151
|
Angata K, Fukuda M. Roles of polysialic acid in migration and differentiation of neural stem cells. Methods Enzymol 2010; 479:25-36. [PMID: 20816158 DOI: 10.1016/s0076-6879(10)79002-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polysialic acid, a homopolymer of alpha2,8-linked sialic acid, is one of the carbohydrates expressed on neural precursors in the embryonic and adult brain. Polysialic acid, synthesized by two polysialyltransferases (ST8SiaII and ST8SiaIV), mainly modulates functions of the neural cell adhesion molecule (NCAM). Polysialic acid-deficient mice demonstrated that polysialylated NCAM plays crucial roles in various steps of neural development, such as cell survival and cell migration of neural precursors, neuronal guidance, and synapse formation. However, the mechanisms of the diverse phenotypes and molecules affected by polysialic acid remain to be defined. To study the roles of polysialic acid on neural stem cells, analyses of neural stem cells from polysialic acid-deficient and NCAM-deficient mice are useful. Here, we describe how to prepare neural precursor cells from mouse brain and how to analyze migration and differentiation of neurosphere cells in vitro.
Collapse
Affiliation(s)
- Kiyohiko Angata
- Tumor Microenvironment Program, Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
152
|
Choi JH, Lee CH, Yoo KY, Hwang IK, Lee IS, Lee YL, Shin HC, Won MH. Age-related changes in calbindin-D28k, parvalbumin, and calretinin immunoreactivity in the dog main olfactory bulb. Cell Mol Neurobiol 2010; 30:1-12. [PMID: 19533334 PMCID: PMC11498623 DOI: 10.1007/s10571-009-9425-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Expression and age-related changes of calbindin-D28k (CB), parvalbumin (PV), and calretinin (CR) in the main olfactory bulb of the dog were investigated by immunohistochemistry and western blot analysis. Neurons that expressed these calcium-binding proteins showed a characteristic laminar distribution. Most of CB-immunoreactive neurons were observed in the glomerular layer (GL) and the inner sublayer of the external plexiform layer (EPL). Most of PV-immunoreactive neurons were observed in the outer sublayer of the EPL. CR-immunoreactive neurons were mainly distributed in the GL and the granule cell layer. With regard to age-related changes, CB-immunoreactive neurons in the GL were stable among all age groups; however, in the EPL they decreased with age. PV-immunoreactive neurons decreased in middle-aged and aged groups. However, CR-immunoreactive neurons were not decreased in middle-aged and aged groups. These results suggest that CB-immunoreactive neurons in the EPL were most sensitive to aging, and that their reduction may be related to aging in the dog.
Collapse
Affiliation(s)
- Jung Hoon Choi
- Department of Anatomy and Neurobiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Neurobiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Ki-Yeon Yoo
- Department of Anatomy and Neurobiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - In Se Lee
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Hyung-Cheul Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Moo-Ho Won
- Department of Anatomy and Neurobiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
- Institute of Natural Medicine, Hallym University, Chuncheon, 200-702 South Korea
| |
Collapse
|
153
|
Ben Abdallah NMB, Slomianka L, Vyssotski AL, Lipp HP. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 2010; 31:151-61. [DOI: 10.1016/j.neurobiolaging.2008.03.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/12/2023]
|
154
|
Walter J, Keiner S, Witte OW, Redecker C. Age-related effects on hippocampal precursor cell subpopulations and neurogenesis. Neurobiol Aging 2009; 32:1906-14. [PMID: 20006411 DOI: 10.1016/j.neurobiolaging.2009.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/18/2009] [Accepted: 11/13/2009] [Indexed: 11/27/2022]
Abstract
Hippocampal neurogenesis continuously declines in the aging brain but only little is known about age-related alterations in the subgranular zone (SGZ) of the dentate gyrus which accommodates different subpopulations of precursor cells. Here, we examined the age-related effects on total number and proliferation rate of distinct precursor cell populations in the dentate gyrus of 3 and 16 months old transgenic pNestin-GFP mice. Following a single injection of bromodeoxyuridine (BrdU) we observed a significant reduction of all proliferating precursor subtypes in aged mice compared to young controls. Stereological analysis further revealed that this decreased proliferation was not only caused by a general reduction in total number of precursor subtypes but also by a subtype-specific alteration of the proliferation rate. Whereas radial glia-like and early neuronal precursor cells demonstrate decreased proliferation rates, no difference was found for doublecortin-positive precursors. Additional long-term experiments further revealed that these age-related alterations in the proliferative zone were accompanied by a strongly decreased neurogenesis while hippocampal function was not impaired.
Collapse
Affiliation(s)
- Josephine Walter
- Department of Neurology, University Hospital Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | | | | | | |
Collapse
|
155
|
Drekić D, Prostran MS, Duka M, Ranković V, Kerkez M, Stefanović D, Prostran MS. Study of molecular and granular layer of dentate gyrus of female rats neonatally treated with estrogen. Int J Neurosci 2009; 119:1228-38. [PMID: 19922352 DOI: 10.1080/00207450802333870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The proliferation of hippocampal dentate gyrus granule cells was investigated using (3)H-thymidine incorporation in control and estrogen-treated rats. Newborn 3-day old female Wistar rats were treated with a single dose of 1 mg of estradiol and 30 microCi (3)H-thymidine, and were sacrificed when 10 days old. The total number of neurons and the number of labeled granule cells in the granular layer and its subdivisions of both suprapyramidal and infrapyramidal limbs were analyzed using a stereological method. In both limbs, the total number of neurons as well as the total number of labeled granule cells in the granular layer were significantly increased in treated rats compared to corresponding controls. The thicknesses of the molecular and the granular layers and their subdivisions of both suprapyramidal and infrapyramidal limbs were analyzed using a stereological method. In treated female rats the molecular layer (ML) in both limbs was significantly decreased, and the granular layer (GL) was significantly increased in suprapyramidal limb. However, in the infrapyramidal limb an increased number of labeled cells in treated animals were significant in all particular zones of the granular layer. In the suprapyramidal limb's granular layer a significant increase in labeled cells was observed in subgranular zone (SGZ). Our results suggest a differential effect of estradiol on thicknesses of the ML and the GL, and dentate gyrus granule cells proliferation through the early rat life.
Collapse
Affiliation(s)
- Dmitar Drekić
- Department of Anatomy, Faculty of Veterinary Medicine, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
156
|
Scrable H, Burns-Cusato M, Medrano S. Anxiety and the aging brain: stressed out over p53? Biochim Biophys Acta Gen Subj 2009; 1790:1587-91. [PMID: 19800395 DOI: 10.1016/j.bbagen.2009.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 08/18/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022]
Abstract
We propose a model in which cell loss in the aging brain is seen as a root cause of behavioral changes that compromise quality of life, including the onset of generalized anxiety disorder, in elderly individuals. According to this model, as stem cells in neurogenic regions of the adult brain lose regenerative capacity, worn-out, dead, or damaged neurons fail to be replaced, leaving gaps in function. As most replacement involves inhibitory interneurons, either directly or indirectly, the net result is the acquisition over time of a hyper-excitable state. The stress axis is subserved by all three neurogenic regions in the adult brain, making it particularly susceptible to these age-dependent changes. We outline a molecular mechanism by which hyper-excitation of the stress axis in turn activates the tumor suppressor p53. This reinforces the loss of stem cell proliferative capacity and interferes with the feedback mechanism by which the glucocorticoid receptor turns off neuroendocrine pathways and resets the axis.
Collapse
Affiliation(s)
- Heidi Scrable
- Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
157
|
Namba T, Maekawa M, Yuasa S, Kohsaka S, Uchino S. The Alzheimer's disease drug memantine increases the number of radial glia-like progenitor cells in adult hippocampus. Glia 2009; 57:1082-90. [PMID: 19115386 DOI: 10.1002/glia.20831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
New neurons are continuously generated in the hippocampus of the adult mammalian brain, and N-methyl-D-aspartate receptor (NMDA-R) antagonists have been found to increase the number of newly generated neurons in the dentate gyrus (DG) of the adult hippocampus. In this study, we examined the effect of memantine, an NMDA-R antagonist that is clinically used for the treatment of Alzheimer's disease, on primary progenitor cells exhibiting a radial glia-like (RGL) morphology in the DG. We injected 3-month-old mice with memantine (50 mg/kg body weight, intraperitoneally [i.p.]); 3 days later, we injected the mice with 5-bromo-2-deoxyuridine (BrdU; 75 mg/kg body weight, i.p.). We then counted the number of BrdU-labeled RGL progenitor cells in the DG 1 or 7 days after the BrdU-injection. The number of BrdU-labeled RGL progenitor cells had increased significantly by 5.1-fold on day 1 and by 13.7-fold on day 7 after BrdU-injection. Immunohistochemical staining revealed that the BrdU-labeled RGL progenitor cells expressed two primary progenitor cell marker proteins, nestin and Sox2. These results clearly demonstrated that memantine promotes the proliferation of RGL progenitor cells. We also found that memantine increased the ratio of horizontally aligned RGL progenitor cells, which are probably produced by symmetric division. These findings suggest that memantine increases the proliferation of primary progenitor cells and expands the primary progenitor cell pool in the adult hippocampus by stimulating symmetric division.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | | | | | |
Collapse
|
158
|
Snyder JS, Ramchand P, Rabbett S, Radik R, Wojtowicz JM, Cameron HA. Septo-temporal gradients of neurogenesis and activity in 13-month-old rats. Neurobiol Aging 2009; 32:1149-56. [PMID: 19632743 DOI: 10.1016/j.neurobiolaging.2009.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/17/2009] [Accepted: 05/31/2009] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that hippocampal function is partially dissociable along its septo-temporal axis: the septal hippocampus is more critical for spatial processing, while the temporal hippocampus may be more important for non-spatial-related behavior. In young adults, water maze training specifically activates new neurons in the temporal hippocampus, but it is unknown whether subregional differences are maintained in older animals, which have reduced neurogenesis levels. We therefore examined gradients of activity-related Fos expression and neurogenesis in 13-month-old rats and found that neurogenesis occurs relatively evenly throughout the dentate gyrus. Water maze experience significantly increased Fos expression in the suprapyramidal blade and Fos was highest in the septal pole of the dentate gyrus whether the animal learned a platform location, swam in the absence of a platform or remained in their cage. No Fos+ young neurons were found using typical markers of immature neurons. However, Fos expression in the subgranular zone, where adult-born neurons predominate, was disproportionally high in the temporal dentate gyrus. These findings indicate that adult-born neurons in the temporal hippocampus are preferentially activated compared with older neurons.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
159
|
Butz M, Wörgötter F, van Ooyen A. Activity-dependent structural plasticity. ACTA ACUST UNITED AC 2009; 60:287-305. [DOI: 10.1016/j.brainresrev.2008.12.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
|
160
|
Varea E, Castillo-Gómez E, Gómez-Climent MA, Guirado R, Blasco-Ibáñez JM, Crespo C, Martínez-Guijarro FJ, Nácher J. Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging 2009; 30:808-18. [PMID: 17904697 DOI: 10.1016/j.neurobiolaging.2007.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/25/2007] [Accepted: 08/14/2007] [Indexed: 01/30/2023]
Abstract
Changes in the ability of neuronal networks to undergo structural remodeling may be involved in the age-associated cognitive decline. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) declines dramatically during postnatal development, but persists in several regions of the young-adult rat telencephalon, where it participates, through its anti-adhesive properties, in neuronal structural plasticity. However, PSA-NCAM expression during aging has only been studied in the dentate gyrus and the piriform cortex layer II, where it is strongly downregulated in adult (middle-aged) individuals. Using immunohistochemistry, we have observed that in most of the telencephalic areas studied the number of PSA-NCAM expressing cells and the intensity of PSA-NCAM expression in the neuropil remains stable during aging. Old rats only show decreases in the number of PSA-NCAM expressing cells in the lateral amygdala and retrosplenial cortex, and in neuropil expression of stratum lucidum. Given the role of PSA-NCAM in neuronal plasticity, the present results indicate that, even during aging, many regions of the CNS may display neurite, spine or synaptic remodeling.
Collapse
Affiliation(s)
- Emilio Varea
- Neurobiology Unit and Program in Basic and Applied Neurosciences, Cell Biology Dpt., Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Maekawa M, Namba T, Suzuki E, Yuasa S, Kohsaka S, Uchino S. NMDA receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci Res 2009; 63:259-66. [DOI: 10.1016/j.neures.2008.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
162
|
Aizawa K, Ageyama N, Terao K, Hisatsune T. Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus. Neurobiol Aging 2009; 32:140-50. [PMID: 19201065 DOI: 10.1016/j.neurobiolaging.2008.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 11/17/2022]
Abstract
In the dentate gyrus of the hippocampus, new neurons are generated from neural stem/progenitor cells (NPCs) throughout life. As aging progresses, the rate of neurogenesis decreases exponentially, which might be responsible, in part, for age-dependent cognitive decline in animals and humans. However, few studies have analyzed the alterations in NPCs during aging, especially in primates. Here, we labeled NPCs by triple immunostaining for FABP7, Sox2, and GFAP and found that their numbers decreased in aged macaque monkeys (>20 years old), but not in aged mice. Importantly, we observed marked morphological alterations of the NPCs in only the aged monkeys. In the aged monkey hippocampus, the processes of the NPCs were short and ran horizontally rather than vertically. Despite these alterations, the proliferation rate of the NPCs in aged monkeys was similar to that in young monkeys. Thus, morphological alterations do not affect the proliferation rate of NPCs, but may be involved in the maintenance of NPCs in aged primates, including elderly humans.
Collapse
Affiliation(s)
- Ken Aizawa
- Department of Integrated Biosciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | |
Collapse
|
163
|
AIZAWA K, AGEYAMA N, YOKOYAMA C, HISATSUNE T. Age-Dependent Alteration in Hippocampal Neurogenesis Correlates with Learning Performance of Macaque Monkeys. Exp Anim 2009; 58:403-7. [PMID: 19654438 DOI: 10.1538/expanim.58.403] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Ken AIZAWA
- Department of Integrated Biosciences, The University of Tokyo
| | - Naohide AGEYAMA
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation
| | - Chihiro YOKOYAMA
- Functional Probe Research Laboratory, Molecular Imaging Research Program, RIKEN Kobe Institute
| | | |
Collapse
|
164
|
Hwang IK, Yoon YS, Choi JH, Yoo KY, Yi SS, Chung DW, Kim HJ, Kim CS, DO SG, Seong JK, Lee IS, Won MH. Doublecortin-immunoreactive neuronal precursors in the dentate gyrus of spontaneously hypertensive rats at various age stages: comparison with Sprague-Dawley rats. J Vet Med Sci 2008; 70:373-7. [PMID: 18460832 DOI: 10.1292/jvms.70.373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneously hypertensive rats (SHRs) are widely accepted in medical research because this model has been used for studies in neurodegenerative diseases such as vascular dementia and stroke. In the present study, we observed newly generated neuronal precursors using doublecortin (DCX, a marker of neural proliferation and differentiation) in the subgranular zone of the dentate gyrus in SHRs compared to Sprague-Dawley rats (SDRs) at various age stages. DCX immunoreactivity, immunoreactive cell numbers and its protein level in the dentate gyrus of the SHRs were higher than those in the SDRs at postnatal month 1 (PM 1). At PM 8, DCX immunoreactivity, immunoreactive cell numbers and protein levels in both groups were markedly decreased compared to those at PM 1; however, they were higher than those in the SDRs. They were decreased in the both groups with age: DCX immunoreactive cells in the SDRs were few at PM 12. Our results indicate that newly generated neuronal precursors are more abundant in SHRs than in SDRs during their life.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Park HJ, Lee K, Heo H, Lee M, Kim JW, Whang WW, Kwon YK, Kwon H. Effects ofPolygala tenuifoliaroot extract on proliferation of neural stem cells in the hippocampal CA1 region. Phytother Res 2008; 22:1324-9. [DOI: 10.1002/ptr.2488] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
166
|
Choi SH, Veeraraghavalu K, Lazarov O, Marler S, Ransohoff RM, Ramirez JM, Sisodia SS. Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 2008; 59:568-580. [PMID: 18760694 PMCID: PMC3489017 DOI: 10.1016/j.neuron.2008.07.033] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/30/2008] [Accepted: 07/22/2008] [Indexed: 11/22/2022]
Abstract
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Se Hoon Choi
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | | | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Seoan Marler
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic. Cleveland, Ohio 44195
| | - Jan Marino Ramirez
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Sangram S. Sisodia
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
167
|
Drapeau E, Nora Abrous D. Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell 2008; 7:569-89. [PMID: 18221417 PMCID: PMC2990912 DOI: 10.1111/j.1474-9726.2008.00369.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2007] [Indexed: 02/06/2023] Open
Abstract
Neuroplasticity is characterized by growth and branching of dendrites, remodeling of synaptic contacts, and neurogenesis, thus allowing the brain to adapt to changes over time. It is maintained in adulthood but strongly repressed during aging. An age-related decline in neurogenesis is particularly pronounced in the two adult neurogenic areas, the subventricular zone and the dentate gyrus. This age-related decline seems to be attributable mainly to limited proliferation, associated with an age-dependent increase in quiescence and/or a lengthening of the cell cycle, and is closely dependent on environmental changes. Indeed, when triggered by appropriate signals, neurogenesis can be reactivated in senescent brains, thus confirming the idea that the age-related decrease in new neuron production is not an irreversible, cell-intrinsic process. The coevolution of neurogenesis and age-related memory deficits--especially regarding spatial memory--during senescence supports the idea that new neurons in the adult brain participate in memory processing, and that a reduction in the ability to generate new neurons contributes to the appearance of memory deficits with advanced age. Furthermore, the age-related changes in hippocampal plasticity and function are under environmental influences that can favor successful or pathological aging. A better understanding of the mechanisms that regulate neurogenesis is necessary to develop new therapeutic tools to cure or prevent the development of memory disorders that may appear during the course of aging in some individuals.
Collapse
Affiliation(s)
- Elodie Drapeau
- Doetsch's Laboratory, Columbia University, Department of PathologyP&S 14-511, 630 W 168th Street, New York, NY 10032, USA
| | - Djoher Nora Abrous
- INSERM U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2Bordeaux Cedex 33077, France
| |
Collapse
|
168
|
Three before their time: neuroscientists whose ideas were ignored by their contemporaries. Exp Brain Res 2008; 192:321-34. [DOI: 10.1007/s00221-008-1481-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 06/20/2008] [Indexed: 01/19/2023]
|
169
|
Abstract
The regulated production of neurons in the hippocampus throughout life underpins important brain functions such as learning and memory. Surprisingly, however, studies have so far failed to identify a resident hippocampal stem cell capable of providing the renewable source of these neurons. Here, we report that depolarizing levels of KCl produce a threefold increase in the number of neurospheres generated from the adult mouse hippocampus. Most interestingly, however, depolarizing levels of KCl led to the emergence of a small subpopulation of precursors (approximately eight per hippocampus) with the capacity to generate very large neurospheres (> 250 microm in diameter). Many of these contained cells that displayed the cardinal properties of stem cells: multipotentiality and self-renewal. In contrast, the same conditions led to the opposite effect in the other main neurogenic region of the brain, the subventricular zone, in which neurosphere numbers decreased by approximately 40% in response to depolarizing levels of KCl. Most importantly, we also show that the latent hippocampal progenitor population can be activated in vivo in response to prolonged neural activity found in status epilepticus. This work provides the first direct evidence of a latent precursor and stem cell population in the adult hippocampus, which is able to be activated by neural activity. Because the latent population is also demonstrated to reside in the aged animal, defining the precise mechanisms that underlie its activation may provide a means to combat the cognitive deficits associated with a decline in neurogenesis.
Collapse
|
170
|
Increased bisecting and core-fucosylated N-glycans on mutant human amyloid precursor proteins. Glycoconj J 2008; 25:775-86. [PMID: 18521746 DOI: 10.1007/s10719-008-9140-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Alteration of glycoprotein glycans often changes various properties of the glycoprotein. To understand the significance of N-glycosylation in the pathogenesis of early-onset familial Alzheimer's disease (AD) and in beta-amyloid (Abeta) production, we examined whether the mutations in the amyloid precursor protein (APP) gene found in familial AD affect the N-glycans on APP. We purified the secreted forms of wild-type and mutant human APPs (both the Swedish type and the London type) produced by transfected C17 cells and determined the N-glycan structures of these three recombinant APPs. Although the major N-glycan species of the three APPs were similar, both mutant APPs contained higher contents of bisecting N-acetylglucosamine and core-fucose residues as compared to wild-type APP. These results demonstrate that familial AD mutations in the polypeptide backbone of APP can affect processing of the attached N-glycans; however, whether these changes in N-glycosylation affect Abeta production remains to be established.
Collapse
|
171
|
Nitta N, Heinrich C, Hirai H, Suzuki F. Granule cell dispersion develops without neurogenesis and does not fully depend on astroglial cell generation in a mouse model of temporal lobe epilepsy. Epilepsia 2008; 49:1711-22. [PMID: 18397295 DOI: 10.1111/j.1528-1167.2008.01595.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Granule cell dispersion (GCD) appears as a characteristic morphological feature of the mesial temporal lobe epilepsy (MTLE). It has been suggested that this phenomenon could be due to an increased neurogenesis in the dentate gyrus. However, this hypothesis is still debated and recent clinical and experimental studies have shown that neurogenesis is rather decreased in MTLE. To further determine the role of neural and astroglial cell generation in GCD we examined the consequences of aging and irradiation, which are known to reduce progenitor cells, in a mouse model of MTLE induced by intrahippocampal kainate (KA) injection. METHODS We injected KA in hippocampus of three different types of mice; (1) young adult, (2) aged, and (3) irradiated mice. Newly generated cells were labeled by Bromodeoxyuridine (BrdU) and were characterized by immunohistochemistry. The extent of GCD was compared among the three animal groups. RESULTS In young adult mice, BrdU-labeled neurons as well as doublecortin- and NeuroD-positive cells decreased progressively after KA injection whereas BrdU-labeled astrocytes and microglias increased. In aged and irradiated mice, where basal neurogenesis was already strongly reduced, GCD developed after KA injection to the same extent as in young adult mice. However, augmentation of the BrdU-labeled astrocytes after KA was less than 40% in irradiated mice in comparison to young and aged mice. CONCLUSIONS Our data show that GCD occurs without neurogenesis. Furthermore GCD developed regardless of the degree of astroglial cell proliferation, suggesting that neural stem cell generation is not crucial for GCD.
Collapse
Affiliation(s)
- Naoki Nitta
- Department of Neurosurgery, Shiga University of Medical Science, Seta-Tsukinowa-Cho, Otsu, Shiga, Japan
| | | | | | | |
Collapse
|
172
|
Wojtowicz JM, Askew ML, Winocur G. The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci 2008; 27:1494-502. [DOI: 10.1111/j.1460-9568.2008.06128.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
173
|
Abstract
Neurogenesis, or the birth of new neural cells, was thought to occur only in the developing nervous system and a fixed neuronal population in the adult brain was believed to be necessary to maintain the functional stability of adult brain circuitry. However, recent studies have demonstrated that neurogenesis does indeed continue into and throughout adult life in discrete regions of the central nervous systems (CNS) of all mammals, including humans. Although neurogenesis may contribute to the ability of the adult brain to function normally and be induced in response to cerebral diseases for self-repair, this nevertheless declines with advancing age. Understanding the basic biology of neural stem cells and the molecular and cellular regulation mechanisms of neurogenesis in young and aged brain will allow us to modulate cell replacement processes in the adult brain for the maintenance of healthy brain tissues and for repair of disease states in the elderly.
Collapse
Affiliation(s)
- Veronica Galvan
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945-0638, USA
| | | |
Collapse
|
174
|
van Praag H. Neurogenesis and exercise: past and future directions. Neuromolecular Med 2008; 10:128-40. [PMID: 18286389 DOI: 10.1007/s12017-008-8028-z] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 12/25/2022]
Abstract
Research in humans and animals has shown that exercise improves mood and cognition. Physical activity also causes a robust increase in neurogenesis in the dentate gyrus of the hippocampus, a brain area important for learning and memory. The positive correlation between running and neurogenesis has raised the hypothesis that the new hippocampal neurons may mediate, in part, improved learning associated with exercise. The present review gives an overview of research pertaining to exercise-induced cell genesis, its possible relevance to memory function and the cellular mechanisms that may be involved in this process.
Collapse
Affiliation(s)
- Henriette van Praag
- Section of Neuroplasticity and Behavior, Laboratory of Neurosciences, GRC/NIA/NIH, Rm 4E14, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
175
|
Fabel K, Kempermann G. Physical Activity and the Regulation of Neurogenesis in the Adult and Aging Brain. Neuromolecular Med 2008; 10:59-66. [PMID: 18286387 DOI: 10.1007/s12017-008-8031-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
176
|
Burger C, Lopez MC, Baker HV, Mandel RJ, Muzyczka N. Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol Learn Mem 2008; 89:379-96. [PMID: 18234529 DOI: 10.1016/j.nlm.2007.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 12/13/2022]
Abstract
We have previously described the transcriptional changes that occur in the hippocampal CA1 field of aged rats following a Morris Water Maze (MWM) training paradigm. In this report we proceed with the analysis of the dentate region from the same animals. Animals were first identified as age learning-impaired or age-superior learners when compared to young rats based on their performance in the MWM. Messenger RNA was isolated from the dentate gyrus of each animal to interrogate Affymetrix RAE 230A rat genome microarrays. Microarray profiling identified 1129 genes that were differentially expressed between aged and young rats as a result of aging, and independent of their behavioral training (p<0.005). We applied Ingenuity Pathway Analysis (IPA) algorithms to identify the significant biological processes underlying age-related changes in the dentate gyrus. The most significant functions, as calculated by IPA, included cell movement, cell growth and proliferation, nervous system development and function, cellular assembly and organization, cell morphology and cell death. These significant processes are consistent with age-related changes in neurogenesis, and the neurogenic markers were generally found to be downregulated in senescent animals. In addition, statistical analysis of the different experimental groups of aged animals recognized 85 genes (p<0.005) that were different in the dentate gyrus of aged rats that had learned the MWM when compared to learning impaired and a number of controls for stress, exercise and non-spatial learning. The list of learning-related genes expressed in the dentate adds to the set of genes we previously described in the CA1 region. This long list of genes constitutes a starting tool to elucidating the molecular pathways involved in learning and memory formation.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, University of Wisconsin-Madison, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
177
|
Yamashima T. A putative link of PUFA, GPR40 and adult-born hippocampal neurons for memory. Prog Neurobiol 2007; 84:105-15. [PMID: 18191887 DOI: 10.1016/j.pneurobio.2007.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/01/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022]
Abstract
Long chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic and arachidonic acids, which are enriched in the brain, are important for multiple aspects of neuronal development and function including neurite outgrowth, signal transduction and membrane fluidity. Recent studies show that PUFA are capable of improving hippocampal long-term potentiation, learning ability of aged rats, and cognitive function of humans with memory deficits, although the underlying mechanisms are unknown. There have been several reports studying physiological roles of G-protein coupled receptor 40 (GPR40) in the pancreas, but no studies have focused on the function of GPR40 in the brain. As GPR40 was recently identified in neurons throughout the brain, it is probable that certain PUFA may act, as endogenous ligands, on GPR40 at their cell surface. However, the effects of PUFA upon neuronal functions are still not clearly understood. Here, although circumferential, a combination of in vitro and in vivo data is introduced to consider the effects of docosahexaenoic and arachidonic acids on brain functions. GPR40 was found in the newborn neurons of the normal and postischemic hippocampi of adult macaque monkeys, while the positive effects of PUFA upon Ca(2+) mobilization and cognitive functions were demonstrated in both GPR40 gene-transfected PC12 cells and human subjects with memory deficits. The purpose of this review is to propose a putative link among PUFA, GPR40, and hippocampal newborn neurons by discussing whether PUFA can improve memory functions through GPR40 activation of adult-born neurons. At present, little is known about PUFA requirements that make possible neurogenesis in the adult hippocampus. However, the idea that 'PUFA-GPR40 interaction might be crucial for adult neurogenesis and/or memory' should be examined in detail using various experimental paradigms.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
178
|
Gemma C, Bachstetter AD, Cole MJ, Fister M, Hudson C, Bickford PC. Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur J Neurosci 2007; 26:2795-803. [DOI: 10.1111/j.1460-9568.2007.05875.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
179
|
Hwang IK, Yoo KY, Yi SS, Kwon YG, Ahn YK, Seong JK, Lee IS, Yoon YS, Won MH. Age-related differentiation in newly generated DCX immunoreactive neurons in the subgranular zone of the gerbil dentate gyrus. Neurochem Res 2007; 33:867-72. [PMID: 17987384 DOI: 10.1007/s11064-007-9528-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/05/2007] [Indexed: 01/17/2023]
Abstract
In the present study, we investigated age-related changes of newborn neurons in the gerbil dentate gyrus using doublecortin (DCX), a marker of neuronal progenitors which differentiate into neurons in the brain. In the postnatal month 1 (PM 1) group, DCX immunoreactivity was detected in the subgranular zone of the dentate gyrus, but DCX immunoreactive neurons did not have fully developed processes. Thereafter, DCX immunoreactivity and its protein levels in the dentate gyrus were found to decrease with age. Between PM 3 and PM 18, DCX immunoreactive neuronal progenitors showed well-developed processes which projected to the granular layer of the dentate gyrus, but at PM 24, a few DCX immunoreactive neuronal progenitors were detected in the subgranular zone of the dentate gyrus. DCX protein level in the dentate gyrus at PM 1 was high, thereafter levels of DCX were decreased with time. The authors suggest that a decrease of DCX immunoreactivity and its protein level with age may be associated with aging processes in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Namba T, Mochizuki H, Onodera M, Namiki H, Seki T. Postnatal neurogenesis in hippocampal slice cultures: early in vitro labeling of neural precursor cells leads to efficient neuronal production. J Neurosci Res 2007; 85:1704-12. [PMID: 17455308 DOI: 10.1002/jnr.21295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis continues throughout life in the hippocampus. To study postnatal neurogenesis in vitro, hippocampal slices from rats on postnatal day 5 (P5) were cultured on a porous membrane for 14 or 21 days. In the initial experiments, precursor cells were labeled with bromodeoxyuridine (BrdU) after 7 days in culture because hippocampal slices are generally used in experiments after 1-2 weeks in culture. Fourteen days after labeling, however, only about 10% of BrdU-labeled cells expressed neuronal markers, although in living rats, about 80% of cells labeled with BrdU on P5 had become neurons by P19. Next, rats were injected with BrdU 30 min before culture, after which hippocampal slices were cultured for 14 days to examine the capacity of in vivo-labeled neural precursors to differentiate into neurons in vitro. In this case, more than two-thirds of BrdU-labeled cells expressed neuronal markers, such as Hu, NeuN, and PSA-NCAM. Furthermore, precursor cells underwent early in vitro labeling by incubation with BrdU or a modified retrovirus vector carrying EGFP for 30 min from the beginning of the culture. This procedure resulted in a similar high rate of neuronal differentiation and normal development into granule cells. In addition, time-lapse imaging with retrovirus-EGFP revealed migration of neural precursors from the hilus to the granule cell layer. These results indicate that in vivo- and early in vitro-labeled cultures are readily available ex vivo models for studying postnatal neurogenesis and suggest that the capacity of neural precursors to differentiate into neurons is reduced during the culture period.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
181
|
Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci U S A 2007; 104:17169-73. [PMID: 17940008 DOI: 10.1073/pnas.0708228104] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
With aging there is a decline in the number of newly generated neurons in the dentate gyrus of the hippocampus. In rodents and tree shrews, this age-related decrease in neurogenesis is evident long before the animals become aged. No previous studies have investigated whether primates exhibit a similar decline in hippocampal neurogenesis with aging. To investigate this possibility, young to middle aged adult common marmosets (Callithrix jacchus) were injected with BrdU and perfused 3 weeks later. The number of newly generated cells in the subgranular zone/granule cell layer of the dentate gyrus was significantly lower in older animals and decreased linearly with age. A similar age-related decline in new cells was observed in the subventricular zone but not in the hilar region of the dentate gyrus. These data demonstrate that a substantial decrease in neurogenesis occurs before the onset of old age in the adult marmoset brain, suggesting the possibility that similar alterations occur in the human brain.
Collapse
|
182
|
Atz ME, Rollins B, Vawter MP. NCAM1 association study of bipolar disorder and schizophrenia: polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet 2007; 17:55-67. [PMID: 17413444 PMCID: PMC2077086 DOI: 10.1097/ypg.0b013e328012d850] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The neural cell adhesion molecule (NCAM1) is a multifunction transmembrane protein involved in synaptic plasticity, neurodevelopment, and neurogenesis. Multiple NCAM1 proteins were differentially altered in bipolar disorder and schizophrenia. Single nucleotide polymorphisms (SNPs) in the NCAM1 gene were significantly associated with bipolar disorder in the Japanese population. Bipolar disorder and schizophrenia may share common vulnerability or susceptibility risk factors for shared features in each disorder. METHODS Both SNPs and splice variants in the NCAM1 gene were analysed in bipolar disorder and schizophrenia. A case-control study design for association of SNPs and differential exon expression in the NCAM1 gene was used. RESULTS A genotypic association between bipolar disorder and SNP b (rs2303377 near mini-exon b) and a suggestive association between schizophrenia and SNP 9 (rs646558) were found. Three of the two marker haplotypes for SNP 9 and SNP b showed varying frequencies between bipolar and controls (P<0.0001) as well as between schizophrenia and controls (P<0.0001). There were nine NCAM1 transcripts present in postmortem brain samples that involve alternative splicing of NCAM1 mini-exons (a, b, c) and the secreted (SEC) exon. Significant differences in the amounts of four alternatively spliced isoforms were found between NCAM1 SNP genotypes. In exploratory analysis, the c-SEC alternative spliced isoform was significantly decreased in bipolar disorder compared to controls for NCAM1 SNP b heterozygotes (P=0.013). CONCLUSIONS Diverse NCAM1 transcripts were found with possibly different functions. The results suggest that SNPs within NCAM1 contribute differential risk for both bipolar disorder and schizophrenia possibly by alternative splicing of the gene.
Collapse
Affiliation(s)
- Mary E Atz
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | | | | |
Collapse
|
183
|
Medrano S, Burns-Cusato M, Atienza MB, Rahimi D, Scrable H. Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol Aging 2007; 30:483-97. [PMID: 17850928 PMCID: PMC2662499 DOI: 10.1016/j.neurobiolaging.2007.07.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 07/17/2007] [Accepted: 07/22/2007] [Indexed: 12/15/2022]
Abstract
The question of whether or not stem cell loss drives aging in the brain has not been fully resolved. Here, we used mice over-expressing the short isoform of p53 (DeltaNp53 or p44) as a model of aging to gain insight into the cellular mechanisms underlying age-related functional deficits in the brain. By BrdU labeling, we observed an accelerated decline in the number of subventricular zone proliferating cells with age in p44Tg mice compared to mice with normal p53 expression. A 2-3-fold reduction in the number of slowly dividing stem cells was evident in the subventricular zone of 9-12-month-old p44Tg mice, but not in younger p44Tg mice or in normal mice. Consequently, the supply of new olfactory bulb neurons was also reduced. The number and size of neurospheres generated from subventricular zone cells from p44Tg mice was significantly reduced, and cells derived from these neurospheres had limited self-renewal and amplification capacities. At the cellular level, p44 lengthened the cell cycle and affected cell cycle reentry properties, evident by an increased proportion of cells in G0. At the functional level, p44 expression resulted in impaired olfactory discrimination in 15-16-month-old mice. This phenotype is driven by constitutive activation of p53 and constitutive expression of p21(Cip1/waf1) in neural stem cells. Our results demonstrate that p53 plays a crucial role in the maintenance of the regenerative capacity of the brain by regulating the proliferation of stem and progenitor cells.
Collapse
Affiliation(s)
- Silvia Medrano
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908-1392, USA
| | | | | | | | | |
Collapse
|
184
|
Andres-Mach M, Rola R, Fike JR. Radiation effects on neural precursor cells in the dentate gyrus. Cell Tissue Res 2007; 331:251-62. [PMID: 17786480 DOI: 10.1007/s00441-007-0480-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 07/16/2007] [Indexed: 12/16/2022]
Abstract
Ionizing irradiation is an effective treatment for intracranial tumors but is limited by the potential adverse effects induced in surrounding normal brain. These effects can include cognitive impairments, and whereas the pathogenesis of such injury has not yet been definitively established, it may involve injury to the neurogenic cell population that exists in the dentate subgranular zone (SGZ) of the hippocampus. Understanding the issues surrounding this topic could have a major impact in the management of specific sequelae associated with cranial irradiation. Although radiation is now becoming a useful tool in investigations into the biology of neurogenesis, the perspective of this review is directed more toward the potential relevance of studying radiation and the stem/precursor cell response.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Department of Neurological Surgery, San Francisco General Hospital, Bldg. 1, 1001 Potrero Avenue, San Francisco, CA 94110-0899, USA.
| | | | | |
Collapse
|
185
|
Bursztajn S, Falls WA, Berman SA, Friedman MJ. Cell proliferation in the brains of NMDAR NR1 transgenic mice. Brain Res 2007; 1172:10-20. [PMID: 17803978 DOI: 10.1016/j.brainres.2007.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/03/2007] [Accepted: 07/12/2007] [Indexed: 01/18/2023]
Abstract
We have used genetically engineered NMDA receptor NR1+/- mice in which the gene for the NR1 subunit was modified in such a way that these mice express only 50% of the NR1 subunit. The NR1 subunit is necessary for NMDA receptor channel function. We investigated the effects of reduced NMDA receptor function on cell proliferation in the hippocampus and the amygdala of the adult mouse brain. Transgenic (NR1+/-) and wild-type (NR1+/+) mice were injected with BrdU. We collected brain sections cutting through the rostro-caudal extension of the entire hippocampus of the NR1+/- and NR1+/+ (wild-type) mice. The phenotype of BrdU-positive cells was identified by double labeling with antibodies to neuronal or glial markers. Our results show that the NR1+/- mice, which express the NMDAR NR1 subunit at a low level, have a significant (p<0.01) increase in the number of BrdU-positive cells in the dentate gyrus and the amygdala compared to NR1+/+ mice. Some of these dividing cells express the neuronal marker NeuN. Our results indicate that low expression of the NR1 subunit significantly increases cell proliferation and neurogenesis, suggesting that low NMDARs activity contributes to the increase in cell proliferation in the adult brain.
Collapse
|
186
|
Seki T, Namba T, Mochizuki H, Onodera M. Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus. J Comp Neurol 2007; 502:275-90. [PMID: 17348003 DOI: 10.1002/cne.21301] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adult neurogenesis occurs in the subgranular zone and innermost part of the dentate granule cell layer. To examine how neural precursor cells proliferate, migrate, and extend their neurites, we performed BrdU- and improved retrovirus-green fluorescence protein (GFP)-labeling analyses. Soon after labeling the majority of BrdU+ cells and GFP+ cells expressed Ki67, a cell cycle marker, and formed clusters together with PSA+ neuroblasts. Most of the Ki67+ proliferating cells expressed Hu, an immature and mature neuronal marker, and the subpopulation expressed both Hu+ and GFAP+. In the clusters, Ki67+ and PSA+ cells strongly expressed beta-catenin and N-cadherin, but PSA+ cells outside the clusters did not. Therefore, it was mainly Hu+ neuronal precursor cells that proliferated within clusters in which the cluster cells are closely associated via cell adhesion molecules, such as N-cadherin/beta-cateninIn and PSA. The newly generated cells appeared to stay in the clusters for a few days and then disperse around the clusters. The findings of this in vivo analysis and in vitro time-lapse imaging of early postnatal hippocampal slices support the notion that most postmitotic neuroblasts migrate tangentially from clusters, extending tangentially oriented processes, one of which often retains close contact with the clusters, and finally extend radial processes, or prospective apical dendrites. These results suggest that the clustering cells and tangentially migrating cells have a systematic cellular arrangement and intercellular interaction.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
187
|
Ieraci A, Herrera DG. Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis. Neurobiol Dis 2007; 26:597-605. [PMID: 17490887 DOI: 10.1016/j.nbd.2007.02.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/15/2007] [Accepted: 02/21/2007] [Indexed: 11/26/2022] Open
Abstract
Alcohol exposure during pregnancy may cause fetal alcohol syndrome (FAS), characterized by impaired cognitive functions. Neurogenesis occurs in the adult hippocampus and is functionally associated with learning, memory, and mood disorders. However, whether early postnatal exposure to alcohol impairs neurogenesis and through which mechanisms it occurs is poorly understood. Here, we report that a single episode of alcohol exposure in postnatal day 7 (P7) decreases neurogenesis in the adult hippocampus. Furthermore, we demonstrate a co-localization of glial fibrillar acidic protein, nestin, and vimentin with activated caspase-3 12 h after ethanol treatment. Finally, we show that the number of primary neurospheres derived from the hippocampi of alcohol-exposed mice is reduced compared to controls. These findings suggest that alcohol exposure in postnatal mice reduces the pool of neural stem/progenitor cells in the DG, and subsequently results in a decrease of adult neurogenesis. This may explain certain aspects of impaired hippocampal functions in FAS.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, Box 244, New York, NY 10021, USA
| | | |
Collapse
|
188
|
Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res 2007; 85:1647-55. [PMID: 17455304 DOI: 10.1002/jnr.21303] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the adult human brain, the presence of neural stem cells has been documented in the subgranular layer of the dentate gyrus of the hippocampus and in the subventricular zone of the lateral ventricles. Neurogenesis has also been reported in rodent models of ischemic stroke, traumatic brain injury, epileptic seizures, and intracerebral or subarachnoid hemorrhage. However, only sparse information is available about the occurrence of neurogenesis in the human brain under similar pathological conditions. In the present report, we describe neural progenitor cell proliferation in the brain of patients suffering from subarachnoid hemorrhage (SAH) resulting from ruptured aneurysm. Ten cerebral samples from both SAH and control patients obtained, respectively, during aneurysm clipping and deep brain tumor removal were analyzed by reverse transcription followed by polymerase chain reaction (RT-PCR) and/or immunohistochemistry (IHC). In tissue specimens from SAH patients, RT-PCR and IHC revealed the expression of a variety of markers consistent with CNS progenitor cells, including nestin, vimentin, SOX-2, and Musashi1 and -2. In the same specimens, double immunohistochemistry followed by confocal analysis revealed that Musashi2 consistently colocalized with the proliferation marker Ki67. By contrast, no such gene or protein expression profiles were detected in any of the control specimens. Thus, activation of neural progenitor cell proliferation may occur in adult human brain following subarachnoid hemorrhage, possibly contributing to the promotion of spontaneous recovery, in this pathological condition.
Collapse
Affiliation(s)
- D Sgubin
- B.R.A.I.N. Centre for Neuroscience, Department of Physiology and Pathology, University of Trieste, and Neurosurgery Unit, Treviso Hospital, Italy
| | | | | | | | | |
Collapse
|
189
|
Hwang IK, Yoo KY, Li H, Choi JH, Kwon YG, Ahn Y, Lee IS, Won MH. Differences in doublecortin immunoreactivity and protein levels in the hippocampal dentate gyrus between adult and aged dogs. Neurochem Res 2007; 32:1604-9. [PMID: 17514419 DOI: 10.1007/s11064-007-9366-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
Doublecortin (DCX), a microtubule-associated protein, specifically expresses in neuronal precursors. This protein has been used as a marker for neuronal precursors and neurogenesis. In the present study, we observed differences in DCX immunoreactivity and its protein levels in the hippocampal dentate gyrus between adult and aged dogs. In the adult dog, DCX immunoreactive cells with well-stained processes were detected in the subgranular zone of the dentate gyrus. Numbers of DCX immunoreactive cells in the dentate gyrus of the aged dog were significantly decreased compared to those in the adult dog. DCX immunoreactive cells in both adult and aged dog did not show NeuN (a marker for mature neurons) immunoreactivity. NeuN immunoreactivity in the aged dog was poor compared to that in the adult dog. DCX protein level in the aged dentate gyrus was decreased by 80% compared to that in the adult dog. These results suggest that the reduction of DCX in the aged hippocampal dentate gyrus may be involved in some neural deficits related to the hippocampus.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Schmitt A, Benninghoff J, Moessner R, Rizzi M, Paizanis E, Doenitz C, Gross S, Hermann M, Gritti A, Lanfumey L, Fritzen S, Reif A, Hamon M, Murphy DL, Vescovi A, Lesch KP. Adult neurogenesis in serotonin transporter deficient mice. J Neural Transm (Vienna) 2007; 114:1107-19. [PMID: 17510734 DOI: 10.1007/s00702-007-0724-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/18/2007] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT, SLC6A4) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (approximately 14.5 months) compared to wildtype controls. In contrast, in vivo and additional in vitro analyses of younger adult 5-HTT knockout mice (approximately 7 weeks and approximately 3.0 months) did not reveal significant changes in proliferation of neural stem cells or survival of newborn cells. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis in adult mice, but that elevated 5-HT levels in aged mice influence stem cell proliferation.
Collapse
Affiliation(s)
- A Schmitt
- Clinical and Molecular Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Olariu A, Cleaver KM, Cameron HA. Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol 2007; 501:659-67. [PMID: 17278139 DOI: 10.1002/cne.21268] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is well established that neurogenesis in the dentate gyrus slows with aging, but it is unclear whether this change is due to slowing of the cell cycle, as occurs during development, or to loss of precursor cells. In the current study, we find that the cell cycle time of granule cell precursors in middle-aged male rats is not significantly different from that in young adults. The size of the precursor pool, however, was 3-4 times smaller in the middle-aged rats, as determined using both cumulative bromodeoxyuridine (BrdU) labeling as well as labeling with the endogenous marker of cell proliferation, proliferating cell nuclear antigen (PCNA). Loss of precursor cells was much greater in the granule cell layer than in the hilus, suggesting that dividing cells in the hilus belong to a distinct population, most likely glial progenitors, that are less affected by aging than neuronal precursors. BrdU-labeled precursor cells and young neurons, labeled with doublecortin, appeared to be lost equally from rostral and caudal, as well as suprapyramidal and infrapyramidal, subregions of the granule cell layer. However, doublecortin staining did show large parts of the caudal granule cell layer with few if any young neurons at both ages. Taken together, these findings indicate that precursor cells are not distributed evenly within the dentate gyrus in adulthood but that precursors are lost from throughout the dentate gyrus in old age with no concomitant change in the cell cycle time.
Collapse
Affiliation(s)
- Ana Olariu
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
192
|
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L. Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci 2007; 24:1535-45. [PMID: 17004917 DOI: 10.1111/j.1460-9568.2006.05039.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in the field of neurogenesis is limited by the lack of animal models allowing direct detection and analysis of living cells participating in neurogenesis. We engineered a transgenic mouse model that expresses the fluorescent reporter proteins enhanced green fluorescent protein or Discoma sp. reef coral red fluorescent protein under the control of the doublecortin (DCX) promoter, a gene specifically and transiently active in neuronal precursors and young neurons. The expression of the reporter proteins correlated with expression of the endogenous DCX protein, and with developmental and adult neurogenesis. Neurogenesis was unaffected by the presence of the fluorescent proteins. The transgenic mice allowed direct identification of the very few newly generated neurons present in the aged brain. We performed electrophysiological analysis and established that newly generated hippocampal granule cells in aged and young mice shared identical physiological properties. Hence, although the rate of neurogenesis tapers with ageing, a population of highly excitable young neurons indistinguishable to those found in younger animals is continuously generated. Therefore, maintenance of the fundamental properties of neuronal precursors even at advanced age suggests that stimulation of neurogenesis may constitute a valid strategy to counteract age-related neuronal loss and cognitive declines.
Collapse
Affiliation(s)
- Sebastien Couillard-Despres
- Volkswagen-Foundation Junior Group, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Abstract
Major depressive disorder (MDD) is a debilitating and complex psychiatric disorder that involves multiple neural circuits and genetic and non-genetic risk factors. In the quest for elucidating the neurobiological basis of MDD, hippocampal neurogenesis has emerged as a candidate substrate, both for the etiology as well as treatment of MDD. This chapter critiques the advances made in the study of hippocampal neurogenesis as they relate to the neurogenic hypothesis of MDD. While an involvement of neurogenesis in the etiology of depression remains highly speculative, preclinical studies have revealed a novel and previously unrecognized role for hippocampal neurogenesis in mediating some of the behavioral effects of antidepressants. The implications of these findings are discussed to reevaluate the role of hippocampal neurogenesis in MDD.
Collapse
Affiliation(s)
- Amar Sahay
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
194
|
Grandgirard D, Bifrare YD, Pleasure SJ, Kummer J, Leib SL, Tauber MG. Pneumococcal Meningitis Induces Apoptosis in Recently Postmitotic Immature Neurons in the Dentate Gyrus of Neonatal Rats. Dev Neurosci 2006; 29:134-42. [PMID: 17148956 DOI: 10.1159/000096218] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/02/2006] [Indexed: 01/19/2023] Open
Abstract
Bacterial meningitis is associated with high rates of morbidity and mortality, despite advances in antibiotic therapy. Meningitis caused by Streptococcus pneumoniae is associated with a particularly high incidence of neurological sequelae including deficits resulting from damage to the hippocampus. Previous studies have documented that in neonatal rats with experimental pneumococcal meningitis, cells in the subgranular layer of the dentate gyrus undergo apoptosis. The aim of the present study was to define in more detail the nature of the dying cells in the dentate gyrus. Using bromodeoxyuridine labeling at different times before infection combined with immunocytochemistry, we identified the vulnerable cells as those which underwent mitosis 6-10 days before infection. A majority of these cells are of neuronal lineage. Thus, immature neuronal cells several days after the last cell division are preferentially triggered into apoptosis during pneumococcal meningitis. The loss of these cells may contribute to the long-lasting impairment of hippocampal function identified in animal models and in humans after bacterial meningitis.
Collapse
Affiliation(s)
- D Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
195
|
Lindsey BW, Tropepe V. A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 2006; 80:281-307. [PMID: 17218052 DOI: 10.1016/j.pneurobio.2006.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/03/2006] [Accepted: 11/09/2006] [Indexed: 01/18/2023]
Abstract
Adult neurogenesis has been identified in all vertebrate species examined thus far. However, an evolutionary trend towards a reduction in both the number of proliferation zones and the overall number of newborn cells has been revealed in more recent lineages of vertebrates, such as mammals. Adult neurogenesis, and in particular the characterization of adult neural stem cells in mammals has been the focus of intense research with the goal of developing new cell-based regenerative treatments for neurodegenerative diseases, spinal cord injury, and acute damage due to stroke. Conversely, most other vertebrate classes, which display widespread production of adult neurons, are not typically used as model systems in this context. A more profound understanding of the structural composition and the mechanisms that support proliferation zones in the mature brain have become critical for revealing how adult neural stem cells are maintained in these regions and how they regulate neurogenesis. In this review we argue that comprehensive analyses of adult neurogenesis in various vertebrate and invertebrate species will lead to a more complete understanding of the fundamental biology and evolution of adult neurogenesis and provide a better framework for testing hypotheses regarding the functional significance of this trait.
Collapse
Affiliation(s)
- Benjamin W Lindsey
- Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS, Canada.
| | | |
Collapse
|
196
|
Kaneko N, Okano H, Sawamoto K. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells 2006; 11:1145-59. [PMID: 16999735 DOI: 10.1111/j.1365-2443.2006.01010.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurogenesis in the subgranular zone of the hippocampal dentate gyrus and olfactory bulbs continues into adulthood and has been implicated in the cognitive function of the adult brain. The basal forebrain cholinergic system has been suggested to play a role in regulating neurogenesis as well as learning and memory in these regions. Herein, we report that highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive immature cells as well as neuronal nuclei (NeuN)-positive mature neurons in the dentate gyrus and olfactory bulb express multiple acetylcholine receptor subunits and make contact with cholinergic fibers. To examine the function of acetylcholine in neurogenesis, we used donepezil (Aricept), a potent and selective acetylcholinesterase inhibitor that improves cognitive impairment in Alzheimer's disease. Intraperitoneal administrations of donepezil significantly enhanced the survival of newborn neurons, but not proliferation of neural progenitor cells in the subgranular zone or the subventricular zone of normal mice. Moreover, donepezil treatment reversed the chronic stress-induced decrease in neurogenesis. Taken together, these results suggest that activation of the cholinergic system promotes survival of newborn neurons in the adult dentate gyrus and olfactory bulb under both normal and stressed conditions.
Collapse
Affiliation(s)
- Naoko Kaneko
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
197
|
Hattiangady B, Shetty AK. Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 2006; 29:129-47. [PMID: 17092610 PMCID: PMC3612500 DOI: 10.1016/j.neurobiolaging.2006.09.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 08/09/2006] [Accepted: 09/13/2006] [Indexed: 12/20/2022]
Abstract
To investigate whether dramatically waned dentate neurogenesis during aging is linked to diminution in neural stem/progenitor cell (NSC) number, we counted cells immunopositive for Sox-2 (a putative marker of NSCs) in the subgranular zone (SGZ) of young, middle-aged and aged F344 rats. The young SGZ comprised approximately 50,000 Sox-2+ cells and this amount did not diminish with aging. Quantity of GFAP+ cells and vimentin+ radial glia also remained stable during aging in this region. Besides, in all age groups, analogous fractions of Sox-2+ cells expressed GFAP (astrocytes/NSCs), NG-2 (oligodendrocyte-progenitors/NSCs), vimentin (radial glia), S-100beta (astrocytes) and doublecortin (new neurons). Nevertheless, analyses of Sox-2+ cells with proliferative markers insinuated an increased quiescence of NSCs with aging. Moreover, the volume of rat-endothelial-cell-antigen-1+ capillaries (vascular-niches) within the SGZ exhibited an age-related decline, resulting in an increased expanse between NSCs and capillaries. Thus, decreased dentate neurogenesis during aging is not attributable to altered number or phenotype of NSCs. Instead, it appears to be an outcome of increased quiescence of NSCs due to changes in NSC milieu.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, United States
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705, United States
| | - Ashok K. Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, United States
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705, United States
- Corresponding author at: Division of Neurosurgery, DUMC Box 3807, Duke University Medical Center, Durham, NC 27710, United States. Tel.: +1 919 286 0411x7096; fax: +1 919 286 4662., (A.K. Shetty)
| |
Collapse
|
198
|
Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006; 80:129-64. [PMID: 17029752 DOI: 10.1016/j.pneurobio.2006.08.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/04/2006] [Accepted: 08/21/2006] [Indexed: 12/14/2022]
Abstract
Polysialic acid (PSA) is a linear homopolymer of alpha2-8-N acetylneuraminic acid whose major carrier in vertebrates is the neural cell adhesion molecule (NCAM). PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. PSA on NCAM is developmentally regulated thus playing a prominent role in different forms of neural plasticity spanning from embryonic to adult nervous system, including axonal growth, outgrowth and fasciculation, cell migration, synaptic plasticity, activity-induced plasticity, neuronal-glial plasticity, embryonic and adult neurogenesis. The cellular distribution, developmental changes and possible function(s) of PSA-NCAM in the central nervous system of mammals here are reviewed, along with recent findings and theories about the relationships between NCAM protein and PSA as well as the role of different polysialyltransferases. Particular attention is focused on postnatal/adult neurogenesis, an issue which has been deeply investigated in the last decade as an example of persisting structural plasticity with potential implications for brain repair strategies. Adult neurogenic sites, although harbouring all subsequent steps of cell differentiation, from stem cell division to cell replacement, do not faithfully recapitulate development. After birth, they undergo morphological and molecular modifications allowing structural plasticity to adapt to the non-permissive environment of the mature nervous tissue, that are paralled by changes in the expression of PSA-NCAM. The use of PSA-NCAM as a marker for exploring differences in structural plasticity and neurogenesis among mammalian species is also discussed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Morphophysiology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy.
| |
Collapse
|
199
|
Ferri P, Cecchini T, Ambrogini P, Betti M, Cuppini R, Del Grande P, Ciaroni S. alpha-Tocopherol affects neuronal plasticity in adult rat dentate gyrus: the possible role of PKCdelta. ACTA ACUST UNITED AC 2006; 66:793-810. [PMID: 16673395 DOI: 10.1002/neu.20255] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hippocampus dentate gyrus (DG) is characterized by neuronal plasticity processes in adulthood, and polysialylation of NCAM promotes neuronal plasticity. In previous investigations we found that alpha-tocopherol increased the PSA-NCAM-positive granule cell number in adult rat DG, suggesting that alpha-tocopherol may enhance neuronal plasticity. To verify this hypothesis, in the present study, structural remodeling in adult rat DG was investigated under alpha-tocopherol supplementation conditions. PSA-NCAM expression was evaluated by Western blotting, evaluation of PSA-NCAM-positive granule cell density, and morphometric analysis of PSA-NCAM-positive processes. In addition, the optical density of synaptophysin immunoreactivity and the synaptic profile density, examined by electron microscopy, were evaluated. Moreover, considering that PSA-NCAM expression has been found to be related to PKCdelta activity and alpha-tocopherol has been shown to inhibit PKC activity in vitro, Western blotting and immunohistochemistry followed by densitometry were used to analyze PKC. Our results demonstrated that an increase in PSA-NCAM expression and optical density of DG molecular layer synaptophysin immunoreactivity occurred in alpha-tocopherol-treated rats. Electron microscopy analysis showed that the increase in synaptophysin expression was related to an increase in synaptic profile density. In addition, Western blotting revealed a decrease in phospho-PKC Pan and phospho-PKCdelta, demonstrating that alpha-tocopherol is also able to inhibit PKC activity in vivo. Likewise, immunoreactivity for the active form of PKCdelta was lower in alpha-tocopherol-treated rats than in controls, while no changes were found in PKCdelta expression. These results demonstrate that alpha-tocopherol is an exogenous factor affecting neuronal plasticity in adult rat DG, possibly through PKCdelta inhibition.
Collapse
Affiliation(s)
- Paola Ferri
- Institute of Morphological Sciences, University of Urbino Carlo Bo, Italy.
| | | | | | | | | | | | | |
Collapse
|
200
|
Westerlund U, Svensson M, Moe MC, Varghese M, Gustavsson B, Wallstedt L, Berg-Johnsen J, Langmoen IA. Endoscopically harvested stem cells: a putative method in future autotransplantation. Neurosurgery 2006. [PMID: 16239892 DOI: 10.1227/01.neu.0000176402.78462.cd] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The discovery of stem cells in the adult human brain and developing stem cell technology open a possible future scenario of autotransplantation, where stem cells are harvested from the patient and propagated in vitro before they are used as transplants. The objectives of this study were: 1) to investigate the feasibility of harvesting tissue containing neural stem cells by endoscopy; 2) to study the possibility of propagating and multiplying stem cells from this tissue efficiently in vitro; and 3) to examine whether the stem cells differentiate into functional neurons. METHODS In 13 patients with hydrocephalus undergoing routine neurosurgical procedures, we used an endoscope and a 3-mm biopsy forceps (Medtronic) to harvest the small piece of the ventricular wall that is detached by the introduction of the endoscope. Cells were cultured as neurospheres, and after induced differentiation, they were investigated with immunocytochemistry and whole-cell patch-clamp recordings. All cells characterized were propagated under strict clonal conditions. RESULTS We found it uncomplicated to harvest the part of the lateral ventricular wall that compares with the inner lumen of the endoscope. Single cells, isolated and cultivated in vitro, multiplied to form neurospheres in a serum-free environment. A single stem cell had the potential to give rise to approximately 9 x 10(5) new cells after two passages. The total number of cells produced from a single biopsy was already, after the second passage, far beyond the number required in, for instance, Parkinson's disease. Within 1 week of induced differentiation, cells expressing markers for neurons (beta-III-tubulin or NeuN), oligodendrocytes (RIP or O4), and astrocytes (glial fibrillary acidic protein) appeared. After 3 weeks, cells with a neuronal phenotype showed a firing pattern distinctive of mature neurons, including repetitive, short-lasting, and overshooting action potentials that were blocked by inhibiting voltage-dependent Na+-channels with tetrodotoxin. CONCLUSION These results indicate that it may be feasible to produce neural tissue for autotransplantation from endoscopically harvested stem cells, but further work is needed in refining culture protocols to control phenotype fate.
Collapse
Affiliation(s)
- Ulf Westerlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|