151
|
Nam YJ, Tran LSP, Kojima M, Sakakibara H, Nishiyama R, Shin R. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis. PLoS One 2012; 7:e47797. [PMID: 23112848 PMCID: PMC3480408 DOI: 10.1371/journal.pone.0047797] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Potassium (K) is an important plant macronutrient that has various functions throughout the whole plant over its entire life span. Cytokinins (CKs) are known to regulate macronutrient homeostasis by controlling the expression of nitrate, phosphate and sulfate transporters. Although several studies have described how CKs signal deficiencies for some macronutrients, the roles of CKs in K signaling are poorly understood. CK content has been shown to decrease under K-starved conditions. Specifically, a CK-deficient mutant was more tolerant to low K than wild-type; however, a plant with an overaccumulation of CKs was more sensitive to low K. These results suggest that K deprivation alters CK metabolism, leading to a decrease in CK content. To investigate this phenomenon further, several Arabidopsis lines, including a CK-deficient mutant and CK receptor mutants, were analyzed in low K conditions using molecular, genetic and biochemical approaches. ROS accumulation and root hair growth in low K were also influenced by CKs. CK receptor mutants lost the responsiveness to K-deficient signaling, including ROS accumulation and root hair growth, but the CK-deficient mutant accumulated more ROS and exhibited up-regulated expression of HAK5, which is a high-affinity K uptake transporter gene that is rapidly induced by low K stress in ROS- and ethylene-dependent manner in response to low K. From these results, we conclude that a reduction in CK levels subsequently allows fast and effective stimulation of low K-induced ROS accumulation, root hair growth and HAK5 expression, leading to plant adaptation to low K conditions.
Collapse
Affiliation(s)
| | | | - Mikiko Kojima
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | | | - Rie Nishiyama
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Ryoung Shin
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
152
|
Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:332-48. [PMID: 22811435 PMCID: PMC3440210 DOI: 10.1104/pp.112.198705] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/16/2012] [Indexed: 05/17/2023]
Abstract
Chloroplasts develop from proplastids in a process that requires the interplay of nuclear and chloroplast genomes, but key steps in this developmental process have yet to be elucidated. Here, we show that the nucleus-localized transcription factors GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA1 (CGA1) regulate chloroplast development, growth, and division in Arabidopsis (Arabidopsis thaliana). GNC and CGA1 are highly expressed in green tissues, and the phytohormone cytokinin regulates their expression. A gnc cga1 mutant exhibits a reduction in overall chlorophyll levels as well as in chloroplast size in the hypocotyl. Ectopic overexpression of either GNC or CGA1 promotes chloroplast biogenesis in hypocotyl cortex and root pericycle cells, based on increases in the number and size of the chloroplasts, and also results in expanded zones of chloroplast production into the epidermis of hypocotyls and cotyledons and into the cortex of roots. Ectopic overexpression also promotes the development of etioplasts from proplastids in dark-grown seedlings, subsequently enhancing the deetiolation process. Inducible expression of GNC demonstrates that GNC-mediated chloroplast biogenesis can be regulated postembryonically, notably so for chloroplast production in cotyledon epidermal cells. Analysis of the gnc cga1 loss-of-function and overexpression lines supports a role for these transcription factors in regulating the effects of cytokinin on chloroplast division. These data support a model in which GNC and CGA1 serve as two of the master transcriptional regulators of chloroplast biogenesis, acting downstream of cytokinin and mediating the development of chloroplasts from proplastids and enhancing chloroplast growth and division in specific tissues.
Collapse
|
153
|
Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-Zeatin-O-glucosyltransferase in rice. PLANT PHYSIOLOGY 2012; 160:319-31. [PMID: 22811434 PMCID: PMC3440209 DOI: 10.1104/pp.112.196733] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
cis-Zeatin (cZ) is generally regarded as a cytokinin with little or no activity, compared with the highly active trans-zeatin (tZ). Although recent studies suggested possible roles for cZ, its physiological significance remains unclear. In our studies with rice (Oryza sativa), cZ inhibited seminal root elongation and up-regulated cytokinin-inducible genes, and its activities were comparable to those of tZ. Tracer experiments showed that exogenously supplied cZ-riboside was mainly converted into cZ derivatives but scarcely into tZ derivatives, indicating that isomerizations of cZ derivatives into tZ derivatives are a minor pathway in rice cytokinin metabolism. We identified three putative cZ-O-glucosyltransferases (cZOGT1, cZOGT2, and cZOGT3) in rice. The cZOGTs preferentially catalyzed O-glucosylation of cZ and cZ-riboside rather than tZ and tZ-riboside in vitro. Transgenic rice lines ectopically overexpressing the cZOGT1 and cZOGT2 genes exhibited short-shoot phenotypes, delay of leaf senescence, and decrease in crown root number, while cZOGT3 overexpressor lines did not show shortened shoots. These results propose that cZ activity has a physiological impact on the growth and development of rice.
Collapse
|
154
|
Dello Ioio R, Galinha C, Fletcher A, Grigg S, Molnar A, Willemsen V, Scheres B, Sabatini S, Baulcombe D, Maini P, Tsiantis M. A PHABULOSA/Cytokinin Feedback Loop Controls Root Growth in Arabidopsis. Curr Biol 2012; 22:1699-704. [DOI: 10.1016/j.cub.2012.07.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 05/17/2012] [Accepted: 07/03/2012] [Indexed: 11/27/2022]
|
155
|
Song J, Jiang L, Jameson PE. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC PLANT BIOLOGY 2012; 12:78. [PMID: 22672647 PMCID: PMC3410795 DOI: 10.1186/1471-2229-12-78] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 06/06/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. RESULTS The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. CONCLUSIONS Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.
Collapse
Affiliation(s)
- Jiancheng Song
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, 32 Qingquan Road, Yantai, 264005, China
| | - Lijun Jiang
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- School of Life Sciences, Yantai University, 32 Qingquan Road, Yantai, 264005, China
| | - Paula Elizabeth Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
156
|
Parizot B, Roberts I, Raes J, Beeckman T, De Smet I. In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2012; 367:1479-88. [PMID: 22527390 PMCID: PMC3321678 DOI: 10.1098/rstb.2011.0227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis, lateral root initiation occurs in a subset of pericycle cells at the xylem pole that will divide asymmetrically to give rise to a new lateral root organ. While lateral roots never develop at the phloem pole, it is unclear how the interaction with xylem and phloem poles determines the distinct pericycle identities with different competences. Nevertheless, pericycle cells at these poles are marked by differences in size, by ultrastructural features and by specific proteins and gene expression. Here, we provide transcriptional evidence that pericycle cells are intimately associated with their vascular tissue instead of being a separate concentric layer. This has implications for the identification of cell- and tissue-specific promoters that are necessary to drive and/or alter gene expression locally, avoiding pleiotropic effects. We were able to identify a small set of genes that display specific expression in the phloem or xylem pole pericycle cells, and we were able to identify motifs that are likely to drive expression in either one of those tissues.
Collapse
Affiliation(s)
- Boris Parizot
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Ianto Roberts
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Jeroen Raes
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
157
|
Sp Chal LX. Cytokinins - recent news and views of evolutionally old molecules. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:267-284. [PMID: 32480780 DOI: 10.1071/fp11276] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/06/2012] [Indexed: 05/03/2023]
Abstract
Cytokinins (CKs) are evolutionally old and highly conserved low-mass molecules that have been identified in almost all known organisms. In plants, they evolved into an important group of plant hormones controlling many physiological and developmental processes throughout the whole lifespan of the plant. CKs and their functions are, however, not unique to plants. In this review, the strategies and mechanisms of plants - and phylogenetically distinct plant-interacting organisms such as bacteria, fungi, nematodes and insects employing CKs or regulation of CK status in plants - are described and put into their evolutionary context. The major breakthroughs made in the last decade in the fields of CK biosynthesis, degradation and signalling are also summarised.
Collapse
Affiliation(s)
- Luk X Sp Chal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic. Email
| |
Collapse
|
158
|
Hachiya T, Watanabe CK, Fujimoto M, Ishikawa T, Takahara K, Kawai-Yamada M, Uchimiya H, Uesono Y, Terashima I, Noguchi K. Nitrate Addition Alleviates Ammonium Toxicity Without Lessening Ammonium Accumulation, Organic Acid Depletion and Inorganic Cation Depletion in Arabidopsis thaliana Shoots. ACTA ACUST UNITED AC 2012; 53:577-91. [DOI: 10.1093/pcp/pcs012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
159
|
Bouguyon E, Gojon A, Nacry P. Nitrate sensing and signaling in plants. Semin Cell Dev Biol 2012; 23:648-54. [PMID: 22273693 DOI: 10.1016/j.semcdb.2012.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/10/2012] [Indexed: 11/29/2022]
Abstract
Nitrate (NO(3)(-)) is a major nutrient for plants, taken up by their roots from the soil. Plants are able to sense NO(3)(-) in their environment, allowing them to quickly respond to the dramatic fluctuations of its availability. Significant advances have been made during the recent period concerning the molecular mechanisms of NO(3)(-) sensing and signaling in the model plant Arabidopsis thaliana. The striking action of NO(3)(-) as a signal regulating genome expression has been unraveled. Note worthily, NO(3)(-) sensing systems have been identified. These correspond to membrane transporters also ensuring the uptake of NO(3)(-) into root cells, thus generalizing the nutrient 'transceptor' (transporter/receptor) concept defined in yeast. Furthermore, components of the downstream transduction cascades, such as transcription factors or kinases, have also been isolated. A breakthrough arising from this improved knowledge is a better understanding of the integration of NO(3)(-) and hormone signaling pathways, that explains the extraordinary developmental plasticity of plants in response to NO(3)(-).
Collapse
Affiliation(s)
- Eléonore Bouguyon
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes-Claude Grignon, Place Viala, 34060 Montpellier Cedex 1, France
| | | | | |
Collapse
|
160
|
Abstract
Crop productivity relies heavily on nitrogen (N) fertilization. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment; therefore, increasing plant N use efficiency (NUE) is essential for the development of sustainable agriculture. Plant NUE is inherently complex, as each step-including N uptake, translocation, assimilation, and remobilization-is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. Increasing both the grain and N harvest index to drive N acquisition and utilization are important approaches for breeding future high-NUE cultivars.
Collapse
Affiliation(s)
- Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | | | | |
Collapse
|
161
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
162
|
Hermans C, Porco S, Vandenbussche F, Gille S, De Pessemier J, Van Der Straeten D, Verbruggen N, Bush DR. Dissecting the role of CHITINASE-LIKE1 in nitrate-dependent changes in root architecture. PLANT PHYSIOLOGY 2011; 157:1313-26. [PMID: 21949212 PMCID: PMC3252165 DOI: 10.1104/pp.111.181461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/22/2011] [Indexed: 05/21/2023]
Abstract
The root phenotype of an Arabidopsis (Arabidopsis thaliana) mutant of CHITINASE-LIKE1 (CTL1), called arm (for anion-related root morphology), was previously shown to be conditional on growth on high nitrate, chloride, or sucrose. Mutants grown under restrictive conditions displayed inhibition of primary root growth, radial swelling, proliferation of lateral roots, and increased root hair density. We found here that the spatial pattern of CTL1 expression was mainly in the root and root tips during seedling development and that the protein localized to the cell wall. Fourier-transform infrared microspectroscopy of mutant root tissues indicated differences in spectra assigned to linkages in cellulose and pectin. Indeed, root cell wall polymer composition analysis revealed that the arm mutant contained less crystalline cellulose and reduced methylesterification of pectins. We also explored the implication of growth regulators on the phenotype of the mutant response to the nitrate supply. Exogenous abscisic acid application inhibited more drastically primary root growth in the arm mutant but failed to repress lateral branching compared with the wild type. Cytokinin levels were higher in the arm root, but there were no changes in mitotic activity, suggesting that cytokinin is not directly involved in the mutant phenotype. Ethylene production was higher in arm but inversely proportional to the nitrate concentration in the medium. Interestingly, eto2 and eto3 ethylene overproduction mutants mimicked some of the conditional root characteristics of the arm mutant on high nitrate. Our data suggest that ethylene may be involved in the arm mutant phenotype, albeit indirectly, rather than functioning as a primary signal.
Collapse
Affiliation(s)
- Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci U S A 2011; 108:18524-9. [PMID: 22025711 DOI: 10.1073/pnas.1108684108] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As sessile organisms, root plasticity enables plants to forage for and acquire nutrients in a fluctuating underground environment. Here, we use genetic and genomic approaches in a "split-root" framework--in which physically isolated root systems of the same plant are challenged with different nitrogen (N) environments--to investigate how systemic signaling affects genome-wide reprogramming and root development. The integration of transcriptome and root phenotypes enables us to identify distinct mechanisms underlying "N economy" (i.e., N supply and demand) of plants as a system. Under nitrate-limited conditions, plant roots adopt an "active-foraging strategy", characterized by lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate deprivation. By contrast, in nitrate-replete conditions, plant roots adopt a "dormant strategy", characterized by a repression of lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate supply. Sentinel genes responding to systemic N signaling identified by genome-wide comparisons of heterogeneous vs. homogeneous split-root N treatments were used to probe systemic N responses in Arabidopsis mutants impaired in nitrate reduction and hormone synthesis and also in decapitated plants. This combined analysis identified genetically distinct systemic signaling underlying plant N economy: (i) N supply, corresponding to a long-distance systemic signaling triggered by nitrate sensing; and (ii) N demand, experimental support for the transitive closure of a previously inferred nitrate-cytokinin shoot-root relay system that reports the nitrate demand of the whole plant, promoting a compensatory root growth in nitrate-rich patches of heterogeneous soil.
Collapse
|
164
|
Abstract
Shoot branching is a highly plastic developmental process in which axillary buds are formed in the axil of each leaf and may subsequently be activated to give branches. Three classes of plant hormones, auxins, cytokinins and strigolactones (or strigolactone derivatives) are central to the control of bud activation. These hormones move throughout the plant forming a network of systemic signals. The past decade brought great progress in understanding the mechanisms of shoot branching control. Biological and computational studies have led to the proposal of two models, the auxin transport canalization-based model and the second messenger model, which provide mechanistic explanations for apical dominance.
Collapse
|
165
|
Skylar A, Wu X. Regulation of meristem size by cytokinin signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:446-54. [PMID: 21554538 DOI: 10.1111/j.1744-7909.2011.01045.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The plant meristems possess unique features that involve maintaining the stem cell populations while providing cells for continued development. Although both the primary shoot apical meristem (SAM) and the root apical meristem (RAM) are specified during embryogenesis, post-embryonic tissue proliferation is required for their full establishment and maintenance throughout a plants' life. The phytohormone cytokinin (CK) interacts with other systemic signals and is a key regulator of meristem size and functions. The SAM and the RAM respond to CK stimulations in different manners: CK promotes tissue proliferation in the SAM through pathways dominated by homeobox transcription factors, including the class I KNOX genes, STIP, and WUS; and curiously, it favors proliferation at low levels and differentiation at a slightly higher concentration in the RAM instead. Here we review the current understanding of the molecular mechanisms underlying CK actions in regulating meristematic tissue proliferation.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
166
|
Ding C, You J, Wang S, Liu Z, Li G, Wang Q, Ding Y. A proteomic approach to analyze nitrogen- and cytokinin-responsive proteins in rice roots. Mol Biol Rep 2011; 39:1617-26. [PMID: 21607616 DOI: 10.1007/s11033-011-0901-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/17/2011] [Indexed: 01/24/2023]
Abstract
Nitrogen plays a central role in rice growth and development because it modulates a wide variety of processes, including cytokinin (CK) metabolism. CK-mediated signaling is also related to nitrogen metabolism. The functional relation between nitrogen and CK are extremely complex and unclear. In this study, a comparative proteomic analysis was carried out to analyze proteins regulated by nitrogen and CK in rice roots. Proteins extracted from rice roots are separated by two-dimensional polyacrylamide gel electrophoresis. Thirty-two protein spots that expressed similarly by nitrogen and CK treatments are selected for identification by mass spectrometry. Of these spots, 28 are successfully identified. These proteins were categorized into classes related to energy, metabolism, disease/defense, protein degradation, signal transduction, transposons, and unclear classification. Energy gives the largest functional category, suggesting that the glycolysis (two enzymes detected) and tricarboxylic acid cycle (six enzymes detected) are accurately regulated by nitrogen and CK, thus promoting the synthesis of amino acid. The identification of novel proteins provides new insights into the coordination of nitrogen and CK in rice. The possible role of these proteins is discussed.
Collapse
Affiliation(s)
- Chengqiang Ding
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
167
|
Heyl A, Riefler M, Romanov GA, Schmülling T. Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol 2011; 91:246-56. [PMID: 21561682 DOI: 10.1016/j.ejcb.2011.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/20/2022] Open
Abstract
The discovery of cytokinin receptors of Arabidopsis thaliana ten years ago was a milestone in plant hormone research. Since then, research has yielded insights into the biochemical properties and functions of these sensor histidine kinases. Their affinities to both trans-zeatin and isopentenyladenine are in the low nM range. Cytokinin ribosides, cis-zeatin and thidiazuron were established as compounds with genuine cytokinin activity and the first cytokinin antagonists were identified. Numerous functions of cytokinin receptors in plant development, as well as in the plant's responses to the environment, have been elucidated and are summarized. Finally, we address the question how the receptors have evolved during plant evolution.
Collapse
Affiliation(s)
- Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
168
|
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2431-52. [PMID: 21321050 DOI: 10.1093/jxb/err004] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinin hormones are important regulators of development and environmental responses of plants that execute their action via the molecular machinery of signal perception and transduction. The limiting step of the whole process is the availability of the hormone in suitable concentrations in the right place and at the right time to interact with the specific receptor. Hence, the hormone concentrations in individual tissues, cells, and organelles must be properly maintained by biosynthetic and metabolic enzymes. Although there are merely two active cytokinins, isopentenyladenine and its hydroxylated derivative zeatin, a variety of conjugates they may form and the number of enzymes/isozymes with varying substrate specificity involved in their biosynthesis and conversion gives the plant a variety of tools for fine tuning of the hormone level. Recent genome-wide studies revealed the existence of the respective coding genes and gene families in plants and in some bacteria. This review summarizes present knowledge on the enzymes that synthesize cytokinins, form cytokinin conjugates, and carry out irreversible elimination of the hormones, including their phylogenetic analysis and possible variations in different organisms.
Collapse
Affiliation(s)
- Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 813/21, CZ-78371 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
169
|
Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B. A framework integrating plant growth with hormones and nutrients. TRENDS IN PLANT SCIENCE 2011; 16:178-82. [PMID: 21393048 DOI: 10.1016/j.tplants.2011.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/07/2011] [Indexed: 05/03/2023]
Abstract
It is well known that nutrient availability controls plant development. Moreover, plant development is finely tuned by a myriad of hormonal signals. Thus, it is not surprising to see increasing evidence of coordination between nutritional and hormonal signaling. In this opinion article, we discuss how nitrogen signals control the hormonal status of plants and how hormonal signals interplay with nitrogen nutrition. We further expand the discussion to include other nutrient-hormone pairs. We propose that nutrition and growth are linked by a multi-level, feed-forward cycle that regulates plant growth, development and metabolism via dedicated signaling pathways that mediate nutrient and hormonal regulation. We believe this model will provide a useful concept for past and future research in this field.
Collapse
Affiliation(s)
- Gabriel Krouk
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | | | | | | | | | | | | |
Collapse
|
170
|
Lin M, Zhou X, Shen X, Mao C, Chen X. The predicted Arabidopsis interactome resource and network topology-based systems biology analyses. THE PLANT CELL 2011; 23:911-22. [PMID: 21441435 PMCID: PMC3082272 DOI: 10.1105/tpc.110.082529] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 12/30/2010] [Accepted: 03/10/2011] [Indexed: 05/17/2023]
Abstract
Predicted interactions are a valuable complement to experimentally reported interactions in molecular mechanism studies, particularly for higher organisms, for which reported experimental interactions represent only a small fraction of their total interactomes. With careful engineering consideration of the lessons from previous efforts, the predicted arabidopsis interactome resource (PAIR; ) presents 149,900 potential molecular interactions, which are expected to cover approximately 24% of the entire interactome with approximately 40% precision. This study demonstrates that, although PAIR still has limited coverage, it is rich enough to capture many significant functional linkages within and between higher-order biological systems, such as pathways and biological processes. These inferred interactions can nicely power several network topology-based systems biology analyses, such as gene set linkage analysis, protein function prediction, and identification of regulatory genes demonstrating insignificant expression changes. The drastically expanded molecular network in PAIR has considerably improved the capability of these analyses to integrate existing knowledge and suggest novel insights into the function and coordination of genes and gene networks.
Collapse
Affiliation(s)
- Mingzhi Lin
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Department of Bioinformatics, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xi Zhou
- Department of Bioinformatics, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xueling Shen
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Xin Chen
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Department of Bioinformatics, Zhejiang University, Hangzhou 310058, People’s Republic of China
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| |
Collapse
|
171
|
Castro Marín I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. PLANTA 2011; 233:539-52. [PMID: 21113723 PMCID: PMC3043248 DOI: 10.1007/s00425-010-1316-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/04/2010] [Indexed: 05/20/2023]
Abstract
The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways.
Collapse
Affiliation(s)
| | - Irene Loef
- Botany Institute, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Linda Bartetzko
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Iain Searle
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Daniel Osuna
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
- Present Address: Dpto. de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
172
|
Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1399-409. [PMID: 21196475 DOI: 10.1093/jxb/erq410] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
173
|
Hachiya T, Noguchi K. Integrative response of plant mitochondrial electron transport chain to nitrogen source. PLANT CELL REPORTS 2011; 30:195-204. [PMID: 21132432 DOI: 10.1007/s00299-010-0955-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.
Collapse
Affiliation(s)
- Takushi Hachiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
174
|
Vidal EA, Tamayo KP, Gutierrez RA. Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:683-93. [PMID: 20890965 DOI: 10.1002/wsbm.87] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitrogen (N) is an essential macronutrient for plants. In nature, N cycles between different inorganic and organic forms some of which can serve as nutrients for plants. The inorganic N forms nitrate and ammonium are the most important sources of N for plants. However, plants can also uptake and use organic N forms such as amino acids and urea. Besides their nutritional role, nitrate and other forms of N can also act as signals that regulate the expression of hundreds of genes causing modulation of plant metabolism, physiology, growth, and development. Although many genes and processes affected by changes in external or internal N have been identified, the molecular mechanisms involved in N sensing and signaling are still poorly understood. Classic reverse and forward genetics and more recently the advent of genomic and systems approaches have helped to characterize some of the components of the signaling pathways directing Arabidopsis responses to N. Here, we provide an update on recent advances to identify the components involved in N sensing and signaling in Arabidopsis and their importance for the plant response to N.
Collapse
Affiliation(s)
- Elena A Vidal
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
175
|
Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Lutts S, Dodd IC, Pérez-Alfocea F. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:125-40. [PMID: 20959628 PMCID: PMC2993914 DOI: 10.1093/jxb/erq266] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/14/2010] [Accepted: 07/26/2010] [Indexed: 05/18/2023]
Abstract
Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100 mM NaCl for 22 d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K(+) (20%) and decreases in the toxic ion Na(+) (by 30%) and abscisic acid (by 20-40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75 mM NaCl for 90 d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.
Collapse
Affiliation(s)
- Michel Edmond Ghanem
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium
| | - Alfonso Albacete
- CEBAS-CSIC, Campus de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Ann C. Smigocki
- USDA, ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA
| | - Ivo Frébort
- Department of Biochemistry, Palacký University, Czech Republic
| | | | | | - Manuel Acosta
- Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - José Sánchez-Bravo
- Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Francisco Pérez-Alfocea
- CEBAS-CSIC, Campus de Espinardo, E-30100, Espinardo, Murcia, Spain
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
176
|
Černý M, Dyčka F, Bobál'ová J, Brzobohatý B. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:921-37. [PMID: 20974740 PMCID: PMC3022391 DOI: 10.1093/jxb/erq322] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/24/2010] [Accepted: 09/21/2010] [Indexed: 05/20/2023]
Abstract
Cytokinins are plant hormones involved in regulation of diverse developmental and physiological processes in plants whose molecular mechanisms of action are being intensely researched. However, most rapid responses to cytokinin signals at the proteomic and phosphoproteomic levels are unknown. Early cytokinin responses were investigated through proteome-wide expression profiling based on image and mass spectrometric analysis of two-dimensionally separated proteins and phosphoproteins. The effects of 15 min treatments of 7-day-old Arabidopsis thaliana seedlings with four main cytokinins representing hydroxyisopentenyl, isopentenyl, aromatic, and urea-derived type cytokinins were compared to help elucidate their common and specific function(s) in regulating plant development. In proteome and phosphoproteome maps, significant differences were reproducibly observed for 53 and 31 protein spots, respectively. In these spots, 96 proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS), providing a snapshot of early links in cytokinin-regulated signalling circuits and cellular processes, including light signalling and photosynthesis, nitrogen metabolism, the CLAVATA pathway, and protein and gene expression regulation, in accordance with previously described cytokinin functions. Furthermore, they indicate novel links between temperature and cytokinin signalling, and an involvement of calcium ions in cytokinin signalling. Most of the differentially regulated proteins and phosphoproteins are located in chloroplasts, suggesting an as yet uncharacterized direct signalling chain responsible for cytokinin action in chloroplasts. Finally, first insights into the degree of specificity of cytokinin receptors on phosphoproteomic effects were obtained from analyses of cytokinin action in a set of cytokinin receptor double mutants.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno and Institute of Biophysics AS CR, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Filip Dyčka
- Institute of Analytical Chemistry AS CR, v.v.i., Veveří 97, CZ-60200 Brno, Czech Republic
| | - Janette Bobál'ová
- Institute of Analytical Chemistry AS CR, v.v.i., Veveří 97, CZ-60200 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno and Institute of Biophysics AS CR, v.v.i., Královopolská 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
177
|
Garnica M, Houdusse F, Zamarreño AM, Garcia-Mina JM. The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1264-1272. [PMID: 20598773 DOI: 10.1016/j.jplph.2010.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
Ammonium can result in toxicity symptoms in many plants when supplied as a sole nitrogen source. Nitrate reduces the negative effects caused by ammonium and promotes plant growth. In order to explore the mechanism responsible of this beneficial effect, we investigated whether nitrate application causes significant changes in the indoleacetic acid (IAA)- and cytokinin-plant distribution and abscisic acid (ABA) accumulation in wheat (Triticum aestivum L.) plants grown with ammonium. Two different doses of nitrate were supplied to ammonium-fed plants (100 microM and 5mM), to determine whether the effects of nitrate require significant doses (nutritional character), or can be promoted by very low doses (signal effect). The results showed that the presence of NO(3)(-) was associated with clear increases in the active forms of cytokinins (zeatine (Z), trans-zeatine riboside (tZR), isopentenyl adenosine (IPR)) and reduction of the levels of the lower active forms (cis-zeatine riboside (cZR)), independently of the dose applied. Likewise, the presence of nitrate also enhanced IAA shoot content, which correlated with higher cytokinin levels and a tendency toward lower ABA concentration. This study presents further evidence that the possible signal effect of NO(3)(-) involved in its beneficial effect on the growth of wheat plants fed with NH(4)(+) could be mediated by a coordinated action of the levels of cytokinins, IAA and ABA in the shoot.
Collapse
Affiliation(s)
- Maria Garnica
- CIPAV-Roullier Group, Poligono Arazuri-Orcoyen, 31160 Orcoyen, Navarra, Spain
| | | | | | | |
Collapse
|
178
|
|
179
|
Waldie T, Hayward A, Beveridge CA. Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture? PLANT MOLECULAR BIOLOGY 2010; 73:27-36. [PMID: 20112050 DOI: 10.1007/s11103-010-9599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 01/07/2010] [Indexed: 05/11/2023]
Abstract
Strigolactones have recently been identified as the long sought-after signal required to inhibit shoot branching (Gomez-Roldan et al. 2008; Umehara et al. 2008; reviewed in Dun et al. 2009). Here we briefly describe the evidence for strigolactone inhibition of shoot branching and, more extensively, the broader context of this action. We address the central question of why strigolactone mutants exhibit a varied branching phenotype across a wide range of experimental conditions. Where knowledge is available, we highlight the role of other hormones in dictating these phenotypes and describe those instances where our knowledge of known plant hormones and their interactions falls considerably short of explaining the phenotypes. This review will focus on bud outgrowth in herbaceous species because knowledge on the role of strigolactones in shoot branching to date barely extends beyond this group of plants.
Collapse
Affiliation(s)
- Tanya Waldie
- School of Biological Sciences and Australian Research Council Centre of Excellence in Integrative Legume Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
180
|
Hermans C, Porco S, Verbruggen N, Bush DR. Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions. PLANT PHYSIOLOGY 2010; 152:904-17. [PMID: 20007445 PMCID: PMC2815904 DOI: 10.1104/pp.109.149849] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/03/2009] [Indexed: 05/19/2023]
Abstract
Plant root architecture is highly responsive to changes in nutrient availability. However, the molecular mechanisms governing the adaptability of root systems to changing environmental conditions is poorly understood. A screen for abnormal root architecture responses to high nitrate in the growth medium was carried out for a population of ethyl methanesulfonate-mutagenized Arabidopsis (Arabidopsis thaliana). The growth and root architecture of the arm (for anion altered root morphology) mutant described here was similar to wild-type plants when grown on low to moderate nitrate concentrations, but on high nitrate, arm exhibited reduced primary root elongation, radial swelling, increased numbers of lateral roots, and increased root hair density when compared to the wild-type control. High concentrations of chloride and sucrose induced the same phenotype. In contrast, hypocotyl elongation in the dark was decreased independently of nitrate availability. Positional cloning identified a point mutation in the AtCTL1 gene that encodes a chitinase-related protein, although molecular and biochemical analysis showed that this protein does not possess chitinase enzymatic activity. CTL1 appears to play two roles in plant growth and development based on the constitutive effect of the arm mutation on primary root growth and its conditional impact on root architecture. We hypothesize that CTL1 plays a role in determining cell wall rigidity and that the activity is differentially regulated by pathways that are triggered by environmental conditions. Moreover, we show that mutants of some subunits of the cellulose synthase complex phenocopy the conditional effect on root architecture under nonpermissive conditions, suggesting they are also differentially regulated in response to a changing environment.
Collapse
Affiliation(s)
| | | | | | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523 (C.H., S.P., D.R.B.); and Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Bd du Triomphe, B–1050 Brussels, Belgium (C.H., S.P., N.V.)
| |
Collapse
|
181
|
Kudo T, Kiba T, Sakakibara H. Metabolism and long-distance translocation of cytokinins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:53-60. [PMID: 20074140 DOI: 10.1111/j.1744-7909.2010.00898.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During plant development, distantly-located organs must communicate in order to adapt morphological and physiological features in response to environmental inputs. Among the recognized signaling molecules, a class of phytohormones known as the cytokinins functions as both local and long-distance regulatory signals for the coordination of plant development. This cytokinin-dependent communication system consists of orchestrated regulation of the metabolism, translocation, and signal transduction of this phytohormone class. Here, to gain insight into this elaborate signaling system, we summarize current models of biosynthesis, trans-membrane transport, and long-distance translocation of cytokinins in higher plants.
Collapse
Affiliation(s)
- Toru Kudo
- RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045, Japan
| | | | | |
Collapse
|
182
|
Chu HM, Ko TP, Wang AHJ. Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides. Nucleic Acids Res 2009; 38:1738-48. [PMID: 20007608 PMCID: PMC2836551 DOI: 10.1093/nar/gkp1093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA–IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA–IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT–ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA–IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP ∼ ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the β and γ-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA–IPT, HlAIPT has evolved with a different binding strategy for adenylate.
Collapse
Affiliation(s)
- Hsing-Mao Chu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan
| | | | | |
Collapse
|
183
|
Zhang J, Vankova R, Malbeck J, Dobrev PI, Xu Y, Chong K, Neff MM. AtSOFL1 and AtSOFL2 act redundantly as positive modulators of the endogenous content of specific cytokinins in Arabidopsis. PLoS One 2009; 4:e8236. [PMID: 20011053 PMCID: PMC2785485 DOI: 10.1371/journal.pone.0008236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/28/2009] [Indexed: 01/07/2023] Open
Abstract
Background Although cytokinins have been known for decades to play important roles in the regulation of plant growth and development, our knowledge of the regulatory mechanism of endogenous content of specific cytokinins remains limited. Methodology/Principal Findings Here, we characterized two SOB five-like (SOFL) genes, AtSOFL1 and AtSOFL2, in Arabidopsis (Arabidopsis thaliana) and showed that they acted redundantly in regulating specific cytokinin levels. Analysis of the translational fusion AtSOFL1:AtSOFL1-GUS and AtSOFL2:AtSOFL2-GUS indicated that AtSOFL1 and AtSOFL2 exhibited similar expression patterns. Both proteins were predominantly expressed in the vascular tissues of developing leaves, flowers and siliques, but barely detectable in roots and stems. Overexpression of either AtSOFL1 or AtSOFL2 led to increased cytokinin content and obvious corresponding mutant phenotypes for both transgenic seedlings and adult plants. In addition, overexpression and site-directed mutagenesis experiments demonstrated that the SOFL domains are necessary for AtSOFL2's overexpression phenotypes. Silencing or disrupting either AtSOFL1 or AtSOFL2 caused no obvious developmental defects. Endogenous cytokinin analysis, however, revealed that compared to the wild type control, the SOFL1-RNAi62 sofl2-1 double mutant accumulated lower levels of trans-zeatin riboside monophosphate (tZRMP) and N6-(Δ2-isopentenyl)adenosine monophosphate (iPRMP), which are biosynthetic intermediates of bioactive cytokinins. The double mutant also displayed decreased response to exogenous cytokinin in both callus-formation and inhibition-of-hypocotyl-elongation assays. Conclusions/Significance Taken together, our data suggest that in plants AtSOFL1 and AtSOFL2 work redundantly as positive modulators in the fine-tuning of specific cytokinin levels as well as responsiveness.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic
| | - Jiri Malbeck
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael M. Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- * E-mail:
| |
Collapse
|
184
|
Ma QH, Liu YC. Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth. PLANT CELL REPORTS 2009; 28:1759-65. [PMID: 19820948 DOI: 10.1007/s00299-009-0776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/05/2009] [Accepted: 09/19/2009] [Indexed: 05/28/2023]
Abstract
A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T(2) progeny had become homozygous for the transgene. Stable inheritance of the intact ipt gene in T(2) progeny was verified by Southern hybridization. Northern blot hybridization revealed that the expression of this ipt gene was confined in leaves and stems but undetectable in roots of the transgenic plants. Endogenous cytokinin levels in the leaves and stems of the transgenic tobaccos were two to threefold higher than that of control, but in roots, both the transgenic and control tobaccos had similar cytokinin levels. The elevated cytokinin levels in the transgenic tobacco leaves resulted in delayed leaf senescence in terms of chlorophyll content without affecting the net photosynthetic rate. The root growth and morphology of the plant were not affected in the transgenic tobacco.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
185
|
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. THE PLANT CELL 2009; 21:3152-69. [PMID: 19837870 PMCID: PMC2782294 DOI: 10.1105/tpc.109.068676] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytokinins play crucial roles in diverse aspects of plant growth and development. Spatiotemporal distribution of bioactive cytokinins is finely regulated by metabolic enzymes. LONELY GUY (LOG) was previously identified as a cytokinin-activating enzyme that works in the direct activation pathway in rice (Oryza sativa) shoot meristems. In this work, nine Arabidopsis thaliana LOG genes (At LOG1 to LOG9) were predicted as homologs of rice LOG. Seven At LOGs, which are localized in the cytosol and nuclei, had enzymatic activities equivalent to that of rice LOG. Conditional overexpression of At LOGs in transgenic Arabidopsis reduced the content of N(6)-(Delta(2)-isopentenyl)adenine (iP) riboside 5'-phosphates and increased the levels of iP and the glucosides. Multiple mutants of At LOGs showed a lower sensitivity to iP riboside in terms of lateral root formation and altered root and shoot morphology. Analyses of At LOG promoter:beta-glucuronidase fusion genes revealed differential expression of LOGs in various tissues during plant development. Ectopic overexpression showed pleiotropic phenotypes, such as promotion of cell division in embryos and leaf vascular tissues, reduced apical dominance, and a delay of leaf senescence. Our results strongly suggest that the direct activation pathway via LOGs plays a pivotal role in regulating cytokinin activity during normal growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Takeshi Kuroha
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroki Tokunaga
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Mikiko Kojima
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Nanae Ueda
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Ishida
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Shingo Nagawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
- Address correspondence to
| |
Collapse
|
186
|
Vyroubalová S, Václavíková K, Turecková V, Novák O, Smehilová M, Hluska T, Ohnoutková L, Frébort I, Galuszka P. Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. PLANT PHYSIOLOGY 2009; 151:433-47. [PMID: 19641027 PMCID: PMC2735981 DOI: 10.1104/pp.109.142489] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/27/2009] [Indexed: 05/17/2023]
Abstract
Plant hormones, cytokinins (CKs), have been for a long time considered to be involved in plant responses to stress. However, their exact roles in processes linked to stress signalization and acclimatization to adverse environmental conditions are unknown. In this study, expression profiles of the entire gene families of CK biosynthetic and degradation genes in maize (Zea mays) during development and stress responses are described. Transcript abundance of particular genes is discussed in relation to the levels of different CK metabolites. Salt and osmotic stresses induce expression of some CK biosynthetic genes in seedlings of maize, leading to a moderate increase of active forms of CKs lasting several days during acclimatization to stress. A direct effect of CKs to mediate activation of stress responses does not seem to be possible due to the slow changes in metabolite levels. However, expression of genes involved in cytokinin signal transduction is uniformly down-regulated within 0.5 h of stress induction by an unknown mechanism. cis-Zeatin and its derivatives were found to be the most abundant CKs in young maize seedlings. We demonstrate that levels of this zeatin isomer are significantly enhanced during early stress response and that it originates independently from de novo biosynthesis in stressed tissues, possibly by elevated specific RNA degradation. By enhancing their CK levels, plants could perhaps undergo a reduction of growth rates maintained by abscisic acid accumulation in stressed tissues. A second role for cytokinin receptors in sensing turgor response is hypothesized besides their documented function in CK signaling.
Collapse
Affiliation(s)
- Sárka Vyroubalová
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc CZ-78371, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Argueso CT, Ferreira FJ, Kieber JJ. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. PLANT, CELL & ENVIRONMENT 2009; 32:1147-60. [PMID: 19183294 DOI: 10.1111/j.1365-3040.2009.01940.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinins were discovered in the 1950s by their ability to promote cell division in cultured plant cells. Recently, there have been significant breakthroughs in our understanding of the biosynthesis, metabolism, perception and signal transduction of this phytohormone. These advances, coupled with physiological and other approaches, have enabled remarkable progress to be made in our understanding of the interactions between cytokinin function and environmental inputs. In this review, we first highlight the most recent advances in our understanding of cytokinin biosynthesis, metabolism and signalling. We then discuss how various environmental signals interact with these pathways to modulate plant growth, development and physiology.
Collapse
Affiliation(s)
- Cristiana T Argueso
- University of North Carolina, Biology Department, CB# 3280, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
188
|
Hejátko J, Ryu H, Kim GT, Dobesová R, Choi S, Choi SM, Soucek P, Horák J, Pekárová B, Palme K, Brzobohaty B, Hwang I. The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. THE PLANT CELL 2009; 21:2008-21. [PMID: 19622803 PMCID: PMC2729606 DOI: 10.1105/tpc.109.066696] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/16/2009] [Accepted: 06/30/2009] [Indexed: 05/18/2023]
Abstract
The development and activity of the procambium and cambium, which ensure vascular tissue formation, is critical for overall plant architecture and growth. However, little is known about the molecular factors affecting the activity of vascular meristems and vascular tissue formation. Here, we show that the His kinase CYTOKININ-INDEPENDENT1 (CKI1) and the cytokinin receptors ARABIDOPSIS HISTIDINE KINASE2 (AHK2) and AHK3 are important regulators of vascular tissue development in Arabidopsis thaliana shoots. Genetic modifications of CKI1 activity in Arabidopsis cause dysfunction of the two-component signaling pathway and defects in procambial cell maintenance. CKI1 overexpression in protoplasts leads to cytokinin-independent activation of the two-component phosphorelay, and intracellular domains are responsible for the cytokinin-independent activity of CKI1. CKI1 expression is observed in vascular tissues of inflorescence stems, and CKI1 forms homodimers both in vitro and in planta. Loss-of-function ahk2 and ahk3 mutants and plants with reduced levels of endogenous cytokinins show defects in procambium proliferation and an absence of secondary growth. CKI1 overexpression partially rescues ahk2 ahk3 phenotypes in vascular tissue, while the negative mutation CKI1H405Q further accentuates mutant phenotypes. These results indicate that the cytokinin-independent activity of CKI1 and cytokinin-induced AHK2 and AHK3 are important for vascular bundle formation in Arabidopsis.
Collapse
Affiliation(s)
- Jan Hejátko
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Nero D, Krouk G, Tranchina D, Coruzzi GM. A system biology approach highlights a hormonal enhancer effect on regulation of genes in a nitrate responsive "biomodule". BMC SYSTEMS BIOLOGY 2009; 3:59. [PMID: 19500399 PMCID: PMC2702358 DOI: 10.1186/1752-0509-3-59] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/06/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nitrate-induced reprogramming of the transcriptome has recently been shown to be highly context dependent. Herein, a systems biology approach was developed to identify the components and role of cross-talk between nitrate and hormone signals, likely to be involved in the conditional response of NO3- signaling. RESULTS Biclustering was used to identify a set of genes that are N-responsive across a range of Nitrogen (N)-treatment backgrounds (i.e. nitrogen treatments under different growth conditions) using a meta-dataset of 76 Affymetrix ATH1 chips from 5 different laboratories. Twenty-one biclusters were found to be N-responsive across subsets of this meta-dataset. N-bicluster 9 (126 genes) was selected for further analysis, as it was shown to be reproducibly responsive to NO3- as a signal, across a wide-variety of background conditions and datasets. N-bicluster 9 genes were then used as "seed" to identify putative cross-talk mechanisms between nitrate and hormone signaling. For this, the 126 nitrate-regulated genes in N-bicluster 9 were biclustered over a meta-dataset of 278 ATH1 chips spanning a variety of hormone treatments. This analysis divided the bicluster 9 genes into two classes: i) genes controlled by NO3- only vs. ii) genes controlled by both NO3- and hormones. The genes in the latter group showed a NO3- response that is significantly enhanced, compared to the former. In silico analysis identified two Cis-Regulatory Elements candidates (CRE) (E2F, HSE) potentially involved the interplay between NO3- and hormonal signals. CONCLUSION This systems analysis enabled us to derive a hypothesis in which hormone signals are proposed to enhance the nitrate response, providing a potential mechanistic explanation for the link between nitrate signaling and the control of plant development.
Collapse
Affiliation(s)
- Damion Nero
- Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, New York, 10003, USA
| | - Gabriel Krouk
- Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, New York, 10003, USA
| | - Daniel Tranchina
- Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, New York, 10003, USA
- Courant Institute of Mathematical Sciences, New York, 251 Mercer St, New York, NY, 10012, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, 100 Washington Square East, 1009 Main Building, New York, 10003, USA
| |
Collapse
|
190
|
Ferguson BJ, Beveridge CA. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. PLANT PHYSIOLOGY 2009; 149:1929-44. [PMID: 19218361 PMCID: PMC2663762 DOI: 10.1104/pp.109.135475] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/03/2009] [Indexed: 05/18/2023]
Abstract
Many processes have been described in the control of shoot branching. Apical dominance is defined as the control exerted by the shoot tip on the outgrowth of axillary buds, whereas correlative inhibition includes the suppression of growth by other growing buds or shoots. The level, signaling, and/or flow of the plant hormone auxin in stems and buds is thought to be involved in these processes. In addition, RAMOSUS (RMS) branching genes in pea (Pisum sativum) control the synthesis and perception of a long-distance inhibitory branching signal produced in the stem and roots, a strigolactone or product. Auxin treatment affects the expression of RMS genes, but it is unclear whether the RMS network can regulate branching independently of auxin. Here, we explore whether apical dominance and correlative inhibition show independent or additive effects in rms mutant plants. Bud outgrowth and branch lengths are enhanced in decapitated and stem-girdled rms mutants compared with intact control plants. This may relate to an RMS-independent induction of axillary bud outgrowth by these treatments. Correlative inhibition was also apparent in rms mutant plants, again indicating an RMS-independent component. Treatments giving reductions in RMS1 and RMS5 gene expression, auxin transport, and auxin level in the main stem were not always sufficient to promote bud outgrowth. We suggest that this may relate to a failure to induce the expression of cytokinin biosynthesis genes, which always correlated with bud outgrowth in our treatments. We present a new model that accounts for apical dominance, correlative inhibition, RMS gene action, and auxin and cytokinin and their interactions in controlling the progression of buds through different control points from dormancy to sustained growth.
Collapse
Affiliation(s)
- Brett J Ferguson
- School of Integrative Biology and Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
191
|
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:300-18. [PMID: 19054347 DOI: 10.1111/j.1365-3040.2008.01921.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have established a simple soil-based experimental system that allows a small and sustained restriction of growth of Arabidopsis by low nitrogen (N). Plants were grown in a large volume of a peat-vermiculite mix that contained very low levels of inorganic N. As a control, inorganic N was added in solid form to the peat-vermiculite mix, or plants were grown in conventional nutrient-rich solids. The low N growth regime led to a sustained 20% decrease of the relative growth rate over a period of 2 weeks, resulting in a two- to threefold decrease in biomass in 35- to 40-day-old plants. Plants in the low N regime contained lower levels of nitrate, lower nitrate reductase activity, lower levels of malate, fumarate and other organic acids and slightly higher levels of starch, as expected from published studies of N-limited plants. However, their rosette protein content was unaltered, and total and many individual amino acid levels increased compared with N-replete plants. This metabolic phenotype reveals that Arabidopsis responds adaptively to low N by decreasing the rate of growth, while maintaining the overall protein content, and maintaining or even increasing the levels of many amino acids.
Collapse
Affiliation(s)
- Hendrik Tschoep
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J. Plant hormones and nutrient signaling. PLANT MOLECULAR BIOLOGY 2009; 69:361-73. [PMID: 18688730 DOI: 10.1007/s11103-008-9380-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/14/2008] [Indexed: 05/18/2023]
Abstract
Plants count on a wide variety of metabolic, physiological, and developmental responses to adapt their growth to variations in mineral nutrient availability. To react to such variations plants have evolved complex sensing and signaling mechanisms that allow them to monitor the external and internal concentration of each of these nutrients, both in absolute terms and also relatively to the status of other nutrients. Recent evidence has shown that hormones participate in the control of these regulatory networks. Conversely, mineral nutrient conditions influence hormone biosynthesis, further supporting close interrelation between hormonal stimuli and nutritional homeostasis. In this review, we summarize these evidences and analyze possible transcriptional correlations between hormonal and nutritional responses, as a means to further characterize the role of hormones in the response of plants to limiting nutrients in soil.
Collapse
Affiliation(s)
- Vicente Rubio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
193
|
Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching. PLANT MOLECULAR BIOLOGY 2009; 69:429-35. [PMID: 18974937 DOI: 10.1007/s11103-008-9416-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/12/2008] [Indexed: 05/18/2023]
Abstract
In many plant species, the intact main shoot apex grows predominantly and axillary bud outgrowth is inhibited. This phenomenon is called apical dominance, and has been analyzed for over 70 years. Decapitation of the shoot apex releases the axillary buds from their dormancy and they begin to grow out. Auxin derived from an intact shoot apex suppresses axillary bud outgrowth, whereas cytokinin induced by decapitation of the shoot apex stimulates axillary bud outgrowth. Here we describe the molecular mechanisms of the interactions between auxin and cytokinin in the control of shoot branching.
Collapse
Affiliation(s)
- Sae Shimizu-Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
194
|
Igarashi D, Izumi Y, Dokiya Y, Totsuka K, Fukusaki E, Ohsumi C. Reproductive organs regulate leaf nitrogen metabolism mediated by cytokinin signal. PLANTA 2009; 229:633-44. [PMID: 19048287 DOI: 10.1007/s00425-008-0858-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 11/05/2008] [Indexed: 05/03/2023]
Abstract
The metabolism of vegetative organs in plants changes during the development of the reproductive organs. The regulation of this metabolism is important in the control of crop productivity. However, the complexity of the regulatory systems makes it difficult to elucidate their mechanisms. To examine these mechanisms, we constructed model experiments using Arabidopsis to analyze metabolic and gene expression changes during leaf-stage progression and after removal of the reproductive organs. Leaf gene expression levels and content of major amino acids, both of which decreased during leaf-stage progression, increased after removal of the reproductive organs. In particular, the levels of expression of cytokinin biosynthesis genes and cytokinin-responsive genes and the cytokinin content increased after removal of the reproductive organs. Analysis of plants with knockout of a cytokinin-biosynthetic gene (AtIPT3) and a cytokinin receptor gene (AHK3) indicated that glutamate dehydrogenase genes (GDH3) were regulated by cytokinin signaling. These data suggest that cytokinins regulate communication between reproductive and vegetative organs, and that GDH3 is one target of the cytokinin-mediated regulation of nitrogen metabolism.
Collapse
Affiliation(s)
- Daisuke Igarashi
- Institute of Life Sciences, Ajinomoto Co., Inc., Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | | | | | | | | | | |
Collapse
|
195
|
Vysotskaya LB, Korobova AV, Veselov SY, Dodd IC, Kudoyarova GR. ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient-deprived durum wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:66-72. [PMID: 32688628 DOI: 10.1071/fp08187] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/04/2008] [Indexed: 06/11/2023]
Abstract
Although nutrient deprivation alters the concentrations of several plant hormones, the role of each in decreasing shoot-to-root ratio is not clear. A 10-fold dilution of the nutrient concentration supplied to hydroponically-grown 7-day-old durum wheat (Triticum turgidum L. ssp. durum Desf.) plants decreased shoot growth, shoot-to-root ratio and shoot and root cytokinin concentrations, increased shoot ABA concentration and shoot cytokinin oxidase activity, but had no effect on xylem sap ABA and cytokinin concentrations. Nutrient deprivation also increased xylem concentrations of conjugated ABA. The role of ABA in these responses was addressed by adding 11.4 µm ABA to the nutrient solution of well fertilised plants, or 1.2 mm fluridone (an inhibitor of ABA biosynthesis) to the nutrient solution of nutrient-deprived plants. The former induced similar changes in shoot-to-root ratio (by inhibiting shoot growth), shoot ABA concentration, shoot and root cytokinin concentrations and shoot cytokinin oxidase activity as nutrient deprivation. Conversely, fluridone addition to nutrient-deprived plants restored shoot-to-root ratio (by inhibiting root growth), shoot ABA concentration, shoot and root cytokinin concentrations to levels similar to well fertilised plants. Although root growth maintenance during nutrient deprivation depends on a threshold ABA concentration, shoot growth inhibition is independent of shoot ABA status. Although fluridone decreased shoot cytokinin oxidase activity of nutrient-deprived plants, it was still 1.7-fold greater than well fertilised plants, implying that nutrient deprivation could also activate shoot cytokinin oxidase independently of ABA. These data question the root signal basis of cytokinin action, but demonstrate that changes in ABA status can regulate shoot cytokinin concentrations via altering their metabolism.
Collapse
Affiliation(s)
- Lidia B Vysotskaya
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, 450054 Ufa, Russian Federation
| | - Alla V Korobova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, 450054 Ufa, Russian Federation
| | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| | - Guzel R Kudoyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, 450054 Ufa, Russian Federation
| |
Collapse
|
196
|
Abstract
The roots and stems of dicotyledonous plants thicken by the cell proliferation in the cambium. Cambial proliferation changes in response to environmental factors; however, the molecular mechanisms that regulate cambial activity are largely unknown. The quadruple Arabidopsis thaliana mutant atipt1;3;5;7, in which 4 genes encoding cytokinin biosynthetic isopentenyltransferases are disrupted by T-DNA insertion, was unable to form cambium and showed reduced thickening of the root and stem. The atipt3 single mutant, which has moderately decreased levels of cytokinins, exhibited decreased root thickening without any other recognizable morphological changes. Addition of exogenously supplied cytokinins to atipt1;3;5;7 reactivated the cambium in a dose-dependent manner. When an atipt1;3;5;7 shoot scion was grafted onto WT root stock, both the root and shoot grew normally and trans-zeatin-type (tZ-type) cytokinins in the shoot were restored to WT levels, but isopentenyladenine-type cytokinins in the shoot remained unchanged. Conversely, when a WT shoot was grafted onto an atipt1;3;5;7 root, both the root and shoot grew normally and isopentenyladenine-type cytokinins in the root were restored to WT levels, but tZ-type cytokinins were only partially restored. Collectively, it can be concluded that cytokinins are important regulators of cambium development and that production of cytokinins in either the root or shoot is sufficient for normal development of both the root and shoot.
Collapse
|
197
|
Ma QH. Genetic Engineering of Cytokinins and Their Application to Agriculture. Crit Rev Biotechnol 2008; 28:213-32. [DOI: 10.1080/07388550802262205] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
198
|
Vidal EA, Gutiérrez RA. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:521-9. [PMID: 18775665 DOI: 10.1016/j.pbi.2008.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/11/2008] [Accepted: 07/31/2008] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) is an essential macronutrient available to plants mainly as nitrate in agricultural soils. Besides its role as a nutrient, inorganic and organic N sources play key roles as signals that control genome-wide gene expression in Arabidopsis and other plant species. Genomics approaches have provided us with thousands of genes whose expression is modulated in response to N treatments in Arabidopsis. Recently, systems approaches have been utilized to map the complex molecular network that plants utilize to integrate metabolic, cellular, and developmental processes to successfully adapt to changing N availability. The challenge now is to understand the molecular mechanisms underlying N regulation of gene networks and bridge the gap between N sensing, signaling, and downstream physiological and developmental changes. We discuss recent advances in this direction.
Collapse
Affiliation(s)
- Elena A Vidal
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | |
Collapse
|
199
|
Schildhauer J, Wiedemuth K, Humbeck K. Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:76-84. [PMID: 18721313 DOI: 10.1111/j.1438-8677.2008.00075.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nitrogen availability has a strong influence on developmental processes in plants. We show that the time of nitrogen supply regulates the course of leaf senescence in flag leaves of Hordeum vulgare. The senescence-specific decrease in chlorophyll content and photosystem II efficiency is clearly delayed when plants are fertilised with nitrate at the onset of leaf senescence. Concurrently, the additional supply of nitrate affects expression patterns of two marker genes of nitrogen metabolism. As shown by quantitative RT-PCR analyses, senescence-specific downregulation of plastidic glutamine synthetase (GS2) and senescence-specific upregulation of lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) are both clearly retarded. Depletion of nitrogen in experiments using hydroponic growth systems results in premature primary leaf senescence. The already started senescence processes can be even reversed by later nitrogen addition, as proved by a further increase in photosystem II efficiency and chlorophyll content, returning to the high values of controls which had not been deprived of nitrogen. Although both addition of nitrate or ammonium effectively reversed nitrogen depletion-induced primary leaf senescence, addition of urea did not. Additionally, effects of nitrogen supply on the course of leaf senescence were analysed in the model plant Arabidopsis thaliana. Leaves of A. thaliana show the same reversion of senescence processes after receiving additional nitrogen supply, indicating that the nitrogen response of leaf development is conserved in different plant species.
Collapse
Affiliation(s)
- J Schildhauer
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
200
|
Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H. Gene expression and sensitivity in response to copper stress in rice leaves. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3465-74. [PMID: 18676621 PMCID: PMC2529235 DOI: 10.1093/jxb/ern196] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 07/02/2008] [Indexed: 05/20/2023]
Abstract
Gene expression in response to Cu stress in rice leaves was quantified using DNA microarray (Agilent 22K Rice Oligo Microarray) and real-time PCR technology. Rice plants were grown in hydroponic solutions containing 0.3 (control), 10, 45, or 130 microM of CuCl(2), and Cu accumulation and photosynthesis inhibition were observed in leaves within 1 d of the start of treatment. Microarray analysis flagged 305 Cu-responsive genes, and their expression profile showed that a large proportion of general and defence stress response genes are up-regulated under excess Cu conditions, whereas photosynthesis and transport-related genes are down-regulated. The Cu sensitivity of each Cu-responsive gene was estimated by the median effective concentration value (EC50) and the range of fold-changes (F) under the highest (130 microM) Cu conditions (|log(2)F|(130)). Our results indicate that defence-related genes involved in phytoalexin and lignin biosynthesis were the most sensitive to Cu, and that plant management of abiotic and pathogen stresses has overlapping components, possibly including signal transduction.
Collapse
Affiliation(s)
- Emi Sudo
- RIKEN Plant Science Center, Suehiro 1-7-22, Tsurumi, Yokohama 230-0045, Japan
| | - Misao Itouga
- RIKEN Plant Science Center, Suehiro 1-7-22, Tsurumi, Yokohama 230-0045, Japan
| | | | - Yoshiro Ono
- Department of Environmental and Civil Engineering, Faculty of Environmental Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Okayama-shi, Okayama 700-8530, Japan
| | - Hitoshi Sakakibara
- RIKEN Plant Science Center, Suehiro 1-7-22, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|