151
|
Pichler FB, Black MA, Williams LC, Love DR. Design, normalization, and analysis of spotted microarray data. Methods Cell Biol 2005; 77:521-43. [PMID: 15602930 DOI: 10.1016/s0091-679x(04)77028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- F B Pichler
- Molecular Genetics and Development Group, School of Biological Sciences, University of Auckland, Auckland 1001, New Zealand
| | | | | | | |
Collapse
|
152
|
Hacking D, Knight JC, Rockett K, Brown H, Frampton J, Kwiatkowski DP, Hull J, Udalova IA. Increased in vivo transcription of an IL-8 haplotype associated with respiratory syncytial virus disease-susceptibility. Genes Immun 2005; 5:274-82. [PMID: 15085176 DOI: 10.1038/sj.gene.6364067] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-8 (IL-8) has been implicated in the pathogenesis of RSV-induced bronchiolitis. Previously, we have described an association between bronchiolitis disease severity and a specific IL-8 haplotype comprising six single-nucleotide polymorphisms (SNPs) (-251A/+396G/+781T/+1238delA/+1633T/+2767T, haplotype 2). Here we investigated the functional basis for this association by measuring haplotype-specific transcription in vivo in human primary cells. We found a significant increase in transcript level derived from the IL-8 haplotype 2 relative to the mirror haplotype 1 (-251T/+396T/+781C/+1238insA/+1633C/+2767A) in respiratory epithelial cells but not in lymphocytes. A promoter polymorphism, -251A, present on the high producer haplotype, had no significant affect on the allele-specific level of transcription when analyzed in reporter gene experiments in human respiratory epithelial A549 cells. We proceeded to systematically screen for allele-specific protein-DNA binding in this functional haplotype, which revealed significant differential binding at the +781T/C polymorphism. C/EBP beta was identified as being part of a transcription factor binding complex that preferentially bound in the presence of the +781 T allele. These results suggest that the mechanism for disease susceptibility to RSV-induced bronchiolitis may occur through a haplotype-specific increase in IL-8 transcription, which may be mediated by functional polymorphisms within that haplotype.
Collapse
Affiliation(s)
- D Hacking
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Wen C, Zhang Z, Ma W, Xu M, Wen Z, Peng J. Genome-wide identification of female-enriched genes in zebrafish. Dev Dyn 2005; 232:171-9. [PMID: 15580633 DOI: 10.1002/dvdy.20210] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Characteristic differences in morphology, physiology, and behavior between a male and female are correlated to the differential selection of sex-dependent transcriptomes. By using a cDNA array carrying approximately 9,000 zebrafish unique genes, we identified a group of genes whose expression are enriched in the female fish. A subset of these genes have been confirmed and further grouped as egg-enriched genes, as both somatic- and egg-enriched genes or as somatic-enriched genes by means of RNA gel blot hybridization. Most importantly, a significant proportion of these genes are either functionally unknown or are novel genes. Thus, future studies of this group of genes will help us greatly to understand more about sex-determination and sex-related physiology and behavior. In addition, comparison of zebrafish female-enriched genes with that in Drosophila, we found that only germline genes are shared between vertebrate and invertebrate, suggesting that the process of oogenesis is highly conserved during the evolution.
Collapse
Affiliation(s)
- Chaoming Wen
- Institute of Molecular & Cell Biology, Proteos, Singapore
| | | | | | | | | | | |
Collapse
|
154
|
Qian F, Zhen F, Ong C, Jin SW, Meng Soo H, Stainier DYR, Lin S, Peng J, Wen Z. Microarray analysis of zebrafishcloche mutant using amplified cDNA and identification of potential downstream target genes. Dev Dyn 2005; 233:1163-72. [PMID: 15937927 DOI: 10.1002/dvdy.20444] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Zebrafish is an excellent model organism for studying vertebrate development and human disease. With the availability of increased numbers of zebrafish mutants and microarray chips, gene expression profiling has become a powerful tool for identification of downstream target genes perturbed by a specific mutation. One of the obstacles often encountered, however, is to isolate large numbers of zebrafish mutant embryos that are indistinguishable in morphology from the wild-type siblings for microarray analysis. Here, we report a method using amplified cDNA derived from five embryos for gene expression profiling of the 18-somite zebrafish cloche (clo) mutant, in which development of hematopoietic and endothelial lineages is severely impaired. In total, 31 differentially expressed target genes are identified, of which 13 have not been reported previously. We further determine that of these 13 new targets, 8 genes, including coproporphyrinogen oxidase (cpo), carbonic anhydrase (cahz), claudin g (cldn g), zinc-finger-like gene 2 (znfl2), neutrophil cytosol factor 1 (ncf1), matrix metalloproteinase 13 (mmp13), dual specificity phosphatase 5 (dusp5), and a novel gene referred as zebrafish vessel-specific gene 1 (zvsg1) are predominantly expressed in hematopoietic and endothelial cells. Comparative analysis demonstrates that this method is comparable and complementary to that of the conventional approach using unamplified sample. Our study provides valuable information for studying hematopoiesis and vessel formation. The method described here offers a powerful tool for gene expression profiling of zebrafish mutants in general.
Collapse
Affiliation(s)
- Feng Qian
- Laboratory of Molecular and Developmental Immunology, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Myotonia congenita is a hereditary chloride channel disorder characterized by delayed relaxation of skeletal muscle (myotonia). It is caused by mutations in the skeletal muscle chloride channel gene CLCN1 on chromosome 7. The phenotypic spectrum of myotonia congenita ranges from mild myotonia disclosed only by clinical examination to severe and disabling myotonia with transient weakness and myopathy. The most severe phenotypes are seen in patients with two mutated alleles. Heterozygotes are often asymptomatic but for some mutations heterozygosity is sufficient to cause pronounced myotonia, although without weakness and myopathy. Thus, the phenotype depends on the mutation type to some extent, but this does not explain the fact that severity varies greatly between heterozygous family members and may even vary with time in the individual patient. In this review, existing knowledge about phenotypic variability is summarized, and the possible contributing factors are discussed.
Collapse
Affiliation(s)
- Eskild Colding-Jørgensen
- Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, Denmark.
| |
Collapse
|
156
|
Trueb B, Neuhauss SCF, Baertschi S, Rieckmann T, Schild C, Taeschler S. Fish possess multiple copies of fgfrl1, the gene for a novel FGF receptor. ACTA ACUST UNITED AC 2005; 1727:65-74. [PMID: 15652159 DOI: 10.1016/j.bbaexp.2004.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 11/17/2004] [Accepted: 12/06/2004] [Indexed: 11/24/2022]
Abstract
FGFRL1 is a novel FGF receptor that lacks the intracellular tyrosine kinase domain. While mammals, including man and mouse, possess a single copy of the FGFRL1 gene, fish have at least two copies, fgfrl1a and fgfrl1b. In zebrafish, both genes are located on chromosome 14, separated by about 10 cM. The two genes show a similar expression pattern in several zebrafish tissues, although the expression of fgfrl1b appears to be weaker than that of fgfrl1a. A clear difference is observed in the ovary of Fugu rubripes, which expresses fgfrl1a but not fgfrl1b. It is therefore possible that subfunctionalization has played a role in maintaining the two fgfrl1 genes during the evolution of fish. In human beings, the FGFRL1 gene is located on chromosome 4, adjacent to the SPON2, CTBP1 and MEAEA genes. These genes are also found adjacent to the fgfrl1a gene of Fugu, suggesting that FGFRL1, SPON2, CTBP1 and MEAEA were preserved as a coherent block during the evolution of Fugu and man.
Collapse
Affiliation(s)
- Beat Trueb
- ITI Research Institute, University of Bern, Murtenstrasse 35, CH-3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
157
|
Han JS, Boeke JD. LINE-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression? Bioessays 2005; 27:775-84. [PMID: 16015595 DOI: 10.1002/bies.20257] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LINE-1 (L1) retrotransposons are replicating repetitive elements that, by mass, are the most-abundant sequences in the human genome. Over one-third of mammalian genomes are the result, directly or indirectly, of L1 retrotransposition. L1 encodes two proteins: ORF1, an RNA-binding protein, and ORF2, an endonuclease/reverse transcriptase. Both proteins are required for L1 mobilization. Apart from the obvious function of self-replication, it is not clear what other roles, if any, L1 plays within its host. The sheer magnitude of L1 sequences in our genome has fueled speculation that over evolutionary time L1 insertions may structurally modify endogenous genes and regulate gene expression. Here we provide a review of L1 replication and its potential functional consequences.
Collapse
Affiliation(s)
- Jeffrey S Han
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
158
|
Paschall JE, Oleksiak MF, VanWye JD, Roach JL, Whitehead JA, Wyckoff GJ, Kolell KJ, Crawford DL. FunnyBase: a systems level functional annotation of Fundulus ESTs for the analysis of gene expression. BMC Genomics 2004; 5:96. [PMID: 15610557 PMCID: PMC544896 DOI: 10.1186/1471-2164-5-96] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 12/20/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While studies of non-model organisms are critical for many research areas, such as evolution, development, and environmental biology, they present particular challenges for both experimental and computational genomic level research. Resources such as mass-produced microarrays and the computational tools linking these data to functional annotation at the system and pathway level are rarely available for non-model species. This type of "systems-level" analysis is critical to the understanding of patterns of gene expression that underlie biological processes. RESULTS We describe a bioinformatics pipeline known as FunnyBase that has been used to store, annotate, and analyze 40,363 expressed sequence tags (ESTs) from the heart and liver of the fish, Fundulus heteroclitus. Primary annotations based on sequence similarity are linked to networks of systematic annotation in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and can be queried and computationally utilized in downstream analyses. Steps are taken to ensure that the annotation is self-consistent and that the structure of GO is used to identify higher level functions that may not be annotated directly. An integrated framework for cDNA library production, sequencing, quality control, expression data generation, and systems-level analysis is presented and utilized. In a case study, a set of genes, that had statistically significant regression between gene expression levels and environmental temperature along the Atlantic Coast, shows a statistically significant (P < 0.001) enrichment in genes associated with amine metabolism. CONCLUSION The methods described have application for functional genomics studies, particularly among non-model organisms. The web interface for FunnyBase can be accessed at http://genomics.rsmas.miami.edu/funnybase/super_craw4/. Data and source code are available by request at jpaschall@bioinfobase.umkc.edu.
Collapse
Affiliation(s)
- Justin E Paschall
- Division of Molecular Biology and Biochemistry, 5100 Rockhill Rd., University of Missouri, Kansas City 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Gu W, Bertone AL. Generation and performance of an equine-specific large-scale gene expression microarray. Am J Vet Res 2004; 65:1664-73. [PMID: 15631031 DOI: 10.2460/ajvr.2004.65.1664] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To create high-quality sequence data for the generation of an equine gene expression microarray and evaluate array performance by use of lipopolysaccharide (LPS) exposure of synoviocytes. SAMPLE POPULATION Public nucleotide sequence database from Equus caballus and synoviocytes from clinically normal adult horses. PROCEDURE Computer procurement of equine gene sequences, probe design, and manufacture of an oligomicroarray were performed. Array performance was evaluated by use of patterns for equine synoviocytes in response to LPS. RESULTS Starting with 18,924 equine gene sequences, 3,098 equine 3' sequences were annotated and met the inclusion criteria for an expression microarray. An equine oligonucleotide expression microarray was created by use of 68,266 of the 25-oligomer probes to uniquely identify each gene. Most genes in the array (68%) were expressed in equine synoviocytes. Repeatability of the array was high (r, > 0.99), and LPS upregulated (> 5-fold change) 84 genes, many of which were inflammatory mediators, and downregulated (> 5-fold change) 14 genes. An initial pattern of gene expression for effects of LPS on synoviocytes consisted of 102 genes. CONCLUSIONS AND CLINICAL RELEVANCE Use of a computer algorithm to curate an equine sequence database generated high-quality annotated species-specific gene sequences and probe sets for a gene expression oligomicroarray, which was used to document changes in gene expression associated with LPS exposure of equine synoviocytes. The equine public database was expanded from 290 annotated genes to > 3,000 provisionally annotated genes. Similar curation and annotation of public databases could be used to create other species-specific microarrays.
Collapse
Affiliation(s)
- Weisong Gu
- Comparative Orthopedic Molecular Medicine Research Laboratories, Department of Veterinary Clinical Science, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
160
|
Zhu G, Lipsky RH, Xu K, Ali S, Hyde T, Kleinman J, Akhtar LA, Mash DC, Goldman D. Differential expression of human COMT alleles in brain and lymphoblasts detected by RT-coupled 5' nuclease assay. Psychopharmacology (Berl) 2004; 177:178-84. [PMID: 15290009 DOI: 10.1007/s00213-004-1938-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 05/13/2004] [Indexed: 12/01/2022]
Abstract
RATIONALE A common polymorphism, Val158Met, alters catechol- O-methyltransferase (COMT) enzyme activity and has been linked to psychiatric phenotypes. Bray et al. (2003) reported that COMT is subject to differential allele expression in brain, finding modest (13-22%) underexpression of a haplotype containing Val158. However, disparate findings by another group who used the same method, but in lymphoblasts, raise the issues of tissue specificity, magnitude of differential expression, and identity of loci altering expression. OBJECTIVES We measured COMT allele expression ratios in heterozygous human lymphoblast cell lines and brains. METHODS Using transcribed single nucleotide polymorphisms as endogenous reporters, we developed an RT-coupled 5' nuclease assay for allele expression ratios and applied it to 63 COMT rs4818(C>G) heterozygotes and 68 Val158Met [rs4680(G>A)] heterozygotes. RESULTS For rs4818(C>G), the C allele was overexpressed relative to the G allele in 18 of 27 lymphoblast lines and 23 of 36 brains. For Val158Met, Met158 was overexpressed relative to Val158 in all (29 of 29) lymphoblast lines and all (39 of 39) brains. Each of the 22 rs4818 heterozygotes without differential allele expression was a Val158/Val158 homozygote. The Met158 allele was overexpressed by 65-77% when compared with Val158 in lymphoblasts and brain. Haplotype augmented ability to predict expression in brain only. However, the expression of the Val158 allele on the high-expressing haplotype was only 19% higher than Val158 alleles on the other haplotype background. CONCLUSIONS COMT alleles are differentially expressed. The Met158 allele predicts higher mRNA expression in both brain and lymphoblasts. As exemplified here, the RT-coupled 5' nuclease assay is a reliable method for the quantitative evaluation of cis-acting regulatory effects.
Collapse
Affiliation(s)
- Guanshan Zhu
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 12420 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
Epigenetics is comprised of the stable and heritable (or potentially heritable) changes in gene expression that do not entail a change in DNA sequence. The role of epigenetics in the etiology of human disease is increasingly recognized with the most obvious evidence found for genes subject to genomic imprinting. Mutations and epimutations in imprinted genes can give rise to genetic and epigenetic phenotypes, respectively; uniparental disomy and imprinting defects represent epigenetic disease phenotypes. There are also genetic disorders that affect chromatin structure and remodeling. These disorders can affect chromatin in trans or in cis, as well as expression of both imprinted and nonimprinted genes. Data from Angelman and Beckwith-Wiedemann syndromes and other disorders indicate that a monogenic or oligogenic phenotype can be caused by a mixed epigenetic and genetic and mixed de novo and inherited (MEGDI) model. The MEGDI model may apply to some complex disease traits and could explain negative results in genome-wide genetic scans.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
162
|
Abstract
The zebrafish has recently emerged as an important model for the study of vascular embryogenesis. Its genetic accessibility, external development, and optically clear embryo are just a few of the features that set the zebrafish apart as a particularly well-suited model for studying vascular development. However, there is little precedent for its use as a tool for the experimental study of therapeutic angiogenesis. Here, we review the use of the zebrafish for studying vascular development and patterning, and discuss how the zebrafish might be used more directly as a model for developing and testing effective therapeutic angiogenesis approaches.
Collapse
Affiliation(s)
- Kameha R Kidd
- Laboratory of Molecular Genetics, NICHD, NIH, Building 6B, Room 309, 6 Center Drive, Bethesda, MD 20892, U.S.A
| | - Brant M Weinstein
- Laboratory of Molecular Genetics, NICHD, NIH, Building 6B, Room 309, 6 Center Drive, Bethesda, MD 20892, U.S.A
- Author for correspondence:
| |
Collapse
|
163
|
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS. Highly parallel SNP genotyping. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:69-78. [PMID: 15338605 DOI: 10.1101/sqb.2003.68.69] [Citation(s) in RCA: 505] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J B Fan
- llumina, Inc., San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Cheung VG, Jen KY, Weber T, Morley M, Devlin JL, Ewens KG, Spielman RS. Genetics of quantitative variation in human gene expression. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:403-7. [PMID: 15338642 DOI: 10.1101/sqb.2003.68.403] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- V G Cheung
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Robb GB, Carson AR, Tai SC, Fish JE, Singh S, Yamada T, Scherer SW, Nakabayashi K, Marsden PA. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 2004; 279:37982-96. [PMID: 15234981 DOI: 10.1074/jbc.m400271200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) mRNA levels are abnormal in diseases of the cardiovascular system, but changes in gene expression cannot be accounted for by transcription alone. We found evidence for the existence of an antisense mRNA (sONE) that is derived from a transcription unit (NOS3AS) on the opposite DNA strand from which the human eNOS (NOS3) mRNA is transcribed at human chromosome 7q36. The genes are oriented in a tail-to-tail configuration, and the mRNAs encoding sONE and eNOS are complementary for 662 nucleotides. The mRNA for sONE could be detected in a variety of cell types, both in vivo and in vitro, but not vascular endothelial cells. In contrast, expression of eNOS is highly restricted to vascular endothelium. Most surprisingly, interrogation of transcriptional events across NOS3/NOS3AS genomic regions, using single- and double-stranded probes for nuclear run-off analyses and chromatin immunoprecipitation-based assessments of RNA polymerase II distribution, indicated that NOS3 and NOS3AS gene transcription did not correlate with steady-state mRNA levels. We found strong evidence supporting a role for NOS3AS in the post-transcriptional regulation of NOS3 expression. RNA interference-mediated inhibition of sONE expression in vascular smooth muscle cells increased eNOS expression. Overexpression of sONE in endothelial cells blunted eNOS expression. Finally, the histone deacetylase inhibitor trichostatin A is known to regulate the expression of eNOS via a post-transcriptional mechanism. We found that trichostatin A treatment of vascular endothelial cells increased expression of sONE mRNA levels prior to the observed decrease in eNOS mRNA expression. Taken together, these results indicate that an antisense mRNA (sONE) participates in the post-transcriptional regulation of eNOS and provide a newer model for endothelial cell-specific gene expression.
Collapse
Affiliation(s)
- G Brett Robb
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Kimura T, Jindo T, Narita T, Naruse K, Kobayashi D, Shin-I T, Kitagawa T, Sakaguchi T, Mitani H, Shima A, Kohara Y, Takeda H. Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics. Mech Dev 2004; 121:915-32. [PMID: 15210196 DOI: 10.1016/j.mod.2004.03.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 03/12/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
The medaka is becoming an attractive model organism for the study of vertebrate early development and organogenesis and large-scale mutagenesis projects that are aimed at creating developmentally defective mutants are now being conducted by several groups in Japan. To strengthen the study of medaka developmental genetics, we have conducted a large-scale isolation of ESTs from medaka embryos and developed tools that facilitate mutant analysis. In this study, we have characterized a total of 132,082 sequences from both ends of cloned insert cDNAs from libraries generated at different stages of medaka embryo development. Clustering analysis with 3-prime sequences finally identified a total of 12,429 clusters. As a pilot analysis, 924 clusters were subjected to in situ hybridization to determine the spatial localization of their transcripts. Using EST sequence data generated in the present study, a 60-mer oligonucleotide microarray with 8,091 unigenes (Medaka Microarray 8K) was constructed and tested for its usefulness in expression profiling. Furthermore, we have developed a rapid and reliable mutant mapping system using a set of mapped EST markers (M-marker 2003) that covers the entire medaka genome. These resources will accelerate medaka mutant analyses and make an important contribution to the medaka genome project.
Collapse
Affiliation(s)
- T Kimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL. Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:351-62. [PMID: 15533793 DOI: 10.1016/j.cca.2004.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 08/08/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
We analyzed 15,512 unique transcripts from wild-type Danio rerio using a long oligonucleotide microarray containing >16,000 65-mers probes. Total RNA was isolated from staged embryos at 2 h intervals over a 24-h period. On average, at any given time point, 27% of the probe set detected corresponding transcripts in embryonic RNA. There were two predominant patterns in the nearly 4000 genes that changed expression in at least one time point during the first 24 hpf. At 12 hpf, we detected 420 up-regulated and 386 down-regulated genes. By 24 hpf, the number of up- and down-regulated genes had increased to 954 and 766, respectively. While the majority of these genes maintained their new level of expression for the duration of the time course, we identified five genes with phasic regulation over the 24-h time course. Two of these genes, germ cell nuclear factor and mesogenin, have been identified as being expressed during gastrulation (5 1/4 to 10 h postfertilization) and subsequently repressed. A cluster containing 36 distinct ribosomal proteins was up-regulated at 12 h, indicating a capability for de novo protein synthesis during and after this stage. Twenty-three muscle-specific genes were up-regulated late during the initial 24 hpf, corresponding to the development and differentiation of the somites.
Collapse
Affiliation(s)
- Elwood Linney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
168
|
Han JS, Szak ST, Boeke JD. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 2004; 429:268-74. [PMID: 15152245 DOI: 10.1038/nature02536] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/30/2004] [Indexed: 11/08/2022]
Abstract
LINE-1 (L1) elements are the most abundant autonomous retrotransposons in the human genome, accounting for about 17% of human DNA. The L1 retrotransposon encodes two proteins, open reading frame (ORF)1 and the ORF2 endonuclease/reverse transcriptase. L1 RNA and ORF2 protein are difficult to detect in mammalian cells, even in the context of overexpression systems. Here we show that inserting L1 sequences on a transcript significantly decreases RNA expression and therefore protein expression. This decreased RNA concentration does not result from major effects on the transcription initiation rate or RNA stability. Rather, the poor L1 expression is primarily due to inadequate transcriptional elongation. Because L1 is an abundant and broadly distributed mobile element, the inhibition of transcriptional elongation by L1 might profoundly affect expression of endogenous human genes. We propose a model in which L1 affects gene expression genome-wide by acting as a 'molecular rheostat' of target genes. Bioinformatic data are consistent with the hypothesis that L1 can serve as an evolutionary fine-tuner of the human transcriptome.
Collapse
Affiliation(s)
- Jeffrey S Han
- Department of Molecular Biology and Genetics and High Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
169
|
Franke L, van Bakel H, Diosdado B, van Belzen M, Wapenaar M, Wijmenga C. TEAM: a tool for the integration of expression, and linkage and association maps. Eur J Hum Genet 2004; 12:633-8. [PMID: 15114375 DOI: 10.1038/sj.ejhg.5201215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The identification of genes primarily responsible for complex genetic disorders is a daunting task. Despite the assignment of many susceptibility loci, there has only been limited success in identifying disease genes based solely on positional information from genome-wide screens. The incorporation of several complementary strategies in a single integrated approach should facilitate and further enhance the efficacy of this search for genes. To permit the integration of linkage, association and expression data, together with functional annotations, we have developed a Java-based software tool: TEAM (tool for the integration of expression, and linkage and association maps). TEAM includes a genome viewer, capable of overlaying karyobands, genes, markers, linkage graphs, association data, gene expression levels and functional annotations in one composite view. Data management, analysis and filtering functionality was implemented and extended with links to the Ensembl, Unigene and Gene Ontology databases to facilitate gene annotation. Filtering functionality can help prevent the exclusion of poorly annotated, but differentially expressed, genes that reside in candidate regions that show linkage or association. Here we demonstrate the program's functionality in our study on coeliac disease (OMIM 212750), a multifactorial gluten-sensitive enteropathy. We performed a combined data analysis of a genome-wide linkage screen in 82 Dutch families with affected siblings and the microarray expression profiles of 18,110 cDNAs in 22 intestinal biopsies.
Collapse
Affiliation(s)
- Lude Franke
- Complex Genetics Group, Department of Biomedical Genetics, University Medical Centre, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
170
|
Abstract
PURPOSE OF REVIEW Genetic variants determine phenotypic variability. Many genetic studies suggest that protein structural variations predispose the population to more than 1000 different hereditary diseases. Unfortunately, despite the study of genetic polymorphisms for many decades, the milder phenotypic variations believed to account for most human physical and behavioral differences and underlying the most common human genetic diseases (including cancers) cannot be accounted for easily by these variations in the protein coding sequences. Thus, it has been hypothesized that the study of natural differential expression presenting within and among populations may enhance understanding of human phenotypic variation. RECENT FINDINGS During the last year, reports identifying variations in gene expression in different organisms and finding subtle changes of gene expression associated with common genetic disease have pointed to variations in gene expression as playing a central role in molecular evolution and human disease. Advances in the functional analysis of gene regulatory networks-in particular, new methods for distinguishing cis-acting components from trans-acting factors-have provided the impetus for these discoveries. SUMMARY This review represents current knowledge about allelic variation in gene expression and its increasingly important role in understanding the genotype-phenotype relation. Characterization of these allelic variations may open largely uncharted territory in genomics for biomedical researchers and may eventually lead to the discovery of the causative genes of common hereditary diseases and their mechanism of action.
Collapse
Affiliation(s)
- Hai Yan
- Duke University Medical Center, Department of Pathology, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
171
|
Ando H, Furuta T, Okamoto H. Photo-Mediated Gene Activation by Using Caged mRNA in Zebrafish Embryos. Methods Cell Biol 2004; 77:159-71. [PMID: 15602911 DOI: 10.1016/s0091-679x(04)77009-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hideki Ando
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN (The Institute of Physical and Chemical Research), Saitama 351-0198, Japan
| | | | | |
Collapse
|
172
|
Zhou Y. Update of the Expressed Sequence Tag (EST) and Radiation Hybrid Panel Projects. Methods Cell Biol 2004; 77:273-93. [PMID: 15602917 DOI: 10.1016/s0091-679x(04)77015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Yi Zhou
- Division of Hematology/Oncology, Children's Hospital Boston Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
173
|
Peterson RT, Fishman MC. Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 2004; 76:569-91. [PMID: 15602893 DOI: 10.1016/s0091-679x(04)76026-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Randall T Peterson
- Developmental Biology Laboratory, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
174
|
Stewart RA, Look AT, Kanki JP, Henion PD. Development of the peripheral sympathetic nervous system in zebrafish. Methods Cell Biol 2004; 76:237-60. [PMID: 15602879 DOI: 10.1016/s0091-679x(04)76012-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rodney A Stewart
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
175
|
Qiu X, Xu H, Haddon C, Lewis J, Jiang YJ. Sequence and embryonic expression of three zebrafishfringe genes:lunatic fringe,radical fringe, andmanic fringe. Dev Dyn 2004; 231:621-30. [PMID: 15376327 DOI: 10.1002/dvdy.20155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drosophila fringe and its homologues in vertebrates code for glycosyltransferases that modify Notch, altering the sensitivity of this receptor protein to its ligands Delta and Serrate and, thereby, playing an essential part in the demarcation of tissue boundaries. We describe the isolation and characterization of three zebrafish (Danio rerio) fringe homologues: lunatic fringe (lfng), radical fringe (rfng), and manic fringe (mfng). In addition to the sites previously described (Prince et al. [2001] Mech. Dev. 105:175-180; Leve et al. [ 2001] Dev. Genes Evol. 211:493-500), lfng is also expressed in the sensory patches of the inner ear. The newly described rfng is expressed in adaxial cells, tectum, rhombomere boundaries, and formed somites, but the expression of mfng is only detectable by reverse transcription-polymerase chain reaction and not by whole-mount in situ hybridization (WISH) during early embryonic development; later, it is expressed in the sensory patches of the ear. In mib mutants, where Notch signaling is defective and rhombomere boundaries fail to form, the rfng expression in hindbrain is almost completely lost. None of the three zebrafish fringe genes is detectably expressed in the posterior presomitic mesoderm, suggesting that, in contrast with chick and mouse, the somitogenesis oscillator in this tissue in the zebrafish does not depend on Fringe activity.
Collapse
Affiliation(s)
- Xuehui Qiu
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | | | | | | | | |
Collapse
|
176
|
Force A, Shashikant C, Stadler P, Amemiya CT. Comparative Genomics, cis-Regulatory Elements, and Gene Duplication. Methods Cell Biol 2004; 77:545-61. [PMID: 15602931 DOI: 10.1016/s0091-679x(04)77029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Allan Force
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington 98101, USA
| | | | | | | |
Collapse
|
177
|
Picard DJ, Schulte PM. Variation in gene expression in response to stress in two populations of Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:205-16. [PMID: 14720606 DOI: 10.1016/s1095-6433(03)00292-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We used differential display PCR to identify hepatic genes responsive to handling stress and genes that differ in expression between populations of a fish, Fundulus heteroclitus, from different thermal environments. Despite substantial inter-individual variation, we cloned 20 putatively stress-regulated bands from Northern fish, 10 of which had high similarity to genes of known function. We selected five of these genes for further analysis based on their known roles in the stress response. Three of these genes (glucokinase, serine-threonine kinase 10 and cRAF) were confirmed as stress-responsive using real-time PCR. These genes increased in expression in response to a 7-day chronic stress protocol in fish from the Southern population of F. heteroclitus, but did not change significantly in fish from the Northern population. These three genes also differed in expression between populations in control fish, suggesting a link between the response to chronic stress and inter-population differences in gene expression in unstressed laboratory-acclimated fish. Two genes that did not respond to stress (glycogen synthase kinase and warm acclimation-related protein (WAP)) also differed between populations. Expression of WAP was eight-fold higher in Southern than in Northern fish, consistent with a previously suggested role for this gene in thermal acclimation or adaptation in fish.
Collapse
Affiliation(s)
- Daniel J Picard
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
178
|
Abstract
The zebrafish has emerged over the past decade as a major model system for the study of development due to its invertebrate-like advantages coupled with its vertebrate biology. These features also make it a potentially valuable organism for gerontological research. The main advantages of zebrafish include its economical husbandry, small yet accessible size, high reproductive capacity, genetic tractability, and a large and growing biological database. Although zebrafish life span is longer than rodents, it shares the feasibility of large-scale mutational analysis with the extremely short-lived invertebrate models. This review compares zebrafish with the more widely used model organisms used for aging research, including yeast, worms, flies, mice, and humans.
Collapse
Affiliation(s)
- Glenn S Gerhard
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA.
| |
Collapse
|
179
|
Gammill LS, Bronner-Fraser M. Neural crest specification: migrating into genomics. Nat Rev Neurosci 2003; 4:795-805. [PMID: 14523379 DOI: 10.1038/nrn1219] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laura S Gammill
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
180
|
Pichler FB, Laurenson S, Williams LC, Dodd A, Copp BR, Love DR. Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 2003; 21:879-83. [PMID: 12894204 DOI: 10.1038/nbt852] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The zebrafish (Danio rerio) provides an excellent model for studying vertebrate development and human disease because of its ex utero, optically transparent embryogenesis and amenability to in vivo manipulation. The rapid embryonic developmental cycle, large clutch sizes and ease of maintenance at large numbers also add to the appeal of this species. Considerable genomic data has recently become publicly available that is aiding the construction of zebrafish microarrays, thus permitting global gene expression analysis. The zebrafish is also suitable for chemical genomics, in part as a result of the permeability of its embryos to small molecules and consequent avoidance of external confounding maternal effects. Finally, there is increasing characterization and analysis of zebrafish models of human disease. Thus, the zebrafish offers a high-quality, high-throughput bioassay tool for determining the biological effect of small molecules as well as for dissecting biological pathways.
Collapse
Affiliation(s)
- Franz B Pichler
- Molecular Genetics and Development Group, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
181
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447285 DOI: 10.1002/cfg.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|