151
|
Wang L, He L, Zeng H, Fu W, Wang J, Tan Y, Zheng C, Qiu Z, Luo J, Lv C, Huang Y, Shu W. Low-dose microcystin-LR antagonizes aflatoxin B1 induced hepatocarcinogenesis through decreasing cytochrome P450 1A2 expression and aflatoxin B1-DNA adduct generation. CHEMOSPHERE 2020; 248:126036. [PMID: 32045972 DOI: 10.1016/j.chemosphere.2020.126036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) and microcystin-LR (MC-LR) co-existed in food and water, and were associated with hepatocellular carcinoma (HCC). AFB1 induced HCC by activating oxidative stress and generating AFB1-DNA adducts, while MC-LR could promote HCC progression. However, whether they have co-effects in HCC progression remains uncertain. In this study, we found the antagonistic effects of MC-LR on AFB1 induced HCC when they were exposed simultaneously. Compared with single exposure to AFB1, co-exposed to MC-LR significantly repressed the AFB1 induced malignant transformation of human hepatic cells and the glutathione S-transferase Pi positive foci formation in rat livers. MC-LR inhibited AFB1 induced upregulation of cytochrome P450 family 1 subfamily A member 2 (CYP1A2) and reduced the AFB1-DNA adducts generation in both human hepatic cells and rat livers. These results suggest that when co-exposure with AFB1, MC-LR might repress hepatocarcinogenicity of AFB1, which might be associated with its repression on AFB1 induced CYP1A2 upregulation and activation.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lixiong He
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100094, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chuanfen Zheng
- Department of Health Education, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chen Lv
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
152
|
Cai M, Qian Y, Chen N, Ling T, Wang J, Jiang H, Wang X, Qi K, Zhou Y. Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114178. [PMID: 32097790 DOI: 10.1016/j.envpol.2020.114178] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Mycotoxins are high toxic, widely distributed contaminants in foodstuff. In this study, a aflatoxin B1 (AFB1) degrading strain S. acidoaminiphila CW117 was screened, and its detoxification characteristics were investigated. Substrate AFB1 at 45 μg/L was degraded by CW117 within 24 h; meanwhile, 4.1 mg/L AFB1 was almost degraded within 48 h. After 24 h degradation, the biotoxicity of the detoxified culture was eliminated. Strain CW117 efficient degradation to AFB1 (especially to low AFB1 concentrations) suggested its potential significance to detoxification development on food and feedstuff. The active degradation components present in the cell-free supernatant. The degradation ratio increased constantly with increasing incubation temperature raised (0-90 °C) and was even stable at 90 °C. Degradation was optimal at pH 6-7, and was only partially inhibited by metal-chelators (EDTA and EGTA), proteinase K, and a protein denaturant (sodium dodecyl sulfate, SDS). The recombinant laccase rLC1 (0.5 mg/mL) from CW117 degraded 29.3% of AFB1 within 24 h; however, the cell-free supernatant degraded 76.7% of the toxin in same time, with much lower protein content. The results indicated the CW117 degrades AFB1 via a combination of enzymes and micro-molecule oxides.
Collapse
Affiliation(s)
- Mengyu Cai
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Yingying Qian
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Nan Chen
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Tiejun Ling
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Jingjing Wang
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Hong Jiang
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Xu Wang
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Heifei, 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Biology and Utilization, School of Tea and Food Science Technology, Anhui Agricultural University, Heifei, 230036, China; Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
153
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
154
|
Metzler M, Bitsch A, Degen GH. The life of Hans-Günter Neumann and his contributions to chemical carcinogenesis. Arch Toxicol 2020; 94:1773-1778. [DOI: 10.1007/s00204-020-02713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
155
|
Guo J, Turesky RJ, Tarifa A, DeCaprio AP, Cooke MS, Walmsley SJ, Villalta PW. Development of a DNA Adductome Mass Spectral Database. Chem Res Toxicol 2020; 33:852-854. [PMID: 32223224 PMCID: PMC7197645 DOI: 10.1021/acs.chemrestox.0c00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based DNA adductomics is an emerging approach for the human biomonitoring of hazardous chemicals. A mass spectral database of DNA adducts will be created for the scientific community to investigate the associations between chemical exposures, DNA damage, and disease risk.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anamary Tarifa
- Forensic & Analytical Toxicology Facility, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Anthony P. DeCaprio
- Forensic & Analytical Toxicology Facility, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Marcus S. Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, Florida, USA
| | - Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
156
|
Zhang W, Wu W, Cai C, Hu X, Li H, Bai Y, Zhang Z, Li P. A Sensitive, Point-of-Care Detection of Small Molecules Based on a Portable Barometer: Aflatoxins In Agricultural Products. Toxins (Basel) 2020; 12:158. [PMID: 32138273 PMCID: PMC7150834 DOI: 10.3390/toxins12030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022] Open
Abstract
Sensitive and point-of-care detection of small toxic molecules plays a key role in food safety. Aflatoxin, a typical small toxic molecule, can cause serious healthcare and economic issues, thereby promoting the development of sensitive and point-of-care detection. Although ELISA is one of the official detection methods, it cannot fill the gap between sensitivity and point-of-care application because it requires a large-scale microplate reader. To employ portable readers in food safety, Pt-catalysis has attracted increasing attention due to its portability and reliability. In this study, we developed a sensitive point-of-care aflatoxin detection (POCAD) method via a portable handheld barometer. We synthesized and characterized Au@PtNPs and Au@PtNPs conjugated with a second antibody (Au@PtNPs-IgG). A competitive immunoassay was established based on the homemade monoclonal antibody against aflatoxins. Au@PtNPs-IgG was used to catalyze the production of O2 from H2O2 in a sealed vessel. The pressure of O2 was then recorded by a handheld barometer. The aflatoxin concentration was inversely proportional to the pressure recorded via the barometer reading. After optimization, a limit of detection of 0.03 ng/mL and a linear range from 0.09 to 16.0 ng/mL were achieved. Recovery was recorded as 83.1%-112.0% along with satisfactory results regarding inner- and inter-assay precision (relative standard deviation, RSD < 6.4%). Little cross-reaction was observed. Additionally, the POCAD was validated by high-performance liquid chromatography (HPLC) by using peanut and corn samples. The portable POCAD exhibits strong potential for applications in the on-site detection of small toxic molecules to ensure food safety.
Collapse
Affiliation(s)
- Weiqi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Chong Cai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Xiaofeng Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
| | - Hui Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China
| | - Yizhen Bai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.Z.); (W.W.); (C.C.); (X.H.); (H.L.); (Y.B.); (P.L.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
157
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
158
|
García-Díaz M, Gil-Serna J, Patiño B, García-Cela E, Magan N, Medina Á. Assessment of the Effect of Satureja montana and Origanum virens Essential Oils on Aspergillus flavus Growth and Aflatoxin Production at Different Water Activities. Toxins (Basel) 2020; 12:toxins12030142. [PMID: 32106532 PMCID: PMC7150974 DOI: 10.3390/toxins12030142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 02/08/2023] Open
Abstract
Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essential to search for new control methods to prevent these toxins entering the food chain. Several essential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although their efficiency is strongly influenced by the environmental conditions. In this work, the effectiveness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were determined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. However, only S. montana essential oil was able to significantly affect aflatoxin production, although the inhibition percentages widely differed among water activities. The most significant reduction was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the highest levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to study the interaction of the new control compounds with environmental factors before their application in food matrices, and in vitro ecophysiological studies are a good option since they provide accurate and rapid results.
Collapse
Affiliation(s)
- Marta García-Díaz
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (B.P.)
| | - Jessica Gil-Serna
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (B.P.)
- Correspondence: (J.G.-S.); (Á.M.)
| | - Belén Patiño
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (B.P.)
| | - Esther García-Cela
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Bedford MK43 0AL, UK; (E.G.-C.); (N.M.)
- Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL109AB, UK
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Bedford MK43 0AL, UK; (E.G.-C.); (N.M.)
| | - Ángel Medina
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Bedford MK43 0AL, UK; (E.G.-C.); (N.M.)
- Correspondence: (J.G.-S.); (Á.M.)
| |
Collapse
|
159
|
Ojiewo CO, Janila P, Bhatnagar-Mathur P, Pandey MK, Desmae H, Okori P, Mwololo J, Ajeigbe H, Njuguna-Mungai E, Muricho G, Akpo E, Gichohi-Wainaina WN, Variath MT, Radhakrishnan T, Dobariya KL, Bera SK, Rathnakumar AL, Manivannan N, Vasanthi RP, Kumar MVN, Varshney RK. Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2020; 11:29. [PMID: 32153601 PMCID: PMC7046547 DOI: 10.3389/fpls.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/13/2020] [Indexed: 05/28/2023]
Abstract
Groundnut is an important global food and oil crop that underpins agriculture-dependent livelihood strategies meeting food, nutrition, and income security. Aflatoxins, pose a major challenge to increased competitiveness of groundnut limiting access to lucrative markets and affecting populations that consume it. Other drivers of low competitiveness include allergens and limited shelf life occasioned by low oleic acid profile in the oil. Thus grain off-takers such as consumers, domestic, and export markets as well as processors need solutions to increase profitability of the grain. There are some technological solutions to these challenges and this review paper highlights advances in crop improvement to enhance groundnut grain quality and nutrient profile for food, nutrition, and economic benefits. Significant advances have been made in setting the stage for marker-assisted allele pyramiding for different aflatoxin resistance mechanisms-in vitro seed colonization, pre-harvest aflatoxin contamination, and aflatoxin production-which, together with pre- and post-harvest management practices, will go a long way in mitigating the aflatoxin menace. A breakthrough in aflatoxin control is in sight with overexpression of antifungal plant defensins, and through host-induced gene silencing in the aflatoxin biosynthetic pathway. Similarly, genomic and biochemical approaches to allergen control are in good progress, with the identification of homologs of the allergen encoding genes and development of monoclonal antibody based ELISA protocol to screen for and quantify major allergens. Double mutation of the allotetraploid homeologous genes, FAD2A and FAD2B, has shown potential for achieving >75% oleic acid as demonstrated among introgression lines. Significant advances have been made in seed systems research to bridge the gap between trait discovery, deployment, and delivery through innovative partnerships and action learning.
Collapse
Affiliation(s)
- Chris O. Ojiewo
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Pasupuleti Janila
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooja Bhatnagar-Mathur
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haile Desmae
- Research Program – West and Central Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako, Mali
| | - Patrick Okori
- Research Program – Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - James Mwololo
- Research Program – Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Hakeem Ajeigbe
- Research Program – West and Central Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Kano, Nigeria
| | - Esther Njuguna-Mungai
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Geoffrey Muricho
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Essegbemon Akpo
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Wanjiku N. Gichohi-Wainaina
- Research Program – Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Murali T. Variath
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Thankappan Radhakrishnan
- Indian Council of Agricultural Research - Directorate of Groundnut Research (ICAR-DGR), Junagadh, India
| | - Kantilal L. Dobariya
- Main Oilseeds Research Station, Junagadh Agricultural University (JAU), Junagadh, India
| | - Sandip Kumar Bera
- Indian Council of Agricultural Research - Directorate of Groundnut Research (ICAR-DGR), Junagadh, India
| | | | - Narayana Manivannan
- National Pulses Research Center, Tamil Nadu Agricultural University (TNAU), Pudukkottai, India
| | - Ragur Pandu Vasanthi
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Mallela Venkata Nagesh Kumar
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Rajeev K. Varshney
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
160
|
Rao KR, Vipin AV, Venkateswaran G. Molecular profile of non-aflatoxigenic phenotype in native strains of Aspergillus flavus. Arch Microbiol 2020; 202:1143-1155. [PMID: 32062689 DOI: 10.1007/s00203-020-01822-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 11/26/2022]
Abstract
Aflatoxins are the most common mycotoxin contaminant reported in food and feed. Aflatoxin B1, the most toxic among different aflatoxins, is known to cause hepatocellular carcinoma in animals. Aspergillus flavus and A. parasiticus are the main producers of aflatoxins and are widely distributed in tropical countries. Even though several robust strategies have been in use to control aflatoxin contamination, the control at the pre-harvest level is primitive and incompetent. Therefore, the aim of the study was to isolate and identify the non-aflatoxigenic A. flavus and to delineate the molecular mechanism for the loss of aflatoxin production by the non-aflatoxigenic isolates. Eighteen non-aflatoxigenic strains were isolated from various biological sources using cultural and analytical methods. Among the 18 isolates, 8 isolates produced sclerotia and 17 isolates had type I deletion in norB-cypA region. The isolates were confirmed as A. flavus using gene-specific PCR and sequencing of the ITS region. Later, aflatoxin gene-specific PCR revealed that the defect in one or more genes has led to non-aflatoxigenic phenotype. The strain R9 had maximum defect, and genes avnA and verB had the highest frequency of defect among the non-aflatoxigenic strains. Further, qRT-PCR confirmed that the non-aflatoxigenic strains had high frequency of defect or downregulation in the late pathway genes compared to early pathway genes. Thus, these non-aflatoxigenic strains can be the potential candidates for an effective and proficient strategy for the control of pre-harvest aflatoxin contamination.
Collapse
Affiliation(s)
- K Raksha Rao
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysuru, Karnataka, 570 020, India
| | - A V Vipin
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysuru, Karnataka, 570 020, India
| | - G Venkateswaran
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute Campus, Mysuru, Karnataka, 570 020, India.
| |
Collapse
|
161
|
Son YE, Cho HJ, Chen W, Son SH, Lee MK, Yu JH, Park HS. The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species. Curr Genet 2020; 66:621-633. [PMID: 32060628 DOI: 10.1007/s00294-020-01058-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
The DnaJ family of proteins (or J-proteins) are molecular chaperones that govern protein folding, degradation, and translocation in many organisms. Although J-proteins play key roles in eukaryotic and prokaryotic biology, the role of J-proteins in Aspergillus species is currently unknown. In this study, we characterized the dnjA gene, which encodes a putative DnaJ protein, in two Aspergillus species: Aspergillus nidulans and Aspergillus flavus. Expression of the dnjA gene is inhibited by the velvet regulator VosA, which plays a pivotal role in spore survival and metabolism in Aspergillus. The deletion of dnjA decreased the number of asexual spores (conidia), produced abnormal conidiophores, and reduced sexual fruiting bodies (cleistothecia) or sclerotia. In addition, the absence of dnjA caused increased sterigmatocystin or aflatoxin production in A. nidulans and A. flavus, respectively. These results suggest that DnjA plays a conserved role in asexual and sexual development and mycotoxin production in Aspergillus species. However, DnjA also plays a species-specific role; AniDnjA but not AflDnjA, affects conidial viability, trehalose contents, and thermal tolerance of conidia. In plant virulence assay, the infection ability of the ΔAfldnjA mutant decreased in the kernels, suggesting that DnjA plays a crucial role in the pathogenicity of A. flavus. Taken together, these results demonstrate that DnjA is multifunctional in Aspergillus species; it is involved in diverse biological processes, including fungal differentiation and secondary metabolism.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Gottingen, Göttingen, Germany
| | - Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Mi-Kyung Lee
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA.,Department of Systems Biotechnology, Konkuk University, Seoul, 05030, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
162
|
Ren X, Yue X, Mwakinyali SE, Zhang W, Zhang Q, Li P. Small Molecular Contaminant and Microorganism Can Be Simultaneously Detected Based on Nanobody-Phage: Using Carcinogen Aflatoxin and Its Main Fungal Aspergillus Section Flavi spp. in Stored Maize for Demonstration. Front Microbiol 2020; 10:3023. [PMID: 32038521 PMCID: PMC6989581 DOI: 10.3389/fmicb.2019.03023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/17/2019] [Indexed: 01/15/2023] Open
Abstract
Simultaneous detection technology has become a hot topic in analytical chemistry; however, very few reports on how to simultaneously detect small molecular contaminants and microorganisms have been in place. Aflatoxins are a group of highly toxic and carcinogenic compounds, which are produced mainly by Aspergillus flavus and Aspergillus parasiticus from section Flavi responsible for aflatoxin accumulation in stored cereals. Both aflatoxins and Aspergillus section Flavi were used to demonstrate the duplex real-time RCR method of simultaneously detecting small molecular contaminants and microorganisms. The detection of aflatoxins and Aspergillus section Flavi was carried out depending on the anti-idiotypic nanobody-phage V2–5 and aflatoxin-synthesis related gene nor-1 (=aflD), respectively. The quantitative standard curves for simultaneous detection of aflatoxins and Aspergillus section Flavi were constructed, with detection limits of 0.02 ng/ml and 8 × 102 spores/g, respectively. Naturally contaminated maize samples (n = 25) were analyzed for a further validation. The results were in good agreement between the new developed method and the referential methods (high-performance liquid chromatography and the conventional plating counts).
Collapse
Affiliation(s)
- Xianfeng Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaofeng Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Silivano Edson Mwakinyali
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.,Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
163
|
The Pattern and Function of DNA Methylation in Fungal Plant Pathogens. Microorganisms 2020; 8:microorganisms8020227. [PMID: 32046339 PMCID: PMC7074731 DOI: 10.3390/microorganisms8020227] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
To successfully infect plants and trigger disease, fungal plant pathogens use various strategies that are dependent on characteristics of their biology and genomes. Although pathogenic fungi are different from animals and plants in the genomic heritability, sequence feature, and epigenetic modification, an increasing number of phytopathogenic fungi have been demonstrated to share DNA methyltransferases (MTases) responsible for DNA methylation with animals and plants. Fungal plant pathogens predominantly possess four types of DNA MTase homologs, including DIM-2, DNMT1, DNMT5, and RID. Numerous studies have indicated that DNA methylation in phytopathogenic fungi mainly distributes in transposable elements (TEs), gene promoter regions, and the repetitive DNA sequences. As an important and heritable epigenetic modification, DNA methylation is associated with silencing of gene expression and transposon, and it is responsible for a wide range of biological phenomena in fungi. This review highlights the relevant reports and insights into the important roles of DNA methylation in the modulation of development, pathogenicity, and secondary metabolism of fungal plant pathogens. Recent evidences prove that there are massive links between DNA and histone methylation in fungi, and they commonly regulate fungal development and mycotoxin biosynthesis.
Collapse
|
164
|
Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies - A review. Toxicon 2020; 177:96-108. [PMID: 31972175 DOI: 10.1016/j.toxicon.2020.01.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxin residues are transferred from feed to animal products, yet, less attention has been paid to it in developing countries. There is a need to find alternative alleviation material for reducing the impact of mycotoxin. This review is meant to elucidate different additives that can reduce mycotoxin residue in animal products in the world, especially in developing countries. There is evidence of relationship between mycotoxin residue in breast milk of nursing mothers and mycotoxin exposure through crop and animal product (egg and milk) intake, especially in Asia, Africa, Middle East, Latin America, and some parts of Europe. Younger livestock tends to have more toxin residues in their tissue compared to older ones. Grazing animal are also exposed to mycotoxin intake which corresponds to high level of mycotoxins in their products including meat and milk. This review shows that phytogenic, probiotic, and prebiotic additives can decrease mycotoxin residues in milk, eggs, meat liver and other tissues of livestock. Specifically, bentonites, difructose anhydride III, yeast (Trichosporon mycotoxinivorans), Bacillus spp., or their biodegradable products can reduce mycotoxin residue in animal products. In addition, Ally isothiocyanates from mustard seed were able to mitigate mycotoxins in silo-simulated system. Evidence shows that there are now low-cost, accessible, and eco-friendly additives, which could alleviate the effect of mycotoxin in feed and food. In addition, there is need for aggressive public awareness and farmers' education on the prevalence, and danger caused by mycotoxins, as well as detoxification strategies that can reduce toxin absorption into animal products.
Collapse
|
165
|
Jurišić N, Schwartz-Zimmermann HE, Kunz-Vekiru E, Moll WD, Schweiger W, Fowler J, Berthiller F. Determination of aflatoxin biomarkers in excreta and ileal content of chickens. Poult Sci 2020; 98:5551-5561. [PMID: 31198963 DOI: 10.3382/ps/pez308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 01/16/2023] Open
Abstract
Aflatoxins are carcinogenic secondary metabolites frequently detected in food and feed stuff based on maize and other crops susceptible to infection with the fungal pathogen Aspergillus flavus. We investigated the metabolization of aflatoxins in chickens by analyzing excreta and ileal content and developed and validated a biomarker method for detection of aflatoxins and their metabolites in these matrices. Analysis of ileal content served to distinguish between urinary and fecal excretion combined in the excreta samples. During a 3-wk animal trial, one hundred sixty-eight 1-day-old chicks were randomly allocated to 24 pens with 7 chicks per pen and subjected to different feed regimens with: A) toxin-free feed, B) feed supplemented with 18 ng of total aflatoxins/g, and C) feed supplemented with 515 ng of total aflatoxins/g. Chicken excreta and ileal content were sampled after 7, 14, and 21 D. An analytical method based on liquid chromatography coupled to tandem mass spectrometry was validated for the determination of aflatoxin B1, B2, G1, G2, M1, P1, Q1, and aflatoxin B1-N7-guanine (AFB1-N7-Gua) in chicken's samples. Comparing chicken excreta, which contain urine and feces, to ileal content, which contains no urine, we explored the secretion pathway of aflatoxin metabolites. The AFB1-N7-Gua was only detected in excreta, whereas aflatoxin M1 (AFM1) was detected both in ileal content and excreta. Aflatoxin M1 was detected in excreta in concentrations 5 times higher than in ileal content, suggesting primary excretion via urine. Although chickens are relatively resistant to aflatoxins, contamination of feed can lead to adverse effects and thus economic losses in farming. Therefore, a biomarker method to estimate the exposure of chickens to aflatoxins can play an important role to monitor the animals' health.
Collapse
Affiliation(s)
- N Jurišić
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Sciences and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - H E Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Sciences and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - E Kunz-Vekiru
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Sciences and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - W D Moll
- BIOMIN Holding GmbH, BIOMIN Research Center, 3430 Tulln, Austria
| | - W Schweiger
- BIOMIN Holding GmbH, BIOMIN Research Center, 3430 Tulln, Austria
| | - J Fowler
- Department of Poultry Science, University of Georgia, 30602 Athens, GA, USA
| | - F Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Sciences and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| |
Collapse
|
166
|
Omara T, Nassazi W, Omute T, Awath A, Laker F, Kalukusu R, Musau B, Nakabuye BV, Kagoya S, Otim G, Adupa E. Aflatoxins in Uganda: An Encyclopedic Review of the Etiology, Epidemiology, Detection, Quantification, Exposure Assessment, Reduction, and Control. Int J Microbiol 2020; 2020:4723612. [PMID: 31998379 PMCID: PMC6970494 DOI: 10.1155/2020/4723612] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Uganda is an agrarian country where farming employs more than 60% of the population. Aflatoxins remain a scourge in the country, unprecedentedly reducing the nutritional and economic value of agricultural foods. This review was sought to synthetize the country's major findings in relation to the mycotoxins' etiology, epidemiology, detection, quantification, exposure assessment, control, and reduction in different matrices. Electronic results indicate that aflatoxins in Uganda are produced by Aspergillus flavus and A. parasiticus and have been reported in maize, sorghum, sesame, beans, sunflower, millet, peanuts, and cassava. The causes and proliferation of aflatoxigenic contamination of Ugandan foods have been largely due to poor pre-, peri-, and postharvest activities, poor government legislation, lack of awareness, and low levels of education among farmers, entrepreneurs, and consumers on this plague. Little diet diversity has exacerbated the risk of exposure to aflatoxins in Uganda because most of the staple foods are aflatoxin-prone. On the detection and control, these are still marginal, though some devoted scholars have devised and validated a sensitive portable device for on-site aflatoxin detection in maize and shown that starter cultures used for making some cereal-based beverages have the potential to bind aflatoxins. More efforts should be geared towards awareness creation and vaccination against hepatitis B and hepatitis A to reduce the risk of development of liver cancer among the populace.
Collapse
Affiliation(s)
- Timothy Omara
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Academic Highway, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60 Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Winfred Nassazi
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Academic Highway, Eldoret, Kenya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Tom Omute
- Department of Biochemistry, Faculty of Health Sciences, Lira University, P.O. Box 1035, Lira, Uganda
| | - Aburu Awath
- Standards Department, Uganda National Bureau of Standards, Plot 2-12 Bypass Link, Bweyogerere Industrial and Business Park, P.O. Box 6329, Kampala, Uganda
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Fortunate Laker
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Raymond Kalukusu
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Bashir Musau
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Brenda Victoria Nakabuye
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
- Department of Food Processing Technology, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Sarah Kagoya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Product Development Directory, Sweets and Confectionaries Section, Kakira Sugar Limited, Jinja-Iganga Highway, P.O. Box 121, Jinja, Uganda
| | - George Otim
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Eddie Adupa
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Abacus Parenteral Drugs Limited, Block 191, Plot 114, Kinga, Mukono, P.O. Box 31376, Kampala, Uganda
| |
Collapse
|
167
|
An X, Shi X, Zhang H, Yao Y, Wang G, Yang Q, Xia L, Sun X. An electrochemical immunosensor based on a combined amplification strategy with the GO–CS/CeO2–CS nanocomposite for the detection of aflatoxin M1. NEW J CHEM 2020. [DOI: 10.1039/c9nj04804a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, a sensitive electrochemical immunosensor modified with graphene oxide–chitosan (GO–CS) and cerium oxide–chitosan (CeO2–CS) using screen-printed electrodes (SPEs) was developed for the determination of aflatoxin M1(AFM1) in milk.
Collapse
Affiliation(s)
- Xingshuang An
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xiaojie Shi
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Hui Zhang
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Yao Yao
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Lianming Xia
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xia Sun
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| |
Collapse
|
168
|
Cheung AC, Walker DI, Juran BD, Miller GW, Lazaridis KN. Studying the Exposome to Understand the Environmental Determinants of Complex Liver Diseases. Hepatology 2020; 71:352-362. [PMID: 31701542 PMCID: PMC7329010 DOI: 10.1002/hep.31028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Angela C. Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Brian D. Juran
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | | |
Collapse
|
169
|
Xue KS, Tang L, Sun G, Wang S, Hu X, Wang JS. Mycotoxin exposure is associated with increased risk of esophageal squamous cell carcinoma in Huaian area, China. BMC Cancer 2019; 19:1218. [PMID: 31842816 PMCID: PMC6916103 DOI: 10.1186/s12885-019-6439-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Consumption of moldy food has previously been identified as a risk factor for esophageal squamous cell carcinoma (ESCC) in high-risk countries; however, what contributing roles these dietary carcinogenic mycotoxins play in the etiology of ESCC are largely unknown. METHODS A mycotoxin biomarker-incorporated, population-based case-control study was performed in Huaian area, Jiangsu Province, one of the two high-risk areas in China. Exposure biomarkers of aflatoxins (AF) and fumonisins (FN) were quantitatively analyzed using HPLC-fluorescence techniques. RESULTS Among the cases (n = 190), the median levels of AF biomarker, serum AFB1-lysine adduct, and FN biomarker, urinary FB1, were 1.77 pg/mg albumin and 176.13 pg/mg creatinine, respectively. Among the controls (n = 380), the median levels of AFB1-lysine adduct and urinary FB1 were 1.49 pg/mg albumin and 56.92 pg/mg creatinine, respectively. These mycotoxin exposure biomarker levels were significantly higher in cases as compared to controls (p < 0.05 and 0.01, respectively). An increased risk to ESCC was associated with exposure to both AFB1 and FB1 (p < 0.001 for both). CONCLUSIONS Mycotoxin exposure, especially to AFB1 and FB1, was associated with the risk of ESCC, and a greater-than-additive interaction between co-exposures to these two mycotoxins may contribute to the increased risk of ESCC in Huaian area, China.
Collapse
Affiliation(s)
- Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA, 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA, 30602, USA
| | - Guiju Sun
- Southeast University School of Public Health, Nanjing, Jiangsu, China
| | - Shaokang Wang
- Southeast University School of Public Health, Nanjing, Jiangsu, China
| | - Xu Hu
- Huaian District Center for Disease Control and Prevention, Huaian, Jiangsu, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
170
|
de León-Martínez LD, Solis-Mercado J, Rodríguez-Aguilar M, Díaz-Barriga F, Ortíz DG, Flores-Ramírez R. Assessment of aflatoxin B1-lysine adduct in serum of infant population of the Huasteca Potosina, México – a pilot study. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2019.2457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxins are mycotoxins considered to be highly toxic and produce adverse effects on human health. These compounds, mainly aflatoxin B1 (AFB1), have been classified as human carcinogens, due to its association with the development of hepatocellular carcinoma. In Mexico, the study of aflatoxins has been focused on the evaluation of products of the basic basket, particularly on maize, which is the basis of the Mexican diet. On the other hand, most of these studies have been conducted in urban areas. Indigenous populations may be exposed to a higher risk than urban ones due to the high consumption of tortillas, the harvest and the storage conditions of their food; hence, AFB1 is frequently found contaminating maize, which is the main food source for Mexicans. There is scarce evidence of exposure in vulnerable populations, such as children. Therefore, the main objective of this research was to conduct a pilot study for the evaluation of exposure to AFB1 through the AFB1-lys adduct in 31 serum samples of children from indigenous communities in Mexico. AFB1-lys was measured by High Pressure Liquid Chromatography with fluorescence detector (HPLC-FLD), with limits of detection and quantification of 3.5 and 4.7 pg/ml, respectively. Results from this pilot study revealed that 13% of children were of short stature, 9.7% presented overweight and 6.5% obesity. 45% of the children presented detectable concentrations of AFB1-lys adduct, with a median (minimum-maximum) of 5.6 (4.8-6.5) pg of AFB1-lys adduct/mg of albumin. The AFB1-lysine exposure biomarker is an important tool for the surveillance of aflatoxins and their effects on health, so, following this intervention, it would be necessary to monitor the exposure of vulnerable populations to aflatoxins, especially in rural areas where foods are more contaminated.
Collapse
Affiliation(s)
- L. Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - J. Solis-Mercado
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - M. Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - D. Guzmán Ortíz
- Departamento de Biotecnología y Bioquímica Centro de Investigación de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Campus Guanajuato, Irapuato, México
| | - R. Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| |
Collapse
|
171
|
Taguchi K, Kensler TW. Nrf2 in liver toxicology. Arch Pharm Res 2019; 43:337-349. [PMID: 31782059 DOI: 10.1007/s12272-019-01192-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Liver plays essential roles in the metabolism of many endogenous chemicals and exogenous toxicants. Mechanistic studies in liver have been at the forefront of efforts to probe the roles of bioactivation and detoxication of environmental toxins and toxicants in hepatotoxicity. Moreover, idiosyncratic hepatoxicity remains a key barrier in the clinical development of drugs. The now vast Nrf2 field emerged in part from biochemical and molecular studies on chemical inducers of hepatic detoxication enzymes and subsequent characterization of the modulation of drug/toxicant induced hepatotoxicities in mice through disruption of either Nrf2 or Keap1 genes. In general, loss of Nrf2 increases the sensitivity to such toxic chemicals, highlighting a central role of this transcription factor and its downstream target genes as a modifier to chemical stress. In this review, we summarize the impact of Nrf2 on the toxicology of multiple hepatotoxicants, and discuss efforts to utilize the Nrf2 response in predictive toxicology.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba, Sendai, 980-8575, Japan.
| | - Thomas W Kensler
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA
| |
Collapse
|
172
|
Nabwire WR, Ombaka J, Dick CP, Strickland C, Tang L, Xue KS, Wang JS. Aflatoxin in household maize for human consumption in Kenya, East Africa. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 13:45-51. [PMID: 31775581 DOI: 10.1080/19393210.2019.1690053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study is to determine the occurrence and level of aflatoxins (AFs) contamination in freshly harvested maize for human consumption in rural Kenya. Maize kernels and freshly milled maize flour (n = 338) were collected from households in Siaya and Makueni counties. While both counties are representatives of different environmental and climate conditions, Makueni County is the area with reported outbreaks of aflatoxicosis. Samples were analysed for AFB1, AFB2, AFG1, and AFG2 using Ultra High-Pressure Liquid Chromatography with Fluorescence detection. AFs were detected in 100% of the samples with the range of 2.14-411 µg/kg. The geometric mean of total AFs in all samples from Makueni County is 62.5 μg/kg with 95% CI: 53.7, 71.4 while in Siaya County is 52.8 μg/kg with 95% CI: 44.0, 61.7. This study showed that AFs contamination is prevalent in maize-based foods in the region.
Collapse
Affiliation(s)
- Wangia Ruth Nabwire
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - James Ombaka
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Christian Strickland
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Kathy Siyu Xue
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
173
|
He T, Zhou T, Wan Y, Tan T. A Simple Strategy Based on Deep Eutectic Solvent for Determination of Aflatoxins in Rice Samples. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
174
|
García-Díaz M, Patiño B, Vázquez C, Gil-Serna J. A Novel Niosome-Encapsulated Essential Oil Formulation to Prevent Aspergillus flavus Growth and Aflatoxin Contamination of Maize Grains During Storage. Toxins (Basel) 2019; 11:toxins11110646. [PMID: 31698851 PMCID: PMC6891554 DOI: 10.3390/toxins11110646] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.
Collapse
|
175
|
Ali N. Aflatoxins in rice: Worldwide occurrence and public health perspectives. Toxicol Rep 2019; 6:1188-1197. [PMID: 31768330 PMCID: PMC6872864 DOI: 10.1016/j.toxrep.2019.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aflatoxins are fungal secondary metabolites that contaminate dietary staples worldwide, including maize, rice and groundnuts. Dietary exposure to aflatoxins is a public health concern due to their carcinogenic, acute and chronic effects. Rice is an important staple food consumed widely and consists of a major part of the diets for half of the world population. Human exposure to these mycotoxins is a serious problem especially in developing countries where hot and humid climates favor the fungal growth and where food storage conditions are poor and lack of regulatory limits enforcement. The recent developments of biomarkers have provided opportunities in assessing aflatoxins exposure and related health effects in the high-risk population groups. This review describes the worldwide occurrence of aflatoxins in rice during the period from 1990 to 2015 and biomarkers-based evidence for human exposure to aflatoxins and their adverse health effects. Aflatoxin is a potent hepatocarcinogen and humans may expose to it at any stage of life. Epidemiological studies reported an association between aflatoxin intake and the incidence of hepatocellular carcinoma in some sub-Saharan and Asian countries. Even daily high intake of rice with a low level of contamination is of health concern. Thus, it is necessary to implement effective strategies to prevent contamination and fungal growth in rice. A good agricultural and manufacturing practice should be applied during handling, storage and distribution of rice to ensure that aflatoxins contamination level is lower in the final product. Moreover, a regular survey for aflatoxins occurrence in rice and biomarkers-based studies is recommended to prevent and reduce the adverse health effects in the world population.
Collapse
|
176
|
Ren X, Zhang Q, Wu W, Yan T, Tang X, Zhang W, Yu L, Li P. Anti-idiotypic nanobody-phage display-mediated real-time immuno-PCR for sensitive, simultaneous and quantitative detection of total aflatoxins and zearalenone in grains. Food Chem 2019; 297:124912. [DOI: 10.1016/j.foodchem.2019.05.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/26/2022]
|
177
|
Arenas-Huertero F, Zaragoza-Ojeda M, Sánchez-Alarcón J, Milić M, Šegvić Klarić M, Montiel-González JM, Valencia-Quintana R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front Microbiol 2019; 10:2347. [PMID: 31681212 PMCID: PMC6798329 DOI: 10.3389/fmicb.2019.02347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to present information about the role of activation of aflatoxins and other mycotoxins, of the aryl hydrocarbon receptor (AhR) pathway. Aflatoxins and other mycotoxins are a diverse group of secondary metabolites that can be contaminants in a broad range of agricultural products and feeds. Some species of Aspergillus, Alternaria, Penicilium, and Fusarium are major producers of mycotoxins, some of which are toxic and carcinogenic. Several aflatoxins are planar molecules that can activate the AhR. AhR participates in the detoxification of several xenobiotic substances and activates phase I and phase II detoxification pathways. But it is important to recognize that AhR activation also affects differentiation, cell adhesion, proliferation, and immune response among others. Any examination of the effects of aflatoxins and other toxins that act as activators to AhR must consider the potential of the disruption of several cellular functions in order to extend the perception thus far about the toxic and carcinogenic effects of these toxins. There have been no Reviews of existing data between the relation of AhR and aflatoxins and this one attempts to give information precisely about this dichotomy.
Collapse
Affiliation(s)
- Francisco Arenas-Huertero
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Montserrat Zaragoza-Ojeda
- Experimental Pathology Research Laboratory, Children’s Hospital of Mexico Federico Gómez, Mexico, Mexico
| | - Juana Sánchez-Alarcón
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - José M. Montiel-González
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Rafael Valencia-Quintana
- Rafael Villalobos-Pietrini Laboratory of Genomic Toxicology and Environmental Chemistry, Faculty of Agrobiology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
178
|
Function of crzA in Fungal Development and Aflatoxin Production in Aspergillus flavus. Toxins (Basel) 2019; 11:toxins11100567. [PMID: 31569747 PMCID: PMC6832762 DOI: 10.3390/toxins11100567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
The calcineurin pathway is an important signaling cascade for growth, sexual development, stress response, and pathogenicity in fungi. In this study, we investigated the function of CrzA, a key transcription factor of the calcineurin pathway, in an aflatoxin-producing fungus Aspergillus flavus (A. flavus). To examine the role of the crzA gene, crzA deletion mutant strains in A. flavus were constructed and their phenotypes, including fungal growth, spore formation, and sclerotial formation, were examined. Absence of crzA results in decreased colony growth, the number of conidia, and sclerocia production. The crzA-deficient mutant strains were more susceptible to osmotic pressure and cell wall stress than control or complemented strains. Moreover, deletion of crzA results in a reduction in aflatoxin production. Taken together, these results demonstrate that CrzA is important for differentiation and mycotoxin production in A. flavus.
Collapse
|
179
|
Liu Y, Li M, Liu Y, Bian K. Structures of Reaction Products and Degradation Pathways of Aflatoxin B 1 by Ultrasound Treatment. Toxins (Basel) 2019; 11:toxins11090526. [PMID: 31547265 PMCID: PMC6784252 DOI: 10.3390/toxins11090526] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
Ultrasound is an emerging decontamination technology with potential use in the global food processing industry. In the present study, we explored power ultrasound for processing aqueous aflatoxin B1 (AFB1). AFB1 was degraded by 85.1% after 80 min of ultrasound exposure. The reaction products of AFB1 were identified and their molecular formulae elucidated by ultra-high-performance liquid chromatography Q-Orbitrap mass spectrometry. Eight main reaction products were found, and their structures were clarified by parental ion fragmentation. Two degradation pathways were proposed according to the degradation product structures: One involved the addition of H• and OH• radicals, whereas the other involved H2O2 epoxidation and H•, OH•, and H2O2 oxidation of AFB1. Ultrasound treatment significantly reduced AFB1 bioactivity and toxicity by disrupting the C8=C9 double bond in the furan ring and modifying the lactone ring and methoxy group.
Collapse
Affiliation(s)
- Yuanfang Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Mengmeng Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Yuanxiao Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Ke Bian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
180
|
Wangia RN, Tang L, Wang JS. Occupational exposure to aflatoxins and health outcomes: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:215-234. [PMID: 31512547 DOI: 10.1080/10590501.2019.1664836] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aflatoxins [AFs] are secondary metabolites of the fungus species Aspergillus spp. Both animal and epidemiological studies provided sufficient evidence on the carcinogenic, immunotoxic, mutagenic, and genotoxic potential of AFs. While ingestion is the main route of exposure for AFs through consumption of contaminated food products, agricultural workers and personnel who handle AF-contaminated grains are also at higher risk of exposure via inhalation. The main objective of the review is to provide a comprehensive overview of past scientific studies on occupational exposure to AFs, high-risk occupations, and disease outcomes. A search of peer-reviewed articles was done on PubMed and Web of Science Databases. A total of 164 papers was identified and 61 journal articles were selected for further review. High risk occupations include animal husbandry and processing of grain cereals and/or animal feed. Primary liver cancer and respiratory cancers were the most reported as a result of occupational exposure to AFs. For future studies, improved study designs, better characterization of AFs exposure in an occupational setting, and use of biomarkers are recommended in order to promote better understanding of occupational exposure to AFs and the resulting disease burden among workers.
Collapse
Affiliation(s)
- Ruth Nabwire Wangia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
181
|
Mahfuz M, Alam MA, Fahim SM, Gazi MA, Raihan MJ, Hossain M, Egner PA, Bessong PO, Petri WA, Groopman JD, Ahmed T. Aflatoxin exposure in children living in Mirpur, Dhaka: data from MAL-ED companion study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:655-662. [PMID: 30185944 PMCID: PMC6760605 DOI: 10.1038/s41370-018-0066-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 02/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Dietary exposure to aflatoxin is implicated in growth faltering of children. Despite the high burden of childhood stunting in urban Bangladesh, there are no data on long-term exposure to aflatoxin. This study aimed to explore aflatoxin exposure levels in a group of children followed longitudinally. The current study used data and biospecimens collected during 2010-2014 as part of the MAL-ED birth cohort study in an urban slum of Mirpur, Dhaka where children were followed from birth to 36 months. AFB1-lysine adduct concentrations were determined by isotope dilution mass spectrometry from plasma samples collected at 7, 15, 24, and 36 months of age. The limit of detection was 0.5 pg of AFB1-lys/mg albumin. In 744 plasma samples, the geometric mean of AFB1-lysine/mg albumin was 1.07 pg (range 0.04-123.5 pg/mg albumin). The proportion of children with detectable aflatoxin exposure was 10.1, 20.9, 17.9, and 61.7% for 7, 15, 24, and 36 months, respectively. Reduction in breastfeeding prevalence (80% at 24 months vs. 38% in 36 months) corresponded with the high-level detection of AFB1-lysine at the age of 36 months. AFB1-lysine concentrations were the highest at the end of monsoon. This study reveals that 62% of children in slum settlement were exposed to aflatoxin by the end of the third year of life. High aflatoxin exposure was detected at the end of rainy season and with the introduction of family food. These findings suggest interventions to ameliorate the problem of chronic aflatoxin exposure including childhood stunting.
Collapse
Affiliation(s)
- Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mohammed Ashraful Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Shah Mohammad Fahim
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Amran Gazi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Jyoti Raihan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Muttaquina Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Patricia A Egner
- Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
| | | | | | - John D Groopman
- Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
182
|
Costamagna D, Gaggiotti M, Chiericatti CA, Costabel L, Audero GML, Taverna M, Signorini ML. Quantification of aflatoxin M 1 carry-over rate from feed to soft cheese. Toxicol Rep 2019; 6:782-787. [PMID: 31428566 PMCID: PMC6695269 DOI: 10.1016/j.toxrep.2019.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 11/29/2022] Open
Abstract
The levels of AFM1 in milk produced in Argentina are relatively low. Milk production, fiber particle size and AFB1 level affected the carry-over rate. The greatest proportion of AFM1 in milk is detected in whey during cheese. production.
From January to December 2016, samples of milk and feeds of dairy cattle were monthly collected. The concentration of mycotoxins in all matrices was determined using the enzymatic immunoassay technique. The average concentration of aflatoxin B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEA) in feed was 3.01, 218.5 and 467 ug/kg, respectively. The average AFB1 carry-over rate was 0.84% with a variation between 0.05 to 5.93%. Particle size of the feed (P = 0.030) and individual milk production (P = 0.001) affected this rate. Mini-soft cheeses were produced using milk naturally contaminated with aflatoxin M1 (AFM1) as raw material to study its distribution both in whey and in cheese. The average level of AFM1 in milk was 0.014 μg/l. None of milk samples exceeded the maximum level accepted for AFB1 by the Southern Common Market (MERCOSUR) legislation (0.5 μg/l) and only 5.5% of samples exceeded the European Union (UE) regulations (0.05 μg/l). After the cheese elaboration, the concentration of AFM1 was determined in whey and in cheese. The greatest proportion (60%) was detected in whey while 40% AFM1 remained in the cheese. However, the concentration of AFM1 was higher in the cheese compared to the original milk.
Collapse
Affiliation(s)
- D Costamagna
- National Institute for Agricultural Technology (INTA), Experimental Station Rafaela (EEA), Route 34, Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - M Gaggiotti
- National Institute for Agricultural Technology (INTA), Experimental Station Rafaela (EEA), Route 34, Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - C A Chiericatti
- Microbiology Laboratory, Faculty of Chemical Engineering, National University of Littoral. Santiago Del Estero 2829, C.P. 3000, Provincia de Santa Fe, Argentina
| | - L Costabel
- National Institute for Agricultural Technology (INTA), Experimental Station Rafaela (EEA), Route 34, Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - G M L Audero
- National Institute for Agricultural Technology (INTA), Experimental Station Rafaela (EEA), Route 34, Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - M Taverna
- National Institute for Agricultural Technology (INTA), Experimental Station Rafaela (EEA), Route 34, Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - M L Signorini
- National Institute for Agricultural Technology (INTA), Experimental Station Rafaela (EEA), Route 34, Km 227, 2300, Rafaela, Santa Fe, Argentina.,National Council of Scientific and Technical Research (CONICET), National Institute for Agricultural Technology (INTA) EEA Rafaela, Route 34 Km 227, 2300, Rafaela, Santa Fe, Argentina
| |
Collapse
|
183
|
Analysis of the Molecular Interactions between Cytochromes P450 3A4 and 1A2 and Aflatoxins: A Docking Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mycotoxins known as aflatoxins (AF) are produced as a secondary metabolite by some species of Aspergillus fungi. They are considered carcinogenic, hepatotoxic, teratogenic, and mutagenic. In this study, the molecular structure, chemical reactivity, and charge transfer values of AFB1, B2, G1, and G2 were analyzed using density functional theory. Different methodologies—B3LYP/6-311G(d,p) and M06-2X/6-311G(d,p)—were applied for geometrical calculations. Chemical reactivity parameters were used in the calculation of charge transfer values during the interaction between protein and ligand. The binding energy, the electrostatic interactions, and the amino acids of the active site were determined by molecular docking analysis between AF and cytochromes P450 (3A4 and 1A2), employing different PDB files (CYP3A4:1TQN, 2V0M, 4NY4 and 1W0E, and CYP1A2:2HI4). Molecular docking analysis indicated that the central rings of the AF are involved in the interaction with the HEM group of the active site. The differences in the molecular structure of the AF affect their position regarding the HEM group. The resulting configurations presented considerable variation in the amino acids and the position of the coupling. The charge transfer values showed that there is oxidative damage inside the active site and that the HEM group is responsible for the main charge transferences.
Collapse
|
184
|
Bellamri M, Wang Y, Yonemori K, White KK, Wilkens LR, Le Marchand L, Turesky RJ. Biomonitoring an albumin adduct of the cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in humans. Carcinogenesis 2019; 39:1455-1462. [PMID: 30247550 DOI: 10.1093/carcin/bgy125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/18/2018] [Indexed: 01/12/2023] Open
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed in cooked meats and may be linked to dietary-associated colorectal, prostate and mammary cancers. Genotoxic N-oxidized metabolites of PhIP react with the Cys34 of albumin (Alb) to form a sulfinamide adduct, a biomarker of the biologically effective dose. We examined the kinetics of PhIP-Alb adduct formation in plasma of volunteers on a 4-week semicontrolled diet of cooked meat containing known quantities of PhIP. The adduct was below the limit of detection (LOD) (10 femtograms PhIP/mg Alb) in most subjects before the meat feeding but increased by up to 560-fold at week 4 in subjects who ate meat containing 8.0 to 11.7 μg of PhIP per 150-200 g serving. In contrast, the adduct remained below the LOD in subjects who ingested 1.2 or 3.0 μg PhIP per serving. Correlations were not seen between PhIP-Alb adduct levels and PhIP intake levels (P = 0.76), the amount of PhIP accrued in hair (P = 0.13), the amounts of N-oxidized urinary metabolites of PhIP (P = 0.66) or caffeine CYP1A2 activity (P = 0.55), a key enzyme involved in the bioactivation of PhIP. The half-life of the PhIP-Alb adduct was <2 weeks, signifying that the adduct was not stable. PhIP-Alb adduct formation is direct evidence of bioactivation of PhIP in vivo. However, the PhIP hair biomarker is a longer lived and more sensitive biomarker to assess exposure to this potential human carcinogen.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Yi Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, Medical Science Building, University of Florida, Gainesville, FL, USA
| | - Kim Yonemori
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Kami K White
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
185
|
Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK, Fountain JC, Liao B, Desmae H, Okori P, Chen X, Jiang H, Mendu V, Falalou H, Njoroge S, Mwololo J, Guo B, Zhuang W, Wang X, Liang X, Varshney RK. Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins (Basel) 2019; 11:E315. [PMID: 31163657 PMCID: PMC6628460 DOI: 10.3390/toxins11060315] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Arun K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Jake C Fountain
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Boshou Liao
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Haile Desmae
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako BP 320, Mali.
| | - Patrick Okori
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Xiaoping Chen
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Huifang Jiang
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Venugopal Mendu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger.
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - James Mwololo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
| | - Weijian Zhuang
- Institute of Oil Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xingjun Wang
- Shandong Academy of Agricultural Sciences, Jinan 250108, China.
| | - Xuanqiang Liang
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| |
Collapse
|
186
|
Jamal QMS, Alharbi AH, Lohani M, Siddiqui MU, Ahmad V, Dhasmana A, Ansari MA, Siddiqui MH, Kesari KK. Elucidation of Scavenging Properties of Nanoparticles in the Prevention of Carcinogenicity Induced by Cigarette Smoke Carcinogens: An In Silico Study. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-96511-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
187
|
Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019; 8:ht8020013. [PMID: 31091740 PMCID: PMC6630665 DOI: 10.3390/ht8020013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The measurement of DNA adducts, the covalent modifications of DNA upon the exposure to the environmental and dietary genotoxicants and endogenously produced electrophiles, provides molecular evidence for DNA damage. With the recent improvements in the sensitivity and scanning speed of mass spectrometry (MS) instrumentation, particularly high-resolution MS, it is now feasible to screen for the totality of DNA damage in the human genome through DNA adductomics approaches. Several MS platforms have been used in DNA adductomic analysis, each of which has its strengths and limitations. The loss of 2′-deoxyribose from the modified nucleoside upon collision-induced dissociation is the main transition feature utilized in the screening of DNA adducts. Several advanced data-dependent and data-independent scanning techniques originated from proteomics and metabolomics have been tailored for DNA adductomics. The field of DNA adductomics is an emerging technology in human exposure assessment. As the analytical technology matures and bioinformatics tools become available for analysis of the MS data, DNA adductomics can advance our understanding about the role of chemical exposures in DNA damage and disease risk.
Collapse
|
188
|
Mueller LM. Cancer in the tropics: geographical pathology and the formation of cancer epidemiology. BIOSOCIETIES 2019. [DOI: 10.1057/s41292-019-00152-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
189
|
McCullough AK, Lloyd RS. Mechanisms underlying aflatoxin-associated mutagenesis - Implications in carcinogenesis. DNA Repair (Amst) 2019; 77:76-86. [PMID: 30897375 PMCID: PMC6959417 DOI: 10.1016/j.dnarep.2019.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
Chronic dietary exposure to aflatoxin B1 (AFB1), concomitant with hepatitis B infection is associated with a significant increased risk for hepatocellular carcinomas (HCCs) in people living in Southeast Asia and sub-Saharan Africa. Human exposures to AFB1 occur through the consumption of foods that are contaminated with pervasive molds, including Aspergillus flavus. Even though dietary exposures to aflatoxins constitute the second largest global environmental risk factor for cancer development, there are still significant questions concerning the molecular mechanisms driving carcinogenesis and what factors may modulate an individual's risk for HCC. The objective of this review is to summarize key discoveries that established the association of chronic inflammation (most commonly associated with hepatitis B viral (HBV) infection) and environmental exposures to aflatoxin with increased HCC risk. Special emphasis will be given to recent investigations that have: 1) refined the aflatoxin-associated mutagenic signature, 2) expanded the DNA repair mechanisms that limit mutagenesis via adduct removal prior to replication-induced mutagenesis, 3) implicated a specific DNA polymerase in the error-prone bypass and resulting mutagenesis, and 4) identified human polymorphic variants that may modulate individual susceptibility to aflatoxin-induced cancers. Collectively, these investigations revealed that specific sequence contexts are differentially resistant against, or prone to, aflatoxin-induced mutagenesis and that these associations are remarkably similar between in vitro and in vivo analyses. These recent investigations also established DNA polymerase ζ as the major polymerase that confers the G to T transversion signature. Additionally, although the nucleotide excision repair (NER) pathway has been previously shown to repair aflatoxin-induced DNA adducts, recent murine data demonstrated that NEIL1-initiated base excision repair was significantly more important than NER relative to the removal of the highly mutagenic AFB1-Fapy-dG adducts. These data suggest that inactivating polymorphic variants of NEIL1 could be a potential driver of HCCs in aflatoxin-exposed populations.
Collapse
Affiliation(s)
- Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
190
|
Mekawey AAI, El-Metwally MM. Impact of nanoencapsulated natural bioactive phenolic metabolites on chitosan nanoparticles as aflatoxins inhibitor. J Basic Microbiol 2019; 59:599-608. [PMID: 30900741 DOI: 10.1002/jobm.201800481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Aflatoxins are part of fungal secondary metabolites which become serious health, environmental, and economic problems and can cause corruption of many crops and agricultural grains that used as food and feed for human and animal. Aflatoxins mainly produce by Aspergillus spp. especially Aspergillus flavus and Aspergillus parasiticus. The present work aimed to study the effect of nanoencapsulation of chitosan (CS) nanoparticles with two phenolic compounds 1-(2-ethyl,6-heptyl)phenol (EHP) extracted from Cuminum cyminum and 5-ethyl-2-(methoxymethyl)phenol (EMMP) extracted from black pepper on growth and aflatoxins production of A. flavus and A. parasiticus. A. flavus growth was completely inhibited by 0.6 mg/ml of EHP and EMMP as well as A. parasiticus which showed the same minimal inhibition concentration with the first compound and 0.8 mg/ml with the second one. CS nanoparticles inhibited the growth of the tested organisms more than CS especially with A. parasiticus and this potency became much better when nanoencapsulated with the two extracted phenolic compounds. In inhibition of aflatoxins production, EHP reduced the production of aflatoxin B1 and B2 of A. flavus by 68.6% and 69.7%, respectively. In the same manner EMMP reduce the production of the two toxins by 87.3% and 82.6%, respectively. The reduction effect of CS nanoparticles is much more than that of CS as it record in most cases about twofold increase. Nanoencapsulation of CS nanoparticles by the extracted phenolic compounds is much more effective with complete inhibition of aflatoxin B1 of both fungi and aflatoxin G1 of A. parasiticus.
Collapse
Affiliation(s)
- Amal A I Mekawey
- Fungal Identification Unit, The Regional Center of Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammad M El-Metwally
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
191
|
Moghaddam AF, Rychlik M, Hosseini H, Janat B, Yazdanpanah H, AliAbadi MS. Risk associated with the intake of aflatoxin M1 from milk in Iran. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin M1 is an oxidative metabolite of aflatoxin B1 formed in liver and excreted into milk, urine and faeces of dairy cattle and other mammalian species. The International Agency for Research on Cancer classified aflatoxin M1 in Group 2B because of its potential to get bioactivated to a mutagen analogous to aflatoxin B1. Risk assessments are undertaken to guide food regulators and scientists in risk management processes, such as the legislative levels or guideline targets for mycotoxins in food supplies. Using existing international resources for hazard data and local exposure data, and based on cancer potency as the endpoint, the risk of exposure to aflatoxin M1 in milk for the Iranian population was calculated considering various scenarios. During 2014-2015, 518 samples were collected from the market and tested for aflatoxin M1 contamination by HPLC-FLD. The most probable scenarios calculated as mean occurrence multiplied by the mean consumption in consumers of milk, and for maximum level allowed for aflatoxin M1 in milk with 99 percentiles of milk consumption showed the risk of 0.08 and 0.72 additional liver cancer cases per year for the Iranian population, respectively. Thus, our study reveals a low risk and that the current maximum limit of 100 ng/l for aflatoxin M1 in milk, heat treated milk and flavoured milk is sustainable.
Collapse
Affiliation(s)
- A. Fooladi Moghaddam
- Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- National Nutrition & Food Technology Research Institute, Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - M. Rychlik
- Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - H. Hosseini
- National Nutrition & Food Technology Research Institute, Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
- Food Safety Research Center, Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - B. Janat
- Halal Research Centre of IR, Iran Food and Drug Administration, 1415845371 Tehran, Iran
| | - H. Yazdanpanah
- Food Safety Research Center, Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | |
Collapse
|
192
|
Cohen SM, Boobis AR, Dellarco VL, Doe JE, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC. Chemical carcinogenicity revisited 3: Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 2019; 103:100-105. [DOI: 10.1016/j.yrtph.2019.01.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/27/2023]
|
193
|
Díaz de León-Martínez L, Díaz-Barriga F, Barbier O, Ortíz DLG, Ortega-Romero M, Pérez-Vázquez F, Flores-Ramírez R. Evaluation of emerging biomarkers of renal damage and exposure to aflatoxin-B 1 in Mexican indigenous women: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12205-12216. [PMID: 30835068 DOI: 10.1007/s11356-019-04634-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/19/2019] [Indexed: 05/18/2023]
Abstract
Aflatoxins (AFs) are mycotoxins produced by Aspergillus parasiticus and Aspergillus flavus which frequently contaminate maize. These compounds are considered toxic, especially AFB1 which has been classified as a human carcinogen, due to its relationship with the generation of hepatocellular carcinoma. Studies in vivo, in animal models, prove that chronic consumption of AFB1 has an association with renal adverse effects, but evidence in humans is scarce. Therefore, the main objective of this research was to conduct a pilot study to evaluate the correlation between exposure to AFB1 and early-stage renal damage in indigenous women of San Luis Potosí, Mexico. Exposure to AFB1 was measured through the biomarker AFB1-lysine and renal damage through kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin-C (Cys-C). AFB1-Lys was measured by HPLC-FLD. The method was validated with a correlation coefficient of 0.99 and limit of detection and quantification of 3.5 and 4.7 pg mL-1, respectively. Levels of NGAL, KIM-1, and Cys-C were determined (median (P25-P75), 5.96 (3.16-15.91), 0.137 (0.137-0.281), and 18.49 (5.76-29.57) ng mL-1, respectively). Additionally, glomerular filtration rate (GFR) (83.3 (59.8-107.4) mL/min/1.73 m2) and serum creatinine (SCr) (0.88 (0.72-1.22) mg dL-1) were obtained. The median concentrations for AFB1-Lys were 2.08 (1.89-5.8) pg mg-1 of albumin. Statistically significant correlations between AFB1-Lys/KIM-1 (Rho = 0.498, p = 0.007) and AFB1/Cys-C (Rho = 0.431, p = 0.014) were found. Our results indicate that women are exposed to AFB1, due to the fact that the AFB1-Lys biomarker was found in a high percentage of the study population (83%). In addition, the results of exposure to AFB1 show a strong significant correlation between KIM-1 and Cys-C that may indicate the toxic renal effect. These results are alarming because of the high toxicity of this compound and require adequate intervention to reduce AFB1 exposure in these populations.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Dora Linda Guzmán Ortíz
- Departamento de Biotecnología y Bioquímica Centro de Investigación de Estudios Avanzados del -Instituto Politécnico Nacional (CINVESTAV-IPN), Campus Guanajuato, Irapuato, Mexico
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Francisco Pérez-Vázquez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
194
|
Sánchez EM, Diaz GJ. Frequency and levels of aflatoxin M 1 in urine of children in Bogota, Colombia. Mycotoxin Res 2019; 35:271-278. [PMID: 30915618 DOI: 10.1007/s12550-019-00355-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022]
Abstract
A study was conducted to investigate the frequency and levels of AFM1 and AFM2 in urine from children who attended the emergency service of a pediatric referral hospital in Bogota, Colombia. A survey on the consumption of foods likely to be a source of aflatoxins and on sociodemographic variables was conducted as well. The frequency of AFM1 in urine was found to be 41.7% with an average concentration in positive samples of 16 pg mL-1 ± 10.7 pg mL-1 (range > LOD-48.5 pg mL-1). The presence of AFM1 in the urine was related to the consumption of cereals likely to be contaminated with AFB1, especially corn and rice. No detectable levels of AFM2 were found in any sample. The results show that children's exposure to aflatoxins in Colombia is indeed a problem and should be one of the priorities of the health authorities. Continuous monitoring of aflatoxins in foods should be carried out, in compliance with Colombian regulations, using analytical methods that allow determination and quantification of aflatoxins in different biological and non-biological matrices at trace levels.
Collapse
Affiliation(s)
- E M Sánchez
- Departamento de Toxicología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 45 #, 26-85, Bogotá D.C., Colombia.
| | - G J Diaz
- Laboratorio de Toxicología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| |
Collapse
|
195
|
Wu J, Zhu S, Wu Y, Jiang T, Wang L, Jiang J, Wen J, Deng Y. Multiple CH/π Interactions Maintain the Binding of Aflatoxin B₁ in the Active Cavity of Human Cytochrome P450 1A2. Toxins (Basel) 2019; 11:toxins11030158. [PMID: 30871064 PMCID: PMC6468651 DOI: 10.3390/toxins11030158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 11/26/2022] Open
Abstract
Human cytochrome P450 1A2 (CYP1A2) is one of the key CYPs that activate aflatoxin B1 (AFB1), a notorious mycotoxin, into carcinogenic exo-8,9-epoxides (AFBO) in the liver. Although the structure of CYP1A2 is available, the mechanism of CYP1A2-specific binding to AFB1 has not been fully clarified. In this study, we used calculation biology to predict a model of CYP1A2 with AFB1, where Thr-124, Phe-125, Phe-226, and Phe-260 possibly participate in the specific binding. Site-directed mutagenesis was performed to construct mutants T124A, F125A, F226A, and F260A. Escherichia coli-expressed recombinant proteins T124A, F226A, and F260A had active structures, while F125A did not. This was evidenced by Fe2+∙Carbon monoxide (CO)-reduced difference spectra and circular dichroism spectroscopy. Mutant F125A was expressed in HEK293T cells. Steady kinetic assays showed that T124A had enhanced activity towards AFB1, while F125A, F226A, and F260A were significantly reduced in their ability to activate AFB1, implying that hydrogen bonds between Thr-124 and AFB1 were not important for substrate-specific binding, whereas Phe-125, Phe-226, and Phe-260 were essential for the process. The computation simulation and experimental results showed that the three key CH/π interactions between Phe-125, Phe-226, or Phe-260 and AFB1 collectively maintained the stable binding of AFB1 in the active cavity of CYP1A2.
Collapse
Affiliation(s)
- Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Sisi Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Yunbo Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
196
|
Wang Y, Yang L, Fei X, Yao X, Gao D, Guo S. Antifungal Effect of Camellia Seed Cake Extract on Aspergillus flavus. J Food Prot 2019; 82:463-469. [PMID: 30802155 DOI: 10.4315/0362-028x.jfp-18-285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HIGHLIGHTS The antifungal effect of the active substance in camellia seed cake is evaluated on Aspergillus flavus. The n-butanol phase exhibited an apparent antagonistic effect on A. flavus. A reference and a guide for natural antifungal agents is provided. Knowledge of the utilization of the by-products of camellia seed is broadened.
Collapse
Affiliation(s)
- Yaping Wang
- 1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry (CAF), Hangzhou, People's Republic of China
| | - Liu Yang
- 2 Zhejiang Forestry Product Quality Testing Station, Hangzhou, People's Republic of China
| | - Xueqian Fei
- 1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry (CAF), Hangzhou, People's Republic of China
| | - Xiaohua Yao
- 1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry (CAF), Hangzhou, People's Republic of China
| | - Daxiang Gao
- 3 Jiangsu Polytechnic College Agriculture and Forestry, Jurong, People's Republic of China
| | - Shaohai Guo
- 1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry (CAF), Hangzhou, People's Republic of China
| |
Collapse
|
197
|
Yuan J, Li D, Qin L, Shen J, Guo X, Tumukunde E, Li M, Wang S. HexA is required for growth, aflatoxin biosynthesis and virulence in Aspergillus flavus. BMC Mol Biol 2019; 20:4. [PMID: 30744561 PMCID: PMC6371581 DOI: 10.1186/s12867-019-0121-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Background Woronin bodies are fungal-specific organelles whose formation is derived from peroxisomes. The former are believed to be involved in the regulation of mycotoxins biosynthesis, but not in their damage repair function. The hexagonal peroxisome protein (HexA or Hex1) encoded by hexA gene in Aspergillus is the main and the essential component of the Woronin body. However, little is known about HexA in Aspergillus flavus. Results In this study, hexA knock-out mutant (ΔhexA) and complementation strain (ΔhexAC) were produced using homologous recombination. The results showed that, ΔhexA and ΔhexAC were successfully constructed. And the data analysis indicated that the colony diameter, stress sensitivity and the sclerotia formation of A. flavus were nearly not affected by the absence of HexA. Yet, the deletion of hexA gene reduced the production of asexual spores and lessened virulence on peanuts and maize seeds markedly. In addition, it was also found that there was a significant decrease of Aflatoxin B1 production in deletion mutant, when compared to wild type. Conclusions Therefore, it suggested that the hexA gene has an essential function in conidia production and secondary metabolism in A. flavus. The gene is also believed to be playing an important role in the invasion of A. flavus to the host.
Collapse
Affiliation(s)
- Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ding Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaojiao Shen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaodong Guo
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingzhu Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
198
|
Mahuku G, Nzioki HS, Mutegi C, Kanampiu F, Narrod C, Makumbi D. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Food Control 2019; 96:219-226. [PMID: 30713368 PMCID: PMC6251936 DOI: 10.1016/j.foodcont.2018.08.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022]
Abstract
Maize, the main dietary staple in Kenya, is one of the crops most susceptible to contamination by aflatoxin. To understand sources of aflatoxin contamination for home grown maize, we collected 789 maize samples from smallholder farmers' fields in Eastern and South Western, two regions in Kenya representing high and low aflatoxin risk areas, respectively, and determined aflatoxin B1 (AFB1) using ELISA with specific polyclonal antibodies. AFB1 was detected in 274 of the 416 samples from Eastern Kenya at levels between 0.01 and 9091.8 μg kg-1 (mean 67.8 μg kg-1). In South Western, AFB1 was detected in 233 of the 373 samples at levels between 0.98 and 722.2 μg kg-1 (mean 22.3 μg kg-1). Of the samples containing AFB1, 153 (55.8%) from Eastern and 102 (43.8%) from South Western exceeded the maximum allowable limit of AFB1 (5 μg kg-1) in maize for human consumption in Kenya. The probable daily intake (PDI) of AFB1 in Eastern Kenya ranged from 0.07 to 60612 ng kg-1 bw day-1 (mean 451.8 ng kg-1 bw day-1), while for South Western, PDI ranged from 6.53 to 4814.7 ng kg-1 bw day-1 (mean 148.4 ng kg-1 bw day-1). The average PDI for both regions exceeded the estimated provisional maximum tolerable daily intake of AFB1, which is a health concern for the population in these regions. These results revealed significant levels of preharvest aflatoxin contamination of maize in both regions. Prevention of preharvest infection of maize by toxigenic A. flavus strains should be a critical focal point to prevent aflatoxin contamination and exposure.
Collapse
Affiliation(s)
- George Mahuku
- International Institute of Tropical Agriculture (IITA), P.O. Box 34441, Dar es Salaam, Tanzania
| | - Henry Sila Nzioki
- Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 57811-00200, Nairobi, Kenya
| | - Charity Mutegi
- International Institute of Tropical Agriculture (IITA), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fred Kanampiu
- International Institute of Tropical Agriculture (IITA), P.O. Box 30772-00100, Nairobi, Kenya
| | - Clare Narrod
- University of Maryland, 5201 Paint Branch Parkway, College Park, MD 20742, USA
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), P.O. Box 1041-00621, Nairobi, Kenya
| |
Collapse
|
199
|
Saha Turna N, Wu F. Risk assessment of aflatoxin-related liver cancer in Bangladesh. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:320-326. [DOI: 10.1080/19440049.2019.1567941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nikita Saha Turna
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
200
|
Ayofemi Olalekan Adeyeye S. Aflatoxigenic fungi and mycotoxins in food: a review. Crit Rev Food Sci Nutr 2019; 60:709-721. [DOI: 10.1080/10408398.2018.1548429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Samuel Ayofemi Olalekan Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|