151
|
Vestling M, Wiehager B, Tanii H, Cowburn RF. Akt activity in presenilin 1 wild-type and mutation transfected human SH-SY5Y neuroblastoma cells after serum deprivation and high glucose stress. J Neurosci Res 2001; 66:448-56. [PMID: 11746362 DOI: 10.1002/jnr.10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of early-onset familial Alzheimer disease cases are caused by mutations in the genes encoding presenilin 1 (PS1) and presenilin 2 (PS2). Presenilin mutations have been hypothesised to cause Alzheimer disease either by altering amyloid precursor protein metabolism or by increasing the vulnerability of neurons to undergo death by apoptosis. We showed previously that PS1 exon 9 deletion (PS1 DeltaE9) and L250S mutations predispose SH-SY5Y neuroblastoma cells to high glucose stress-induced apoptosis and that the anti-apoptotic effect of insulin-like growth factor I (IGF-I) is compromised by these mutations. The present study investigates whether the susceptibility of PS1 mutation transfected SH-SY5Y cells to undergo apoptosis is likely due to a downregulation of Akt/protein kinase B (Akt), a key intermediate in the phosphatidylinositol 3 (PI3)-kinase arm of the IGF-I signaling pathway. We used two methods to determine the regulation of Akt in response to the pro-apoptotic stimuli of serum deprivation and high glucose stress, as well as treatment with IGF-I. We also looked at the phosphorylatiom state of GSK-3beta at Ser9. Using a kinase assay with immunoprecipitated Akt, we detected an increased Akt activity in PS1 L250S cells at 1 hr after the combination of 20 mM glucose plus 10 nM IGF-I, when compared to the other cell types. This effect, however, was transient in that no mutation related differences were seen at either 6- or 24-hr post-treatment. Immunoblotting for Phospho-Akt as a ratio of total Akt, as well as for GSK-3beta phosphorylated at Ser9 revealed no apparent between cell type and treatment differences. This data strongly indicates that PS1 wt and mutant cells show no major differences in the pattern of Akt regulation after exposure to the pro-apoptotic stimuli of either serum deprivation or high glucose stress, or treatment with IGF-I. It is suggested that another component of IGF-I signaling is likely disrupted in these cells to increase their vulnerability to undergo death by apoptosis.
Collapse
Affiliation(s)
- M Vestling
- Karolinska Institutet, NEUROTEC, Division of Experimental Geriatrics, KFC, NOVUM, Huddinge, Sweden
| | | | | | | |
Collapse
|
152
|
Xie J, Chang X, Zhang X, Guo Q. Aberrant induction of Par-4 is involved in apoptosis of hippocampal neurons in presenilin-1 M146V mutant knock-in mice. Brain Res 2001; 915:1-10. [PMID: 11578614 DOI: 10.1016/s0006-8993(01)02803-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in presenilin-1 (PS-1) have been shown to increase neuronal vulnerability to apoptosis in Alzheimer's disease (AD). Par-4 is a novel cell-death-promoting protein associated with neuronal degeneration in AD. We previously reported that, in transfected PC12 cells, Par-4 seems to be involved in the neurodegenerative mechanisms of PS-1 mutations. However, direct evidence for a necessary role of Par-4 in the pathogenic mechanisms of PS-1 mutations in neurons is lacking. We recently generated and characterized presenilin-1 mutant M146V knock-in (PS-1 M146V KI) mice. We now report that expression of the mutant presenilin-1 in these mice induces early and exaggerated increase in Par-4 expression in hippocampal neurons following glucose deprivation (an insult relevant to the pathogenesis of AD). Importantly, inhibition of Par-4 expression by antisense par-4 oligonucleotide treatment counteracts neuronal apoptosis promoted by M146V mutation of PS-1. Mitochondrial dysfunction and caspase-3 activity induced by glucose deprivation was significantly exacerbated in hippocampal neurons expressing the mutant PS-1. Antisense par-4 treatment largely suppressed the adverse effect of the mutant PS-1 on mitochondrial dysfunction and caspase activation. These results provide evidence in hippocampal neurons that Par-4 is involved in the neurodegenerative cascades associated with PS-1 M146V mutation by acting relatively early in the apoptotic process before mitochondrial dysfunction and caspase-3 activation. Since levels of Par-4 are significantly increased in the hippocampus in human AD brain, the results of this study may provide a significant link between aberrant induction of Par-4 and the neurodegenerative cascades promoted by PS-1 mutations in AD.
Collapse
Affiliation(s)
- J Xie
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, P.O. Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | |
Collapse
|
153
|
Popescu BO, Cedazo-Minguez A, Popescu LM, Winblad B, Cowburn RF, Ankarcrona M. Caspase cleavage of exon 9 deleted presenilin-1 is an early event in apoptosis induced by calcium ionophore A 23187 in SH-SY5Y neuroblastoma cells. J Neurosci Res 2001; 66:122-34. [PMID: 11599009 DOI: 10.1002/jnr.1204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presenilins (PSs) are mutated in a majority of familial Alzheimer disease (FAD) cases. Mutated PSs may cause FAD by a number of pro-apoptotic mechanisms, or by regulating gamma-secretase activity, a protease involved in beta-amyloid precursor protein processing to the neurotoxic beta-amyloid peptide. Besides their normal endoproteolytic processing, PSs are substrates for caspases, being cleaved to alternative N-terminal and C-terminal fragments. So far little is known about the role of PSs cleavage in the apoptotic machinery. Here, we used SH-SY5Y neuroblastoma cells stably transfected with wild-type or exon 9 deleted presenilin 1 (PS1) in a time-course study after the exposure to the calcium ionophore A23187. During and after exposure to A 23187, intracellular calcium levels were higher in exon 9 deleted PS1 cells as compared with non-transfected and wild-type PS1 transfected cells. Cell death and the enrichment of apoptotic cells after A23187 exposure were increased by overexpression of exon 9 deleted PS1 as compared with the control cell lines. Wild-type PS1 cells were compared with exon 9 deleted PS1 cells and the temporal relationship between PS1 and other caspase substrates cleavages was analyzed. Exon 9 deleted PS1 cells exhibited a higher caspase-3 activation and a greater cleavage of PS1 and poly(ADP-ribose) polymerase (PARP) compared with wild-type PS1 cells. Exon 9 deleted PS1 cleavage occurred earlier than other caspase substrate cleavages (i.e., PARP and gelsolin), simultaneous with minimum detectable caspase-3 activation. Therefore, alternative cleavage of PS1 may play an important role for the regulation of the proteolytic cascade activated during apoptosis.
Collapse
Affiliation(s)
- B O Popescu
- Karolinska Institute, NEUROTEC, Division of Geriatric Medicine, KFC, NOVUM, Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
154
|
Benussi L, Alberici A, Mayhaus M, Langer U, Ghidoni R, Mazzoli F, Nicosia F, Barbiero L, Frisoni G, Zanetti O, Gasparini L, Nitsch RM, Binetti G. Detection of the presenilin 1 COOH-terminal fragment in the extracellular compartment: a release enhanced by apoptosis. Exp Cell Res 2001; 269:256-65. [PMID: 11570818 DOI: 10.1006/excr.2001.5329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in gene encoding presenilin 1 (PS1) are responsible for the majority of familial Alzheimer's disease (FAD) cases. We studied PS1 localization in HEK293 cells and in primary neurons obtained from rat cortex and hippocampus. We first demonstrated that PS1-CTF, but neither PS1-FL nor PS1-NTF, is released into the medium as a soluble and membrane-associated form. After induction of apoptosis with staurosporine (Sts), we observed a dramatic increase in the level of PS1-CTF in the medium, both in HEK293 and in primary neurons. Immunocytochemical analysis suggested that the release of PS1-CTF might occur via membrane shedding. Abeta(1-42) treatment reduced PS1-CTF extracellular levels. This decrease was strongly associated to an impaired secretion of sAPP fragments, thus suggesting a role of PS1-CTF in the control of trafficking and generation of APP fragments.
Collapse
Affiliation(s)
- L Benussi
- Scientific Institute IRCCS "Centro San Giovanni di Dio-Fatebenefratelli", Brescia, 25123, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Mattson MP, Chan SL, Camandola S. Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 2001; 23:733-44. [PMID: 11494322 DOI: 10.1002/bies.1103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Presenilin-1 (PS1) is thought to regulate cell differentiation and survival by modulating the Notch signaling pathway. Mutations in PS1 have been shown to cause early-onset inherited forms of Alzheimer's disease (AD) by a gain-of-function mechanism that alters proteolytic processing of the amyloid precursor protein (APP) resulting in increased production of neurotoxic forms of amyloid beta-peptide. The present article considers a second pathogenic mode of action of PS1 mutations, a defect in cellular calcium signaling characterized by overfilling of endoplasmic reticulum (ER) calcium stores and altered capacitive calcium entry; this abnormality may impair synaptic plasticity and sensitize neurons to apoptosis and excitotoxicity. The calcium signaling defect has also been documented in lymphocytes, suggesting a contribution of immune dysfunction to the pathogenesis of AD. A better understanding of the calcium signaling defect resulting from PS1 mutations may lead to the development of novel preventative and therapeutic strategies for disorders of the nervous and immune systems.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
156
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Three genes have been identified that cause the less common early-onset, familial cases of the disease: the amyloid precursor (APP) protein gene on chromosome 21, the presenilin 1 (PSEN1) gene on chromosome 14 and the presenilin 2 (PSEN2) gene on chromosome 1. Mutations in these genes account for << 2% of the total number of AD cases. More than 50% of the cases are late-onset and related to the apolipoprotein E (APOE) gene on chromosome 19. The apolipoprotein E locus is a susceptibility gene, with polymorphisms affecting both risk and age-of-onset of the disease. Intense efforts are underway to identify additional susceptibility genes and promising regions on chromosomes 6, 9, 10 and 12 have been identified through whole genome scans. In addition, the genetic basis of several other non-AD inherited dementias has been unravelled. Discovery of the genetically relevant genes will aid in the elucidation of the pathogenesis of AD. The high-throughput tools of pharmacogenomics for gene-to-function-to-target studies can provide a quicker means of monitoring how mutations and polymorphisms affect model systems' adaptations to the altered genes, possibly identifying signal transduction or biochemical pathways. This relevant information can then be used for drug target selection and pharmacogenetics.
Collapse
Affiliation(s)
- A M Saunders
- Box 2900, Department of Medicine (Neurology), Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
157
|
Nakajima M, Miura M, Aosaki T, Shirasawa T. Deficiency of presenilin-1 increases calcium-dependent vulnerability of neurons to oxidative stress in vitro. J Neurochem 2001; 78:807-14. [PMID: 11520901 DOI: 10.1046/j.1471-4159.2001.00478.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the function of presenilin-1 (PS1) on neuronal resistance to oxidative stress. CNS neurons cultured from PS1-deficient mice exhibited increased vulnerability to H2O2 treatment compared with those from wild-type mice. Antioxidants protected the cultured neurons against the oxidative stress. An intracellular calcium chelator, BAPTA AM, as well as an L-type voltage-dependent calcium channel blocker, nifedipine, rescued the neurons from H2O2-induced death, while an N-type voltage-dependent calcium channel blocker, omega-conotoxin, or calcium release blockers from ER stores, dantrolene and xestospongin C, failed to rescue them. Wild-type and PS1-deficient neurons showed comparable increases of cytoplasmic free calcium levels after exposure to H2O2. Taken together with the data that PS1-deficient neurons exhibited increased vulnerability to glutamate, these findings imply that PS1 confers resistance to oxidative stress on neurons in calcium-dependent manners.
Collapse
Affiliation(s)
- M Nakajima
- Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | |
Collapse
|
158
|
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A 2001; 98:6336-41. [PMID: 11371646 PMCID: PMC33469 DOI: 10.1073/pnas.101133498] [Citation(s) in RCA: 506] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Through functional expression screening, we identified a gene, designated Humanin (HN) cDNA, which encodes a short polypeptide and abolishes death of neuronal cells caused by multiple different types of familial Alzheimer's disease genes and by Abeta amyloid, without effect on death by Q79 or superoxide dismutase-1 mutants. Transfected HN cDNA was transcribed to the corresponding polypeptide and then was secreted into the cultured medium. The rescue action clearly depended on the primary structure of HN. This polypeptide would serve as a molecular clue for the development of new therapeutics for Alzheimer's disease targeting neuroprotection.
Collapse
Affiliation(s)
- Y Hashimoto
- Departments of Pharmacology and Neurosciences, KEIO University School of Medicine, 160-8582 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
160
|
De Sarno P, Lesort M, Bijur GN, Johnson GV, Jope RS. Cholinergic- and stress-induced signaling activities in cells overexpressing wild-type and mutant presenilin-1. Brain Res 2001; 903:226-30. [PMID: 11382407 DOI: 10.1016/s0006-8993(01)02428-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examined the effects of overexpression of presenilin-1 wild-type (PS1wt) or mutant L286V (PS1m) in human neuroblastoma SH-SY5Y cells on signal transduction systems. Oxotremorine-M-induced activation of AP-1 was 40--53% lower in PS1wt than control cells, and further impaired (63--76%) in PS1m cells. Heat shock (45 degrees C) activated Akt, increased heat shock factor-1 (HSF-1) DNA binding activity, and increased levels of heat shock protein 70, and these responses were not altered by overexpression of PS1wt or PS1m. H(2)O(2) also caused a time-dependent increase in HSF-1 DNA binding activity which was similar in all cell lines. Thus, overexpression of PS1wt reduced muscarinic receptor-mediated activation of AP-1, and PS1m overexpression caused greater inhibition, but stress-induced activation of Akt and HSF-1 was unaffected by either PS1wt or PS1m.
Collapse
Affiliation(s)
- P De Sarno
- Department of Psychiatry and Behavioral Neurobiology, Sparks Center 1057, University of Alabama at Birmingham, 35294-0017, USA
| | | | | | | | | |
Collapse
|
161
|
Leissring MA, LaFerla FM, Callamaras N, Parker I. Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiol Dis 2001; 8:469-78. [PMID: 11442355 DOI: 10.1006/nbdi.2001.0382] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in presenilin-1 (PS1), the leading cause of early-onset, autosomal-dominant familial Alzheimer's disease (FAD), enhance calcium signaling mediated by inositol 1,4,5-trisphosphate (IP3). To elucidate the subcellular mechanisms underlying this enhancement, we used high resolution line-scanning confocal microscopy to image elementary calcium release events ("puffs") in Xenopus oocytes expressing wild-type or mutant PS1. Here we report that mutant PS1-rendered puffs more sensitive to IP3 and increased both the magnitude and the rate of calcium release during each event. These effects were not attributable to quantitative changes in the levels of IP3 receptors or their distribution on the ER, but were instead associated with an abnormal elevation of ER calcium stores. Together, our results suggest that the effects of mutant PS1 on calcium signaling are manifested predominantly at the level of the regulation of calcium stores rather than via perturbations in the numbers or activity of IP3-activated calcium release channels.
Collapse
Affiliation(s)
- M A Leissring
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California at Irvine, 1109 Gillespie Neuroscience Research Facility, Irvine, California 92697-4545, USA
| | | | | | | |
Collapse
|
162
|
Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 2001; 283:460-8. [PMID: 11327724 DOI: 10.1006/bbrc.2001.4765] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a novel gene, designated Humanin (HN) cDNA, that suppresses neuronal cell death by K595N/M596L-APP (NL-APP), a mutant causing familial Alzheimer's disease (FAD), termed Swedish mutant. Transfection of neuronal cells with HN cDNA or treatment with the coding HN polypeptide abrogated cytotoxicity by NL-APP. HN suppressed neurotoxicity by Abeta1-43 in the absence of N2 supplement, but could not inhibit Abeta secretion from NL-APP. HN could also protect neuronal cells from death by NL-APP lacking the 41st and 42nd residues of the Abeta region. Therefore, HN suppressed neuronal cell death by NL-APP not through inhibition of Abeta42 secretion, but with two targets for its inhibitory action: (i) the intracellular toxic mechanism directly triggered by NL-APP and (ii) neurotoxicity by Abeta. HN will contribute to the development of curative therapy of AD, especially as a novel reagent that could mechanistically supplement Abeta-production inhibitors.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Jo DG, Kim MJ, Choi YH, Kim IK, Song YH, Woo HN, Chung CW, Jung YK. Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J 2001; 15:589-91. [PMID: 11259376 DOI: 10.1096/fj.00-0541fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptotic cell death and increased production of amyloid b peptide (Ab) are pathological features of Alzheimer's disease (AD), although the exact contribution of apoptosis to the pathogenesis of the disease remains unclear. Here we describe a novel pro-apoptotic function of calsenilin/DREAM/KChIP3. By antisense oligonucleotide-induced inhibition of calsenilin/DREAM/KChIP3 synthesis, apoptosis induced by Fas, Ca2+-ionophore, or thapsigargin is attenuated. Conversely, calsenilin/DREAM/KChIP3 expression induced the morphological and biochemical features of apoptosis, including cell shrinkage, DNA laddering, and caspase activation. Calsenilin/DREAM/KChIP3-induced apoptosis was suppressed by caspase inhibitor Z-VAD and by Bcl-XL, and was potentiated by increasing cytosolic Ca2+, expression of Swedish amyloid precursor protein mutant (APPSW) or presenilin 2 (PS2), but not by a PS2 deletion lacking its C-terminus (PS2/411stop). In addition, calsenilin/DREAM/KChIP3 expression increased Ab42 production in cells expressing APPsw, which was potentiated by PS2, but not by PS2/411stop, which suggests a role for apoptosis-associated Ab42 production of calsenilin/DREAM/KChIP3.
Collapse
Affiliation(s)
- D G Jo
- Department of Life Science, Kwangju Institute of Science and Technology, Puk-gu, Kwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
164
|
de la Monte SM, Wands JR. Alzheimer-associated neuronal thread protein-induced apoptosis and impaired mitochondrial function in human central nervous system-derived neuronal cells. J Neuropathol Exp Neurol 2001; 60:195-207. [PMID: 11273007 DOI: 10.1093/jnen/60.2.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer Disease (AD), dementia is due to cell loss and impaired synaptic function. The cell loss is mediated by increased apoptosis, predisposition to apoptosis, and impaired mitochondrial function. Previous studies demonstrated that the AD7c-NTP neuronal thread protein gene is over-expressed in AD beginning early in the course of disease, and that in AD, AD7c-NTP protein accumulation in neurons co-localizes with phospho-tau-immunoreactivity. To determine the potential contribution of AD7c-NTP over-expression to cell loss in AD, we utilized an inducible mammalian expression system to regulate AD7c-NTP gene expression in human CNS-derived neuronal cells by stimulation with isopropyl-1-beta-D-thiogalactopyranoside (IPTG). IPTG induction of AD7c-NTP gene expression resulted in increased cell death mediated by apoptosis, impaired mitochondrial function, and increased cellular levels of the p53 and CD95 pro-apoptosis gene products as occur in AD. In addition, over-expression of AD7c-NTP was associated with increased levels of phospho-tau, but not amyloid-beta immunoreactivity. These results suggest that AD7c-NTP over-expression may have a direct role in mediating some of the important cell death cascades associated with AD neurodegeneration, and further establish a link between AD7c-NTP overexpression and the accumulation of phospho-tau in preapoptotic CNS neuronal cells.
Collapse
Affiliation(s)
- S M de la Monte
- Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence 02903, USA
| | | |
Collapse
|
165
|
Spreafico F, Barski JJ, Farina C, Meyer M. Mouse DREAM/calsenilin/KChIP3: gene structure, coding potential, and expression. Mol Cell Neurosci 2001; 17:1-16. [PMID: 11161465 DOI: 10.1006/mcne.2000.0913] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ca2+-binding proteins containing EF-hands are important constituents of intracellular signaling pathways. Recently, three new members of the Neuronal Calcium Sensor subgroup have been cloned in humans. Calsenilin interacts with presenilins, DREAM is a calcium-regulated transcriptional repressor and KChIP3 binds and modulates A-type potassium channels. Here we describe the mouse full-length cDNA and the genomic locus, demonstrating that the three proteins are encoded by the same unique gene. Various mechanisms contribute to the coding potential of this locus. These include alternate translation starts in the first exon and alternative splicing yielding transcripts lacking the EF-hand domains. In situ hybridization, RT-PCR, and Northern blotting reveal nervous system-restricted expression largely coinciding with the distribution of the Kv4.2 alpha-subunit of potassium channels. The presence of transcripts in early embryonic stages suggests roles for the protein also during development.
Collapse
Affiliation(s)
- F Spreafico
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18A, Martinsried, D-82152, Germany
| | | | | | | |
Collapse
|
166
|
Abstract
In this review, we argue that at least one insult that causes Alzheimer's disease (AD) is disruption of the normal function of the amyloid precursor protein (APP). Familial Alzheimer's disease (FAD) mutations in APP cause a disease phenotype that is identical (with the exception that they cause an earlier onset of the disease) to that of 'sporadic' AD. This suggests that there are molecular pathways common to FAD and sporadic AD. In addition, all individuals with Down syndrome, who carry an extra copy of chromosome 21 and overexpress APP several-fold in the brain, develop the pathology of AD if they live past the age of 40. These data support the primacy of APP in the disease. Although APP is the source of the beta-amyloid (Abeta) that is deposited in amyloid plaques in AD brain, the primacy of APP in AD may not lie in the production of Abeta from this molecule. We suggest instead that APP normally functions in the brain as a cell surface signaling molecule, and that a disruption of this normal function of APP is at least one cause of the neurodegeneration and consequent dementia in AD. We hypothesize in addition that disruption of the normal signaling function of APP causes cell cycle abnormalities in the neuron, and that these abnormalities constitute one mechanism of neuronal death in AD. Data supporting these hypotheses have come from investigations of the molecular consequences of neuronal expression of FAD mutants of APP or overexpression of wild type APP, as well as from identification of binding proteins for the carboxyl-terminus (C-terminus) of APP.
Collapse
Affiliation(s)
- R L Neve
- Department of Psychiatry, Harvard Medical School, MRC 223 McLean Hospital, 115 Mill St., 02478, Belmont, MA, USA.
| | | | | |
Collapse
|
167
|
Xie J, Guo Q, Zhu H, Wooten MW, Mattson MP. Protein kinase C iota protects neural cells against apoptosis induced by amyloid beta-peptide. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 82:107-13. [PMID: 11042363 DOI: 10.1016/s0169-328x(00)00187-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKC) isoforms are increasingly recognized as playing important roles in the regulation of neuronal plasticity and survival. Recent findings from studies of non-neuronal cells suggest that atypical isoforms of PKC can modulate apoptosis in various paradigms. Because increasing data support a role for neuronal apoptosis in the pathogenesis of Alzheimer's disease (AD), we tested the hypothesis that PKCiota (PKCiota) can modify vulnerability of neural cells to apoptosis induced by amyloid beta-peptide (ABP), a cytotoxic peptide linked to neuronal degeneration in AD. Overexpression of PKCiota increased the resistance of PC12 cells to apoptosis induced by ABP. Associated with the increased resistance to apoptosis were improved mitochondrial function and reduced activity of caspases. In addition, ABP-induced increases in levels of oxidative stress and intracellular calcium levels were attenuated in cells overexpressing PKCiota. These findings suggest that PKCiota prevents apoptosis induced by ABP by interrupting the cell death process at a very early step, thereby allowing the cells to maintain ion homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- J Xie
- Sanders-Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
168
|
Abstract
Apoptotic machinery designed for cell's organized self-destruction involve different systems of proteases which cleave vital proteins and disassemble nuclear and cytoplasmic structures, committing the cell to death. The most studied apoptotic proteolytic system is the caspase family, but calpains and the proteasome could play important roles as well. Alzheimer's disease associated presenilins showed to be a substrate for such proteolytic systems, being processed early in several apoptotic models, and recent data suggest that alternative presenilin fragments could regulate cell survival. Mutations in genes encoding presenilins proved to sensitize neurons to apoptosis by different mechanisms e.g. increased caspase-3 activation, oxyradicals production and calcium signaling dysregulation. Here we review the data involving presenilins in apoptosis and discuss a possible role of presenilins in the regulation of apoptotic biochemical machinery.
Collapse
Affiliation(s)
- B. O. Popescu
- Karolinska Institutet, NEUROTEC, Section for Geriatric Medicine, NOVUM, KFC, 4th floor, S-141 86 Huddinge, Sweden.
| | | |
Collapse
|
169
|
Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW. Presenilin-mediated modulation of capacitative calcium entry. Neuron 2000; 27:561-72. [PMID: 11055438 DOI: 10.1016/s0896-6273(00)00066-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied a novel function of the presenilins (PS1 and PS2) in governing capacitative calcium entry (CCE), a refilling mechanism for depleted intracellular calcium stores. Abrogation of functional PS1, by either knocking out PS1 or expressing inactive PS1, markedly potentiated CCE, suggesting a role for PS1 in the modulation of CCE. In contrast, familial Alzheimer's disease (FAD)-linked mutant PS1 or PS2 significantly attenuated CCE and store depletion-activated currents. While inhibition of CCE selectively increased the amyloidogenic amyloid beta peptide (Abeta42), increased accumulation of the peptide had no effect on CCE. Thus, reduced CCE is most likely an early cellular event leading to increased Abeta42 generation associated with FAD mutant presenilins. Our data indicate that the CCE pathway is a novel therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- A S Yoo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Guo Q, Xie J, Du H. Par-4 induces cholinergic hypoactivity by suppressing ChAT protein synthesis and inhibiting NGF-inducibility of ChAT activity. Brain Res 2000; 874:221-32. [PMID: 10960608 DOI: 10.1016/s0006-8993(00)02559-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Profound reductions in choline acetyl-transferase (ChAT) activity are reliable markers for cholinergic hypoactivity associated with cognitive function deficit in Alzheimer's disease (AD). Par-4 (prostate apoptosis response-4) is a novel mediator of neuronal apoptosis associated with the pathogenesis of AD. Par-4 contains a leucine zipper domain (Leu.zip) that presumably mediates protein-protein interactions critical for its functions in apoptosis. Par-4 activity can be effectively blocked by overexpression of Leu. zip because it exerts a dominant negative action possibly by competitively blocking the interaction of Par-4 with other proteins. Whether Par-4 participates in regulation of cholinergic signaling has not been determined. We report that overexpression of Par-4 results in apoptotic and non-apoptotic reductions in ChAT activity in transfected PC12 cells following exposure to a toxic concentration (50 microM) of aggregated amyloid beta peptide 1-42 (Abeta 1-42) and a non-toxic concentration (1 microM) of soluble Abeta 1-42, respectively. Non-apoptotic reduction in ChAT activity induced by Par-4 can be completely blocked by co-overexpression of Leu.zip, indicating that enhanced Par-4 activity is a necessary event for cholinergic hypoactivity in PC12 cells. Further studies found that Par-4 induces non-apoptotic reduction in ChAT activity by: (1) reducing ChAT protein levels following exposure to non-toxic concentration of Abeta, and (2) blocking the cellular capability to increase ChAT activity following exposure to nerve growth factor (NGF). The role of Par-4 in inducing cholinergic hypoactivity may have significant implications in the understanding and the treatment of memory impairment in AD.
Collapse
Affiliation(s)
- Q Guo
- Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA.
| | | | | |
Collapse
|
171
|
Niikura T, Murayama N, Hashimoto Y, Ito Y, Yamagishi Y, Matsuoka M, Takeuchi Y, Aiso S, Nishimoto I. V642I APP-inducible neuronal cells: a model system for investigating Alzheimer's disorders. Biochem Biophys Res Commun 2000; 274:445-54. [PMID: 10913358 DOI: 10.1006/bbrc.2000.3143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
APP is a precursor of beta amyloid deposited in Alzheimer's disease (AD). Although genetic studies established that mutations in APP cause familial AD (FAD), the mechanism for neuronal death by FAD mutants has not been well understood. We established neuronal cells (F11/EcR/V642I cells) in which V642I APP was inducibly expressed by ecdysone. Treatment with ecdysone, but not vehicle, killed most cells within a few days, with rounding, shrinkage, and detachment as well as nuclear fragmentation. Death was suppressed by Ac-DEVD-CHO and pertussis toxin. Electron microscopic analysis revealed that apoptosis occurred in ecdysone-treated cells. V642I-APP-induced death was suppressed by the anti-AD factors estrogen and apoE2. These data demonstrate not only that expression of this FAD gene causes neuronal apoptosis, but that F11/EcR/V642I cells, the first neuronal cells with inducible FAD gene expression, provide a useful model system in investigating AD disorders.
Collapse
Affiliation(s)
- T Niikura
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Huse JT, Doms RW. Closing in on the amyloid cascade: recent insights into the cell biology of Alzheimer's disease. Mol Neurobiol 2000; 22:81-98. [PMID: 11414282 DOI: 10.1385/mn:22:1-3:081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulation of the amyloid-beta (A beta) peptide in the central nervous system (CNS) is considered by many to be the crucial pathological insult that ultimately leads to the development of Alzheimer's disease (AD). Regulating the production and/or aggregation of A beta could therefore be of considerable benefit to patients afflicted with AD. It has long been known that A beta is derived from the proteolytic processing of the amyloid precursor protein (APP) by two enzymatic activities, beta-secretase and gamma-secretase. Recent breakthroughs have led to the identification of the aspartyl protease BACE (beta-site APP-cleaving enzyme) as beta-secretase and the probable identification of the presenilin proteins as gamma-secretases. This review discusses what is know about BACE and the presenilins, focusing on their capacity as secretases, as well as the options for therapeutic advancement the careful characterization of these proteins will provide. These findings are presented in the context of the "amyloid cascade hypothesis" and its physiological relevance in AD pathogenesis.
Collapse
Affiliation(s)
- J T Huse
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
173
|
Lesort M, Tucholski J, Miller ML, Johnson GV. Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog Neurobiol 2000; 61:439-63. [PMID: 10748319 DOI: 10.1016/s0301-0082(99)00052-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue transglutaminase is a multifunctional protein that is likely to play a role in numerous processes in the nervous system. Tissue transglutaminase posttranslationally modifies proteins by transamidation of specific polypeptide bound glutamines. This action results in the formation of protein crosslinks or the incorporation of polyamines into substrate proteins, modifications that likely have significant effects on neural function. Tissue transglutaminase is a unique member of the transglutaminase family as in addition to catalyzing the calcium-dependent transamidation reaction, it also binds and hydrolyzes ATP and Guanosine 5'-triphosphate and may play a role in signal transduction. Tissue transglutaminase is a highly regulated and inducible enzyme that is developmentally regulated in the nervous system. In vitro, numerous substrates of tissue transglutaminase have been identified, and several of these proteins have been shown to be in situ substrates as well. Several specific roles for tissue transglutaminase have been described and there is evidence that tissue transglutaminase may also play a role in apoptosis. Recent findings have provided evidence that dysregulation of tissue transglutaminase may contribute to the pathology of several neurodegenerative conditions including Alzheimer's disease and Huntington's disease. In both of these diseases tissue transglutaminase and transglutaminase activity are elevated compared to age-matched controls. Further, immunohistochemical studies have demonstrated that there is an increase in tissue transglutaminase reactivity in affected neurons in both Alzheimer's and Huntington's disease. Although intriguing, many issues remain to be addressed to definitively establish a role for tissue transglutaminase in these neurodegenerative diseases.
Collapse
Affiliation(s)
- M Lesort
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 Seventh Avenue S., SC1061, Birmingham 35294-0017, USA
| | | | | | | |
Collapse
|
174
|
Leissring MA, Yamasaki TR, Wasco W, Buxbaum JD, Parker I, LaFerla FM. Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci U S A 2000; 97:8590-3. [PMID: 10900016 PMCID: PMC26992 DOI: 10.1073/pnas.97.15.8590] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most cases of autosomal-dominant familial Alzheimer's disease are linked to mutations in the presenilin genes (PS1 and PS2). In addition to modulating beta-amyloid production, presenilin mutations also produce highly specific and selective alterations in intracellular calcium signaling. Although the molecular mechanisms underlying these changes are not known, one candidate molecular mediator is calsenilin, a recently identified calcium-binding protein that associates with the C terminus of both PS1 and PS2. In this study, we investigated the effects of calsenilin on calcium signaling in Xenopus oocytes expressing either wild-type or mutant PS1. In this system, mutant PS1 potentiated the amplitude of calcium signals evoked by inositol 1,4,5-trisphosphate and also accelerated their rates of decay. We report that calsenilin coexpression reverses both of these potentially pathogenic effects. Notably, expression of calsenilin alone had no discernable effects on calcium signaling, suggesting that calsenilin modulates these signals by a mechanism independent of simple calcium buffering. Our findings further suggest that the effects of presenilin mutations on calcium signaling are likely mediated through the C-terminal domain, a region that has also been implicated in the modulation of beta-amyloid production and cell death.
Collapse
Affiliation(s)
- M A Leissring
- Laboratories of Molecular Neuropathogenesis, and Molecular and Cellular Neurobiology, Department of Neurobiology and Behavior, University of California, 1109 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4545, USA
| | | | | | | | | | | |
Collapse
|
175
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Raina AK, Zhu X, Monteiro M, Takeda A, Smith MA. Abortive oncogeny and cell cycle-mediated events in Alzheimer disease. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:235-42. [PMID: 10740829 DOI: 10.1007/978-1-4615-4253-7_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Alzheimer disease, the leading cause of senile dementia, is characterised by the degeneration of select neuronal populations. While the mechanism(s) underlying such cell loss are largely unknown, recent findings indicate inappropriate re-entry into the cell cycle resembling an abortive oncogeny. In postmitotic neurons, such mitotic re-entrance is deleterious and one that involves virtually the entire spectrum of the described pathological events in Alzheimer disease including, ultimately, cell death.
Collapse
Affiliation(s)
- A K Raina
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
177
|
Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000; 275:18195-200. [PMID: 10764737 DOI: 10.1074/jbc.m000040200] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. PS1 mutations may perturb cellular Ca(2+) homeostasis and thereby render neurons vulnerable to excitotoxicity and apoptosis. We now report that PC12 cells expressing PS1 mutations and primary hippocampal neurons from PS1 mutant knockin mice exhibit greatly increased levels of ryanodine receptors (RyR) and enhanced Ca(2+) release following stimulation with caffeine. Double-labeling immunostaining and co-immunoprecipitation analyses indicate that PS1 and RyR are colocalized and interact physically. Caffeine treatment sensitizes neurons expressing mutant PS1 to apoptosis induced by amyloid beta-peptide, a neurotic peptide linked to the pathogenesis of AD. When taken together with recent evidence for alterations in RyR in brains of AD patients, our data suggest that PS1 mutations may promote neuronal degeneration in AD by increasing transcription and translation of RyR and altering functional properties of ryanodine-sensitive Ca(2+) pools.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
178
|
Handler M, Yang X, Shen J. Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 2000; 127:2593-606. [PMID: 10821758 DOI: 10.1242/dev.127.12.2593] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in Presenilin-1 (PS1) are a major cause of familial Alzheimer's disease. Our previous studies showed that PS1 is required for murine neural development. Here we report that lack of PS1 leads to premature differentiation of neural progenitor cells, indicating a role for PS1 in a cell fate decision between postmitotic neurons and neural progenitor cells. Neural proliferation and apoptotic cell death during neurogenesis are unaltered in PS1(−/−) mice, suggesting that the reduction in the neural progenitor cells observed in the PS1(−/−) brain is due to premature differentiation of progenitor cells, rather than to increased apoptotic cell death or decreased cell proliferation. In addition, the premature neuronal differentiation in the PS1(−/−) brain is associated with aberrant neuronal migration and disorganization of the laminar architecture of the developing cerebral hemisphere. In the ventricular zone of PS1(−/−) mice, expression of the Notch1 downstream effector gene Hes5 is reduced and expression of the Notch1 ligand Dll1 is elevated, whereas expression of Notch1 is unchanged. The level of Dll1 transcripts is also increased in the presomitic mesoderm of PS1(−/−) embryos, while the level of Notch1 transcripts is unchanged, in contrast to a previous report (Wong et al., 1997, Nature 387, 288–292). These results provide direct evidence that PS1 controls neuronal differentiation in association with the downregulation of Notch signalling during neurogenesis.
Collapse
Affiliation(s)
- M Handler
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
179
|
Van Gassen G, Annaert W, Van Broeckhoven C. Binding partners of Alzheimer's disease proteins: are they physiologically relevant? Neurobiol Dis 2000; 7:135-51. [PMID: 10860781 DOI: 10.1006/nbdi.2000.0306] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein-protein interactions are a molecular basis for the structural and functional organization within cells. They are mediated by a growing number of protein modules that bind peptide targets. Alterations in binding affinities can have serious consequences for some essential cellular processes. The three proteins identified to have mutations in their corresponding genes leading to presenile Alzheimer dementia (AD)-the amyloid precursor protein (APP) and presenilin 1 and 2-all interact with other proteins. The nature and function of these interacting proteins may contribute to elucidating the proper physiological functions of the AD proteins. APP-interacting proteins are pointing toward a function of APP in cell adhesion and neurite outgrowth and signaling. Proteins interacting with the presenilins however are more diverse in nature linking presenilin function to regulation in different signaling pathways including Wnt and Notch but also in apoptosis and Ca(2+) homeostasis. Further research however is still needed to delineate the exact functional relevance of these interactions with respect to the physiological functions of the AD proteins in particular and the contribution of these proteins to AD pathogenesis in general.
Collapse
Affiliation(s)
- G Van Gassen
- Molecular Genetics Laboratory, University of Antwerp (UIA), Antwerpen, Belgium
| | | | | |
Collapse
|
180
|
Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149:793-8. [PMID: 10811821 PMCID: PMC2174559 DOI: 10.1083/jcb.149.4.793] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 04/12/2000] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory and Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4545
| | - Yama Akbari
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory and Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4545
| | - Christopher M. Fanger
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California 92697-4561
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California 92697-4561
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224
| | - Frank M. LaFerla
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory and Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4545
| |
Collapse
|
181
|
Pack-Chung E, Meyers MB, Pettingell WP, Moir RD, Brownawell AM, Cheng I, Tanzi RE, Kim TW. Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor. J Biol Chem 2000; 275:14440-5. [PMID: 10748169 DOI: 10.1074/jbc.m909882199] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perturbed Ca(2+) homeostasis is a common molecular consequence of familial Alzheimer's disease-linked presenilin mutations. We report here the molecular interaction of the large hydrophilic loop region of presenilin 2 (PS2) with sorcin, a penta-EF-hand Ca(2+)-binding protein that serves as a modulator of the ryanodine receptor intracellular Ca(2+) channel. The association of endogenous sorcin and PS2 was demonstrated in cultured cells and human brain tissues. Membrane-associated sorcin and a subset of the functional PS2 complexes were co-localized to a novel subcellular fraction that is distinctively positive for calcineurin B. Sorcin was found to interact with PS2 endoproteolytic fragments but not full-length PS2, and the sorcin/PS2 interaction was greatly enhanced by treatment with the Ca(2+) ionophore A23187. Our findings reveal a molecular link between PS2 and intracellular Ca(2+) channels (i.e. ryanodine receptor) and substantiate normal and/or pathological roles of PS2 in intracellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- E Pack-Chung
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222-9. [PMID: 10782128 DOI: 10.1016/s0166-2236(00)01548-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) is a multifaceted organelle that regulates protein synthesis and trafficking, cellular responses to stress, and intracellular Ca2+ levels. In neurons, it is distributed between the cellular compartments that regulate plasticity and survival, which include axons, dendrites, growth cones and synaptic terminals. Intriguing communication networks between ER, mitochondria and plasma membrane are being revealed that provide mechanisms for the precise regulation of temporal and spatial aspects of Ca2+ signaling. Alterations in Ca2+ homeostasis in ER contribute to neuronal apoptosis and excitotoxicity, and are being linked to the pathogenesis of several different neurodegenerative disorders, including Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
183
|
Barrow PA, Empson RM, Gladwell SJ, Anderson CM, Killick R, Yu X, Jefferys JG, Duff K. Functional phenotype in transgenic mice expressing mutant human presenilin-1. Neurobiol Dis 2000; 7:119-26. [PMID: 10783295 DOI: 10.1006/nbdi.1999.0276] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the presenilin-1 (PS1) gene cause approximately 50% of cases of early onset familial Alzheimer's disease. The function of this protein remains unknown. We have made an electrophysiological study of hippocampal slices from transgenic mice expressing either a normal human PS1 transgene (WT) or one of two human PS1 transgenes bearing pathogenic mutations at codon M146 (M146L and M146V). Medium and late afterhyperpolarizations in CA3 pyramidal cells were larger in mice expressing either mutant form compared with WT and nontransgenic controls. Calcium responses to depolarization were larger in M146L mice compared with nontransgenic littermates; synaptic potentiation of the CA3 to CA1 projection was also stronger. These results demonstrate disruption of the control of intracellular calcium and electrophysiological dysfunction in PS1 mutant mice.
Collapse
Affiliation(s)
- P A Barrow
- Department of Neurophysiology, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann N Y Acad Sci 2000; 893:154-75. [PMID: 10672236 DOI: 10.1111/j.1749-6632.1999.tb07824.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic degeneration and death of nerve cells are defining features of Alzheimer's disease (AD) and Parkinson's disease (PD), the two most prevalent age-related neurodegenerative disorders. In AD, neurons in the hippocampus and basal forebrain (brain regions that subserve learning and memory functions) are selectively vulnerable. In PD dopamine-producing neurons in the substantia nigra-striatum (brain regions that control body movements) selectively degenerate. Studies of postmortem brain tissue from AD and PD patients have provided evidence for increased levels of oxidative stress, mitochondrial dysfunction and impaired glucose uptake in vulnerable neuronal populations. Studies of animal and cell culture models of AD and PD suggest that increased levels of oxidative stress (membrane lipid peroxidation, in particular) may disrupt neuronal energy metabolism and ion homeostasis, by impairing the function of membrane ion-motive ATPases and glucose and glutamate transporters. Such oxidative and metabolic compromise may there-by render neurons vulnerable to excitotoxicity and apoptosis. Studies of the pathogenic mechanisms of AD-linked mutations in amyloid precursor protein (APP) and presenilins strongly support central roles for perturbed cellular calcium homeostasis and aberrant proteolytic processing of APP as pivotal events that lead to metabolic compromise in neurons. Specific molecular "players" in the neurodegenerative processes in AD and PD are being identified and include Par-4 and caspases (bad guys) and neurotrophic factors and stress proteins (good guys). Interestingly, while studies continue to elucidate cellular and molecular events occurring in the brain in AD and PD, recent data suggest that both AD and PD can manifest systemic alterations in energy metabolism (e.g., increased insulin resistance and dysregulation of glucose metabolism). Emerging evidence that dietary restriction can forestall the development of AD and PD is consistent with a major "metabolic" component to these disorders, and provides optimism that these devastating brain disorders of aging may be largely preventable.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
185
|
Tanii H, Ankarcrona M, Flood F, Nilsberth C, Mehta ND, Perez-Tur J, Winblad B, Benedikz E, Cowburn RF. Alzheimer's disease presenilin-1 exon 9 deletion and L250S mutations sensitize SH-SY5Y neuroblastoma cells to hyperosmotic stress-induced apoptosis. Neuroscience 2000; 95:593-601. [PMID: 10658639 DOI: 10.1016/s0306-4522(99)00432-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the presenilin-1 (PS1) and presenilin-2 (PS2) genes account for the majority of early-onset familial Alzheimer's disease cases. Recent studies suggest that presenilin gene mutations predispose cells to apoptosis by mechanisms involving altered calcium homeostasis and oxidative damage. In the present study, we determined whether PS1 mutations also sensitize cells to hyperosmotic stress-induced apoptosis. For this, we established SH-SY5Y neuroblastoma cell lines stably transfected with wild-type PS1 or either the PS1 exon 9 deletion (deltaE9) or PS1 L250S mutants. Cultured cells were exposed to an overnight (17 h) serum deprivation, followed by a 30 min treatment with either 20 mM glucose, 10 nM insulin-like growth factor-1 or 20 mM glucose + 10 nM insulin-like growth factor-1. Cells were then cultured for a further 3, 6 or 24 h and stained for apoptotic condensed nuclei using propidium iodide. Confirmation that cells were undergoing an active apoptotic process was achieved by labelling of DNA strand breaks using the terminal dUTP nick end labelling (TUNEL) technique. We also determined cell viability using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Propidium iodide staining revealed that all cell lines and controls showed an increased number of apoptotic cells appearing with condensed nuclei at 24 h compared with 6 h and 3 h. High glucose-induced hyperosmotic stress resulted in significantly more apoptotic cells in the PS1 deltaE9 and PS1 L250S mutation cell lines at 24 h, compared with the wild-type PS1 lines (P < 0.001, ANOVA for both comparisons). Mean values (+/-S.D.) for the percentage number of apoptotic cells at 24 h following high glucose treatment were 16.1 +/- 3.5%, 26.7 +/- 5.5% and 31.0 +/- 5.7% for the wild-type PS1, PS1 deltaE9 and PS1 L250S lines, respectively. The pro-apoptotic effects of high glucose treatment were reversed by 10 nM insulin-like growth factor-1, although to a lesser extent in the mutation cell lines (5.8 +/- 2.4%, 15.2 +/- 7.3% and 13.2 +/- 2.0% for the wild-type PS1, PS1 deltaE9 (P < 0.01 for comparison with wild-type PS1) and PS1 L250S (P < 0.01 for comparison with wild-type PS1) transfected lines, respectively. TUNEL labelling of cells at 24 h following treatment gave essentially the same results pattern as obtained using propidium iodide. The percentage number of apoptotic cells with DNA strand breaks (means +/- S.D.) following high glucose treatment was 15.4 +/- 2.6% for the wild-type PS1, 26.8 +/- 3.2% for the PS1 deltaE9 (P < 0.001 for comparison with wild-type PS1) and 29.7 +/- 6.1% for the PS1 L250S transfected lines (P < 0.001 for comparison with wild-type PS1). The PS1 deltaE9 and PS1 L250S transfected lines also showed a higher number of apoptotic cells with DNA strand breaks at 24 h following high glucose plus insulin-like growth factor-1 treatment (11.4 +/- 2.0% and 14.3 +/- 2.8%, respectively), compared with values for the wild-type PS1 lines (8.5 +/- 2.4%). These differences were significant (P < 0.01) for the comparison of wild-type PS1 and PS1 L250S, but not PS1 deltaE9 lines. The mutation-related increases in number of apoptotic cells at 24 h following high glucose treatment were not accompanied by significant differences in cell viability at this time-point. Our results indicate that PS1 mutations predispose to hyperosmotic stress-induced apoptosis and that the anti-apoptotic effects of insulin-like growth factor-1 are compromised by these mutations. Perturbations of insulin-like growth factor-1 signalling may be involved in PS1 mutation-related apoptotic neuronal cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- H Tanii
- Karolinska Institutet, Department of Geriatric Medicine, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
Many neurological disorders involve cell death. During development of the nervous system, cell death is a normal feature. Elimination of substantial numbers of initially generated cells enables useful pruning of "mismatched" or excessive cells produced by exuberance during the proliferative and migratory phases of development. Such cell death, occurring by "programmed" pathways, is termed apoptosis. In mature organisms, cells die in two major fashions, either by necrosis or apoptosis. In the adult nervous system, because there is little cell production during adulthood, there is little normal cell death. However, neurological disease is often associated with significant neural cell death. Acute disorders, occurring over minutes to hours, such as brain trauma, infarction, hemorrhage, or infection, prominently involve cell death, much of which is by necrosis. Chronic disorders, with relatively slow central nervous system degeneration, may occur over years or decades, but may involve cell losses. Such disorders include motor neuron diseases such as amyotrophic lateral sclerosis (ALS), cerebral dementing disorders such as Alzheimer's disease and frontotemporal dementia, and a variety of degenerative movement disorders including Parkinson's disease, Huntington's disease, and the inherited ataxias. There is evidence that the mechanism of neuronal cell death in these disorders may involve apoptosis. Direct conclusive evidence of apoptosis is scarce in these chronic disorders, because of the swiftness of cell death in relation to the slowness of the disease. Thus, at any particular time point of assessment, very few cells would be expected to be undergoing death. However, it is clearly of importance to define the type of cell death in these disorders. Of significance is that while treating the underlying causes of these conditions is an admirable goal, it may also be possible to develop productive therapies based on alleviating the process of cell death. This is particularly likely if this cell loss is through apoptosis, a programmed process for which the molecular cascade is increasingly understood. This article reviews our understanding of apoptosis in the nervous system, concentrating on its possible roles in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- L S Honig
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas 75235-9036, USA
| | | |
Collapse
|
187
|
Czech C, Tremp G, Pradier L. Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms. Prog Neurobiol 2000; 60:363-84. [PMID: 10670705 DOI: 10.1016/s0301-0082(99)00033-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Dementia is associated with massive accumulation of fibrillary aggregates in various cortical and subcortical regions of the brain. These aggregates appear intracellularly as neurofibrillary tangles, extracellularly as amyloid plaques and perivascular amyloid in cerebral blood vessels. The causative factors in AD etiology implicate both, genetic and environmental factors. The large majority of early-onset familial Alzheimer's disease (FAD) cases are linked to mutations in the genes coding for presenilin 1 (PS1) and presenilin 2 (PS2). The corresponding proteins are 467 (PS1) and 448 (PS2) amino-acids long, respectively. Both are membrane proteins with multiple transmembrane regions. Presenilins show a high degree of conservation between species and a presenilin homologue with definite conservation of the hydrophobic structure has been identified even in the plant Arabidopsis thaliana. More than 50 missense mutations in PS1 and two missense mutations in PS2 were identified which are causative for FAD. PS mutations lead to the same functional consequence as mutations on amyloid precursor protein (APP), altering the processing of APP towards the release of the more amyloidogenic form 1-42 of Abeta (Abeta42). In this regard, the physical interaction between APP and presenilins in the endoplasmic reticulum has been demonstrated and might play a key role in Abeta42 production. It was hypothesized that PS1 might directly cleave APP. However, extracellular amyloidogenesis and Abeta production might not be the sole factor involved in AD pathology and several lines of evidence support a role of apoptosis in the massive neuronal loss observed. Presenilins were shown to modify the apoptotic response in several cellular systems including primary neuronal cultures. Some evidence is accumulating which points towards the beta-catenin signaling pathways to be causally involved in presenilin mediated cell death. Increased degradation of beta-catenin has been shown in brain of AD patients with PS1 mutations and reduced beta-catenin signaling increased neuronal vulnerability to apoptosis in cell culture models. The study of presenilin physiological functions and the pathological mechanisms underlying their role in pathogenesis clearly advanced our understanding of cellular mechanisms underlying the neuronal cell death and will contribute to the identification of novel drug targets for the treatment of AD.
Collapse
Affiliation(s)
- C Czech
- Rhône-Poulenc Rorer, Research and Development, Vitry sur Seine, France.
| | | | | |
Collapse
|
188
|
Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 2000. [PMID: 10662826 DOI: 10.1523/jneurosci.20-04-01358.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Studies of cultured neural cells suggest that PS1 mutations result in perturbed cellular calcium homeostasis and may thereby render neurons vulnerable to apoptosis. In light of evidence that metabolic impairment plays a role in AD, that cerebral ischemia may be a risk factor for AD, and that individuals with AD have increased morbidity and mortality after stroke, we examined the impact of a PS1 mutation on neuronal vulnerability to ischemic injury. We report that the extent of brain injury after focal cerebral ischemia reperfusion is increased, and behavioral outcome is worsened, in PS1 mutant knock-in mice compared to wild-type mice. Cultured cortical neurons from PS1 mutant mice exhibit increased vulnerability to glucose deprivation and chemical hypoxia compared to their wild-type counterparts. Calcium imaging studies demonstrated enhanced elevation of intracellular calcium levels after glucose deprivation and chemical hypoxia in neurons from PS1 mutant mice. Agents that block calcium release from IP(3)- and ryanodine-sensitive stores (xestospongin and dantrolene, respectively) protected against the endangering action of the PS1 mutation. Our data suggest that presenilin mutations may promote neuronal degeneration in AD by increasing the sensitivity of neurons to age-related ischemia-like conditions. The data further suggest that drugs that stabilize endoplasmic reticulum calcium homeostasis may prove effective in suppressing the neurodegenerative process in AD patients.
Collapse
|
189
|
Zaman SH, Parent A, Laskey A, Lee MK, Borchelt DR, Sisodia SS, Malinow R. Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer's disease mutation is normalized with a benzodiazepine. Neurobiol Dis 2000; 7:54-63. [PMID: 10671322 DOI: 10.1006/nbdi.1999.0271] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in presenilin 1 (PS1) are the most common causes of familial Alzheimer's disease (FAD). We examined synaptic physiology in hippocampal brain slices of transgenic mice expressing the FAD-linked PS1 deletion of exon 9 variant. Basal excitatory transmission and paired-pulse facilitation in PS1 mutant mice were unchanged. Short- and long-term potentiation of excitatory transmission following high-frequency stimulation were greater in transgenic mice expressing mutant PS1. Mutants had enhanced synaptic inhibition, which may be a compensatory change offsetting an abnormally sensitized plasticity of excitatory transmission. Increasing inhibitory transmission in mutant animals even more with a benzodiazepine reverted synaptic potentiation to the levels of controls. These results support the potential use of benzodiazepines in the treatment of familial Alzheimer's disease.
Collapse
Affiliation(s)
- S H Zaman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-0100, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Brown RC, Cascio C, Papadopoulos V. Pathways of neurosteroid biosynthesis in cell lines from human brain: regulation of dehydroepiandrosterone formation by oxidative stress and beta-amyloid peptide. J Neurochem 2000; 74:847-59. [PMID: 10646538 DOI: 10.1046/j.1471-4159.2000.740847.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurosteroids in rodents can originate from peripheral tissues or be locally synthesized in specific brain areas. There is, as yet, no information about the synthesis and regulation of neurosteroids in human brain. We examined the ability of human brain cells to synthesize steroids from a radiolabeled precursor and the mRNA and protein expression of key components of peripheral steroidogenic machinery. Oligodendrocytes are the source of pregnenolone in human brain. Human astrocytes do not synthesize radiolabeled pregnenolone, nor do human neurons. There is potential for all three cell types to metabolize pregnenolone to other neurosteroids, including dehydroepiandrosterone. mRNA and protein for cytochrome P450 17alpha-hydroxylase were found in all cell types, although no activity could be demonstrated. We examined the ability of the cells to make dehydroepiandrosterone via an alternative pathway induced by treatment with Fe2+. Oligodendrocytes and astrocytes make dehydroepiandrosterone via this pathway, but neurons do not. In searching for a natural regulator of dehydroepiandrosterone formation, we observed that treating oligodendrocytes with beta-amyloid, which increases reactive oxygen species, also increased dehydroepiandrosterone formation. These effects of beta-amyloid were blocked by vitamin E. These results indicate that human brain makes steroids in a cell-specific manner and suggest that dehydroepiandrosterone synthesis can be regulated by intracellular free radicals.
Collapse
Affiliation(s)
- R C Brown
- Interdisciplinary Program in Neuroscience, Division of Hormone Research, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
191
|
Yamaguchi F, Yamaguchi K, Tokuda M. Presenilin-1 protein specifically expressed in Leydig cells with its expression level increased during rat testis development. Int J Biochem Cell Biol 2000; 32:81-7. [PMID: 10661896 DOI: 10.1016/s1357-2725(99)00109-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Presenilin-1, mutations of which cause the early-onset of Alzheimer's disease, was shown to be abundantly expressed in the testis as well as the brain. In spite of the high expression level of this protein in the testis, no further analysis has been undertaken. We aimed to study the distribution and developmental changes in presenilin-1 protein, and to provide clues so as to elucidate the role of this protein in the rat testis. To evaluate the specificity of the anti presenilin-1 antibody, rat presenilin-1 protein was expressed in COS-7 cells and the recombinant protein was used for western blot analysis. A positive band of approximately 20 kDa corresponding to the C-terminal fragment of proteolyzed presenilin-1 protein was observed. Using testis and brain tissue samples, a 20 kDa band was detected in both tissues suggesting a similar proteolytic process, but the expression level in the testis was higher than that in the brain. The expression level increased significantly during postnatal testis development. By an immunohistochemical analysis of the rat testis, a strong signal was observed in interstitial cells and further study with cultured TM3 murine Leydig cells revealed an abundant expression of presenilin-1 in Leydig cells. Our study suggests that presenilin-1 expression in Leydig cells may play an important role in Leydig cell function and testis development.
Collapse
Affiliation(s)
- F Yamaguchi
- Department of Physiology, Faculty of Medicine, Kagawa Medical University, Japan
| | | | | |
Collapse
|
192
|
Norlund MA, Lee JM, Zainelli GM, Muma NA. Elevated transglutaminase-induced bonds in PHF tau in Alzheimer's disease. Brain Res 1999; 851:154-63. [PMID: 10642839 DOI: 10.1016/s0006-8993(99)02179-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transglutaminase-induced epsilon-(gamma-glutamyl)lysine bonds covalently cross-link and polymerize peptides into insoluble high molecular weight protein aggregates resistant to degradation and proteolytic digestion. We investigated the hypothesis that excessive deposition of epsilon-(gamma-glutamyl)lysine bonds is a neuropathological mechanism which induces the polymerization of tau protein into stable aggregates leading to the formation of paired helical filaments (PHFs) which deposit into neurofibrillary tangles in Alzheimer's disease (AD) brain. We demonstrate a significant (45%) elevation in epsilon-(gamma-glutamyl)lysine cross-links in AD cortex as compared to control cortex. In vivo, PHF tau, and high and medium molecular weight neurofilament proteins have significantly greater cross-linking by epsilon-(gamma-glutamyl)lysine bonds in AD brains as compared to controls. The cross-linking of PHF tau occurs both intra-molecularly and inter-molecularly. The inter-molecular cross-linking of tau could account for the formation of high molecular weight tau polymers. These results suggest that transglutaminase-induced cross-linking of tau protein could play a role in the formation and stabilization of neurofibrillary tangles. Inhibition of transglutaminase-induced cross-linking may therefore, provide a novel strategy for the treatment of AD.
Collapse
Affiliation(s)
- M A Norlund
- Department of Pharmacology, Loyola University Medical Center, Maywood IL 60153, USA
| | | | | | | |
Collapse
|
193
|
Kovacs DM, Mancini R, Henderson J, Na SJ, Schmidt SD, Kim TW, Tanzi RE. Staurosporine-induced activation of caspase-3 is potentiated by presenilin 1 familial Alzheimer's disease mutations in human neuroglioma cells. J Neurochem 1999; 73:2278-85. [PMID: 10582585 DOI: 10.1046/j.1471-4159.1999.0732278.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Familial Alzheimer's disease (FAD) mutant forms of presenilin 1 (PS1) and 2 have been shown to sensitize cells to apoptotic cell death. Here we explore the effects of FAD mutant forms of PS1 on caspase activation during apoptosis. We show that caspase activation leads to increased generation of alternative C-terminal fragments (CTFs) from mutant as compared to wild-type (wt) PS1. For this purpose, very low expression levels of wt, A246E, L286V, and deltaE10 FAD mutant PS1 proteins in stably transfected human H4 neuroglioma cells were used to avoid artifactual induction of spontaneous apoptosis due to overexpression of PS1. Staurosporine treatment of these cells resulted in increased cell death and up to a 10-fold increase in caspase-3 activation in mutant versus wt PS1-expressing cell lines. Correspondingly, relative levels of caspase-cleaved PS1 CTFs were increased by five- to sixfold in the FAD mutant versus wt PS1 cells. Elevated caspase activation and caspase cleavage of FAD mutant PS1 suggest the possibility of either a direct proapoptotic effect of mutant PS1 or interference of mutant PS1 with antiapoptotic effects of wt PS1.
Collapse
Affiliation(s)
- D M Kovacs
- Department of Neurology, Massachusetts General Hospital East, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Cecchi C, Latorraca S, Sorbi S, Iantomasi T, Favilli F, Vincenzini MT, Liguri G. Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer's disease. Neurosci Lett 1999; 275:152-4. [PMID: 10568522 DOI: 10.1016/s0304-3940(99)00751-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracellular levels of glutathione (GSH), glutathione disulphide (GSSG), glutamic acid and gamma-glutamyl cysteine synthetase (gamma-GCS) were measured in lymphoblast lines from patients with familial and sporadic Alzheimer's disease (AD) and from age-matched controls. Lymphoblasts carrying presenilins (PS) and amyloid precursor protein (APP) genes mutations showed significantly decreased GSH content with respect to controls. Levels of GSSG and glutamic acid, as well as the activity of gamma-GCS were not significantly different in lymphoblasts carrying genes mutations as compared with control cells. These results indicate that even peripheral cells not involved in the neurodegenerative process of AD show altered GSH content when carrying PS and APP genes mutations. The provided data appear to be in accordance with the known alteration of GSH levels in central nervous system and strengthen the hypothesis of oxidative stress as an important, possibly crucial mechanism in the pathogenesis of AD.
Collapse
Affiliation(s)
- C Cecchi
- Department of Biochemical Sciences, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
195
|
Leissring MA, Parker I, LaFerla FM. Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 1999; 274:32535-8. [PMID: 10551803 DOI: 10.1074/jbc.274.46.32535] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in the two presenilin genes (PS1, PS2) account for the majority of early-onset familial Alzheimer's disease (FAD) cases. Converging evidence from a variety of experimental systems, including fibroblasts from FAD patients and transgenic animals, indicates that PS1 mutations modulate intracellular calcium signaling pathways. Despite the potential relevance of these changes to the pathogenesis of FAD, a comparable effect for PS2 has not yet been demonstrated experimentally. We examined the effects of wild-type PS2, and both of the identified FAD mutations in PS2, on intracellular calcium signaling in Xenopus oocytes. Inositol 1,4, 5-trisphosphate (IP(3))-evoked calcium signals were significantly potentiated in cells expressing either of the PS2 mutations relative to wild-type PS2-expressing cells and controls. Decay rates of calcium signals were also significantly accelerated in mutant PS2-expressing cells in a manner dependent upon IP(3) concentration. The finding that mutations in both PS1 and PS2 modulate intracellular calcium signaling suggests that these disturbances may represent a common pathogenic mechanism of presenilin-associated FAD.
Collapse
Affiliation(s)
- M A Leissring
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4545, USA
| | | | | |
Collapse
|
196
|
Imafuku I, Masaki T, Waragai M, Takeuchi S, Kawabata M, Hirai SI, Ohno S, Nee L, Lippa C, Kanazawa I, Imagawa M, Okazawa H. Presenilin 1 suppresses the function of c-Jun homodimers via interaction with QM/Jif-1. J Cell Biol 1999; 147:121-34. [PMID: 10508860 PMCID: PMC2164975 DOI: 10.1083/jcb.147.1.121] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presenilin 1 (PS1) is the causative gene for an autosomal dominant familial Alzheimer's disease (AD) mapped to chromosome 14. Here we show that QM/Jun-interacting factor (Jif)-1, a negative regulator of c-Jun, is a candidate to mediate the function of PS1 in the cell. We screened for proteins that bind to PS1 from a human embryonic brain cDNA library using the two-hybrid method and isolated one clone encoding the QM/Jif-1 gene. The binding of QM/Jif-1 to full-length PS1 was confirmed in vitro by pull-down assay, and in vivo by immunoprecipitation assays with human samples, including AD brains. Immunoelectronmicroscopic analysis showed that QM/Jif-1 and PS1 are colocalized at the endoplasmic reticulum, and the nuclear matrix in human brain neurons. Chloramphenicol acetyltransferase assays in F9 cells showed that PS1 suppresses transactivation by c-Jun/c-Jun but not by c-Jun/c-Fos heterodimers, consistent with the reported function of QM/Jif-1. By monitoring fluorescent recombinant protein and by gel mobility shift assays, PS1 was shown to accelerate the translocation of QM from the cytoplasm to the nucleus and to thereby suppress the binding of c-Jun homodimer to 12-O-tetradecanoylphorbol-13- acetate (TPA)-responsive element (TRE). PS1 suppressed c-jun-associated apoptosis by retinoic acid in F9 embryonic carcinoma cells, whereas this suppression of apoptosis is attenuated by mutation in PS1. Collectively, the novel function of PS1 via QM/Jif-1 influences c-jun-mediated transcription and apoptosis.
Collapse
Affiliation(s)
- I. Imafuku
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - T. Masaki
- The Third Department of Internal Medicine, National Defense Medical College, Saitama 359-8513, Japan
| | - M. Waragai
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - S. Takeuchi
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - M. Kawabata
- Department of Biochemistry, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 170-0012, Japan
| | - S.-i. Hirai
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236, Japan
| | - S. Ohno
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236, Japan
| | - L.E. Nee
- Family Studies Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - C.F. Lippa
- Department of Neurology, MCP-Hahnemann University, Philadelphia, Pennsylvania 19129
| | - I. Kanazawa
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - M. Imagawa
- Laboratory of Environmental Bioichemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - H. Okazawa
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
197
|
Ye Y, Fortini ME. Apoptotic activities of wild-type and Alzheimer's disease-related mutant presenilins in Drosophila melanogaster. J Cell Biol 1999; 146:1351-64. [PMID: 10491396 PMCID: PMC2156122 DOI: 10.1083/jcb.146.6.1351] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1999] [Accepted: 08/06/1999] [Indexed: 11/22/2022] Open
Abstract
Mutant human presenilins cause early-onset familial Alzheimer's disease and render cells susceptible to apoptosis in cultured cell models. We show that loss of presenilin function in Drosophila melanogaster increases levels of apoptosis in developing tissues. Moreover, overexpression of presenilin causes apoptotic and neurogenic phenotypes resembling those of Presenilin loss-of-function mutants, suggesting that presenilin exerts a dominant negative effect when expressed at high levels. In Drosophila S2 cells, Psn overexpression leads to reduced Notch receptor synthesis affecting levels of the intact approximately 300-kD precursor and its approximately 120-kD processed COOH-terminal derivatives. Presenilin-induced apoptosis is cell autonomous and can be blocked by constitutive Notch activation, suggesting that the increased cell death is due to a developmental mechanism that eliminates improperly specified cell types. We describe a genetic model in which the apoptotic activities of wild-type and mutant presenilins can be assessed, and we find that Alzheimer's disease-linked mutant presenilins are less effective at inducing apoptosis than wild-type presenilin.
Collapse
Affiliation(s)
- Yihong Ye
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mark E. Fortini
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
198
|
Zhu H, Guo Q, Mattson MP. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res 1999; 842:224-9. [PMID: 10526115 DOI: 10.1016/s0006-8993(99)01827-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is an age-related disorder that involves degeneration of synapses and neurons in brain regions involved in learning and memory processes. Some cases of AD are caused by mutations in presenilin-1 (PS1), an integral membrane protein located in the endoplasmic reticulum. Previous studies have shown that PS1 mutations increase neuronal vulnerability to excitotoxicity and apoptosis. Although dietary restriction (DR) can increase lifespan and reduce the incidence of several age-related diseases in rodents, the possibility that DR can modify the pathogenic actions of mutations that cause AD has not been examined. The vulnerability of hippocampal neurons to excitotoxic injury was increased in PS1 mutant knockin mice. PS1 mutant knockin mice and wild-type mice maintained on a DR regimen for 3 months exhibited reduced excitotoxic damage to hippocampal CA1 and CA3 neurons compared to mice fed ad libitum; the DR regimen completely counteracted the endangering effect of the PS1 mutation. The magnitude of increase in levels of the lipid peroxidation product 4-hydroxynonenal following the excitotoxic insult was lower in DR mice compared to mice fed ad libitum, suggesting that suppression of oxidative stress may be one mechanism underlying the neuroprotective effect of DR. These findings indicate that the neurodegeneration-promoting effect of an AD-linked mutation is subject to modification by diet.
Collapse
Affiliation(s)
- H Zhu
- Department of Anatomy and Neurobiology, Sanders-Brown Research Center on Aging, University of Kentucky, 211 Sanders-Brown Building, 800 South Limestone Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
199
|
Mattson MP, Duan W. “Apoptotic” biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<152::aid-jnr15>3.0.co;2-v] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
200
|
|