroke in patients with AF.
Collapse
Affiliation(s)
- Kennedy S. Ramos
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
166
|
Khan MS, Yamashita K, Sharma V, Ranjan R, Dosdall DJ. RNAs and Gene Expression Predicting Postoperative Atrial Fibrillation in Cardiac Surgery Patients Undergoing Coronary Artery Bypass Grafting. J Clin Med 2020; 9:jcm9041139. [PMID: 32316120 PMCID: PMC7231013 DOI: 10.3390/jcm9041139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Postoperative atrial fibrillation (POAF) is linked with increased morbidity, mortality rate and financial liability. About 20–50% of patients experience POAF after coronary artery bypass graft (CABG) surgery. Numerous review articles and meta-analyses have investigated links between patient clinical risk factors, demographic conditions, and pre-, peri- and post-operative biomarkers to forecast POAF incidence in CABG patients. This narrative review, for the first time, summarize the role of micro-RNAs, circular-RNAs and other gene expressions that have shown experimental evidence to accurately predict the POAF incidence in cardiac surgery patients after CABG. We envisage that identifying specific genomic markers for predicting POAF might be a significant step for the prevention and effective management of this type of post-operative complication and may provide critical perspective into arrhythmogenic substrate responsible for POAF.
Collapse
Affiliation(s)
- Muhammad Shuja Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
| | - Kennosuke Yamashita
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
| | - Vikas Sharma
- Division of Cardiothoracic Surgery, The University of Utah-Health, Salt Lake City, UT 84132, USA;
| | - Ravi Ranjan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
| | - Derek James Dosdall
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA; (M.S.K.); (K.Y.); (R.R.)
- Division of Cardiovascular Medicine, The University of Utah-Health, Salt Lake City, UT 84132, USA
- Division of Cardiothoracic Surgery, The University of Utah-Health, Salt Lake City, UT 84132, USA;
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: ; Tel.: +1-801-587-2036
| |
Collapse
|
167
|
Chronology of cellular events related to mitochondrial burnout leading to cell death in Fuchs endothelial corneal dystrophy. Sci Rep 2020; 10:5811. [PMID: 32242036 PMCID: PMC7118119 DOI: 10.1038/s41598-020-62602-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/15/2020] [Indexed: 01/09/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a degenerative eye disease characterized by corneal endothelial cell (CEC) death and the formation of guttae, an abnormal thickening of CEC’s basement membrane. At the tissue level, an oxidative stress causing mitochondrial damage and CEC death have been described to explain FECD pathogenesis. At the cellular level, our group has previously observed significant variability in the mitochondrial mass of FECD CECs. This led us to hypothesize that mitochondrial mass variability might play a key role in the chronology of events eventually leading to CEC death in FECD. We thus used different fluorescent markers to assess mitochondrial health and functionality as a function of mitochondrial mass in FECD corneal endothelial explants, namely, intra-mitochondrial calcium, mitochondrial membrane potential, oxidation level and apoptosis. This has led us to describe for the first time a sequence of events leading to what we referred to as a mitochondrial burnout, and which goes as follow. FECD CECs initially compensate for endothelial cell losses by incorporating mitochondrial calcium to help generating more ATP, but this leads to increased oxidation. CECs then resist the sustained need for more ATP by increasing their mitochondrial mass, mitochondrial calcium and mitochondrial membrane potential. At this stage, CECs reach their maximum capacity and start to cope with irreversible oxidative damage, which leads to mitochondrial burnout. This burnout is accompanied by a dissipation of the membrane potential and a release of mitochondrial calcium, which in turn leads to cell death by apoptosis.
Collapse
|
168
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
169
|
Affiliation(s)
- Mikhail Alexeyev
- Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
170
|
Oliveira MT, Pontes CDB, Ciesielski GL. Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genet Mol Biol 2020; 43:e20190069. [PMID: 32141473 PMCID: PMC7197994 DOI: 10.1590/1678-4685-gmb-2019-0069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial
diseases. Mutations in the genes encoding components of the mitochondrial
replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle,
have been associated with the accumulation of such deletions and the development
of pathological conditions in humans. Recently, we demonstrated that changes in
the level of wild-type Twinkle promote mtDNA deletions, which implies that not
only mutations in, but also dysregulation of the stoichiometry between the
replisome components is potentially pathogenic. The mechanism(s) by which
alterations to the replisome function generate mtDNA deletions is(are) currently
under debate. It is commonly accepted that stalling of the replication fork at
sites likely to form secondary structures precedes the deletion formation. The
secondary structural elements can be bypassed by the replication-slippage
mechanism. Otherwise, stalling of the replication fork can generate single- and
double-strand breaks, which can be repaired through recombination leading to the
elimination of segments between the recombination sites. Here, we discuss
aberrances of the replisome in the context of the two debated outcomes, and
suggest new mechanistic explanations based on replication restart and template
switching that could account for all the deletion types reported for
patients.
Collapse
Affiliation(s)
- Marcos T Oliveira
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | | | | |
Collapse
|
171
|
Zhang X, Zhang K, Zhang Y. Pigment epithelium‑derived factor facilitates NLRP3 inflammasome activation through downregulating cytidine monophosphate kinase 2: A potential treatment strategy for missed abortion. Int J Mol Med 2020; 45:1436-1446. [PMID: 32323732 PMCID: PMC7138263 DOI: 10.3892/ijmm.2020.4517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
A number of conditions may underlie the occurrence of missed abortion (MA), including inflammation. Pigment epithelium‑derived factor (PEDF) is a novel mediator of the inflammation‑related nucleotide‑binding oligomerization domain‑like receptor protein 3 (NLRP3) inflammasome, which is associated with several human diseases. However, the association between MA and NLRP3 inflammasome, and whether PEDF is reduced in MA, remain unknown. In the present study, the decidua and chorion tissues of patients who had suffered a MA were examined, and a lipopolysaccharide (LPS)‑induced human chorionic trophoblast HTR8/SVneo cell model was established to mimic MA in vitro. The results revealed that cytidine monophosphate kinase 2 (CMPK2) expression and NLRP3 inflammasome activation, downstream pro‑IL‑18 and pro‑IL‑1β expression, and IL‑18 and IL‑1β release, were all significantly increased in MA tissues or LPS‑induced HTR8/SVneo cells. PEDF reversed the increase in CMPK2 expression and activation of the NLRP3 inflammasome axis and, thus, downregulated the production of mitochondrial reactive oxygen species and mitochondrial DNA release, resulting in reduced lactate dehydrogenase release, and a resultant decrease in cell viability. Recovery of CMPK2 expression abolished all the effects of PEDF, indicating that CMPK2 may be an effector downstream of PEDF. PEDF reduced CMPK2 protein levels but did not affect the mRNA levels, and treatment with the proteasomal inhibitor MG132 significantly reversed this reduction in CMPK2 protein levels. Furthermore, a ubiquitination assay of immunoprecipitation demonstrated that CMPK2 was polyubiquitinated in the presence of LPS, PEDF and MG132. These results indicated that the NLRP3 inflammasome is implicated in the pathogenesis of MA, and PEDF may reduce MA through ubiquitin‑dependent proteasomal degradation of CMPK2 to inhibit NLRP3 activation, which may serve as a novel strategy for preventing or reducing the risk of MA.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Gynecology and Obstetrics, Changning Maternity and Infant Health Hospital, Shanghai 200050, P.R. China
| | - Kun Zhang
- Department of Pediatrics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yi Zhang
- Department of Gynecology and Obstetrics, Changning Maternity and Infant Health Hospital, Shanghai 200050, P.R. China
| |
Collapse
|
172
|
Kumar A, Noda K, Philips B, Velayutham M, Stolz DB, Gladwin MT, Shiva S, D'Cunha J. Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L580-L591. [PMID: 32073901 DOI: 10.1152/ajplung.00367.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary graft dysfunction (PGD) is directly related to ischemia-reperfusion (I/R) injury and a major obstacle in lung transplantation (LTx). Nitrite (NO2-), which is reduced in vivo to form nitric oxide (NO), has recently emerged as an intrinsic signaling molecule with a prominent role in cytoprotection against I/R injury. Using a murine model, we provide the evidence that nitrite mitigated I/R-induced injury by diminishing infiltration of immune cells in the alveolar space, reducing pulmonary edema, and improving pulmonary function. Ultrastructural studies support severe mitochondrial impairment in the lung undergoing I/R injury, which was significantly protected by nitrite treatment. Nitrite also abrogated the increased pulmonary vascular permeability caused by I/R. In vitro, hypoxia-reoxygenation (H/R) exacerbated cell death in lung epithelial and microvascular endothelial cells. This contributed to mitochondrial dysfunction as characterized by diminished complex I activity and mitochondrial membrane potential but increased mitochondrial reactive oxygen species (mtROS). Pretreatment of cells with nitrite robustly attenuated mtROS production through modulation of complex I activity. These findings illustrate a potential novel mechanism in which nitrite protects the lung against I/R injury by regulating mitochondrial bioenergetics and vascular permeability.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kentaro Noda
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Philips
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Murugesan Velayutham
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
173
|
Abdullaev S, Gubina N, Bulanova T, Gaziev A. Assessment of Nuclear and Mitochondrial DNA, Expression of Mitochondria-Related Genes in Different Brain Regions in Rats after Whole-Body X-ray Irradiation. Int J Mol Sci 2020; 21:ijms21041196. [PMID: 32054039 PMCID: PMC7072726 DOI: 10.3390/ijms21041196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 01/02/2023] Open
Abstract
Studies of molecular changes occurred in various brain regions after whole-body irradiation showed a significant increase in terms of the importance in gaining insight into how to slow down or prevent the development of long-term side effects such as carcinogenesis, cognitive impairment and other pathologies. We have analyzed nDNA damage and repair, changes in mitochondrial DNA (mtDNA) copy number and in the level of mtDNA heteroplasmy, and also examined changes in the expression of genes involved in the regulation of mitochondrial biogenesis and dynamics in three areas of the rat brain (hippocampus, cortex and cerebellum) after whole-body X-ray irradiation. Long amplicon quantitative polymerase chain reaction (LA-QPCR) was used to detect nDNA and mtDNA damage. The level of mtDNA heteroplasmy was estimated using Surveyor nuclease technology. The mtDNA copy numbers and expression levels of a number of genes were determined by real-time PCR. The results showed that the repair of nDNA damage in the rat brain regions occurs slowly within 24 h; in the hippocampus, this process runs much slower. The number of mtDNA copies in three regions of the rat brain increases with a simultaneous increase in mtDNA heteroplasmy. However, in the hippocampus, the copy number of mutant mtDNAs increases significantly by the time point of 24 h after radiation exposure. Our analysis shows that in the brain regions of irradiated rats, there is a decrease in the expression of genes (ND2, CytB, ATP5O) involved in ATP synthesis, although by the same time point after irradiation, an increase in transcripts of genes regulating mitochondrial biogenesis is observed. On the other hand, analysis of genes that control the dynamics of mitochondria (Mfn1, Fis1) revealed that sharp decrease in gene expression level occurred, only in the hippocampus. Consequently, the structural and functional characteristics of the hippocampus of rats exposed to whole-body radiation can be different, most significantly from those of the other brain regions.
Collapse
Affiliation(s)
- Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
- Correspondence: ; Tel.: +7-(4967)-739364; Fax: +7-(4967)-330553
| | - Nina Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
| | - Tatiana Bulanova
- Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| | - Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (N.G.); (A.G.)
- Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| |
Collapse
|
174
|
Kesäniemi J, Lavrinienko A, Tukalenko E, Moutinho AF, Mappes T, Møller AP, Mousseau TA, Watts PC. Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent. Evol Ecol 2020. [DOI: 10.1007/s10682-019-10028-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractMitochondria are sensitive to oxidative stress, including that derived from ionizing radiation. To quantify the effects of exposure to environmental radionuclides on mitochondrial DNA (mtDNA) dynamics in wildlife, bank voles (Myodes glareolus) were collected from the chernobyl exclusion zone (CEZ), where animals are exposed to elevated levels of radionuclides, and from uncontaminated areas within the CEZ and elsewhere in Ukraine. Brains of bank voles from outside the CEZ were characterized by low mtDNA copy number and low mtDNA damage; by contrast, bank voles within the CEZ had high mtDNA copy number and high mtDNA damage, consistent with putative damaging effects of elevated radiation and a compensatory response to maintain sufficient functioning mitochondria. In animals outside the CEZ, the expression levels of PGC-1α gene and mtDNA copy number were positively correlated as expected from this gene’s prominent role in mitochondrial biogenesis; this PGC-1α-mtDNA copy number association is absent in samples from the CEZ. Our data imply that exposure to radionuclides is associated with altered mitochondrial dynamics, evident in level of mtDNA and mtDNA damage and the level of activity in mitochondrial synthesis.
Collapse
|
175
|
Hasap L, Chotigeat W, Pradutkanchana J, Vongvatcharanon U, Kitpipit T, Thanakiatkrai P. A novel, 4-h DNA extraction method for STR typing of casework bone samples. Int J Legal Med 2020; 134:461-471. [PMID: 31897668 DOI: 10.1007/s00414-019-02232-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
Bones are often found in mass grave crime scene. To increase DNA identification success rates, a highly efficient DNA extraction method should be selected. Several DNA extraction methods for human bones have been published yet never been systematically compared, and some are time-consuming or complex. As such, a quick and highly efficient DNA extraction method was developed and compared with three published methods (Hi-Flow silica-based, total demineralization (TD) and PrepFiler BTA) using 70 fresh and 22 casework bones from different body parts. The highest median DNA concentrations were obtained from developed method (135.85 ng/μL and 0.224 ng/μL for fresh and casework bones, respectively). For residual PCR inhibitors, the threshold cycle (Ct) of the internal positive control (IPC) showed that developed method and PrepFiler BTA removed most PCR inhibitors. Similarly, 95.45% of casework STR profiles obtained using the developed protocol meet the standard requirements for Australian National Criminal Investigative DNA Database (NCIDD) entry, followed by 86.35% using TD, 81.82% using PrepFiler BTA, and 45.45% using Hi-Flow. Additionally, DNA extracts from seven different bones revealed that the 1st distal phalange of the hand contained the highest DNA concentration of 338.43 ng/μL, which was three times higher than the tibia and femur. Our findings suggest that developed method was highly efficient for casework bone analysis. It significantly reduced the extraction processing time down to 4 h and is two to four times cheaper compared with other methods. In practice, both the extraction method and the bone sampling must be considered by a forensic DNA analyst to increase the chances of successful identification.
Collapse
Affiliation(s)
- Laila Hasap
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Jintana Pradutkanchana
- Forensic Medicine and Toxicology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Uraporn Vongvatcharanon
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Thitika Kitpipit
- Forensic Science Program, Department of Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Phuvadol Thanakiatkrai
- Forensic Science Program, Department of Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand.
| |
Collapse
|
176
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
177
|
Matkarimov BT, Saparbaev MK. DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for Asymmetric DNA Strand Inheritance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:77-100. [DOI: 10.1007/978-3-030-41283-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
178
|
Yang K, Li X, Forman MR, Monahan PO, Graham BH, Joshi A, Song M, Hang D, Ogino S, Giovannucci EL, De Vivo I, Chan AT, Nan H. Pre-diagnostic leukocyte mitochondrial DNA copy number and colorectal cancer risk. Carcinogenesis 2019; 40:1462-1468. [PMID: 31556446 PMCID: PMC7346713 DOI: 10.1093/carcin/bgz159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is susceptible to oxidative stress and mutation. Few epidemiological studies have assessed the relationship between mtDNA copy number (mtDNAcn) and risk of colorectal cancer (CRC), with inconsistent findings. In this study, we examined the association between pre-diagnostic leukocyte mtDNAcn and CRC risk in a case-control study of 324 female cases and 658 matched controls nested within the Nurses' Health Study (NHS). Relative mtDNAcn in peripheral blood leukocytes was measured by quantitative polymerase chain reaction-based assay. Conditional logistic regression models were applied to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the association of interest. Results showed lower log-mtDNAcn was significantly associated with increased risk of CRC, in a dose-dependent relationship (P for trend < 0.0001). Compared to the fourth quartile, multivariable-adjusted OR [95% confidence interval (CI)] was 1.10 (0.69, 1.76) for the third quartile, 1.40 (0.89, 2.19) for the second quartile and 2.19 (1.43, 3.35) for the first quartile. In analysis by anatomic subsite of CRC, we found a significant inverse association for proximal colon cancer [lowest versus highest quartile, multivariable-adjusted OR (95% CI) = 3.31 (1.70, 6.45), P for trend = 0.0003]. Additionally, stratified analysis according to the follow-up time since blood collection showed that the inverse association between mtDNAcn and CRC remained significant among individuals with ≥ 5 years' follow-up, and marginally significant among those with ≥ 10 years' follow-up since mtDNAcn testing, suggesting that mtDNAcn may serve as a long-term predictor for risk of CRC. In conclusion, pre-diagnostic leukocyte mtDNAcn was inversely associated with CRC risk. Further basic experimental studies are needed to explore the underlying biological mechanisms linking mtDNAcn to CRC carcinogenesis.
Collapse
Affiliation(s)
- Keming Yang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Michele R Forman
- Department of Nutrition Science, College of Health and Human Science, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Patrick O Monahan
- Department of Biostatistics, School of Medicine and Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Bret H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amit Joshi
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong Hang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
179
|
Eltania F, Lesmana R, Sudigdoadi S, Sudigdoadi S, Khairani AF, Goenawan H, Citrawan A, Armina Yuniarti R, Wahyudianingsih R, Gunadi JW, Supratman U. Tranexamic Acid Cream Protects Ultraviolet B-induced Photoaging in Balb/c Mice Skin by Increasing Mitochondrial Markers: Changes Lead to Improvement of Histological Appearance. Photochem Photobiol 2019; 96:863-869. [PMID: 31788813 DOI: 10.1111/php.13189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
Abstract
Tranexamic acid (TSA) is widely used as an antiaging treatment for reducing melasma and wrinkles. There are various mechanisms for wrinkle formation, and one of them is due to damage of the mitochondria. Research on mitochondria in the skin is very limited, so we are interested to see the changes that occur after application of TSA cream. We explored the effect of TSA on mitochondrial protein levels (PGC1α, Tom20, COX IV), which had affected to skin histological structure. Thirty male, 6-week-old, Balb/C mice were divided into five groups (negative control, positive control, TSA 3%, TSA 4% and TSA 5%). After 10 days of acclimatization, four groups of mice were exposed to UVB light, of which three groups were given TSA cream for 10 weeks. The skin tissue was excised for protein and histological studies. H&E staining was performed for evaluating histological changes in epidermal thickness and dermal elastosis. TSA treatment on the mice skin increased mitochondrial marker levels and epidermal thickness while decreasing dermal elastosis for all the treatment groups. Topical application of TSA significantly increased mitochondrial biogenesis which may cause alteration in epidermal thickness and reduced dermal elastosis in the histology of mice skin.
Collapse
Affiliation(s)
- Fransiska Eltania
- Department of Pharmacology, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.,Graduate Programme of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjajaran, Bandung, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjajaran, Bandung, Indonesia
| | - Sunaryati Sudigdoadi
- Graduate Programme of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
| | - Sudigdoadi Sudigdoadi
- Graduate Programme of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Astrid Feinisa Khairani
- Graduate Programme of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Division of Cell Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.,Division of Biological Activity, Central Laboratory, Universitas Padjajaran, Bandung, Indonesia
| | - Andrew Citrawan
- Luminos Aestethic Clinic, Telogorejo Hospital, Semarang, Indonesia
| | | | - Roro Wahyudianingsih
- Department of Pathology Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Unang Supratman
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjajaran, Bandung, Indonesia.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
180
|
Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol Aspects Med 2019; 71:100840. [PMID: 31882067 DOI: 10.1016/j.mam.2019.100840] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In the first part of this review, we summarize basic mitochondrial bioenergetics concepts showing that mitochondria are critical regulators of cell life and death. Until a few decades ago, mitochondria were considered to play essential roles only in respiration, ATP formation, non-shivering thermogenesis and a variety of metabolic pathways. However, the concept presented by Peter Mitchell regarding coupling between electron flow and ATP synthesis through the intermediary of a H+ electrochemical potential leads to the recognition that the proton-motive force also regulates a series of relevant cell signalling processes, such as superoxide generation, redox balance and Ca2+ handling. Alterations in these processes lead to cell death and disease states. In the second part of this review, we discuss the role of mitochondrial dysfunctions in the specific context of hypercholesterolemia-induced atherosclerosis. We provide a literature analysis that indicates a decisive role of mitochondrial redox dysfunction in the development of atherosclerosis and discuss the underlying molecular mechanisms. Finally, we highlight the potential mitochondrial-targeted therapeutic strategies that are relevant for atherosclerosis.
Collapse
Affiliation(s)
- Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
181
|
Nekvinda J, Różycka D, Rykowski S, Wyszko E, Fedoruk-Wyszomirska A, Gurda D, Orlicka-Płocka M, Giel-Pietraszuk M, Kiliszek A, Rypniewski W, Bachorz R, Wojcieszak J, Grüner B, Olejniczak AB. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorg Chem 2019; 94:103432. [PMID: 31776032 DOI: 10.1016/j.bioorg.2019.103432] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 12/27/2022]
Abstract
The development of 1,8-naphthalimide derivatives as DNA-targeting anticancer agents is a rapidly growing area and has resulted in several derivatives entering into clinical trials. One of original recent developments is the use of boron clusters: carboranes and metallacarboranes in the design of pharmacologically active molecules. In this direction several naphthalimide-carborane and metallacarborane conjugates were synthesized in the present study. Their effect on a cancer cell line - cytotoxicity, type of cell death, cell cycle, and ROS production were investigated. The tested conjugates revealed different activities than the leading members of the naphthalimides family, namely mitonafide and pinafide. These derivatives could induce G0/G1 arrest and promote mainly apoptosis in HepG2 cell line. Our investigations demonstrated that the most promising molecule is N-{[2-(3,3'-commo-bis(1,2-dicarba-3-cobalta(III)-closo-dodecaborate-1-yl)ethyl]-1'-aminoethyl)}-1,8-naphthalimide] (17). It was shown that 17 exhibited cytotoxicity against HepG2 cells, activated cell apoptosis, and caused cell cycle arrest in HepG2 cells. Further investigations in HepG2 cells revealed that compound 17 can also induce ROS generation, particularly mitochondrial ROS (mtROS), which was also proved by increased 8-oxo-dG level in DNA. Additionally to biological assays the interaction of the new compounds with ct-DNA was studied by CD spectra and melting temperature, thus demonstrating that these compounds were rather weak classical DNA intercalators.
Collapse
Affiliation(s)
- Jan Nekvinda
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic; Department of Organic Chemistry, Faculty of Sciences, Charles University, Hlavova 2030, 128 42 Prague 2, Czech Republic
| | - Daria Różycka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland.
| | | | - Dorota Gurda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Marta Orlicka-Płocka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Z. Noskowskiego St., 61-704 Poznan, Poland
| | - Rafał Bachorz
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland
| | - Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| | - Bohumir Grüner
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Agnieszka B Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., Lodz 93-232, Poland.
| |
Collapse
|
182
|
Yuzefovych LV, Pastukh VM, Ruchko MV, Simmons JD, Richards WO, Rachek LI. Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance. PLoS One 2019; 14:e0222278. [PMID: 31600210 PMCID: PMC6786592 DOI: 10.1371/journal.pone.0222278] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cells damaged by mechanical or infectious injury release proinflammatory mitochondrial DNA (mtDNA) fragments into the circulation. We evaluated the relation between plasma levels of mtDNA fragments in obese type 2 diabetes mellitus (T2DM) patients and measures of chronic inflammation and insulin resistance. In 10 obese T2DM patients and 12 healthy control (HC) subjects, we measured levels of plasma cell-free mtDNA with quantitative real-time polymerase chain reaction, and mtDNA damage in skeletal muscle with quantitative alkaline Southern blot. Also, markers of systemic inflammation and oxidative stress in skeletal muscle were measured. Plasma levels of mtDNA fragments, mtDNA damage in skeletal muscle and plasma tumor necrosis factor α levels were greater in obese T2DM patients than HC subjects. Also, the abundance of plasma mtDNA fragments in obese T2DM patients levels positively correlated with insulin resistance. To the best of our knowledge, this is the first published evidence that elevated level of plasma mtDNA fragments is associated with mtDNA damage and oxidative stress in skeletal muscle and correlates with insulin resistance in obese T2DM patients. Plasma mtDNA may be a useful biomarker for predicting and monitoring insulin resistance in obese patients.
Collapse
Affiliation(s)
- Larysa V. Yuzefovych
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Viktor M. Pastukh
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Mykhaylo V. Ruchko
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Jon D. Simmons
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - William O. Richards
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Lyudmila I. Rachek
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
183
|
Bernal M, Yang X, Lisby M, Mazón G. The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair (Amst) 2019; 82:102684. [DOI: 10.1016/j.dnarep.2019.102684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
184
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
185
|
Chen YF, Dugas TR. Endothelial mitochondrial senescence accelerates cardiovascular disease in antiretroviral-receiving HIV patients. Toxicol Lett 2019; 317:13-23. [PMID: 31562912 DOI: 10.1016/j.toxlet.2019.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Combination antiretroviral therapy (cART) has been hugely successful in reducing the mortality associated with human immunodeficiency virus (HIV) infection, resulting in a growing population of people living with HIV (PLWH). Since PLWH now have a longer life expectancy, chronic comorbidities have become the focus of the clinical management of HIV. For example, cardiovascular complications are now one of the most prevalent causes of death in PLWH. Numerous epidemiological studies show that antiretroviral treatment increases cardiovascular disease (CVD) risk and early onset of CVD in PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and two NRTIs are typically used in combination with one drug from another drug class, e.g., a fusion inhibitor. NRTIs are known to induce mitochondrial dysfunction, contributing to toxicity in numerous tissues, such as myopathy, lipoatrophy, neuropathy, and nephropathy. In in vitro studies, short-term NRTI treatment induces an endothelial dysfunction with an increased reactive oxygen species (ROS) production; long-term NRTI treatment decreases cell replication capacity, while increasing mtROS production and senescent cell accumulation. These findings suggest that a mitochondrial oxidative stress is involved in the pathogenesis of NRTI-induced endothelial dysfunction and premature senescence. Mitochondrial dysfunction, defined by a compromised mitochondrial quality control via biogenesis and mitophagy, has a causal role in premature endothelial senescence and can potentially initiate early cardiovascular disease (CVD) development in PLWH. In this review, we explore the hypothesis and present literature supporting that long-term NRTI treatment induces vascular dysfunction by interfering with endothelial mitochondrial homeostasis and provoking mitochondrial genomic instability, resulting in premature endothelial senescence.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States
| | - Tammy R Dugas
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States.
| |
Collapse
|
186
|
Reactive oxygen species-mediated senescence is accelerated by inhibiting Cdk2 in Idh2-deficient conditions. Aging (Albany NY) 2019; 11:7242-7256. [PMID: 31503005 PMCID: PMC6756887 DOI: 10.18632/aging.102259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Among the many factors that promote cellular senescence, reactive oxygen species (ROS) are a focus of intense research because of their critical role in accelerating cellular senescence and initiating senescence-related diseases that can be fatal. Therefore, maintaining the proper balance of ROS in cells is a key method to alleviate senescence. Recent studies have found that isocitrate dehydrogenase 2 (IDH2), a critical enzyme of the tricarboxylic acid cycle, participates in ROS generation and in cellular dysfunction that is induced by excessive levels of ROS. Loss of IDH2 induces mitochondrial dysfunction that promotes excessive ROS generation and the development of several diseases. The results of this study suggest that Idh2 plays an important role in cellular senescence. Idh2 deficiency resulted in senescence-associated phenotypes and increased levels of senescence marker proteins in mouse embryonic fibroblasts and tissues. Furthermore, excessive ROS were generated in Idh2-deficient conditions, promoting cellular senescence by inducing cell cycle arrest through cyclin-dependent kinase 2. These results indicate that loss of Idh2 is a critical factor in regulating cellular senescence. Taken together, our findings contribute to the field of senescence research and suggest that IDH2 is a potential target of future anti-senescence studies.
Collapse
|
187
|
Abstract
Over the last decade, several theoretical models have been put forth to describe how animals respond to adverse environments and how this response changes under different physiological demands across life history stages. These models capture the context- and condition-dependent nature of stress responses. Yet, application of the models has been limited thus far in part because each model addresses different aspects of the problems facing the field of stress biology. Thus, there is a need for a unifying theoretical model that incorporates changes in physiological demand with life history stages and age, intricate relationships among physiological systems, and biphasic nature of stress responses. Here, I propose a new integrative framework, the Damage-Fitness Model. In this model, regulators, such as DNA repair mechanisms and glucocorticoids, work together as anti-damage mechanisms to minimize damage at both the cellular and organismal level. When the anti-damage regulators are insufficient or inappropriate, persistent damage accumulates. Previous studies indicate that these damage directly impact reproductive performance, disease risk, and survival. The types of regulators, the threshold at which they are initiated, and the magnitude of the responses are shaped by developmental and current environments. This model unites existing theoretical models by shifting our focus from physiological responses to downstream consequences of the stress responses, circumventing context specificity. Discussions include (1) how the proposed model relates to existing models, (2) steps to test the new model, and (3) how this model can be used to better assess the health of individuals and a population. Lay summary The field of stress physiology faces a challenge of characterizing dynamic cellular, physiological, and behavioral responses when animals encounter a stressor. This paper proposes a new theoretical model which links stress avoidance, damage repair and accumulation, and fitness components.
Collapse
Affiliation(s)
- Haruka Wada
- a Department of Biological Sciences, Auburn University , Auburn , AL , USA
| |
Collapse
|
188
|
IDH2 deficiency exacerbates acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced apoptosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2333-2341. [DOI: 10.1016/j.bbadis.2019.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022]
|
189
|
Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites. Proc Natl Acad Sci U S A 2019; 116:17792-17799. [PMID: 31413200 DOI: 10.1073/pnas.1911252116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In higher eukaryotic cells, mitochondria are essential subcellular organelles for energy production, cell signaling, and the biosynthesis of biomolecules. The mitochondrial DNA (mtDNA) genome is indispensable for mitochondrial function because it encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. MtDNA degradation has emerged as an essential quality control measure to maintain mtDNA and to cope with mtDNA damage resulting from endogenous and environmental factors. Among all types of DNA damage known, abasic (AP) sites, sourced from base excision repair and spontaneous base loss, are the most abundant endogenous DNA lesions in cells. In mitochondria, AP sites trigger rapid DNA loss; however, the mechanism and molecular factors involved in the process remain elusive. Herein, we demonstrate that the stability of AP sites is reduced dramatically upon binding to a major mtDNA packaging protein, mitochondrial transcription factor A (TFAM). The half-life of AP lesions within TFAM-DNA complexes is 2 to 3 orders of magnitude shorter than that in free DNA, depending on their position. The TFAM-catalyzed AP-DNA destabilization occurs with nonspecific DNA or mitochondrial light-strand promoter sequence, yielding DNA single-strand breaks and DNA-TFAM cross-links. TFAM-DNA cross-link intermediates prior to the strand scission were also observed upon treating AP-DNA with mitochondrial extracts of human cells. In situ trapping of the reaction intermediates (DNA-TFAM cross-links) revealed that the reaction proceeds via Schiff base chemistry facilitated by lysine residues. Collectively, our data suggest a novel role of TFAM in facilitating the turnover of abasic DNA.
Collapse
|
190
|
Kauppila JHK, Bonekamp NA, Mourier A, Isokallio MA, Just A, Kauppila TES, Stewart JB, Larsson NG. Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Res 2019; 46:6642-6669. [PMID: 29860357 PMCID: PMC6061787 DOI: 10.1093/nar/gky456] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations become more prevalent with age and are postulated to contribute to the ageing process. Point mutations of mtDNA have been suggested to originate from two main sources, i.e. replicative errors and oxidative damage, but the contribution of each of these processes is much discussed. To elucidate the origin of mtDNA mutations, we measured point mutation load in mice with deficient mitochondrial base-excision repair (BER) caused by knockout alleles preventing mitochondrial import of the DNA repair glycosylases OGG1 and MUTYH (Ogg1 dMTS, Mutyh dMTS). Surprisingly, we detected no increase in the mtDNA mutation load in old Ogg1 dMTS mice. As DNA repair is especially important in the germ line, we bred the BER deficient mice for five consecutive generations but found no increase in the mtDNA mutation load in these maternal lineages. To increase reactive oxygen species (ROS) levels and oxidative damage, we bred the Ogg1 dMTS mice with tissue specific Sod2 knockout mice. Although increased superoxide levels caused a plethora of changes in mitochondrial function, we did not detect any changes in the mutation load of mtDNA or mtRNA. Our results show that the importance of oxidative damage as a contributor of mtDNA mutations should be re-evaluated.
Collapse
Affiliation(s)
- Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nina A Bonekamp
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Arnaud Mourier
- Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, Bordeaux, France
| | - Marita A Isokallio
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Alexandra Just
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - James B Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
191
|
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019; 25:101084. [PMID: 30612957 PMCID: PMC6859528 DOI: 10.1016/j.redox.2018.101084] [Citation(s) in RCA: 1229] [Impact Index Per Article: 204.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are a group of short-lived, highly reactive, oxygen-containing molecules that can induce DNA damage and affect the DNA damage response (DDR). There is unequivocal pre-clinical and clinical evidence that ROS influence the genotoxic stress caused by chemotherapeutics agents and ionizing radiation. Recent studies have provided mechanistic insight into how ROS can also influence the cellular response to DNA damage caused by genotoxic therapy, especially in the context of Double Strand Breaks (DSBs). This has led to the clinical evaluation of agents modulating ROS in combination with genotoxic therapy for cancer, with mixed success so far. These studies point to context dependent outcomes with ROS modulator combinations with Chemotherapy and radiotherapy, indicating a need for additional pre-clinical research in the field. In this review, we discuss the current knowledge on the effect of ROS in the DNA damage response, and its clinical relevance.
Collapse
Affiliation(s)
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Hospital, Singapore.
| |
Collapse
|
192
|
Morshed SA, Ma R, Latif R, Davies TF. Cleavage Region Thyrotropin Receptor Antibodies Influence Thyroid Cell Survival In Vivo. Thyroid 2019; 29:993-1002. [PMID: 31025602 PMCID: PMC6648196 DOI: 10.1089/thy.2018.0633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Graves' disease is associated with thyrotropin receptor (TSHR) antibodies of variable bioactivity. Recently, antibodies have been characterized that bind to the cleavage region of the TSHR ectodomain (C-TSHR-Ab), and their ability to induce thyroid cell apoptosis in vitro via excessive cell stress involving multiple organelles was demonstrated. Methods: To investigate the in vivo effects of C-TSHR-Ab, first a murine monoclonal antibody (mAb) directed against residues 337 to 356 of the TSHR cleavage region was developed, and then it was injected into mice. Results: These injections caused reduced serum total triiodothyronine and thyroxine and increased TSH levels compared to control mAb-injected mice. The C-TSHR-mAb induced histological evidence of endoplasmic reticulum stress, mitochondrial stress, and apoptosis in the thyroid glands. C-TSHR-mAb-mediated apoptosis was associated with cellular infiltrates consisting mostly of macrophages, dendritic cells, and neutrophils, while T- and B-lymphocytes were scarce. In addition, in the treated mouse thyroid tissue, hyper-citrullination of histone H3 was also found. This is known to occur via peptidylarginine deiminase 4 and plays an important role in the formation of neutrophil extracellular traps, which are likely to be partly responsible for thyroid infiltration, as seen in many autoimmune diseases. Examination of thyroid tissue from patients with Graves' disease also showed increased stress and some thyrocyte apoptosis compared to normal thyroid tissues. Conclusions: The fact that the C-TSHR-mAb induced accumulation of macrophages, neutrophils, and dendritic cells indicates that innate immunity plays a central role in shaping the adaptive immune response to the TSHR. In addition, this study provides further evidence that the hinge region of the TSHR ectodomain is intimately involved in the immune response in autoimmune thyroid disease.
Collapse
Affiliation(s)
- Syed A. Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, and the James J. Peters VA Medical Center, New York, New York
- Address correspondence to: Syed Morshed, MD, PhD, Mount Sinai Medical Center, Box 1055, 1428 Madison Avenue, New York, NY 10029
| | - Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, and the James J. Peters VA Medical Center, New York, New York
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, and the James J. Peters VA Medical Center, New York, New York
| | - Terry F. Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, and the James J. Peters VA Medical Center, New York, New York
| |
Collapse
|
193
|
Zahedi A, Phandthong R, Chaili A, Leung S, Omaiye E, Talbot P. Mitochondrial Stress Response in Neural Stem Cells Exposed to Electronic Cigarettes. iScience 2019; 16:250-269. [PMID: 31200115 PMCID: PMC6562374 DOI: 10.1016/j.isci.2019.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells provide a sensitive model to study exposure to toxicants, such as cigarette smoke. Electronic cigarettes (ECs) are popular nicotine delivery devices, often targeted to youth and pregnant mothers. However, little is known about how chemicals in ECs might affect neural stem cells, and in particular their mitochondria, organelles that maintain cell functionality and health. Here we show that the mechanism underlying EC-induced stem cell toxicity is stress-induced mitochondrial hyperfusion (SIMH), a transient survival response accompanied by increased mitochondrial oxidative stress. We identify SIMH as a survival response to nicotine, now widely available in EC refill fluids and in pure form for do-it-yourself EC products. These observed mitochondrial alterations combined with autophagy dysfunction to clear damaged mitochondria could lead to faulty stem cell populations, accelerate cellular aging, and lead to acquired mitochondriopathies. Any nicotine-containing product may likewise stress stem cells with long-term repercussions for users and passively exposed individuals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Atena Zahedi
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Angela Chaili
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Sara Leung
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Esther Omaiye
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA
| | - Prue Talbot
- Bioengineering Department, University of California, Riverside CA 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA; UCR Stem Cell Center and Core, University of California, Riverside CA 92521, USA.
| |
Collapse
|
194
|
Bigland MJ, Brichta AM, Smith DW. Effects of Ageing on the Mitochondrial Genome in Rat Vestibular Organs. Curr Aging Sci 2019; 11:108-117. [PMID: 30777575 PMCID: PMC6388513 DOI: 10.2174/1874609811666180830143358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 01/07/2023]
Abstract
Background: Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for ener-gy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process. Objective: We investigated the effects of ageing on mtDNA in vestibular hair and support cells, and vestibular organ gene expression, to better understand mechanisms of age-related vestibular deficits. Methods: Vestibular hair and supporting cell layers were microdissected from young and old rats, and mtDNA was quantified by qPCR. Additionally, vestibular organ gene expression was analysed by microarray and gene set enrichment analyses. Results: In contrast to most other studies, we found no evidence of age-related mtDNA deletion mu-tations. However, we found an increase in abundance of major arc genes near the mtDNA control re-gion. There was also a marked age-related reduction in mtDNA copy number in both cell types. Ves-tibular organ gene expression, gene set enrichment analysis showed the OXPHOS pathway was down regulated in old animals. Conclusion: Given the importance of mtDNA to mitochondrial OXPHOS and hair cell function, our findings suggest the vestibular organs are potentially on the brink of an energy crisis in old animals
Collapse
Affiliation(s)
- Mark J Bigland
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alan M Brichta
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Doug W Smith
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
195
|
Mammalian Tyrosyl-DNA Phosphodiesterases in the Context of Mitochondrial DNA Repair. Int J Mol Sci 2019; 20:ijms20123015. [PMID: 31226795 PMCID: PMC6628236 DOI: 10.3390/ijms20123015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
Mammalian mitochondria contain four topoisomerases encoded in the nuclear genome: TOP1MT, TOP2α, TOP2β, and TOP3α. They also contain the two known tyrosyl-DNA phosphodiesterases (TDPs): TDP1 and TDP2, including a specific TDP2S isoform. Both TDP1 and TDP2 excise abortive topoisomerase cleavage complexes (TOPccs), yet their molecular structures and mechanisms are different. TDP1 is present across eukaryotes, from yeasts to humans and belongs to the phospholipase D family. It functions without a metal cofactor and has a broad activity range, as it also serves to cleanse blocking 3′-DNA ends bearing phosphoglycolate, deoxyribose phosphate, nucleoside, nucleoside analogs (zidovudine), abasic moieties, and with a lower efficiency, TOP2ccs. Found in higher vertebrates, TDP2 is absent in yeast where TDP1 appears to perform its functions. TDP2 belongs to the exonuclease/endonuclease/phosphodiesterase family and requires magnesium as a cofactor to excise TOP2ccs, and it also excises TOP1ccs, albeit with a lower efficiency. Here, we review TDP1 and TDP2 in the context of mitochondrial DNA repair and discuss potential new research areas centered on the mitochondrial TDPs.
Collapse
|
196
|
Wheeler JH, Young CKJ, Young MJ. Analysis of Human Mitochondrial DNA Content by Southern Blotting and Nonradioactive Probe Hybridization. CURRENT PROTOCOLS IN TOXICOLOGY 2019; 80:e75. [PMID: 30982231 PMCID: PMC6581606 DOI: 10.1002/cptx.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A single cell can contain several thousand copies of the mitochondrial DNA genome or mtDNA. Tools for assessing mtDNA content are necessary for clinical and toxicological research, as mtDNA depletion is linked to genetic disease and drug toxicity. For instance, mtDNA depletion syndromes are typically fatal childhood disorders that are characterized by severe declines in mtDNA content in affected tissues. Mitochondrial toxicity and mtDNA depletion have also been reported in human immunodeficiency virus-infected patients treated with certain nucleoside reverse transcriptase inhibitors. Further, cell culture studies have demonstrated that exposure to oxidative stress stimulates mtDNA degradation. Here we outline a Southern blot and nonradioactive digoxigenin-labeled probe hybridization method to estimate mtDNA content in human genomic DNA samples. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Joel H. Wheeler
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Carolyn K. J. Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Matthew J. Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
197
|
Kaufman BA, Picard M, Sondheimer N. Mitochondrial DNA, nuclear context, and the risk for carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:455-462. [PMID: 29332303 PMCID: PMC6045969 DOI: 10.1002/em.22169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 12/20/2017] [Indexed: 05/05/2023]
Abstract
The inheritance of mitochondrial DNA (mtDNA) from mother to child is complicated by differences in the stability of the mitochondrial genome. Although the germ line mtDNA is protected through the minimization of replication between generations, sequence variation can occur either through mutation or due to changes in the ratio between distinct genomes that are present in the mother (known as heteroplasmy). Thus, the unpredictability in transgenerational inheritance of mtDNA may cause the emergence of pathogenic mitochondrial and cellular phenotypes in offspring. Studies of the role of mitochondrial metabolism in cancer have a long and rich history, but recent evidence strongly suggests that changes in mitochondrial genotype and phenotype play a significant role in the initiation, progression and treatment of cancer. At the intersection of these two fields lies the potential for emerging mtDNA mutations to drive carcinogenesis in the offspring. In this review, we suggest that this facet of transgenerational carcinogenesis remains underexplored and is a potentially important contributor to cancer. Environ. Mol. Mutagen. 60:455-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA (USA)
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032 USA
- Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032 USA
| | - Neal Sondheimer
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada M5G1X8
- Department of Paediatrics, The University of Toronto School of Medicine, Toronto, ON, Canada M5G1X8
- Correspondence to: Neal Sondheimer, 555 University Avenue, Toronto ON M5G 1X8, p – 416-813-7654 x 301480, f – 416-813-5345,
| |
Collapse
|
198
|
Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int J Mol Sci 2019; 20:ijms20102374. [PMID: 31091656 PMCID: PMC6566654 DOI: 10.3390/ijms20102374] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disease that affects millions of people worldwide and is the main reason for legal blindness and vision loss in the elderly in developed countries. Although the cause of AMD pathogenesis is not known, oxidative stress-related damage to retinal pigment epithelium (RPE) is considered an early event in AMD induction. However, the precise cause of such damage and of the induction of oxidative stress, including related oxidative effects occurring in RPE and the onset and progression of AMD, are not well understood. Many results point to mitochondria as a source of elevated levels of reactive oxygen species (ROS) in AMD. This ROS increase can be associated with aging and effects induced by other AMD risk factors and is correlated with damage to mitochondrial DNA. Therefore, mitochondrial DNA (mtDNA) damage can be an essential element of AMD pathogenesis. This is supported by many studies that show a greater susceptibility of mtDNA than nuclear DNA to DNA-damaging agents in AMD. Therefore, the mitochondrial DNA damage reaction (mtDDR) is important in AMD prevention and in slowing down its progression as is ROS-targeting AMD therapy. However, we know far less about mtDNA than its nuclear counterparts. Further research should measure DNA damage in order to compare it in mitochondria and the nucleus, as current methods have serious disadvantages.
Collapse
|
199
|
Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci 2019; 236:116464. [PMID: 31078546 DOI: 10.1016/j.lfs.2019.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
The function of liver is highly dependent on mitochondria producing ATP for biosynthetic and detoxifying properties. Accumulating evidence indicates that most hepatic disorders are characterized by profound mitochondrial dysfunction. Mitochondrial dysfunction not only exhibits mitochondrial DNA (mtDNA) damage and depletion, but also releases mtDNA. mtDNA is a closed circular molecule encoding 13 of the polypeptides of the oxidative phosphorylation system. Extensive mtDNA lesions could exacerbate mitochondrial oxidative stress and subsequently cause damage to hepatocytes. When mtDNA leaves the confines of mitochondria to the cytosolic and extracellular environment, it can act as damage-associated molecular patterns (DAMPs) to trigger the inflammatory response through the Toll-like receptor 9, inflammasomes, and stimulator of interferon genes (STING) pathways and further exacerbate hepatocellular damage and even remote organs injury. In addition, mtDNA also plays a vital role in hepatitis B virus (HBV)-related liver injury and hepatocellular carcinoma (HCC). In this review, we describe mtDNA alterations during liver injury, focusing on the mechanisms of mtDNA-mediated liver inflammation and oxidative stress injury.
Collapse
Affiliation(s)
- Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | - Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Zhiwu Hong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | -
- Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| |
Collapse
|
200
|
Bermúdez-Guzmán L, Leal A. DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Transl Neurodegener 2019; 8:14. [PMID: 31110700 PMCID: PMC6511134 DOI: 10.1186/s40035-019-0156-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
- Neuroscience Research Center, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|