151
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
152
|
Cyclin T2: A novel miR-15a target gene involved in early spermatogenesis. FEBS Lett 2011; 585:2493-500. [DOI: 10.1016/j.febslet.2011.06.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/18/2011] [Accepted: 06/27/2011] [Indexed: 01/07/2023]
|
153
|
Functional Characterization of Human Cyclin T1 N-Terminal Region for Human Immunodeficiency Virus-1 Tat Transcriptional Activation. J Mol Biol 2011; 410:887-95. [DOI: 10.1016/j.jmb.2011.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
|
154
|
Inhibition of HIV-1 Tat-mediated transcription by a coumarin derivative, BPRHIV001, through the Akt pathway. J Virol 2011; 85:9114-26. [PMID: 21697490 DOI: 10.1128/jvi.00175-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-encoded RNA-binding protein Tat is known to play an essential role in viral gene expression. In the search for novel compounds to inhibit Tat transactivity, one coumarin derivative, BPRHIV001, was identified, with a 50% effective concentration (EC(50)) against HIV-1 at 1.3 nM. BPRHIV001 is likely to exert its effects at the stage after initiation of RNAPII elongation since Tat protein expression and the assembly of the Tat/P-TEFb complex remained unchanged. Next, a reduction of the p300 protein level, known to modulate Tat function through acetylation, was observed upon BPRHIV001 treatment, while the p300 mRNA level was unaffected. A concordant reduction of phosphorylated Akt, which was shown to be closely related to p300 stability, was observed in the presence of BPRHIV001 and was accompanied by a decrease of phosphorylated PDPK1, a well-known Akt activator. Furthermore, the docking analysis revealed that the reduced PDPK1 phosphorylation likely resulted from the allosteric effect of interaction between BPRHIV001 and PDPK1. With strong synergistic effects with current reverse transcriptase inhibitors, BPRHIV001 has the potential to become a promising lead compound for the development of a novel therapeutic agent against HIV-1 infection.
Collapse
|
155
|
Andorfer P, Rotheneder H. EAPP: gatekeeper at the crossroad of apoptosis and p21-mediated cell-cycle arrest. Oncogene 2011; 30:2679-90. [PMID: 21258403 PMCID: PMC3114185 DOI: 10.1038/onc.2010.639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/01/2010] [Accepted: 12/20/2010] [Indexed: 01/03/2023]
Abstract
We previously identified and characterized E2F-associated phospho-protein (EAPP), a nuclear phosphoprotein that interacts with the activating members of the E2F transcription factor family. EAPP levels are frequently elevated in transformed human cells. To examine the biological relevance of EAPP, we studied its properties in stressed and unstressed cells. Overexpression of EAPP in U2OS cells increased the fraction of G1 cells and lead to heightened resistance against DNA damage- or E2F1-induced apoptosis in a p21-dependent manner. EAPP itself becomes upregulated in confluent cells and after DNA damage and stimulates the expression of p21 independently of p53. It binds to the p21 promoter and seems to be required for the assembly of the transcription initiation complex. RNAi-mediated knockdown of EAPP expression brought about increased sensitivity towards DNA damage and resulted in apoptosis even in the absence of stress. Our results indicate that the level of EAPP is critical for cellular homeostasis. Too much of it results in G1 arrest and resistance to apoptosis, which, paradoxically, might favor cellular transformation. Too little EAPP seems to retard the expression not only of the p21 gene, but also of a number of other genes and ultimately results in apoptosis.
Collapse
Affiliation(s)
- P Andorfer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - H Rotheneder
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
156
|
Oqani RK, Kim HR, Diao YF, Park CS, Jin DI. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation. BMC DEVELOPMENTAL BIOLOGY 2011; 11:33. [PMID: 21639898 PMCID: PMC3127986 DOI: 10.1186/1471-213x-11-33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/03/2011] [Indexed: 01/01/2023]
Abstract
Background Two stages of genome activation have been identified in the mouse embryo. Specifically, minor transcriptional activation is evident at the one-cell stage and a second major episode of activation occurs at the two-cell stage. Nuclear translocation of RNA polymerase II and phosphorylation of the C-terminal domain (CTD) of the largest enzyme subunit are major determinants of embryonic genome activation. P-TEFb, the Pol II CTD kinase, regulates transcriptional elongation via phosphorylation of the serine 2 residues of the CTD. Results Here, we show that the CDK9 and cyclin T1 subunits of P-TEFb are present in mouse oocytes and preimplantation embryos. Both proteins translocate to pronuclei at the late one-cell stage and are predominantly localized in nuclei at the two-cell stage. We additionally examine the effects of the CDK9-specific inhibitor, flavopiridol, on mouse preimplantation development. Our data show that treatment with the drug results in mislocalization of CDK9, cyclin T1, and phosphorylated Pol II, as well as developmental arrest at the two-cell stage. Conclusions A change in CDK9 localization from the cytoplasm to the pronucleus occurs at the time of minor embryonic genome activation, and CDK9 accumulation at the two-cell stage is evident, concomitant with major transcriptional activation of the embryonic genome. Moreover, CDK9 inhibition triggers a developmental block at the two-cell stage. Our findings clearly indicate that CDK9 is essential for embryonic genome activation in the mouse.
Collapse
Affiliation(s)
- Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
157
|
Kehn-Hall K, Guendel I, Carpio L, Skaltsounis L, Meijer L, Al-Harthi L, Steiner JP, Nath A, Kutsch O, Kashanchi F. Inhibition of Tat-mediated HIV-1 replication and neurotoxicity by novel GSK3-beta inhibitors. Virology 2011; 415:56-68. [PMID: 21514616 DOI: 10.1016/j.virol.2011.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/10/2011] [Accepted: 03/27/2011] [Indexed: 10/18/2022]
Abstract
The HIV-1 protein Tat is a critical regulator of viral transcription and has also been implicated as a mediator of HIV-1 induced neurotoxicity. Here using a high throughput screening assay, we identified the GSK-3 inhibitor 6BIO, as a Tat-dependent HIV-1 transcriptional inhibitor. Its ability to inhibit HIV-1 transcription was confirmed in TZM-bl cells, with an IC(50) of 40nM. Through screening 6BIO derivatives, we identified 6BIOder, which has a lower IC(50) of 4nM in primary macrophages and 0.5nM in astrocytes infected with HIV-1. 6BIOder displayed an IC(50) value of 0.03nM through in vitro GSK-3β kinase inhibition assays. Finally, we demonstrated 6BIO and 6BIOder have neuroprotective effects on Tat induced cell death in rat mixed hippocampal cultures. Therefore 6BIO and its derivatives are unique compounds which, due to their complex mechanisms of action, are able to inhibit HIV-1 transcription as well as to protect against Tat induced neurotoxicity.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
HSV-1 stimulation-related protein HSRG1 inhibits viral gene transcriptional elongation by interacting with Cyclin T2. SCIENCE CHINA-LIFE SCIENCES 2011; 54:359-65. [PMID: 21509660 DOI: 10.1007/s11427-011-4160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/11/2010] [Indexed: 10/18/2022]
Abstract
The protein encoded by HSRG1 (HSV-1 stimulation-related gene 1) is a virally induced protein expressed in HSV-1-infected cells. We have already reported that HSRG1 is capable of interacting with transcriptional regulator proteins. To further analyze the effects of HSRG1 on the regulation of viral gene transcription, we expressed the HSRG1 protein in transfected cells and found that it postpones the proliferation of HSV-1. CAT (chloramphenicol acetyltransferase) assays also revealed that HSRG1 reduces transcription from HSV-1 promoters. Yeast two-hybrid and immunoprecipitation assays indicated that HSRG1 interacts with Cyclin T2, the regulatory subunit of P-TEFb, which is required for transcription elongation by RNA Pol II (RNAP II), and that amino acid residues 1-420 in Cyclin T2 are important for binding with HSRG1. Fluorescence assays suggested that the cellular localizations of those two proteins are influenced by their interaction. Further analyses with CAT assays revealed that HSRG1 inhibits the transcriptional activation by Cyclin T2 of viral promoters. Our results suggested that the inhibitory effects of HSRG1 on viral replication and proliferation are probably induced by its binding to Cyclin T2. Therefore, it is likely that HSRG1 inhibits viral gene transcriptional elongation by interacting with Cyclin T2.
Collapse
|
159
|
Ammosova T, Obukhov Y, Kotelkin A, Breuer D, Beullens M, Gordeuk VR, Bollen M, Nekhai S. Protein phosphatase-1 activates CDK9 by dephosphorylating Ser175. PLoS One 2011; 6:e18985. [PMID: 21533037 PMCID: PMC3080879 DOI: 10.1371/journal.pone.0018985] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/24/2011] [Indexed: 11/19/2022] Open
Abstract
The cyclin-dependent kinase CDK9/cyclin T1 induces HIV-1 transcription by phosphorylating the carboxyterminal domain (CTD) of RNA polymerase II (RNAPII). CDK9 activity is regulated by protein phosphatase-1 (PP1) which was previously shown to dephosphorylate CDK9 Thr186. Here, we analyzed the effect of PP1 on RNAPII phosphorylation and CDK9 activity. The selective inhibition of PP1 by okadaic acid and by NIPP1 inhibited phosphorylation of RNAPII CTD in vitro and in vivo. Expression of the central domain of NIPP1 in cultured cells inhibited the enzymatic activity of CDK9 suggesting its activation by PP1. Comparison of dephosphorylation of CDK9 phosphorylated by (32P) in vivo and dephosphorylation of CDK9's Thr186 analyzed by Thr186 phospho-specific antibodies, indicated that a residue other than Thr186 might be dephosphorylated by PP1. Analysis of dephosphorylation of phosphorylated peptides derived from CDK9's T-loop suggested that PP1 dephosphorylates CDK9 Ser175. In cultured cells, CDK9 was found to be phosphorylated on Ser175 as determined by combination of Hunter 2D peptide mapping and LC-MS analysis. CDK9 S175A mutant was active and S175D – inactive, and dephosphorylation of CDK9's Ser175 upregulated HIV-1 transcription in PP1-dependent manner. Collectively, our results point to CDK9 Ser175 as novel PP1-regulatory site which dephosphorylation upregulates CDK9 activity and contribute to the activation of HIV-1 transcription.
Collapse
Affiliation(s)
- Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, Washington, D.C., United States of America
- RCMI Proteomics Core Facility, Howard University, Washington, D.C., United States of America
| | - Yuri Obukhov
- Center for Sickle Cell Disease, Howard University, Washington, D.C., United States of America
- RCMI Proteomics Core Facility, Howard University, Washington, D.C., United States of America
| | - Alexander Kotelkin
- Center for Sickle Cell Disease, Howard University, Washington, D.C., United States of America
| | - Denitra Breuer
- Center for Sickle Cell Disease, Howard University, Washington, D.C., United States of America
- Department of Microbiology, Howard University, Washington, D.C., United States of America
| | - Monique Beullens
- Department of Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium
| | - Victor R. Gordeuk
- Center for Sickle Cell Disease, Howard University, Washington, D.C., United States of America
| | - Mathieu Bollen
- Department of Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, D.C., United States of America
- RCMI Proteomics Core Facility, Howard University, Washington, D.C., United States of America
- Department of Microbiology, Howard University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
160
|
Cankař P, Jedinák L, Kryštof V. The Synthesis of Some Derivatives Based on the 4-Benzyl-1H-pyrazole-3,5-diamine Core. HETEROCYCLES 2011. [DOI: 10.3987/com-10-12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
161
|
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE. Selective inhibition of BET bromodomains. Nature 2010; 468:1067-73. [PMID: 20871596 PMCID: PMC3010259 DOI: 10.1038/nature09504] [Citation(s) in RCA: 3269] [Impact Index Per Article: 217.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/17/2010] [Indexed: 02/07/2023]
Abstract
Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.
Collapse
Affiliation(s)
- Panagis Filippakopoulos
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Sarah Picaud
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Yao Shen
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - William B. Smith
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Oleg Fedorov
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Elizabeth M. Morse
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Tracey Keates
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Tyler T. Hickman
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Ildiko Felletar
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Martin Philpott
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shonagh Munro
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Michael R. McKeown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Yuchuan Wang
- Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Amanda L. Christie
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Nathan West
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Michael J. Cameron
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Brian Schwartz
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Tom D. Heightman
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Nicholas La Thangue
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Christopher A. French
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Olaf Wiest
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Andrew L. Kung
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital, Boston, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
| | - Stefan Knapp
- Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
- Department of Clinical Pharmacology, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
162
|
Moiola C, De Luca P, Gardner K, Vazquez E, De Siervi A. Cyclin T1 overexpression induces malignant transformation and tumor growth. Cell Cycle 2010; 9:3119-26. [PMID: 20714219 DOI: 10.4161/cc.9.15.12526] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human PTE Fb is a protein kinase composed by CDK9 and Cyclin T that controls the elongation phase of RNA Pol II. This complex also affects the activation and differentiation program of lymphoid cells. In this study we found that several head and neck tumor cell lines overexpress PTE Fb. We also established that Cyclin T1 is able to induce transformation in vitro, as we determined by foci and colony formation assays. Nu/nu mice s.c. injected with stable transfected Cyclin T1 cells (NIH 3T3 Cyclin T1) developed tumors faster than animals injected with control cells (NIH 3T3 beta-gal). In vitro, NIH 3T3 Cyclin T1 cells show increased proliferation and CDK4-Rb phosphorylation. Even more, silencing E2F1 expression (shRNA E2F1) in NIH 3T3 cells resulted in a dramatic inhibition of Cyclin T1-induced foci. All these data demonstrate for the first time the Cyclin T1 oncogenic function and suggest a role for this protein in controlling cell cycle probably via Rb/E2F1 pathway.
Collapse
Affiliation(s)
- Cristian Moiola
- Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
163
|
Functional characterization of a new member of the Cdk9 family in Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1901-12. [PMID: 20952582 DOI: 10.1128/ec.00384-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdk9-like kinases in complex with T-type cyclins are essential components of the eukaryotic transcription elongation machinery. The full spectrum of Cdk9/cyclin T targets, as well as the specific consequences of phosphorylations, is still largely undefined. We identify and characterize here a Cdk9 kinase (PtkA) in the filamentous ascomycete Aspergillus nidulans. Deletion of ptkA had a lethal effect in later stages of vegetative growth and completely impeded asexual development. Overexpression of ptkA affected directionality of polarized growth and the initiation of new branching sites. A green fluorescent protein-tagged PtkA version localized inside the nucleus during interphase, supporting a role of PtkA in transcription elongation, as observed in other organisms. We also identified a putative cyclin T homolog, PchA, in the A. nidulans genome and confirmed its interaction with PtkA in vivo. Surprisingly, the Pcl-like cyclin PclA, previously described to be involved in asexual development, was also found to interact with PtkA, indicating a possible role of PtkA in linking transcriptional activity with development and/or morphogenesis in A. nidulans. This is the first report of a Cdk9 kinase interacting with a Pcl-like cyclin, revealing interesting new aspects about the involvement of this Cdk-subfamily in differential gene expression.
Collapse
|
164
|
Galatioto J, Mascareno E, Siddiqui MAQ. CLP-1 associates with MyoD and HDAC to restore skeletal muscle cell regeneration. J Cell Sci 2010; 123:3789-95. [PMID: 20940258 DOI: 10.1242/jcs.073387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence suggests that eukaryotic gene transcription is regulated primarily at the elongation stage by association and dissociation of the inhibitory protein cardiac lineage protein 1 (CLP-1/HEXIM1) from the positive transcription elongation factor b (P-TEFb) complex. It was reported recently that P-TEFb interacts with skeletal muscle-specific regulatory factor, MyoD, suggesting a linkage between CLP-1-mediated control of transcription and skeletal myogenesis. To examine this, we produced CLP-1 knockdown skeletal muscle C2C12 cells by homologous recombination, and demonstrated that the C2C12 CLP-1 +/- cells failed to differentiate when challenged by low serum in the medium. We also showed that CLP-1 interacts with both MyoD and histone deacetylases (HDACs) maximally at the early stage of differentiation of C2C12 cells. This led us to hypothesize that the association might be crucial to inhibition of MyoD-target proliferative genes. Chromatin immunoprecipitation analysis revealed that the CLP-1/MyoD/HDAC complex binds to the promoter of the cyclin D1 gene, which is downregulated in differentiated muscle cells. These findings suggest a novel transcriptional paradigm whereby CLP-1, in conjunction with MyoD and HDAC, acts to inhibit growth-related gene expression, a requirement for myoblasts to exit the cell cycle and transit to myotubes.
Collapse
Affiliation(s)
- Josephine Galatioto
- Department of Cell Biology, Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical Center, Brooklyn, New York, NY 11203, USA
| | | | | |
Collapse
|
165
|
Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding. J Virol 2010; 84:12801-9. [PMID: 20926576 DOI: 10.1128/jvi.00943-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) plays an important role in stimulating RNA polymerase II elongation for viral and cellular gene expression. P-TEFb is found in cells in either an active, low-molecular-weight (LMW) form or an inactive, high-molecular-weight (HMW) form. We report here that human T-lymphotropic virus type 1 (HTLV-1) Tax interacts with the cyclin T1 subunit of P-TEFb, forming a distinct Tax/P-TEFb LMW complex. We demonstrate that Tax can play a role in regulating the amount of HMW complex present in the cell by decreasing the binding of 7SK snRNP/HEXIM1 to P-TEFb. This is seen both in vitro using purified Tax protein and in vivo in cells transduced with Tax expression constructs. Further, we find that a peptide of cyclin T1 spanning the Tax binding domain inhibits the ability of Tax to disrupt HMW P-TEFb complexes. These results suggest that the direct interaction of Tax with cyclin T1 can dissociate P-TEFb from the P-TEFb/7SK snRNP/HEXIM1 complex for activation of the viral long terminal repeat (LTR). We also show that Tax competes with Brd4 for P-TEFb binding. Chromatin immunoprecipitation (ChIP) assays demonstrated that Brd4 and P-TEFb are associated with the basal HTLV-1 LTR, while Tax and P-TEFb are associated with the activated template. Furthermore, the knockdown of Brd4 by small interfering RNA (siRNA) activates the HTLV-1 LTR promoter, which results in an increase in viral expression and production. Our studies have identified Tax as a regulator of P-TEFb that is capable of affecting the balance between its association with the large inactive complex and the small active complex.
Collapse
|
166
|
Krystof V, Chamrád I, Jorda R, Kohoutek J. Pharmacological targeting of CDK9 in cardiac hypertrophy. Med Res Rev 2010; 30:646-66. [PMID: 19757441 DOI: 10.1002/med.20172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.
Collapse
Affiliation(s)
- Vladimír Krystof
- Faculty of Science, Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany AS CR, Slechtitelů 11, Olomouc 783 71, Czech Republic.
| | | | | | | |
Collapse
|
167
|
Lavallée-Adam M, Coulombe B, Blanchette M. Detection of locally over-represented GO terms in protein-protein interaction networks. J Comput Biol 2010; 17:443-57. [PMID: 20377456 DOI: 10.1089/cmb.2009.0165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
High-throughput methods for identifying protein-protein interactions produce increasingly complex and intricate interaction networks. These networks are extremely rich in information, but extracting biologically meaningful hypotheses from them and representing them in a human-readable manner is challenging. We propose a method to identify Gene Ontology terms that are locally over-represented in a subnetwork of a given biological network. Specifically, we propose several methods to evaluate the degree of clustering of proteins associated to a particular GO term in both weighted and unweighted PPI networks, and describe efficient methods to estimate the statistical significance of the observed clustering. We show, using Monte Carlo simulations, that our best approximation methods accurately estimate the true p-value, for random scale-free graphs as well as for actual yeast and human networks. When applied to these two biological networks, our approach recovers many known complexes and pathways, but also suggests potential functions for many subnetworks. Online Supplementary Material is available at www.liebertonline.com.
Collapse
Affiliation(s)
- Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, Montreal, Quebec, Canada
| | | | | |
Collapse
|
168
|
Dow EC, Liu H, Rice AP. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. J Cell Physiol 2010; 224:84-93. [PMID: 20201073 PMCID: PMC2888102 DOI: 10.1002/jcp.22096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
P-TEFb functions to induce the elongation step of RNA polymerase II transcription by phosphorylating the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Core P-TEFb is comprised of Cdk9 and a cyclin regulatory subunit, with Cyclin T1 being the predominant Cdk9-associated cyclin. The kinase activity of P-TEFb is dependent on phosphorylation of the Thr186 residue located within the T-loop domain of the Cdk9 subunit. Here, we used immunofluorescence deconvolution microscopy to examine the subcellular distribution of phospho-Thr186 Cdk9/Cyclin T1 P-TEFb heterodimers. We found that phospho-Thr186 Cdk9 displays a punctate distribution throughout the non-nucleolar nucleoplasm and it co-localizes with Cyclin T1 almost exclusively within nuclear speckle domains. Phospho-Thr186 Cdk9 predominantly co-localized with the hyperphosphorylated forms of RNA polymerase II. Transient expression of kinase-defective Cdk9 mutants revealed that neither is Thr186 phosphorylation or kinase activity required for Cdk9 speckle localization. Lastly, both the Brd4 and HEXIM1 proteins interact with P-TEFb at or very near speckle domains and treatment of cells with the Cdk9 inhibitor flavopiridol alters this distribution. These results indicate that the active form of P-TEFb resides in nuclear speckles and raises the possibility that speckles are sites of P-TEFb function and exchange between negative and positive P-TEFb regulatory complexes.
Collapse
Affiliation(s)
- Eugene C. Dow
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Hongbing Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Andrew P. Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| |
Collapse
|
169
|
Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 2010; 465:747-51. [PMID: 20535204 PMCID: PMC2885016 DOI: 10.1038/nature09131] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/27/2010] [Indexed: 01/07/2023]
Abstract
Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell's RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat.P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat.P-TEFb complex and block HIV replication.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA.
| | | | | | | | | | | |
Collapse
|
170
|
Cho S, Schroeder S, Ott M. CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle 2010; 9:1697-705. [PMID: 20436276 PMCID: PMC2956491 DOI: 10.4161/cc.9.9.11346] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cyclin T/CDK9 complex, also called positive transcription elongation factor b (P-TEFb) phosphorylates the C-terminal domain of the large fragment of the RNA polymerase II. This action is a hallmark of the transition from transcription initiation to elongation. P-TEFb is itself modified by phosphorylation and ubiquitination. Recently, the core components of P-TEFb, cyclin T1 and CDK9, were identified as novel substrates of histone acetyltransferases. Here, we review how posttranslational modifications regulate the activity of the P-TEFb complex and discuss how acetylation of the complex optimizes transcription elongation in the context of other posttranslational modifications.
Collapse
Affiliation(s)
| | | | - Melanie Ott
- Gladstone Institute of Virology and Immunology; University of California, San Francisco; San Francisco, CA USA
| |
Collapse
|
171
|
Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA. c-Myc regulates transcriptional pause release. Cell 2010; 141:432-45. [PMID: 20434984 PMCID: PMC2864022 DOI: 10.1016/j.cell.2010.03.030] [Citation(s) in RCA: 1033] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/14/2010] [Accepted: 02/21/2010] [Indexed: 12/30/2022]
Abstract
Recruitment of the RNA polymerase II (Pol II) transcription initiation apparatus to promoters by specific DNA-binding transcription factors is well recognized as a key regulatory step in gene expression. We report here that promoter-proximal pausing is a general feature of transcription by Pol II in mammalian cells and thus an additional step where regulation of gene expression occurs. This suggests that some transcription factors recruit the transcription apparatus to promoters, whereas others effect promoter-proximal pause release. Indeed, we find that the transcription factor c-Myc, a key regulator of cellular proliferation, plays a major role in Pol II pause release rather than Pol II recruitment at its target genes. We discuss the implications of these results for the role of c-Myc amplification in human cancer.
Collapse
Affiliation(s)
- Peter B. Rahl
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Charles Y. Lin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Amy C. Seila
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Ryan A. Flynn
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Scott McCuine
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Phillip A. Sharp
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
172
|
Sakasai R, Teraoka H, Takagi M, Tibbetts RS. Transcription-dependent activation of ataxia telangiectasia mutated prevents DNA-dependent protein kinase-mediated cell death in response to topoisomerase I poison. J Biol Chem 2010; 285:15201-15208. [PMID: 20304914 DOI: 10.1074/jbc.m110.101808] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Camptothecin (CPT) is a topoisomerase I inhibitor, derivatives of which are being used for cancer chemotherapy. CPT-induced DNA double-strand breaks (DSBs) are considered a major cause of its tumoricidal activity, and it has been shown that CPT induces DNA damage signaling through the phosphatidylinositol 3-kinase-related kinases, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase). In addition, CPT causes DNA strand breaks mediated by transcription, although the downstream signaling events are less well characterized. In this study, we show that CPT-induced activation of ATM requires transcription. Mechanistically, transcription inhibition suppressed CPT-dependent activation of ATM and blocked recruitment of the DNA damage mediator p53-binding protein 1 (53BP1) to DNA damage sites, whereas ATM inhibition abrogated CPT-induced G(1)/S and S phase checkpoints. Functional inactivation of ATM resulted in DNA replication-dependent hyperactivation of DNA-PK in CPT-treated cells and dramatic CPT hypersensitivity. On the other hand, simultaneous inhibition of ATM and DNA-PK partially restored CPT resistance, suggesting that activation of DNA-PK is proapoptotic in the absence of ATM. Correspondingly, comet assay and cell cycle synchronization experiments suggested that transcription collapse occurring as the result of CPT treatment are converted to frank double-strand breaks when ATM-deficient cells bypass the G(1)/S checkpoint. Thus, ATM suppresses DNA-PK-dependent cell death in response to topoisomerase poisons, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.
| | - Hirobumi Teraoka
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Randal S Tibbetts
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
173
|
The herpes simplex virus type 1 infected cell protein 22. Virol Sin 2010; 25:1-7. [PMID: 20960278 DOI: 10.1007/s12250-010-3080-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/16/2009] [Indexed: 10/19/2022] Open
Abstract
As one of the immediate-early (IE) proteins of herpes simplex virus type 1 (HSV-1), ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells. It is required in experimental animal systems and some nonhuman cell lines, but not in Vero or HEp-2 cells. ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase II. It has been shown to be required for efficient expression of early (E) genes and a subset of late (L) genes. ICP22, in conjunction with the UL13 kinase, mediates the phosphorylation of RNA polymerase II. Both ICP22 and UL13 are required for the activation of cdc2, the degradation of cyclins A and B and the acquisition of a new cdc2 partner, the UL42 DNA polymerase processivity factor. The cdc2-UL42 complex mediates postranscriptional modification of topoisomerase IIα in an ICP22-dependent manner to promote L gene expression. In addition, ICP22 interacts with cdk9 in a Us3 kinase dependent fashion to phosphorylate RNA polymerase II.
Collapse
|
174
|
Imai K, Asamitsu K, Victoriano AFB, Cueno ME, Fujinaga K, Okamoto T. Cyclin T1 stabilizes expression levels of HIV-1 Tat in cells. FEBS J 2010; 276:7124-33. [PMID: 20064163 DOI: 10.1111/j.1742-4658.2009.07424.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription from HIV-1 proviral DNA is a rate-determining step for HIV-1 replication. Interaction between the cyclin T1 (CycT1) subunit of positive transcription elongation factor b (P-TEFb) and the Tat transactivator protein of HIV-1 is crucial for viral transcription. CycT1 also interacts directly with the transactivation-responsive element (TAR) located on the 5'end of viral mRNA, as well as with Tat through the Tat-TAR recognition motif (TRM). These molecular interactions represent a critical step for stimulation of HIV transcription. Thus, Tat and CycT1 are considered to be feasible targets for the development of novel anti-HIV therapies. In this study, we demonstrate that CycT1 is positively involved in the Tat protein stability. Selective degradation of CycT1 by small interfering RNA (siRNA) culminated in proteasome-mediated degradation of Tat and eventual inhibition of HIV-1 gene expression. We noted that the siRNA-mediated knockdown of CycT1 could inhibit HIV-1 transcription without affecting cell viability and Tat mRNA levels. These findings clearly indicate that CycT1 is a feasible therapeutic target, and inactivation or depletion of CycT1 should effectively inhibit HIV replication by destabilizing Tat and suppressing Tat-mediated HIV transcription.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
175
|
Van Duyne R, Kehn-Hall K, Carpio L, Kashanchi F. Cell-type-specific proteome and interactome: using HIV-1 Tat as a test case. Expert Rev Proteomics 2010; 6:515-26. [PMID: 19811073 DOI: 10.1586/epr.09.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 is a small retrovirus that wreaks havoc on the human immune system. It is a puzzle to the scientific community how a virus that encodes only nine proteins can take complete control of its host and redirect the cell to complete replication or maintain latency when necessary. One way to explain the control elicited by HIV-1 is through numerous protein partners that exist between viral and host proteins, allowing HIV-1 to be intimately involved in virtually every aspect of cellular biology. In addition, we postulate that the complexity exerted by HIV-1 can not merely be explained by the large number of protein-protein interactions documented in the literature but, rather, cell-type-specific interactions and post-translational modifications of viral proteins must be taken into account. We use HIV-1 Tat and its influence on viral transcription as an example of cell-type-specific complexity. The influence of post-translational modifications (acetylation and methylation), as well as subcellular localization on Tat binding partners, is also discussed.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
176
|
Abstract
Roscovitine and flavopiridol suppress cyclin-dependent kinase 7 (CDK7) and CDK9 activity resulting in transcription inhibition, thus providing an alternative mechanism to traditional genotoxic chemotherapy. These agents have been effective in slow or nonreplicative cell types. 8-Amino-adenosine is a transcription inhibitor that has proved very effective in multiple myeloma cell lines and primary indolent leukemia cells. The objective of the current work was to define mechanisms of action that lead to transcription inhibition by 8-amino-adenosine. 8-Amino-adenosine is metabolized into the active triphosphate (8-amino-ATP) in cells. This accumulation resulted in a simultaneous decrease of intracellular ATP and RNA synthesis. When the effects of established ATP synthesis inhibitors and transcription inhibitors on intracellular ATP concentrations and RNA synthesis were studied, there was a strong correlation between ATP decline and RNA synthesis. This correlation substantiated the hypothesis that the loss of ATP in 8-amino-adenosine-treated cells contributes to the decrease in transcription due to the lack of substrate needed for mRNA body and polyadenylation tail synthesis. RNA polymerase II COOH terminal domain phosphorylation declined sharply in 8-amino-adenosine-treated cells, which may have been due to the lack of an ATP phosphate donor or competitive inhibition with 8-amino-ATP at CDK7 and CDK9. Furthermore, 8-amino-ATP was incorporated into nascent RNA in a dose-dependent manner at the 3'-end resulting in transcription termination. Finally, in vitro transcription assays showed that 8-amino-ATP competes with ATP for incorporation into mRNA. Collectively, we have concluded that 8-amino-adenosine elicits effects on multiple mechanisms of transcription, providing a new class of transcription inhibitors.
Collapse
Affiliation(s)
- Jennifer Ann Frey
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
177
|
Ho MW, Cummins J. New evidence links CaMV 35S promoter to HIV transcription. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910600903495053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mae-Wan Ho
- Institute of Science in Society, London, UK
| | - Joe Cummins
- Institute of Science in Society, London, UK
- Department of Plant Sciences, University of Western Ontario, ON, Canada
| |
Collapse
|
178
|
Garriga J, Xie H, Obradovic Z, Graña X. Selective control of gene expression by CDK9 in human cells. J Cell Physiol 2009; 222:200-8. [PMID: 19780058 DOI: 10.1002/jcp.21938] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 associates with T-type cyclins and positively regulates transcriptional elongation by phosphorylating RNA polymerase II (RNAPII) and negative elongation factors. However, it is unclear whether CDK9 is required for transcription of most genes by RNAPII or alternatively plays a role regulating the expression of restricted subsets of genes. We have investigated the direct effects of inhibiting cellular CDK9 activity in global gene expression in human cells by using a dominant-negative form of CDK9 (dnCDK9). We have also compared direct inhibition of cellular CDK9 activity to pharmacological inhibition with flavopiridol (FVP), a CDK inhibitor that potently inhibits CDK9 and cellular transcription. Because of its presumed selectivity for CDK9, FVP has been previously used as a tool to infer the role of CDK9 on global gene expression. DNA microarray analyses described here show that inhibition of gene expression by FVP is consistent with global inhibition of transcription. However, specific inhibition of CDK9 activity with dnCDK9 leads to a distinctive pattern of changes in gene expression, with more genes being specifically upregulated (122) than downregulated (84). Indeed, the expression of many short-lived transcripts downregulated by FVP is not modulated by dnCDK9. Nevertheless, consistently with FVP inhibiting CDK9 activity, a significant number of the genes downregulated/upregulated by dnCDK9 are modulated with a similar trend by FVP. Our data suggests that the potent effects of FVP on transcription are likely to involve inhibition of CTD kinases in addition to CDK9. Our data also suggest complex and gene-specific modulation of gene expression by CDK9.
Collapse
Affiliation(s)
- Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
179
|
CHARLES SHARROYA, AMMOSOVA TATYANA, CARDENAS JESSICA, FOSTER ALTREISHA, ROTIMI JAMIE, JEREBTSOVA MARINA, AYODEJI ABISOLAA, NIU XIAOMEI, RAY PATRICIOE, GORDEUK VICTORR, KASHANCHI FATAH, NEKHAI SERGEI. Regulation of HIV-1 transcription at 3% versus 21% oxygen concentration. J Cell Physiol 2009; 221:469-79. [PMID: 19626680 PMCID: PMC2778305 DOI: 10.1002/jcp.21882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HIV transcription is induced by the HIV-1 Tat protein, in concert with cellular co-factors including CDK9, CDK2, NF-kappaB, and others. The cells of most of the body's organs are exposed to approximately 3-6% oxygen, but most in vitro studies of HIV replication are conducted at 21% oxygen. We hypothesized that activities of host cell factors involved in HIV-1 replication may differ at 3% versus 21% O(2), and that such differences may affect HIV-1 replication. Here we show that Tat-induced HIV-1 transcription was reduced at 3% O(2) compared to 21% O(2). HIV-1 replication was also reduced in acutely or chronically infected cells cultured at 3% O(2) compared to 21% O(2). This reduction was not due the decreased cell growth or increased cellular toxicity and also not due to the induction of hypoxic response. At 3% O(2), the activity of CDK9/cyclin T1 was inhibited and Sp1 activity was reduced, whereas the activity of other host cell factors such as CDK2 or NF-kappaB was not affected. CDK9-specific inhibitor ARC was much less efficient at 3% compared to 21% O(2) and also expression of CDK9/cyclin T1-dependent IkappaB inhibitor alpha was repressed. Our results suggest that lower HIV-1 transcription at 3% O(2) compared to 21% O(2) may be mediated by lower activity of CDK9/cyclin T1 and Sp1 at 3% O(2) and that additional host cell factors such as CDK2 and NF-kappaB might be major regulators of HIV-1 transcription at low O(2) concentrations.
Collapse
Affiliation(s)
- SHARROYA CHARLES
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - TATYANA AMMOSOVA
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - JESSICA CARDENAS
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, District of Columbia
| | - ALTREISHA FOSTER
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - JAMIE ROTIMI
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - MARINA JEREBTSOVA
- Center for Molecular Physiology, Children’s National Medical Center, Washington, District of Columbia
| | - ABISOLA A. AYODEJI
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - XIAOMEI NIU
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - PATRICIO E. RAY
- Center for Molecular Physiology, Children’s National Medical Center, Washington, District of Columbia
| | - VICTOR R. GORDEUK
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - FATAH KASHANCHI
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, District of Columbia
| | - SERGEI NEKHAI
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| |
Collapse
|
180
|
Czudnochowski N, Vollmuth F, Baumann S, Vogel-Bachmayr K, Geyer M. Specificity of Hexim1 and Hexim2 complex formation with cyclin T1/T2, importin alpha and 7SK snRNA. J Mol Biol 2009; 395:28-41. [PMID: 19883659 DOI: 10.1016/j.jmb.2009.10.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) stimulates the transition from transcription initiation to productive elongation by phosphorylation of the C-terminal domain of RNA polymerase II. P-TEFb consists of the cyclin-dependent kinase Cdk9 and a T-type cyclin and is regulated by the small nuclear RNA 7SK and the coupling protein Hexim1 or Hexim2. In this study, we analyzed the tripartite protein-RNA complex formation between Hexim, Cyclin T and 7SK snRNA. Using isothermal titration calorimetry, we observed higher affinities for Cyclin T1-Hexim1 and Cyclin T2-Hexim2 complex formations compared with the interactions in reverse. Importin alpha, which is part of the Ran-mediated nuclear import pathway, bound Hexim1 and Hexim2 with dissociation constants of 2.0 and 0.5 muM, respectively. Furthermore, tripartite complex formations between Cyclin T, Hexim and Importin alpha showed the suitability of a collaborative nuclear import pathway for Cyclin T. Electrophoretic mobility shift assays using radioactively labelled full-length 7SK snRNA revealed a tight association of the RNA to Cyclin T1-Hexim1 with dissociation constants lower than 0.3 muM. Similar binding affinities were recorded for both Hexim orthologues to a 66-mer double-stranded 5' hairpin loop encompassing nucleotides 23-88 of 7SK, while a 39-mer fragment, resulting from different RNA folding predictions, did not bind as tightly. These results provide the molecular basis for the generation of a core complex for the inhibition of P-TEFb.
Collapse
Affiliation(s)
- Nadine Czudnochowski
- Abteilung Physikalische Biochemie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
181
|
Su Y, Deng G, Gai Y, Li Y, Gao Y, Du J, Geng Y, Chen Q, Qiao W. Comparative functional analysis of Jembrana disease virus Tat protein on lentivirus long terminal repeat promoters: evidence for flexibility at its N-terminus. Virol J 2009; 6:179. [PMID: 19860923 PMCID: PMC2775740 DOI: 10.1186/1743-422x-6-179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/28/2009] [Indexed: 11/11/2022] Open
Abstract
Background Jembrana disease virus (JDV) encodes a potent regulatory protein Tat that strongly stimulates viral expression by transactivating the long terminal repeat (LTR) promoter. JDV Tat (jTat) promotes the transcription from its own LTR as well as non-cognate LTRs, by recruiting host transcription factors and facilitating transcriptional elongation. Here, we compared the sequence requirements of jTat for transactivation of JDV, bovine immunodeficiency virus (BIV) and human immunodeficiency virus (HIV) LTRs. Results In this study, we identified the minimal protein sequence for LTR activation using jTat truncation mutants. We found that jTat N-terminal residues were indispensable for transactivating the HIV LTR. In contrast, transactivation of BIV and JDV LTRs depended largely on an arginine-rich motif and some flanking residues. Competitive inhibition assay and knockdown analysis showed that P-TEFb was required for jTat-mediated LTR transactivation, and a mammalian two-hybrid assay revealed the robust interaction of jTat with cyclin T1. In addition, HIV LTR transactivation was largely affected by fusion protein at the jTat N-terminus despite the fact that the cyclin T1-binding affinity was not altered. Furthermore, the jTat N-terminal sequence enabled HIV Tat to transactivate BIV and JDV LTRs, suggesting the flexibility at the jTat N-terminus. Conclusion This study showed the distinct sequence requirements of jTat for HIV, BIV and JDV LTR activation. Residues responsible for interaction with cyclin T1 and transactivation response element are the key determinants for transactivation of its cognate LTR. N-terminal residues in jTat may compensate for transactivation of the HIV LTR, based on the flexibility.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Berkofsky-Fessler W, Nguyen TQ, Delmar P, Molnos J, Kanwal C, DePinto W, Rosinski J, McLoughlin P, Ritland S, DeMario M, Tobon K, Reidhaar-Olson JF, Rueger R, Hilton H. Preclinical biomarkers for a cyclin-dependent kinase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients. Mol Cancer Ther 2009; 8:2517-25. [PMID: 19755512 DOI: 10.1158/1535-7163.mct-09-0083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A genomics-based approach to identify pharmacodynamic biomarkers was used for a cyclin-dependent kinase inhibitory drug. R547 is a potent cyclin-dependent kinase inhibitor with a potent antiproliferative effect at pharmacologically relevant doses and is currently in phase I clinical trials. Using preclinical data derived from microarray experiments, we identified pharmacodynamic biomarkers to test in blood samples from patients in clinical trials. These candidate biomarkers were chosen based on several criteria: relevance to the mechanism of action of R547, dose responsiveness in preclinical models, and measurable expression in blood samples. We identified 26 potential biomarkers of R547 action and tested their clinical validity in patient blood samples by quantitative real-time PCR analysis. Based on the results, eight genes (FLJ44342, CD86, EGR1, MKI67, CCNB1, JUN, HEXIM1, and PFAAP5) were selected as dose-responsive pharmacodynamic biomarkers for phase II clinical trials.
Collapse
|
183
|
Abstract
Regulation of gene expression is essential to all aspects of physiological processes in single-cell as well as multicellular organisms. It gives ultimately cells the ability to efficiently respond to extra- and intracellular stimuli participating in cell cycle, growth, differentiation and survival. Regulation of gene expression is executed primarily at the level of transcription of specific mRNAs by RNA polymerase II (RNAPII), typically in several distinct phases. Among them, transcription elongation is positively regulated by the positive transcription elongation factor b (P-TEFb), consisting of CDK9 and cyclin T1, T2 or K. P-TEFb enables transition from abortive to productive transcription elongation by phosphorylating carboxyl-terminal domain (CTD) in RNAPII and negative transcription elongation factors. Over the years, we have learned a great deal about molecular composition of P-TEFb complexes, their assembly and their role in transcription of specific genes, but function of P-TEFb in other physiological processes was not apparent until just recently. In light of emerging discoveries connecting P-TEFb to regulation of cell cycle, development and several diseases, I would like to discuss these observations as well as future perspectives.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
184
|
Ali A, Ghosh A, Nathans RS, Sharova N, O’Brien S, Cao H, Stevenson M, Rana TM. Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (P-TEFb) and block HIV-1 replication. Chembiochem 2009; 10:2072-80. [PMID: 19603446 PMCID: PMC2754223 DOI: 10.1002/cbic.200900303] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Indexed: 01/18/2023]
Abstract
The positive transcription elongation factor (P-TEFb; CDK9/cyclin T1) regulates RNA polymerase II-dependent transcription of cellular and integrated viral genes. It is an essential cofactor for HIV-1 Tat transactivation, and selective inhibition of P-TEFb blocks HIV-1 replication without affecting cellular transcription; this indicates that P-TEFb could be a potential target for developing anti-HIV-1 therapeutics. Flavopiridol, a small molecule CDK inhibitor, blocks HIV-1 Tat transactivation and viral replication by inhibiting P-TEFb kinase activity, but it is highly cytotoxic. In the search for selective and less cytotoxic P-TEFb inhibitors, we prepared a series of flavopiridol analogues and evaluated their kinase inhibitory activity against P-TEFb and CDK2/cyclin A, and tested their cellular antiviral potency and cytotoxicity. We identified several analogues that selectively inhibit P-TEFb kinase activity in vitro and show antiviral potency comparable to that of flavopiridol, but with significantly reduced cytotoxicity. These compounds are valuable molecular probes for understanding P-TEFb-regulated cellular and HIV-1 gene transcription and provide potential anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Akbar Ali
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Animesh Ghosh
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Robin S. Nathans
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Natalia Sharova
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Siobhan O’Brien
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Hong Cao
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Mario Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605 (USA)
| | - Tariq M. Rana
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605 (USA)
- Program for RNA Biology, Sanford Children’s Health Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
185
|
Li Q, Peterlin BM. Genetic analysis of P-TEFb function via heterologous nucleic acid tethering systems. Methods 2009; 48:375-80. [PMID: 19398004 PMCID: PMC2745987 DOI: 10.1016/j.ymeth.2009.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 01/19/2023] Open
Abstract
Recent global genetic analyses demonstrated that the regulation of gene expression at the level of transcription elongation is a common feature in eukaryotes. The positive transcription elongation factor P-TEFb plays a critical role in this process. P-TEFb is a cyclin-dependent kinase, which controls the fraction of RNA polymerase II (RNAP II) that can enter productive elongation. While the biochemical properties of P-TEFb and its associated factors have been characterized extensively in vitro, its function in vivo remains less well understood. In this paper, we describe various heterologous nucleic acid tethering systems that can be used to examine transcription factors that function via P-TEFb.
Collapse
Affiliation(s)
- Qintong Li
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
186
|
Cheng B, Price DH. Isolation and functional analysis of RNA polymerase II elongation complexes. Methods 2009; 48:346-52. [PMID: 19409997 PMCID: PMC2754188 DOI: 10.1016/j.ymeth.2009.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/23/2009] [Accepted: 02/26/2009] [Indexed: 10/20/2022] Open
Abstract
The elongation phase of transcription by RNA polymerase II (RNAP II) is tightly controlled by a large number of transcription elongation factors. Here we describe experimental approaches for the isolation of RNAPII elongation complexes in vitro and the use of these complexes in the examination of the function of a variety of factors. The methods start with formation of elongation complexes on DNA templates immobilized to paramagnetic beads. Elongation is halted by removing the nucleotides and the ternary elongation complexes are then stripped of factors by a high salt wash. The effect of any factor or mixture of factors on elongation is determined by adding the factor(s) along with nucleotides and observing the change in the pattern of RNAs generated. Association of a factor with elongation complexes can be examined using an elongation complex-electrophoretic mobility shift assay (EC-EMSA) in which elongation complexes that have been liberated from the beads are analyzed on a native gel. Besides being used to dissect the mechanisms of elongation control, these experimental systems are useful for analyzing the function of termination factors and mRNA processing factors. Together these experimental systems permit detailed characterization of the molecular mechanisms of elongation, termination, and mRNA processing factors by providing information concerning both physical interactions with and functional consequences of the factors on RNAPII elongation complexes.
Collapse
Affiliation(s)
- Bo Cheng
- Molecular and Cellular Biology Program, University of Iowa, Iowa City IA 52242
| | - David H. Price
- Molecular and Cellular Biology Program, University of Iowa, Iowa City IA 52242
- Department of Biochemistry University of Iowa, Iowa City IA 52242
| |
Collapse
|
187
|
Doonan JH, Kitsios G. Functional evolution of cyclin-dependent kinases. Mol Biotechnol 2009; 42:14-29. [PMID: 19145493 DOI: 10.1007/s12033-008-9126-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases with a well established role in the regulation of the eukaryotic cell cycle. Recent studies with animal cells have implicated CDK activity in additional diverse cellular processes, including transcription, translation and mRNA processing. In plants, such CDK functions are poorly characterized and the implication of CDK phosphorylation in regulation of gene expression is just begining to emerge. In this review we compare CDK functions in plants, animals and yeasts with particular focus on the biological processes that different members participate in and regulate. Finally, based on the available information of CDK function, we propose an alternative evolutionary scenario for the CDK gene family.
Collapse
Affiliation(s)
- John H Doonan
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
188
|
Chen S, Chen R, He M, Pang R, Tan Z, Yang M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat–TAR interaction inhibitors. Bioorg Med Chem 2009; 17:1948-56. [PMID: 19217787 DOI: 10.1016/j.bmc.2009.01.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
|
189
|
miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 2009; 5:e1000263. [PMID: 19148268 PMCID: PMC2607557 DOI: 10.1371/journal.ppat.1000263] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/12/2008] [Indexed: 01/23/2023] Open
Abstract
Cyclin T1 is a regulatory subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is also required for Tat transactivation of HIV-1 LTR-directed gene expression. Translation of Cyclin T1 mRNA has been shown to be repressed in human monocytes, and this repression is relieved when cells differentiate to macrophages. We identified miR-198 as a microRNA (miRNA) that is strongly down-regulated when monocytes are induced to differentiate. Ectopic expression of miR-198 in tissue culture cells reduced Cyclin T1 protein expression, and plasmid reporter assays verified miR-198 target sequences in the 3′ untranslated region (3′UTR) of Cyclin T1 mRNA. Cyclin T1 protein levels increased when an inhibitor of miR-198 was transfected into primary monocytes, and overexpression of miR-198 in primary monocytes repressed the normal up-regulation of Cyclin T1 during differentiation. Expression of an HIV-1 proviral plasmid and HIV-1 replication were repressed in a monocytic cell line upon overexpression of miR-198. Our data indicate that miR-198 functions to restrict HIV-1 replication in monocytes, and its mechanism of action appears to involve repression of Cyclin T1 expression. Monocytes do not support HIV-1 replication, in part because they do not express adequate levels of essential cellular cofactors that mediate steps in the viral replication cycle. Monocytes become permissive for viral replication upon differentiation to macrophages, indicating that cellular cofactors are induced during the differentiation process. One such cofactor is Cyclin T1, which is not expressed in monocytes and is expressed at high levels following macrophage differentiation. Cyclin T1 functions to greatly stimulate the amount of HIV-1 produced in the infected cell. We identified a microRNA (miRNA) named miR-198 that represses the expression of Cyclin T1 in monocytes. miRNAs block expression of proteins by binding to messenger RNAs and preventing their translation by ribosomes. The expression levels of miR-198 are greatly reduced in macrophages, and this appears to allow translation of Cyclin T1 mRNA and expression of Cyclin T1 protein. Our study indicates that this miRNA restricts HIV-1 replication in monocytes. We think that it is possible, if not likely, that additional miRNAs in monocytes also restrict HIV-1 replication by repressing other essential cellular cofactors.
Collapse
|
190
|
Liu J, Ku SCY, Lee J, Young TM, Pe'ery T, Mathews MB, Chao SH. The 3'UTR of HIC mRNA improves the production of recombinant proteins in Chinese hamster ovary cells. J Biotechnol 2009; 139:152-5. [PMID: 19041912 DOI: 10.1016/j.jbiotec.2008.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
Abstract
Positive transcription elongation factor b (P-TEFb) is an important transcriptional regulator which controls 70-80% of RNA polymerase II transcription. It has been reported that the human I-mfa (inhibitor of MyoD family a) domain-containing protein (HIC) interacts with P-TEFb and that expression of HIC cDNA stimulates P-TEFb-dependent transcription. Interestingly, our recent study shows that transcriptional stimulation by HIC is predominately due to the 3' untranslated region (3'UTR) of HIC mRNA rather than its coding region. In this report, we investigate the effects of HIC 3'UTR on recombinant protein expression in mammalian cells. In transient transfections, overexpression of HIC 3'UTR stimulates transgene expression in several mammalian cell lines and significantly increases the production of human erythropoietin and interferon-gamma in Chinese hamster ovary (CHO) cells. This is the first report that demonstrates the improvement of expression of biopharmaceutical proteins by overexpressing a non-coding 3'UTR in CHO cells.
Collapse
Affiliation(s)
- Jaron Liu
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | | | | | | | | | | | | |
Collapse
|
191
|
Lavallée-Adam M, Coulombe B, Blanchette M. Detection of Locally Over-Represented GO Terms in Protein-Protein Interaction Networks. LECTURE NOTES IN COMPUTER SCIENCE 2009. [DOI: 10.1007/978-3-642-02008-7_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
192
|
Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. J Virol 2008; 83:1036-44. [PMID: 18971272 DOI: 10.1128/jvi.01316-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 (CDK9) and cyclin T, is a global transcription factor for eukaryotic gene expression, as well as a key factor for human immunodeficiency virus (HIV) transcription elongation. P-TEFb phosphorylates the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAP II), facilitating the transition from nonprocessive to processive transcription elongation. Recently, the bromodomain protein Brd4 has been shown to interact with the low-molecular-weight, active P-TEFb complex and recruit P-TEFb to the HIV type 1 long terminal repeat (LTR) promoter. However, the subsequent events through which Brd4 regulates CDK9 kinase activity and RNAP II-dependent transcription are not clearly understood. Here we provide evidence that Brd4 regulates P-TEFb kinase activity by inducing a negative pathway. Moreover, by analyzing stepwise initiation and elongation complexes, we demonstrate that P-TEFb activity is regulated in the transcription complex. Brd4 induces phosphorylation of CDK9 at threonine 29 (T29) in the HIV transcription initiation complex, inhibiting CDK9 kinase activity. P-TEFb inhibition is transient, as Brd4 is released from the transcription complex between positions +14 and +36. Removal of the phosphate group at T29 by an incoming phosphatase released P-TEFb activity, resulting in increased RNAP II CTD phosphorylation and transcription. Finally, we present chromatin immunoprecipitation studies showing that CDK9 with phosphorylated T29 is associated with the HIV promoter region in the integrated and transcriptionally silent HIV genome.
Collapse
|
193
|
Gonda TJ, Leo P, Ramsay RG. Estrogen and MYB in breast cancer: potential for new therapies. Expert Opin Biol Ther 2008; 8:713-7. [PMID: 18476782 DOI: 10.1517/14712598.8.6.713] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MYB is highly expressed in almost all estrogen receptor (ER)-positive breast tumours and is a direct target of estrogen/ER signalling. Our recent studies have shown that MYB is also required for the proliferation of ER-positive breast tumour cell lines, and have shed further light on the mechanism of ER regulation of MYB expression. Here we discuss the rationale for therapeutic targeting of MYB in breast cancer and consider a number of approaches to developing an anti-MYB therapeutic.
Collapse
Affiliation(s)
- Thomas J Gonda
- Professorial Research Fellow, Deputy Director and Head Cancer Biology Program, University of Queensland Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.
| | | | | |
Collapse
|
194
|
Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J Virol 2008; 82:10591-9. [PMID: 18753202 DOI: 10.1128/jvi.01242-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICP22 is a multifunctional herpes simplex virus 1 (HSV-1) regulatory protein that regulates the accumulation of a subset of late (gamma(2)) proteins exemplified by U(L)38, U(L)41, and U(S)11. ICP22 binds the cyclin-dependent kinase 9 (cdk9) but not cdk7, and this complex in conjunction with viral protein kinases phosphorylates the carboxyl terminus of RNA polymerase II (Pol II) in vitro. The primary function of cdk9 and its partners, the cyclin T variants, is in the elongation of RNA transcripts, although functions related to the initiation and processing of transcripts have also been reported. We report two series of experiments designed to probe the role of cdk9 in infected cells. In the first, infected cells were treated with 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), a specific inhibitor of cdk9. In cells treated with DRB, the major effect was in the accumulation of viral RNAs and proteins regulated by ICP22. The accumulation of alpha, beta, or gamma proteins not regulated by ICP22 was not affected by the drug. The results obtained with DRB were duplicated in cells transfected with small interfering RNA (siRNA) targeting cdk9 mRNAs. Interestingly, DRB and siRNA reduced the levels of ICP22 but not those of other alpha gene products. In addition, cdk9 and ICP22 appeared to colocalize with RNA Pol II in wild-type-virus-infected cells but not in DeltaU(L)13-infected cells. We conclude that cdk9 plays a critical role in the optimization of expression of genes regulated by ICP22 and that one function of cdk9 in HSV-1-infected cells may be to bring ICP22 into the RNA Pol II transcriptional complex.
Collapse
|
195
|
Jadlowsky JK, Nojima M, Schulte A, Geyer M, Okamoto T, Fujinaga K. Dominant negative mutant cyclin T1 proteins inhibit HIV transcription by specifically degrading Tat. Retrovirology 2008; 5:63. [PMID: 18620576 PMCID: PMC2492875 DOI: 10.1186/1742-4690-5-63] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/11/2008] [Indexed: 11/28/2022] Open
Abstract
Background The positive transcription elongation factor b (P-TEFb) is an essential cellular co-factor for the transcription of the human immunodeficiency virus type 1 (HIV-1). The cyclin T1 (CycT1) subunit of P-TEFb associates with a viral protein, Tat, at the transactivation response element (TAR). This represents a critical and necessary step for the stimulation of transcriptional elongation. Therefore, CycT1 may serve as a potential target for the development of anti-HIV therapies. Results To create effective inhibitors of HIV transcription, mutant CycT1 proteins were constructed based upon sequence similarities between CycT1 and other cyclin molecules, as well as the defined crystal structure of CycT1. One of these mutants, termed CycT1-U7, showed a potent dominant negative effect on Tat-dependent HIV transcription despite a remarkably low steady-state expression level. Surprisingly, the expression levels of Tat proteins co-expressed with CycT1-U7 were significantly lower than Tat co-expressed with wild type CycT1. However, the expression levels of CycT1-U7 and Tat were restored by treatment with proteasome inhibitors. Concomitantly, the dominant negative effect of CycT1-U7 was abolished by these inhibitors. Conclusion These results suggest that CycT1-U7 inhibits HIV transcription by promoting a rapid degradation of Tat. These mutant CycT1 proteins represent a novel class of specific inhibitors for HIV transcription that could potentially be used in the design of anti-viral therapy.
Collapse
Affiliation(s)
- Julie K Jadlowsky
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
196
|
Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JÉ, Knapp S, Johnson LN. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 2008; 27:1907-18. [PMID: 18566585 PMCID: PMC2486423 DOI: 10.1038/emboj.2008.121] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 05/28/2008] [Indexed: 11/09/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) (CDK9/cyclin T (CycT)) promotes mRNA transcriptional elongation through phosphorylation of elongation repressors and RNA polymerase II. To understand the regulation of a transcriptional CDK by its cognate cyclin, we have determined the structures of the CDK9/CycT1 and free cyclin T2. There are distinct differences between CDK9/CycT1 and the cell cycle CDK CDK2/CycA manifested by a relative rotation of 26 degrees of CycT1 with respect to the CDK, showing for the first time plasticity in CDK cyclin interactions. The CDK9/CycT1 interface is relatively sparse but retains some core CDK-cyclin interactions. The CycT1 C-terminal helix shows flexibility that may be important for the interaction of this region with HIV TAT and HEXIM. Flavopiridol, an anticancer drug in phase II clinical trials, binds to the ATP site of CDK9 inducing unanticipated structural changes that bury the inhibitor. CDK9 activity and recognition of regulatory proteins are governed by autophosphorylation. We show that CDK9/CycT1 autophosphorylates on Thr186 in the activation segment and three C-terminal phosphorylation sites. Autophosphorylation on all sites occurs in cis.
Collapse
Affiliation(s)
- Sonja Baumli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Graziano Lolli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Edward D Lowe
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | | | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Louise N Johnson
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
197
|
Markert A, Grimm M, Martinez J, Wiesner J, Meyerhans A, Meyuhas O, Sickmann A, Fischer U. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 2008; 9:569-75. [PMID: 18483487 PMCID: PMC2427381 DOI: 10.1038/embor.2008.72] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/09/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is a heterodimeric complex composed of cyclin-dependent kinase 9 and its regulator cyclin T1/2. It stimulates transcription elongation by phosphorylation of serine 2 residues in the carboxy-terminal domain of polymerase II. 7SK RNA and HEXIM proteins can antagonize transcriptional stimulation by sequestering P-TEFb in a catalytically inactive ribonucleoprotein (RNP). Here, we show that the previously uncharacterized La-related protein 7 (LARP7) has a role in 7SK-mediated regulation of transcription. LARP7 binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA and is an integral part of the 7SK RNP. On stimulation, LARP7 remains associated with 7SK RNA, whereas P-TEFb is released. Interestingly, reduction of LARP7 by RNA interference enhances transcription from cellular polymerase II promoters, as well as a TAT-dependent HIV-1 promoter. Thus, LARP7 is a negative transcriptional regulator of polymerase II genes, acting by means of the 7SK RNP system.
Collapse
Affiliation(s)
- Andreas Markert
- Department of Biochemistry, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Michael Grimm
- Department of Biochemistry, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Javier Martinez
- Department of Medical Microbiology, Institute of Virology, University of Saarland, Building 47, D-66421 Homburg/Saar, Germany
| | - Julia Wiesner
- Department of Functional Proteomics, Rudolf-Virchow Centre for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Andreas Meyerhans
- Department of Medical Microbiology, Institute of Virology, University of Saarland, Building 47, D-66421 Homburg/Saar, Germany
| | - Oded Meyuhas
- Department of Biochemistry, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | - Albert Sickmann
- Department of Functional Proteomics, Rudolf-Virchow Centre for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor-Boveri-Institute, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
198
|
Cyclin K/CPR4 inhibits primate lentiviral replication by inactivating Tat/positive transcription elongation factor b-dependent long terminal repeat transcription. AIDS 2008; 22:1081-3. [PMID: 18520353 DOI: 10.1097/qad.0b013e3282fc7319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The positive transcription elongation factor b complexes comprise CDK9 and a C-type cyclin, required for the efficient expression of both eukaryotic and primate lentivirus-encoded genes. Cyclin K/CPR4 is the least studied of the positive transcription elongation factor b-forming cyclins. Here, we demonstrate that cyclin K/CPR4-containing positive transcription elongation factor b complexes are unresponsive to Tat and HEXIM1-mediated inactivation. Enhancing expression of cyclin K/CPR4 inhibited the human and simian immunodeficiency viral replication. These data indicate that cyclin K/CPR4 functions as a natural inhibitor of primate lentiviruses.
Collapse
|
199
|
Wang X, Yamataka K, Okamoto M, Ikeda S, Baba M. Potent and selective inhibition of Tat-dependent HIV-1 replication in chronically infected cells by a novel naphthalene derivative JTK-101. Antivir Chem Chemother 2008; 18:201-11. [PMID: 17907378 DOI: 10.1177/095632020701800404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In search for effective human immunodeficiency virus type 1 (HIV-1) transcription inhibitors, we have evaluated more than 100,000 compounds for their inhibitory effects on HIV-1 long terminal repeat (LTR)-driven reporter gene expression, and identified a novel naphthalene derivative, JTK-101. This compound could suppress tumour necrosis factor (TNF)-alpha-induced HIV-1 production in latently infected OM-10.1 cells at nanomolar concentrations. JTK-101 could also potently inhibit constitutive HIV-1 production in MOTL-4/IIIB. However, the antiviral activity of JTK-101 was found to be much weaker in acutely infected cells and the chronically infected cells U937/IIIB cells than in OM-10.1 and MOLT-4/IIIB cells. JTK-101 selectively suppressed TNF-alpha-induced HIV-1 mRNA synthesis in OM-10.1 cells in a dose-dependent fashion. JTK-101 modestly inhibited TNF-alpha-induced HIV-1 LTR-driven reporter gene expression, but potently inhibited Tat-induced gene expression. Immunoblot analysis revealed that low-level expression of the Tat cofactors CDK9 and cyclin T1 might contribute to the diminished antiviral activity in U937/IIIB cells. Furthermore, JTK-101 could not inhibit HIV-1 replication in chronically infected monocytes/macrophages, in which CDK9 and cyclin T1 were undetectable. These results suggest that JTK-101 exerts its anti-HIV-1 activity through the inhibition of known or unknown Tat cofactors, presumably CDK9/cyclin T1.
Collapse
Affiliation(s)
- Xin Wang
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
200
|
TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci U S A 2008; 105:5367-72. [PMID: 18391197 DOI: 10.1073/pnas.0801637105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription consists of a series of highly regulated steps: assembly of the preinitiation complex (PIC) at the promoter, initiation, elongation, and termination. PIC assembly is nucleated by TFIID, a complex composed of the TATA-binding protein (TBP) and a series of TBP-associated factors (TAFs). One component, TAF7, is incorporated in the PIC through its interaction with TFIID but is released from TFIID upon transcription initiation. We now report that TAF7 interacts with the transcription factors, TFIIH and P-TEFb, resulting in the inhibition of their Pol II CTD kinase activities. Importantly, in in vitro transcription reactions, TAF7 inhibits steps after PIC assembly and formation of the first phosphodiester bonds. Further, in vivo TAF7 coelongates with P-TEFb and Pol II downstream of the promoter. We propose a model in which TAF7 contributes to the regulation of the transition from PIC assembly to initiation and elongation.
Collapse
|