151
|
N,N'-Diarylurea Derivatives (CTPPU) Inhibited NSCLC Cell Growth and Induced Cell Cycle Arrest through Akt/GSK-3β/c-Myc Signaling Pathway. Int J Mol Sci 2023; 24:ijms24021357. [PMID: 36674871 PMCID: PMC9866857 DOI: 10.3390/ijms24021357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is one of the most common malignancies worldwide. Non-small-cell lung cancer (NSCLC) accounts for more than 80% of lung cancers, shows chemotherapy resistance, metastasis, and relapse. The phosphatidylinositol-3 kinase (PI3K)/Akt pathway has been implicated in the carcinogenesis and disease progression of NSCLC, suggesting that it may be a promising therapeutic target for cancer therapy. Although phenylurea derivatives have been reported as potent multiple kinase inhibitors, novel unsymmetrical N,N'-diarylurea derivatives targeting the PI3K/Akt pathway in NSCLC cells remain unknown. METHODS N,N'-substituted phenylurea derivatives CTPPU and CT-(4-OH)-PU were investigated for their anticancer proliferative activity against three NSCLC cell lines (H460, A549, and H292) by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, colony formation, Hoechst33342/PI staining assays, and apoptosis analysis. The protein expressions of Akt pathway-related proteins in response to CTPPU or CT-(4-OH)-PU were detected by Western blot analysis. The Kyoto Encyclopedia of Genes and Genomes mapper was used to identify the possible signaling pathways in NSCLC treated with CTPPU. The cell cycle was analyzed by flow cytometry. Molecular docking was used to investigate the possible binding interaction of CTPPU with Akt, the mammalian target of rapamycin complex 2 (mTORC2), and PI3Ks. Immunofluorescence and Western blot analysis were used to validate our prediction. RESULTS The cytotoxicity of CTPPU was two-fold higher than that of CT-(4-OH)-PU for all NSCLC cell lines. Similarly, the non-cytotoxic concentration of CTPPU (25 µM) dramatically inhibited the colony formation of NSCLC cells, whereas its relative analog CT-(4-OH)-PU had no effect. Protein analysis revealed that Akt and its downstream effectors, namely, phosphorylated glycogen synthase kinase (GSK)-3β (Ser9), β-catenin, and c-Myc, were reduced in response to CTPPU treatment, which suggested the targeting of Akt-dependent pathway, whereas CT-(4-OH)-PU had no effect on such cell growth regulatory signals. CTPPU induced G1/S cell cycle arrest in lung cancer cells. Immunofluorescence revealed that CTPPU decreased p-Akt and total Akt protein levels, which implied the effect of the compound on protein activity and stability. Next, we utilized in silico molecular docking analysis to reveal the potential molecular targets of CTPPU, and the results showed that the compound could specifically bind to the allosteric pocket of Akt and three sites of mTORC2 (catalytic site, A-site, and I-site), with a binding affinity greater than that of reference compounds. The compound cannot bind to PI3K, an upstream regulator of the Akt pathway. The effect of CTPPU on PI3K and Akt was confirmed. This finding indicated that the compound could decrease p-Akt but caused no effect on p-PI3K. CONCLUSIONS The results indicate that CTPPU significantly inhibits NSCLC cell proliferation by inducing G1/S cell cycle arrest via the Akt/GSK-3β/c-Myc signaling pathway. Molecular docking revealed that CTPPU could interact with Akt and mTORC2 molecules with a high binding affinity. These data indicate that CTPPU is a potential novel alternative therapeutic approach for NSCLC.
Collapse
|
152
|
Stulpinas A, Sereika M, Vitkeviciene A, Imbrasaite A, Krestnikova N, Kalvelyte AV. Crosstalk between protein kinases AKT and ERK1/2 in human lung tumor-derived cell models. Front Oncol 2023; 12:1045521. [PMID: 36686779 PMCID: PMC9848735 DOI: 10.3389/fonc.2022.1045521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
There is no doubt that cell signaling manipulation is a key strategy for anticancer therapy. Furthermore, cell state determines drug response. Thus, establishing the relationship between cell state and therapeutic sensitivity is essential for the development of cancer therapies. In the era of personalized medicine, the use of patient-derived ex vivo cell models is a promising approach in the translation of key research findings into clinics. Here, we were focused on the non-oncogene dependencies of cell resistance to anticancer treatments. Signaling-related mechanisms of response to inhibitors of MEK/ERK and PI3K/AKT pathways (regulators of key cellular functions) were investigated using a panel of patients' lung tumor-derived cell lines with various stemness- and EMT-related markers, varying degrees of ERK1/2 and AKT phosphorylation, and response to anticancer treatment. The study of interactions between kinases was the goal of our research. Although MEK/ERK and PI3K/AKT interactions are thought to be cell line-specific, where oncogenic mutations have a decisive role, we demonstrated negative feedback loops between MEK/ERK and PI3K/AKT signaling pathways in all cell lines studied, regardless of genotype and phenotype differences. Our work showed that various and distinct inhibitors of ERK signaling - selumetinib, trametinib, and SCH772984 - increased AKT phosphorylation, and conversely, inhibitors of AKT - capivasertib, idelalisib, and AKT inhibitor VIII - increased ERK phosphorylation in both control and cisplatin-treated cells. Interaction between kinases, however, was dependent on cellular state. The feedback between ERK and AKT was attenuated by the focal adhesion kinase inhibitor PF573228, and in cells grown in suspension, showing the possible role of extracellular contacts in the regulation of crosstalk between kinases. Moreover, studies have shown that the interplay between MEK/ERK and PI3K/AKT signaling pathways may be dependent on the strength of the chemotherapeutic stimulus. The study highlights the importance of spatial location of the cells and the strength of the treatment during anticancer therapy.
Collapse
|
153
|
Congur I, Koni E, Onat OE, Tokcaer Keskin Z. Meta-analysis of commonly mutated genes in leptomeningeal carcinomatosis. PeerJ 2023; 11:e15250. [PMID: 37096065 PMCID: PMC10122459 DOI: 10.7717/peerj.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Background Leptomeningeal carcinomatosis (LMC) is a rare type of cancer that settles at the meninges through metastasis of non-small cell lung cancer (NSCLC), breast cancer and melanoma. The molecular mechanism underlying LMC is not known, therefore molecular studies investigating the development of LMC are needed. Here, we aimed to identify commonly mutated genes in LMC caused by NSCLC, breast cancer, and melanoma using an in-slico approach and their interactions using integrated bioinformatic approaches/tools in this meta-analysis. Methods We conducted a meta-analysis using information from 16 studies that included different sequencing techniques of patients with LMC caused by three different primary cancers: breast cancer, NSCLC, and melanoma. All studies that assessed mutation information from patients with LMC were searched in PubMed, from their inception to February, 16 2022. Studies that performed NGS on LMC patients with NSCLC, breast cancer, or melanoma were included, while studies that did not apply NGS to CSF samples, did not provide information on altered genes, were reviews, editorials, or conference abstracts, or whose main goal was the detection of malignancies were all excluded. We identified commonly mutated genes in all three types of cancer. Next, we constructed a protein-protein interaction network, then performed pathway enrichment analysis. We searched National Institutes of Health (NIH) and Drug-Gene Interaction Database (DGIdb) to find candidate drugs. Results We found that TP53, PTEN, PIK3CA, IL7R, and KMT2D genes were commonly mutated genes in all three types of cancer via our meta-analysis that consisted out of 16 studies. Our pathway enrichment analysis showed that all five genes were primarily associated with regulation of cell communication and signaling, and cell proliferation. Other enriched pathways included regulation of apoptotic processes of leukocytes and fibroblasts, macroautophagy and growth. According to our drug search we found candidate drugs; Everolimus, Bevacizumab and Temozolomide, which interact with these five genes. Conclusion In conclusion, a total of 96 mutated genes in LMC were investigated via meta-analysis. Our findings suggested vital roles of TP53, PTEN, PIK3CA, KMT2D, and IL7R, which can provide insight into the molecular basis of LMC development and paving the door to the development of new targeted medicine and will encourage molecular biologists to seek biological evidence.
Collapse
Affiliation(s)
- Irem Congur
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ekin Koni
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Onur Emre Onat
- Department of Genome Studies, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Molecular Biology, Institute of Life Sciences and Biotechnology, Bezmialem Foundation University, Istanbul, Turkey
| | - Zeynep Tokcaer Keskin
- Department of Molecular and Translational Biomedicine, Institute of Natural and Applied Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| |
Collapse
|
154
|
Chen J, Wu F, Hou E, Zeng J, Li F, Gao H. Exosomal microRNA Therapy for Non-Small-Cell Lung Cancer. Technol Cancer Res Treat 2023; 22:15330338231210731. [PMID: 37936417 PMCID: PMC10631355 DOI: 10.1177/15330338231210731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
With the progress of molecular diagnosis research on non-small cell lung cancer (NSCLC) cells, four identified categories of microRNAs have been found to be related to disease diagnosis, diagnosis of treatment resistance, prediction of prognosis, and drugs for treatment. To date, nine target mRNA/signal pathways have been confirmed for microRNA drug therapy both in vitro and in vivo. When microRNA drugs enter blood vessels, they target the tumor site and play a similar role to that of targeted drugs. However, whether they will produce serious off-target effects remains unknown, and further clinical research is needed. This review provides the first summary of microRNA therapy for NSCLC.
Collapse
Affiliation(s)
- Jibing Chen
- Jinan University, Guangzhou, Guangdong, China
- Fuda Cancer Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fasheng Wu
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jianying Zeng
- Jinan University, Guangzhou, Guangdong, China
- Fuda Cancer Hospital Affiliated to Jinan University, Guangzhou, Guangdong, China
| | - Fujun Li
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
155
|
Antika L, Meilawati L, Dewi R, Tasfiyati A, Septama A. Scopoletin: Anticancer potential and mechanism of action. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.367685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
156
|
Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 2023; 59:19-30. [PMID: 36790693 DOI: 10.1007/s11626-023-00749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths in the world. Radiation is widely used for the treatment of lung cancer. However, radioresistance and toxicity limit its effectiveness. Ginsenoside Rg3 (Rg3) is a positive monomer extracted from ginseng and has been shown to the anti-cancer ability on many tumors. The aim of the present study was to ascertain whether Rg3 is able to enhance the radiosensitivity of lung cancer cells and investigate the underlying mechanisms. The effect of Rg3 on cell proliferation was examined by Cell Counting Kit-8 (CCK-8) and radiosensitivity was measured by colony formation assay. Flow cytometry, transwell, and wound healing assay were used to determine apoptosis, cell cycle, and metastasis. Western blot was used to detect the main protein levels of the PI3K/AKT signaling pathway. We found that Rg3 inhibited cell proliferation, promoted apoptosis, and suppressed migration and invasion in radio-induced lung cancer cells. In addition, Rg3 increased the proportion of G2/M phase cells and inhibited the formation of cell colonies. Moreover, Rg3 decreased the expression levels of PI3K, p-AKT, and PDK1 in radio-induced cells. These findings indicate that Rg3 may be able to enhance the radiosensitivity in lung cancer cells by the PI3K/AKT signaling pathway. These results demonstrate the therapeutic potential of Rg3 as a radiosensitizer for lung cancer.
Collapse
|
157
|
Wu X, Zhang H, Jiang G, Peng M, Li C, Lu J, Jiang S, Yang X, Jiang Y. Exosome-transmitted S100A4 induces immunosuppression and non-small cell lung cancer development by activating STAT3. Clin Exp Immunol 2022; 210:309-320. [PMID: 36370151 PMCID: PMC9985167 DOI: 10.1093/cei/uxac102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the primary reason of tumor morbidity and mortality worldwide. We aimed to study the transfer process of S100A4 between cells and whether it affected NSCLC development by affecting STAT3 expression. First, S100A4 expression in NSCLC cells was measured. The exosomes in MRC-5, A549, and H1299 cells were isolated and identified. We constructed si-S100A4 and si-PD-L1 to transfect A549 cells and oe-S100A4 to transfect H1299 cells, and tested the transfection efficiency. Cell function experiments were performed to assess cell proliferation, clone number, apoptosis, cell cycle, migration, and invasion abilities. In addition, ChIP was applied to determine the targeting relationship between S100A4 and STAT3. Next, we explored NSCLC cell-derived exosomes role in NSCLC progress by transmitting S100A4. Finally, we verified the function of exosome-transmitted S100A4 in NSCLC in vivo. High expression of S100A4 was secreted by exosomes. After knocking down S100A4, cell proliferation ability was decreased, clones number was decreased, apoptosis was increased, G1 phase was increased, S phase was repressed, and migration and invasion abilities were also decreased. ChIP validated STAT3 and PD-L1 interaction. After knocking down S100A4, PD-L1 expression was decreased, while ov-STAT3 reversed the effect of S100A4 on PD-L1 expression. Meanwhile, S100A4 inhibited T-cell immune activity by activating STAT3. In addition, knockdown of PD-L1 inhibited cell proliferation, migration, and invasion. NSCLC cell-derived exosomes promoted cancer progression by transmitting S100A4 to activate STAT3 pathway. Finally, in vivo experiments further verified that exosome-transmitted S100A4 promoted NSCLC progression. Exosome-transmitted S100A4 induces immunosuppression and the development of NSCLC by activating STAT3.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Minlian Peng
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Cheng Li
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jiaxin Lu
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Shiyin Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Changsha, China
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
158
|
Qiu W, Ren M, Wang C, Fu Y, Liu Y. The clinicopathological and prognostic significance of mTOR and p-mTOR expression in patients with non-small cell lung cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e32340. [PMID: 36595789 PMCID: PMC9794261 DOI: 10.1097/md.0000000000032340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) has a crucial role in carcinogenesis, angiogenesis, cellular proliferation, and metastasis; however, its significance in non-small cell lung cancer (NSCLC) remains contentious. Consequently, this study aims to assess the clinicopathological and prognostic importance of mTOR/p-mTOR expression in NSCLC. METHODS Literature retrieval was undertaken by searching English databases PubMed, EMBASE, Web of Science, and Cochrane Library as well as Chinese databases CNKI, Wan Fang, and VIP for full-text publications that satisfied our eligibility criteria up to November 2021. STATA 12.0 was used to conduct statistical analysis (STATA Corporation, College Station, TX). RESULTS This meta-analysis includes a total of 4683 patients from 28 primary publications. mTOR/p-mTOR expression was associated with sex (OR = 0.608, 95% CI: 0.442-0.836), lymph node metastasis (OR = 2.084, 95% CI: 1.437-3.182), and CEA (OR = 1.584, 95% CI: 1.135-2.209), but not with age, histological type, depth of tumor invasion, distant metastasis, TNM stage, differentiation degree, tumor size, or smoking. In addition, the expression of mTOR/p-mTOR is related to shorter overall survival in NSCLC patients (HR = 1.415, 95% CI: 1.051-1.905). CONCLUSION Positive mTOR/p-mTOR expression was substantially correlated with unfavorable conditions on the sex, lymph node metastases, and CEA levels. mTOR/p-mTOR may indicate a bad prognosis for NSCLC. The current findings must be confirmed and changed by other high-quality research employing a multivariate analysis on bigger sample size.
Collapse
Affiliation(s)
- Weiwei Qiu
- Department of Laboratory Medicine, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Meiying Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Cuifeng Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuhua Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
159
|
Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, Wang L. Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. J Med Chem 2022; 65:16033-16061. [PMID: 36503229 DOI: 10.1021/acs.jmedchem.2c01070] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is one of the most important intracellular pathways involved in cell proliferation, growth, differentiation, and survival. Therefore, this route is a prospective biological target for treating various human diseases, such as tumors, neurodegenerative diseases, pulmonary fibrosis, and diabetes. An increasing number of clinical studies emphasize the necessity of developing novel molecules targeting the PI3K/AKT/mTOR pathway. This review focuses on recent advances in ATP-competitive inhibitors, allosteric inhibitors, covalent inhibitors, and proteolysis-targeting chimeras against the PI3K/AKT/mTOR pathway, and highlights possible solutions for overcoming the toxicities and acquired drug resistance of currently available drugs. We also provide recommendations for the future design and development of promising drugs targeting this pathway.
Collapse
Affiliation(s)
- Jindi Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liye Chen
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ji-Quan Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Room 109, Building C, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
160
|
Wu Y, Jing H, Zhang J. MicroRNA-340 and MicroRNA-450b-5p: Plasma Biomarkers for Detection of Non-Small-Cell Lung Cancer. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:8024700. [PMID: 36531335 PMCID: PMC9750763 DOI: 10.1155/2022/8024700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 12/12/2022]
Abstract
Objective Since the inefficient cancer management is caused by inaccurate diagnoses, there is a need for minimally invasive method to improve the diagnostic accuracy of non-small-cell lung (NSCLC). This study intended to detect miR-340 and miR-450b-5p levels in plasma from NSCLC patients and to assess the potential values for the prediction of tumor development and prognosis. Methods A GSE64591 dataset included 200 samples (100 early-stage NSCLC patients and 100 noncancer control) aimed to identify a panel of circulating miRNAs in plasma. The levels of miR-340 and miR-450b-5p in plasma from NSCLC patients (n = 120) and healthy controls (n = 120) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic value of plasma miR-340 and miR-450b-5p were performed using receiver operating curves (ROC), Kaplan-Meier method, and Cox regression analysis. Results miR-450b-5p and miR-340 in plasma was significant difference between early-stage NSCLC patients and noncancer control by searching the GSE64591 dataset. When compared with the healthy controls, the plasma miR-340 was decreased in the NSCLC patients, but the plasma miR-450b-5p was increased. NSCLC patients could be distinguished accurately from healthy controls by the circulating miR-340 and miR-450b-5p with the AUC of 0.740 (95% CI: 0.677~0.804) and of 0.808 (95% CI: 0.754~0.861), respectively. With these two markers, the specificity and sensitivity were 78.33% and 77.5% with the AUC of 0.862. Patients with advanced T, N, and TNM stage demonstrated lower plasma miR-340 and higher plasma miR-450b-5p, and both of them were correlated with the prognosis of NSCLC patients. Furthermore, plasma miR-340 was also negatively correlated with tumor grade. All clinicopathological variables significantly associated to prognosis were T stage, N stage, TNM stage, tumor grade, and plasma levels of miR-340 and miR-450b-5p in univariate Cox regression analysis. The variables that retained their significance in the multivariate model were T stage, plasma miR-340, and plasma miR-450b-5p. Conclusion The plasma levels of miR-340 combined with miR-450b-5p potentially define core biomarker signatures for improving the accuracy of NSCLC diagnosis. Moreover, circulating miR-340 and miR-450b-5p are independent biomarkers of survival in nonmetastatic NSCLC patients.
Collapse
Affiliation(s)
- Yanmin Wu
- Pulmonary and Critical Care Medicine, Xuzhou Central Hospital, China
| | - Hui Jing
- Pulmonary and Critical Care Medicine, Xuzhou Central Hospital, China
| | - Jinghao Zhang
- Pulmonary and Critical Care Medicine, Xuzhou Central Hospital, China
| |
Collapse
|
161
|
Pourghasem N, Ghorbanzadeh S, Nejatizadeh AA. The Regulatory Mechanisms and Clinical Significance of Lnc SNHG4 in Cancer. Curr Pharm Des 2022; 28:3563-3571. [PMID: 36411578 DOI: 10.2174/1381612829666221121161950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND LncRNAs have been reported to be involved in a variety of biological functions, including gene expression, cell growth, and differentiation. They may also serve as oncogenes or tumor suppressor genes in diseases. lncRNAs that can encode small nucleolar RNAs (snoRNAs) have been named small nucleolar RNA host genes (SNHGs). OBJECTIVE In this review article, we readily review the regulatory mechanisms and clinical significance of Lnc SNHG4 in cancer. METHODS We systematically investigated databases, like Scopus, PubMed, Embase, Google Scholar, and Cochrane Library database for all research articles, and have provided an overview regarding the biological functions and mechanisms of lncRNA SNHG4 in tumorigenesis. RESULTS Compared to neighboring normal tissues, SNHG4 is significantly dysregulated in various tumor tissues. SNHG4 upregulation is mainly associated with advanced tumor stage, tumor size, TNM stage, and decreased overall survival. In addition, aberrant SNHG4 expression promotes cell proliferation, metastasis, migration, and invasion of cancer cells. CONCLUSION SNHG4 may serve as a new therapeutic target and prognostic biomarker in patients with cancer.
Collapse
Affiliation(s)
- Navid Pourghasem
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdol Azim Nejatizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
162
|
Zhang W, Tian W, Wang Y, Jin X, Guo H, Wang Y, Tang Y, Yao X. Explore the mechanism and substance basis of Mahuang FuziXixin Decoction for the treatment of lung cancer based on network pharmacology and molecular docking. Comput Biol Med 2022; 151:106293. [PMID: 36399857 DOI: 10.1016/j.compbiomed.2022.106293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mahuang FuziXixin Decoction (MFXD) is a classic Chinese herbal formula for the treatment of lung cancer. However, its mechanisms of action are unclear. In present study, network pharmacology and molecular docking technology were employed to investigate the molecular mechanism and substance basis of MFXD for the treatment of lung cancer. METHOD The active compounds and corresponding targets of MFXD were collected through the TCMSP database. OMIM and GeneCards databases were applied to filter the targets of lung cancer. The protein-protein interaction (PPI) were acquired through the STRING platform. Metascape and the Bioinformatics server were used for the visualization of GO and KEGG analysis. The tissue and organ distribution of targets was evaluated based on the BioGPS database. The binding affinity between potential targets and active compounds was evaluated by molecular docking. RESULT A total of 51 active compounds and 118 targets of MFXD were collected. The target with a higher degree were identified through the PPI network, namely AR, RELA, NCOA1, EGFR, FOS, CCND1, ESR1 and HSP90AA1. GO and KEGG analysis suggested that MFXD treatment of lung cancer mainly involves hormone and response to inorganic substance, transcription regular complex, transcription factor binding and Pathways in cancer. Experimental validation showed that MFXD treatment inhibited the proliferation of NSCLC cells through downregulation the expression of EGFR, HIF1A, NCOA1 and RELA. Moreover, molecular docking revealed that hydrogen bond and hydrophobic interaction contribute to the binding of the compounds to targets. CONCLUSION Our findings comprehensively elucidated the actives, potential targets, and molecular mechanisms of MFXD against lung cancer, providing a promising strategy for the scientific basis and therapeutic mechanism of traditional Chinese medicine prescriptions for the treatment of the disease.
Collapse
Affiliation(s)
- Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi, China
| | - Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi, China.
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Ecomic Zone, Shaanxi, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| |
Collapse
|
163
|
Hung MC, Wang WP, Chi YH. AKT phosphorylation as a predictive biomarker for PI3K/mTOR dual inhibition-induced proteolytic cleavage of mTOR companion proteins in small cell lung cancer. Cell Biosci 2022; 12:122. [PMID: 35918763 PMCID: PMC9344631 DOI: 10.1186/s13578-022-00862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Constitutive activation of PI3K signaling has been well recognized in a subset of small cell lung cancer (SCLC), the cancer type which has the most aggressive clinical course amongst pulmonary tumors. Whereas cancers that acquire a mutation/copy gain in PIK3CA or loss of PTEN have been implicated in enhanced sensitivity to inhibitors targeting the PI3K/AKT/mTOR pathway, the complexities of the pathway and corresponding feedback loops hamper clear predictions as to the response of tumors presenting these genomic features. Methods The correlation between the expression profile of proteins involved in the PI3K/AKT/mTOR signaling and cell viability in response to treatment with small molecule inhibitors targeting isoform-specific PI3Ks, AKT, and mTOR was assessed in 13 SCLC cancer cell lines. Athymic nude mice were used to determine the effect of PI3K/mTOR dual inhibition on the growth of xenograft SCLC tumors in vivo. The activation of caspase signaling and proteolytic cleavages of mTOR companion proteins were assessed using recombinant caspases assays and Western blot analyses. Results Our results indicate that the sensitivity of these SCLC cell lines to GSK2126458, a dual PI3K/mTOR inhibitor, is positively correlated with the expression levels of phosphorylated AKT (p-AKT) at Thr308 and Ser473. Inhibition of pan-class I PI3Ks or PI3K/mTOR dual inhibition was shown to induce proteolytic cleavage of RICTOR and RPTOR, which were respectively dependent on Caspase-6 and Caspase-3. A combination of a clinically approved PI3Kα-selective inhibitor and an mTORC1 inhibitor was shown to have synergistic effects in inducing the death of SCLC cells with high p-AKT. We observed no clear correlation between PTEN levels and the survival of SCLCs in response to PI3K/mTOR dual inhibition; however, PTEN depletion was shown to increase the susceptibility of low p-AKT SCLC cells to dual PI3K/mTOR inhibitor-induced cell death as well as the proteolytic cleavage of RICTOR. Conclusions These results suggest the level of p-AKT can be a companion diagnostic biomarker for the treatment of SCLC involving the combinational use of clinically approved isoform-specific PI3K and mTOR inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00862-y.
Collapse
|
164
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
165
|
Venugopala KN. Targeting the DNA Damage Response Machinery for Lung Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:ph15121475. [PMID: 36558926 PMCID: PMC9781725 DOI: 10.3390/ph15121475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer is considered the most commonly diagnosed cancer and one of the leading causes of death globally. Despite the responses from small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) patients to conventional chemo- and radiotherapies, the current outcomes are not satisfactory. Recently, novel advances in DNA sequencing technologies have started to take off which have provided promising tools for studying different tumors for systematic mutation discovery. To date, a limited number of DDR inhibition trials have been conducted for the treatment of SCLC and NSCLC patients. However, strategies to test different DDR inhibitor combinations or to target multiple pathways are yet to be explored. With the various biomarkers that have either been recently discovered or are the subject of ongoing investigations, it is hoped that future trials would be designed to allow for studying targeted treatments in a biomarker-enriched population, which is defensible for the improvement of prognosis for SCLC and NSCLC patients. This review article sheds light on the different DNA repair pathways and some of the inhibitors targeting the proteins involved in the DNA damage response (DDR) machinery, such as ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase (DNA-PK), and poly-ADP-ribose polymerase (PARP). In addition, the current status of DDR inhibitors in clinical settings and future perspectives are discussed.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
166
|
Singharajkomron N, Yodsurang V, Seephan S, Kungsukool S, Petchjorm S, Maneeganjanasing N, Promboon W, Dangwilailuck W, Pongrakhananon V. Evaluating the Expression and Prognostic Value of Genes Encoding Microtubule-Associated Proteins in Lung Cancer. Int J Mol Sci 2022; 23:ijms232314724. [PMID: 36499051 PMCID: PMC9738182 DOI: 10.3390/ijms232314724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Microtubule-associated proteins (MAPs) play essential roles in cancer development. This study aimed to identify transcriptomic biomarkers among MAP genes for the diagnosis and prognosis of lung cancer by analyzing differential gene expressions and correlations with tumor progression. Gene expression data of patients with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) from the Cancer Genome Atlas (TCGA) database were used to identify differentially expressed MAP genes (DEMGs). Their prognostic value was evaluated by Kaplan-Meier and Cox regression analysis. Moreover, the relationships between alterations in lung cancer hallmark genes and the expression levels of DEMGs were investigated. The candidate biomarker genes were validated using three independent datasets from the Gene Expression Omnibus (GEO) database and by quantitative reverse transcription polymerase chain reaction (qRT-PCR) on clinical samples. A total of 88 DEMGs were identified from TCGA data. The 20 that showed the highest differential expression were subjected to association analysis with hallmark genes. Genetic alterations in TP53, EGFR, PTEN, NTRK1, and PIK3CA correlated with the expression of most of these DEMGs. Of these, six candidates-NUF2, KIF4A, KIF18B, DLGAP5, NEK2, and LRRK2-were significantly differentially expressed and correlated with the overall survival (OS) of the patients. The mRNA expression profiles of these candidates were consistently verified using three GEO datasets and qRT-PCR on patient lung tissues. The expression levels of NUF2, KIF4A, KIF18B, DLGAP5, NEK2, and LRRK2 can serve as diagnostic biomarkers for LUAD and LUSC. Moreover, the first five can serve as prognostic biomarkers for LUAD, while LRRK2 can be a prognostic biomarker for LUSC. Our research describes the novel role and potential application of MAP-encoding genes in clinical practice.
Collapse
Affiliation(s)
- Natsaranyatron Singharajkomron
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varalee Yodsurang
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy, Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthasinee Seephan
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sakkarin Kungsukool
- Respiratory Medicine Department, Central Chest Institute of Thailand, Muang District, Nonthaburi 11000, Thailand
| | - Supinda Petchjorm
- Division of Anatomical Pathology, Central Chest Institute of Thailand, Muang District, Nonthaburi 11000, Thailand
| | - Nara Maneeganjanasing
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warunyu Promboon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wadsana Dangwilailuck
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy, Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8325; Fax: +662-218-8340
| |
Collapse
|
167
|
[Research Progress on the Pathogenesis of Lung Cancer Associated with
Idiopathic Pulmonary Fibrosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:811-818. [PMID: 36419395 PMCID: PMC9720683 DOI: 10.3779/j.issn.1009-3419.2022.101.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease (ILD) of unknown causes, which is characterized by pulmonary fibrosis. The median survival period after diagnosis is about 2-4 years. In recent years, the incidence rate of lung cancer associated with IPF (IPF-LC) is increasing, and the prognosis is worse than that of IPF alone. Pulmonary fibrosis may be closely associated with the occurrence and development of lung cancer. Although the pathogenesis of IPF-LC is still unclear, the current research shows that there are similarities between the pathogenesis of these two diseases at molecular and cellular levels. At present, the research on the cellular and molecular mechanism of lung cancer related to pulmonary fibrosis has become the focus of researchers' attention. This article reviews the related literature, focusing on the latest status of the cellular and molecular mechanisms and treatment of IPF-LC, hoping to help clinicians understand IPF-LC.
.
Collapse
|
168
|
WDR72 Enhances the Stemness of Lung Cancer Cells by Activating the AKT/HIF-1α Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5059588. [PMID: 36385964 PMCID: PMC9663245 DOI: 10.1155/2022/5059588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Objectives Lung cancer is a common malignant tumor with high morbidity and mortality rate. Lung cancer stem cells are crucial in the development of lung cancer. In this study, we investigate WD repeat-containing protein 72 (WDR72) on lung cancer cell stemness and explore its underlying mechanism. Methods WDR72 expression was investigated in lung cancer tissues and lung cancer stem cells by Western blot and RT-qPCR. The stemness of lung cancer stem cells was verified by the sphere-forming experiment and the abundance of stem cell markers. For the purpose of determining lung cancer stem cell growth, metastasis, and apoptosis, the CCK-8 assay, colony formation, Transwell migration, and flow cytometry were carried out. The ability of tumorigenesis in vivo was explored by xenograft tumor mouse models. Results Up-regulation of WDR72 was found in lung cancer tissues and lung cancer stem cells. WDR72 overexpression significantly activated the AKT/HIF-1α signaling pathway. Application of PI3K/AKT pathway inhibitor LY29004 was able to counteract the impacts of WDR72 upregulation on genes related to stemness, growth, migration, and apoptosis in lung cancer stem cells. The sphere formation of lung cancer stem cells was significantly diminished after inhibiting the AKT/HIF-1α pathway. The promotion of WDR72 overexpression on lung cancer stem cell proliferation and metastasis was also eliminated by LY29004 treatment. Conclusion WDR72 activates the AKT/HIF-1α signaling pathway to enhance the stemness of lung cancer stem cells and promote the growth and metastasis of lung cancer.
Collapse
|
169
|
Mancini A, Colapietro A, Cristiano L, Rossetti A, Mattei V, Gravina GL, Perez-Montoyo H, Yeste-Velasco M, Alfon J, Domenech C, Festuccia C. Anticancer effects of ABTL0812, a clinical stage drug inducer of autophagy-mediated cancer cell death, in glioblastoma models. Front Oncol 2022; 12:943064. [PMID: 36408162 PMCID: PMC9668006 DOI: 10.3389/fonc.2022.943064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. Current standard of care treatments have very limited efficacy, being the patients´ overall survival 14 months and the 2-year survival rate less than 10%. Therefore, the treatment of GBM is an urgent unmet clinical need. METHODS The aim of this study was to investigate in vitro and in vivo the potential of ABTL0812, an oral anticancer compound currently in phase II clinical stage, as a novel therapy for GBM. RESULTS We showed that ABTL0812 inhibits cell proliferation in a wide panel of GBM cell lines and patient-derived glioblastoma stem cells (GSCs) with half maximal inhibitory concentrations (IC50s) ranging from 15.2 µM to 46.9 µM. Additionally, ABTL0812 decreased GSCs neurosphere formation. GBM cells aggressiveness is associated with a trans-differentiation process towards a less differentiated phenotype known as proneural to mesenchymal transition (PMT). ABTL0812 was shown to revert PMT and induce cell differentiation to a less malignant phenotype in GBM cell lines and GSCs, and consequently reduced cell invasion. As previously shown in other cancer types, we demonstrated that the molecular mechanism of action of ABTL0812 in glioblastoma involves the inhibition of Akt/mTORC1 axis by overexpression of TRIB3, and the activation of endoplasmic reticulum (ER) stress/unfolded protein response (UPR). Both actions converge to induce autophagy-mediated cell death. ABTL0812 anticancer efficacy was studied in vivo using subcutaneous and orthotopic intra-brain xenograft tumor models. We demonstrated that ABTL0812 impairs tumor growth and increases disease-free survival and overall survival of mice. Furthermore, the histological analysis of tumors indicated that ABTL0812 decreases angiogenesis. Finally, we investigated the combination of ABTL0812 with the standard of care treatments for GBM radiotherapy and temozolomide in an orthotopic model, detecting that ABTL0812 potentiates the efficacy of both treatments and that the strongest effect is obtained with the triple combination of ABTL0812+radiotherapy+temozolomide. CONCLUSIONS Overall, the present study demonstrated the anticancer efficacy of ABTL0812 as single agent and in combination with the GBM standard of care treatments in models of glioblastoma and supports the clinical investigation of ABTL0812 as a potential novel therapy for this aggressive brain tumor type.
Collapse
Affiliation(s)
- Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Life Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy,Division of Radiation Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L’Aquila, Italy
| | - Héctor Perez-Montoyo
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Yeste-Velasco
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose Alfon
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Carles Domenech
- R&D Department, Ability Pharmaceuticals, Parc Tecnològic del Vallès, Cerdanyola del Vallès, Barcelona, Spain
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy,*Correspondence: Claudio Festuccia,
| |
Collapse
|
170
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
171
|
Jee J, Lebow ES, Yeh R, Das JP, Namakydoust A, Paik PK, Chaft JE, Jayakumaran G, Rose Brannon A, Benayed R, Zehir A, Donoghue M, Schultz N, Chakravarty D, Kundra R, Madupuri R, Murciano-Goroff YR, Tu HY, Xu CR, Martinez A, Wilhelm C, Galle J, Daly B, Yu HA, Offin M, Hellmann MD, Lito P, Arbour KC, Zauderer MG, Kris MG, Ng KK, Eng J, Preeshagul I, Victoria Lai W, Fiore JJ, Iqbal A, Molena D, Rocco G, Park BJ, Lim LP, Li M, Tong-Li C, De Silva M, Chan DL, Diakos CI, Itchins M, Clarke S, Pavlakis N, Lee A, Rekhtman N, Chang J, Travis WD, Riely GJ, Solit DB, Gonen M, Rusch VW, Rimner A, Gomez D, Drilon A, Scher HI, Shah SP, Berger MF, Arcila ME, Ladanyi M, Levine RL, Shen R, Razavi P, Reis-Filho JS, Jones DR, Rudin CM, Isbell JM, Li BT. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer. Nat Med 2022; 28:2353-2363. [PMID: 36357680 PMCID: PMC10338177 DOI: 10.1038/s41591-022-02047-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Circulating tumor DNA (ctDNA) sequencing guides therapy decisions but has been studied mostly in small cohorts without sufficient follow-up to determine its influence on overall survival. We prospectively followed an international cohort of 1,127 patients with non-small-cell lung cancer and ctDNA-guided therapy. ctDNA detection was associated with shorter survival (hazard ratio (HR), 2.05; 95% confidence interval (CI), 1.74-2.42; P < 0.001) independently of clinicopathologic features and metabolic tumor volume. Among the 722 (64%) patients with detectable ctDNA, 255 (23%) matched to targeted therapy by ctDNA sequencing had longer survival than those not treated with targeted therapy (HR, 0.63; 95% CI, 0.52-0.76; P < 0.001). Genomic alterations in ctDNA not detected by time-matched tissue sequencing were found in 25% of the patients. These ctDNA-only alterations disproportionately featured subclonal drivers of resistance, including RICTOR and PIK3CA alterations, and were associated with short survival. Minimally invasive ctDNA profiling can identify heterogeneous drivers not captured in tissue sequencing and expand community access to life-prolonging therapy.
Collapse
Affiliation(s)
- Justin Jee
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily S Lebow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Randy Yeh
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeeban P Das
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Paul K Paik
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jamie E Chaft
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - A Rose Brannon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Donoghue
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Hai-Yan Tu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chong-Rui Xu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Clare Wilhelm
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesse Galle
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bobby Daly
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Helena A Yu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matthew D Hellmann
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Piro Lito
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kathryn C Arbour
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Marjorie G Zauderer
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mark G Kris
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kenneth K Ng
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Juliana Eng
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Isabel Preeshagul
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - W Victoria Lai
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John J Fiore
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Afsheen Iqbal
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Daniela Molena
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gaetano Rocco
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Bernard J Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lee P Lim
- Resolution Bioscience, Agilent Technologies, Kirkland, WA, USA
| | - Mark Li
- Resolution Bioscience, Agilent Technologies, Kirkland, WA, USA
| | - Candace Tong-Li
- GenesisCare, University of Sydney, Sydney, Australia
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - David L Chan
- GenesisCare, University of Sydney, Sydney, Australia
| | | | | | | | - Nick Pavlakis
- GenesisCare, University of Sydney, Sydney, Australia
| | - Adrian Lee
- GenesisCare, University of Sydney, Sydney, Australia
| | - Natasha Rekhtman
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jason Chang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - William D Travis
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory J Riely
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mithat Gonen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Valerie W Rusch
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Andreas Rimner
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Daniel Gomez
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Howard I Scher
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sohrab P Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Maria E Arcila
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Marc Ladanyi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ronglai Shen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jorge S Reis-Filho
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David R Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - James M Isbell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Bob T Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
172
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
173
|
An W, Yu F. Silencing of CPSF7 inhibits the proliferation, migration, and invasion of lung adenocarcinoma cells by blocking the AKT/mTOR signaling pathway. Open Med (Wars) 2022; 17:1655-1663. [PMID: 36349192 PMCID: PMC9587529 DOI: 10.1515/med-2022-0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Cleavage and polyadenylation specific factor 7 (CPSF7) is an important participator in the cleavage and polyadenylation of pre-mRNAs. This study aims to uncover the function and underlying mechanism of CPSF7 in lung adenocarcinoma (LUAD). CPSF7 expression in LUAD cells was measured using real time-quantitative polymerase chain reaction and Western blotting. Our results showed that CPSF7 expression was upregulated in LUAD cell lines (A549, H1299, and HCC827). To explore the function of CPSF7 on LUAD, CPSF7 was silenced by the si-CPSF7 transfection and overexpressed by the oe-CPSF7 transfection in A549 cells. Cell proliferation was measured using cell counting kit-8 and colony formation assays. Cell migration and invasion were measured by wound healing and Transwell assays, respectively. Our data revealed that CPSF7 silencing inhibited the viability, colony formation, migration, and invasion of LUAD cells. On the contrary, CPSF7 overexpression enhanced the malignant characteristics of LUAD cells. Additionally, expression of AKT/mTOR pathway-related proteins was detected using Western blotting. CPSF7 silencing blocked the AKT/mTOR signaling pathway. The intervention of SC79 (an activator of the AKT/mTOR pathway) weakened the antitumor effects of CPSF7 silencing in LUAD cells. Silencing of CPSF7 inhibits the malignant characteristics of LUAD cells by blocking the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Weishao An
- Department of Respiratory, Xiaoshan First People’s Hospital, Hangzhou, 311200, China
| | - Fang Yu
- Department of Respiratory, Xiaoshan First People’s Hospital, No. 199 Shixin South Road, Hangzhou, 311200, China
| |
Collapse
|
174
|
Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin Med J (Engl) 2022; 135:2405-2416. [PMID: 36385099 PMCID: PMC9945195 DOI: 10.1097/cm9.0000000000002426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
ABSTRACT Tumor-associated macrophages (TAMs) are an essential proportion of tumor-infiltrating immune cells in the tumor microenvironment (TME) and have immunosuppressive functions. The high plasticity and corresponding phenotypic transformation of TAMs facilitate oncogenesis and progression, and suppress antineoplastic responses. Due to the uncontrolled proliferation of tumor cells, metabolism homeostasis is regulated, leading to a series of alterations in the metabolite profiles in the TME, which have a commensurate influence on immune cells. Metabolic reprogramming of the TME has a profound impact on the polarization and function of TAMs, and can alter their metabolic profiles. TAMs undergo a series of metabolic reprogramming processes, involving glucose, lipid, and amino acid metabolism, and other metabolic pathways, which terminally promote the development of the immunosuppressive phenotype. TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs. Evidence reveals that the efficacy of immune checkpoint inhibitors is improved when combined with therapeutic strategies targeting metabolism-related pathways. In-depth research on metabolic reprogramming and potential therapeutic targets provides more options for anti-tumor treatment and creates new directions for the development of new immunotherapy methods. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppressive phenotypes to provide a perspective for potential metabolic therapies.
Collapse
Affiliation(s)
- Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
175
|
[Research Progress on Pathogenic Mechanism and Potential Therapeutic Drugs of
Idiopathic Pulmonary Fibrosis Complicated with Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:756-763. [PMID: 36167462 PMCID: PMC9619346 DOI: 10.3779/j.issn.1009-3419.2022.101.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrous interstitial lung disease of unknown etiology. IPF is also considered to be among the independent risk factors for lung cancer, increasing the risk of lung cancer by 7% and 20%. The incidence of IPF complicated with lung cancer, especially non-small cell lung cancer (NSCLC), is increasing gradually, but there is no consensus on unified management and treatment. IPF and NSCLC have similar pathological features. Both appear in the surrounding area of the lung. In pathients with IPF complicated with NSCLC, NSCLC often develops from the honeycomb region of IPF, but the mechanism of NSCLC induced by IPF remains unclear. In addition, IPF and NSCLC have similar genetic, molecular and cellular processes and common signal transduction pathways. The universal signal pathways targeting IPF and NSCLC will become potential therapeutic drugs for IPF complicated with NSCLC. This article examines the main molecular mechanisms involved in IPF and NSCLC and the research progress of drugs under development targeting these signal pathways.
.
Collapse
|
176
|
Zhang X, Wang K, Dai H, Cai J, Liu Y, Yin C, Wu J, Li X, Wu G, Lu A, Liu Q, Guan D. Quantification of promoting efficiency and reducing toxicity of Traditional Chinese Medicine: A case study of the combination of Tripterygium wilfordii hook. f. and Lysimachia christinae hance in the treatment of lung cancer. Front Pharmacol 2022; 13:1018273. [PMID: 36339610 PMCID: PMC9631451 DOI: 10.3389/fphar.2022.1018273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) usually acts in the form of compound prescriptions in the treatment of complex diseases. The herbs contained in each prescription have the dual nature of efficiency and toxicity due to their complex chemical component, and the principle of prescription is usually to increase efficiency and reduce toxicity. At present, the studies on prescriptions have mainly focused on the consideration of the material basis and possible mechanism of the action mode, but the quantitative research on the compatibility rule of increasing efficiency and reducing toxicity is still the tip of the iceberg. With the extensive application of computational pharmacology technology in the research of TCM prescriptions, it is possible to quantify the mechanism of synergism and toxicity reduction of the TCM formula. Currently, there are some classic drug pairs commonly used to treat complex diseases, such as Tripterygium wilfordii Hook. f. with Lysimachia christinae Hance for lung cancer, Aconitum carmichaelii Debeaux with Glycyrrhiza uralensis Fisch. in the treatment of coronary heart disease, but there is a lack of systematic quantitative analysis model and strategy to quantitatively study the compatibility rule and potential mechanism of synergism and toxicity reduction. To address this issue, we designed an integrated model which integrates matrix decomposition and shortest path propagation, taking into account both the crosstalk of the effective network and the propagation characteristics. With the integrated model strategy, we can quantitatively detect the possible mechanisms of synergism and attenuation of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance in the treatment of lung cancer. The results showed the compatibility of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance could increase the efficacy and decrease the toxicity of lung cancer treatment through MAPK pathway and PD-1 checkpoint pathway in lung cancer.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Kexin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hui Dai
- Hospital Office, Ganzhou People’s Hospital, Ganzhou, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Guiyong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
177
|
Qi J, Yin J, Ding G. A Connexin-Based Biomarker Model Applicable for Prognosis and Immune Landscape Assessment in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9261339. [PMID: 36276289 PMCID: PMC9581606 DOI: 10.1155/2022/9261339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022]
Abstract
Purpose Gap junction protein (Connexin) family is the basic unit of cellular connection, whose multiple members were recently demonstrated to be associated with tumor progression. However, the expression pattern and prognostic value of connexin in lung adenocarcinoma (LUAD) have not yet been elucidated. Methods Consensus cluster algorithm was first applied to determine a novel molecular subtype in LUAD based on connexin genes. The differentially expressed genes (DEGs) between two clusters were obtained to include in Cox regression analyses for the model construction. To examine the predictive capacity of the signature, survival curves and ROC plots were conducted. We implemented GSEA method to uncover the function effects enriched in the risk model. Moreover, the tumor immune microenvironment in LUAD was depicted by CIBERSORT and ssGSEA methods. Results The integrated LUAD cohort (TCGA-LUAD and GSE68465) were clustered into two subtypes (C1 = 217 and C2 = 296) based on 21 connexins and the clinical outcomes of LUAD cases in the two clusters showed remarkable discrepancy. Next, we collected 222 DEGs among two subclusters to build a prognostic model using stepwise Cox analyses. Our proposed model consisted of six genes that accurately forecast patient outcomes and differentiate patient risk. GSEA indicated that high-risk group was involved in tumor relevant pathways were activated in high-risk group, such as PI3K/AKT signaling, TGF-β pathway, and p53 pathway. Furthermore, LUAD cases with high-risk presented higher infiltration level of M2 macrophage and neutrophil, suggesting high-risk group were more likely to generate an immunosuppressive status. Conclusion Our data identified a novel connexin-based subcluster in LUAD and further created a risk signature which plays a central part in prognosis assessment and clinical potency.
Collapse
Affiliation(s)
- Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yin
- Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
178
|
Su Y, Ding J, Yang F, He C, Xu Y, Zhu X, Zhou H, Li H. The regulatory role of PDE4B in the progression of inflammatory function study. Front Pharmacol 2022; 13:982130. [PMID: 36278172 PMCID: PMC9582262 DOI: 10.3389/fphar.2022.982130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammation is a response of the body to external stimuli (eg. chemical irritants, bacteria, viruses, etc.), and when the stimuli are persistent, they tend to trigger chronic inflammation. The presence of chronic inflammation is an important component of the tumor microenvironment produced by a variety of inflammatory cells (eg. macrophages, neutrophils, leukocytes, etc.). The relationship between chronic inflammation and cancer development has been widely accepted, and chronic inflammation has been associated with the development of many cancers, including chronic bronchitis and lung cancer, cystitis inducing bladder cancer. Moreover, chronic colorectitis is more likely to develop into colorectal cancer. Therefore, the specific relationship and cellular mechanisms between inflammation and cancer are a hot topic of research. Recent studies have identified phosphodiesterase 4B (PDE4B), a member of the phosphodiesterase (PDEs) protein family, as a major cyclic AMP (cAMP) metabolizing enzyme in inflammatory cells, and the therapeutic role of PDE4B as chronic inflammation, cancer. In this review, we will present the tumors associated with chronic inflammation, and PDE4B potential clinical application.
Collapse
Affiliation(s)
- Yue Su
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Jiaxiang Ding
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Public Foundation, Bengbu Medical University, Bengbu, China
| | - Fan Yang
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuixia He
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yuanyuan Xu
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Xingyu Zhu
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Huan Zhou
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- School of Public Foundation, Bengbu Medical University, Bengbu, China
- School of Pharmacy, Bengbu Medical University, Bengbu, China
- *Correspondence: Hongtao Li, ; Huan Zhou,
| | - Hongtao Li
- First-in-Human Clinical Trial Wards in the National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- *Correspondence: Hongtao Li, ; Huan Zhou,
| |
Collapse
|
179
|
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, Fan S. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer 2022; 13:3434-3443. [PMID: 36313041 PMCID: PMC9608206 DOI: 10.7150/jca.77619] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of immune checkpoints has been well known to provide novel clues for cancer treatments. Immunotherapy against the programmed cell death protein-1 (PD-1) /programmed death-ligand-1 (PD-L1), one of the most popular auxiliary treatments in recent years, has been applied in various tumor treatments, including non-small cell lung cancer (NSCLC). However, inevitable issues such as side effects and drug resistance emerge following the use of immune checkpoint inhibitors. The PI3K/AKT/mTOR pathway may participate in the regulation of PD-L1 expression. Abnormal PI3K/AKT/mTOR pathway activation results in increased PD-L1 protein translation, whereas PD-L1 overexpression can activate the PI3K/AKT/mTOR pathway inversely. Via downstream proteins, including 4E-BP1, STAT3, NF-κB, c-MYC, and AMPK in aberrant energy status, the PI3K/AKT/mTOR pathway can regulate PD-L1 post-transcription and translation. Besides, the regulation of the PI3K pathway by the PD-1/PD-L1 axis involves both tumor cells and the tumor immune microenvironment. Inhibitors targeting the PD-1/PD-L1 have been successfully applied in the treatment of gastrointestinal cancer and breast cancer. Meanwhile, drug resistance from alternative pathway activation also evidently affects clinical progress. To achieve a better therapeutic effect and quality of survival, the combination of multiple treatment modalities presents great research value. Here we reviewed the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in the progression and treatment of NSCLC and summarized its clinical implications. The intracellular interactions between PD-1/PD-L1 and the PI3K/AKT/mTOR pathway indicate that PD-1/PD-L1 inhibitors have a wide range of potential applications. And we presented the mechanism for combining therapy with monoclonal antibody PD-1/PD-L1 and PI3K/AKT/mTOR inhibitors in this review, to broaden the therapies for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Songqing Fan
- ✉ Corresponding author: Songqing Fan, Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. E-mail address:
| |
Collapse
|
180
|
Brockmueller A, Mueller AL, Kunnumakkara AB, Aggarwal BB, Shakibaei M. Multifunctionality of Calebin A in inflammation, chronic diseases and cancer. Front Oncol 2022; 12:962066. [PMID: 36185259 PMCID: PMC9523377 DOI: 10.3389/fonc.2022.962066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases including cancer have high case numbers as well as mortality rates. The efficient treatment of chronic diseases is a major ongoing medical challenge worldwide, because of their complexity and many inflammatory pathways such as JNK, p38/MAPK, MEK/ERK, JAK/STAT3, PI3K and NF-κB among others being implicated in their pathogenesis. Together with the versatility of chronic disease classical mono-target therapies are often insufficient. Therefore, the anti-inflammatory as well as anti-cancer capacities of polyphenols are currently investigated to complement and improve the effect of classical anti-inflammatory drugs, chemotherapeutic agents or to overcome drug resistance of cancer cells. Currently, research on Calebin A, a polyphenolic component of turmeric (Curcuma longa), is becoming of growing interest with regard to novel treatment strategies and has already been shown health-promoting as well as anti-tumor properties, including anti-oxidative and anti-inflammatory effects, in diverse cancer cells. Within this review, we describe already known anti-inflammatory activities of Calebin A via modulation of NF-κB and its associated signaling pathways, linked with TNF-α, TNF-β and COX-2 and further summarize Calebin A's tumor-inhibiting properties that are known up to date such as reduction of cancer cell viability, proliferation as well as metastasis. We also shed light on possible future prospects of Calebin A as an anti-cancer agent.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | | | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
181
|
Castellano GM, Zeeshan S, Garbuzenko OB, Sabaawy HE, Malhotra J, Minko T, Pine SR. Inhibition of Mtorc1/2 and DNA-PK via CC-115 Synergizes with Carboplatin and Paclitaxel in Lung Squamous Cell Carcinoma. Mol Cancer Ther 2022; 21:1381-1392. [PMID: 35732569 PMCID: PMC9452486 DOI: 10.1158/1535-7163.mct-22-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Only a small percentage (<1%) of patients with late-stage lung squamous cell carcinoma (LUSC) are eligible for targeted therapy. Because PI3K/AKT/mTOR signaling, particularly Phosphatidylinositol 3-kinase CA (PIK3CA), is dysregulated in two-thirds of LUSC, and DNA damage response pathways are enriched in LUSC, we tested whether CC-115, a dual mTORC1/2 and DNA-PK inhibitor, sensitizes LUSC to chemotherapy. We demonstrate that CC-115 synergizes with carboplatin in six of 14 NSCLC cell lines, primarily PIK3CA-mutant LUSC. Synergy was more common in cell lines that had decreased basal levels of activated AKT and DNA-PK, evidenced by reduced P-S473-AKT, P-Th308-AKT, and P-S2056-DNA-PKcs. CC-115 sensitized LUSC to carboplatin by inhibiting chemotherapy-induced AKT activation and maintaining apoptosis, particularly in PIK3CA-mutant cells lacking wild-type (WT) TP53. In addition, pathway analysis revealed that enrichments in the IFNα and IFNγ pathways were significantly associated with synergy. In multiple LUSC patient-derived xenograft and cell line tumor models, CC-115 plus platinum-based doublet chemotherapy significantly inhibited tumor growth and increased overall survival as compared with either treatment alone at clinically relevant dosing schedules. IHC and immunoblot analysis of CC-115-treated tumors demonstrated decreased P-Th308-AKT, P-S473-AKT, P-S235/236-S6, and P-S2056-DNA-PKcs, showing direct pharmacodynamic evidence of inhibited PI3K/AKT/mTOR signaling cascades. Because PI3K pathway and DNA-PK inhibitors have shown toxicity in clinical trials, we assessed toxicity by examining weight and numerous organs in PRKDC-WT mice, which demonstrated that the combination treatment does not exacerbate the clinically accepted side effects of standard-of-care chemotherapy. This preclinical study provides strong support for the further investigation of CC-115 plus chemotherapy in LUSC.
Collapse
Affiliation(s)
- Gina M. Castellano
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Olga B. Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hatim E. Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Medicine, Division of Medical Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Medicine, Division of Medical Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Tamara Minko
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sharon R. Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Rutgers Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Medicine, Division of Medical Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
182
|
Hu Q, Tian T, Leng Y, Tang Y, Chen S, Lv Y, Liang J, Liu Y, Liu T, Shen L, Dong X. The O-glycosylating enzyme GALNT2 acts as an oncogenic driver in non-small cell lung cancer. Cell Mol Biol Lett 2022; 27:71. [PMID: 36058918 PMCID: PMC9440866 DOI: 10.1186/s11658-022-00378-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-Acetylgalactosaminyltransferases (GALNTs), the enzymes that initiate mucin-type O-glycosylation, are closely associated with tumor occurrence and progression. However, a comprehensive analysis of GALNTs in non-small cell lung cancer (NSCLC) is lacking. METHODS The expression profiles and prognostic values of the GALNT family members in NSCLC were analyzed using publicly available databases. Gain- and loss-of-function experiments were applied to assess the biological function of GALNT2 in NSCLC. High-throughput sequencing and bioinformatics approaches were employed to uncover the regulatory mechanism of GALNT2. RESULTS Among the family members of GALNTs, only GALNT2 was frequently overexpressed in NSCLC tissues and was positively correlated with poor prognosis. In vitro assays showed that GALNT2 knockdown repressed NSCLC cell proliferation, migration, and invasion, but induced apoptosis and cell cycle arrest. Correspondently, GALNT2 overexpression exerted the opposite effects. In vivo experiments demonstrated that knockdown of GALNT2 restrained tumor formation in nude mice. Mechanistic investigations revealed that GALNT2 modified the O-glycosylation of ITGA5 and affected the activation of the PI3K/Akt and MAPK/ERK pathways. Further studies showed that miR-30d was a negative regulator of GALNT2. CONCLUSIONS These findings suggest that GALNT2 is an oncogene in NSCLC and has the potential as a target for NSCLC therapy.
Collapse
Affiliation(s)
- Qing Hu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei, China.,Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Tian Tian
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yahui Leng
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yuanhui Tang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei, China
| | - Shuang Chen
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yueyao Lv
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jingyin Liang
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Yanni Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Tianhui Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei, China. .,Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei, China. .,Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
183
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
184
|
Cao R, Zhang Z, Tian C, Sheng W, Dong Q, Dong M. Down-regulation of MSMO1 promotes the development and progression of pancreatic cancer. J Cancer 2022; 13:3013-3021. [PMID: 36046654 PMCID: PMC9414025 DOI: 10.7150/jca.73112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Methylsterol monooxygenase 1 (MSMO1), as a completely unique tumor biomarker, plays a vital role in the malignant progression of various cancer. Until now, the potential function and pathway of MSMO1 in the development of pancreatic cancer (PC) has not been explored yet, to our knowledge. Methods: We systematically explored the detail function of MSMO1 in Epithelial-mesenchymal transition (EMT) and cell proliferation of PC in vitro and in vivo. Results: MSMO1 expression was much lower in PC tissues than that in paired normal pancreas. MSMO1 positive expression was negatively associated with T stage, lymph node metastasis and vascular permeation of PC patients. Meanwhile, positive MSMO1 expression indicated a significantly better prognosis and an independent favorable prognostic factor. MSMO1 silencing promoted cell invasion and migration via activating EMT and PI3K-AKT-mTOR pathway [p-PI3K (Tyr458), p-AKT (Ser473) and p-mTOR (Ser2448)] in Capan-2, Panc-1 and SW1990 cells. In vivo, subcutaneous tumor size was enhanced by MSMO1 silencing following with the consistent change of EMT and PI3K/AKT signaling shown in vitro. The motivation of EMT and PI3K-AKT-mTOR pathway was also demonstrated in MSMO1 silencing mouse PANC02 cells. Conclusion: Down-regulation of MSMO1 in PC was associated with advanced progression and poor prognosis of PC patients. MSMO1 acts as a tumor suppressor via inhibiting the aggressive malignant biology of PC accompanying with regulating EMT and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Rongxian Cao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, China.,Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Zhiqiang Zhang
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Chen Tian
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, China
| | - WeiWei Sheng
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, China
| | - Qi Dong
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, China
| |
Collapse
|
185
|
Yang Y, Wu JJ, Xia J, Wan Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Can aloin develop to medicines or healthcare products? Biomed Pharmacother 2022; 153:113421. [DOI: 10.1016/j.biopha.2022.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
|
186
|
Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350:377-388. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Bone metastases are common in malignant tumors and the effect of conventional treatment is limited. How to effectively inhibit tumor bone metastasis and deliver the drug to the bone has become an urgent issue to be solved. While bone targeting drug delivery systems have obvious advantages in the treatment of bone tumors. The research on bone-targeted anti-tumor therapy has made significant progress in recent years. We introduced the related tumor pathways of bone metastases. The tumor microenvironment plays an important role in metastatic bone tumors. We introduce a drug-loading systems based on different environment-responsive nanocomposites for anti-tumor and anti-metastatic research. According to the process of bone metastases and the structure of bone tissue, we summarized the information on bone-targeting molecules. Bisphosphate has become the first choice of bone-targeted drug delivery carrier because of its affinity with hydroxyapatite in bone. Therefore, we sought to summarize the bone-targeting molecule of bisphosphate to identify the modification effect on bone-targeting. And this paper discusses the relationship between bisphosphate bone targeting molecular structure and drug delivery carriers, to provide some new ideas for the research and development of bone-targeting drug delivery carriers. Targeted therapy will make a more outstanding contribution to the treatment of tumors.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China; State Key Laboratory Breeding Base-Hebei Province, Key Laboratory of Molecular Chemistry for Drug, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongkang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Zhongqiu Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Jun Yao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| | - Shiguo Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| |
Collapse
|
187
|
Xu C, Zhang L, He H, Liu X, Pei X, Ma T, Ma B, Lin W, Zhang B. Sheep tail fat inhibits the proliferation of non-small-cell lung cancer cells in vitro and in vivo. Front Pharmacol 2022; 13:917513. [PMID: 36034869 PMCID: PMC9403308 DOI: 10.3389/fphar.2022.917513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that numerous edible oils may function as adjuvant dietary therapies to treat cancer. We previously reported that the odd-chain saturated fatty acid (OCSFA), heptadecanoic acid (C17:0), profoundly inhibits non-small-cell lung cancer (NSCLC) cell proliferation. However, the antitumor potential of edible lipids rich in C17:0 remains unclear. Here, we determined that sheep tail fat (STF) is a dietary lipid rich in C17:0 and exhibited the greatest inhibitory effect against three NSCLC cell lines (A549, PC-9, and PC-9/GR) among common dietary lipids. Cell migration experiments demonstrated that STF could significantly inhibit the wound healing capacity of three NSCLC cell lines by promoting the generation of reactive oxygen species (ROS) and subsequent cell death. Mechanistic studies showed that STF suppressed NSCLC cell growth by downregulating the Akt/S6K signaling pathway. Furthermore, administration of STF reduced tumor growth, weight, and expression of the proliferative marker Ki-67 in nude mice bearing A549 xenografts. Collectively, our data show that STF has antitumor activity against NSCLC, implying that dietary intake of C17:0-rich STF may be a potential adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Changzhi Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lanlan Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huimin He
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiaoyi Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xinxin Pei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Tengfei Ma
- Anhui Tianxiang Grain and Oil Food Co., Ltd., Fuyang, Anhui, China
- Fuyang Tianxiang Food Technology Co., Ltd., Fuyang, Anhui, China
| | - Bingbing Ma
- Anhui Tianxiang Grain and Oil Food Co., Ltd., Fuyang, Anhui, China
- Fuyang Tianxiang Food Technology Co., Ltd., Fuyang, Anhui, China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
- *Correspondence: Wenchu Lin, ; Buchang Zhang,
| | - Buchang Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- *Correspondence: Wenchu Lin, ; Buchang Zhang,
| |
Collapse
|
188
|
Tan YR, Lu Y. Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology. Mol Divers 2022:10.1007/s11030-022-10501-w. [PMID: 35933455 DOI: 10.1007/s11030-022-10501-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. Rhubarb, a traditional Chinese medicine, has been widely used in the treatment of inflammatory and autoimmune diseases. This study aimed to investigate the possible mechanism of the rhubarb herb in the treatment of NSCLC by means of network pharmacology and molecular docking and to provide a theoretical basis for experiments and clinical application of traditional Chinese medicine for treating lung cancer. The main active chemical components and targets of rhubarb were screened through Swiss Target Prediction, TargetNet, and Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The protein-protein interaction (PPI) network was built via an in-depth exploration of the relationships between the proteins. The enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to predict the potential roles in the pathogenesis of NSCLC via the R package cluster Profiler. Potential targets and active ingredients associated with anti-tumor effects of rhubarb were screened by reverse molecular docking. By searching databases and literature, a total of 295 targets were found for the 21 active ingredients in rhubarb. There were 68 common target genes associated with NSCLC, of which 9 are derived from FDA-approved drugs. GO Gene Set Enrichment Analysis (GSEA) explored up to 1103 biological processes, 62 molecular functions, and 18 cellular components. KEGG GSEA explored 65 basic pathways, and 71 disease pathways. Four key targets (JUN, EGFR, BCL2, and JAK2) were screened through the protein-protein interaction network, target-pathway network, and FDA drug-target network. Molecular docking results showed that these key targets had relatively strong binding activities with rhubarb's active ingredients. The present study explored the potential pharmacological mechanisms of rhubarb on NSCLC, promoting the clinical application of rhubarb in treating NSCLC, and providing references for advanced research.
Collapse
Affiliation(s)
- Ye-Ru Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yu Lu
- The First Affiliated Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
189
|
Sun J, Zhao X, Jiang H, Yang T, Li D, Yang X, Jia A, Ma Y, Qian Z. ARHGAP9 inhibits colorectal cancer cell proliferation, invasion and EMT via targeting PI3K/AKT/mTOR signaling pathway. Tissue Cell 2022; 77:101817. [DOI: 10.1016/j.tice.2022.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
|
190
|
Qin Y, Wang CJ, Ye HL, Ye GX, Wang S, Pan DB, Wang J, Shen HJ, Xu SQ. WWP2 overexpression inhibits the antitumor effects of doxorubicin in hepatocellular carcinoma. Cell Biol Int 2022; 46:1682-1692. [PMID: 35880837 DOI: 10.1002/cbin.11856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common liver cancer that accounts for 90% of cases. Doxorubicin exhibits a broad spectrum of antitumor activity and is one of the most active agents in HCC. WW domain-containing protein 2 (WWP2) is highly expressed in HCC tissues and activates protein kinase B (AKT) signaling pathway to enhance tumor metastasis. However, the role of WWP2 in the glycolysis and antitumor effects of doxorubicin and the epigenetic alterations of WWP2 in HCC remain to be elucidated. The levels of WWP2 and N6-methyladenosine methyltransferase-like 3 (METTL3) in clinical samples and cells were investigated. WWP2 were silenced or overexpressed to study the role of WWP2 in regulating cell proliferation, colony formation, and glycolysis. RNA immunoprecipitation was performed to test m6 A levels. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot were used to measure mRNA and protein, respectively. WWP2 silencing inhibits cell proliferation, colony formation, and glycolysis, while WWP2 overexpression has the inverse effects via the AKT signaling pathway. Silencing WWP2 enhances doxorubicin's antitumor effect, while WWP2 overexpression suppresses doxorubicin's antitumor effect. Data also support that METTL3 mediates WWP2 m6A modification, and m6A reader, IGF2BP2, binds to the methylated WWP2 to promote the stability of WWP2, leading to upregulation of WWP2. METTL3 mediates WWP2 m6A modification, which can be recognized and bound by IGF2BP2 to increase the stability of WWP2, leading to WWP2 overexpression which inhibits the antitumor effects of doxorubicin through METTL3/WWP2/AKT/glycolysis axis.
Collapse
Affiliation(s)
- Yong Qin
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - Chao-Jun Wang
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - Hai-Lin Ye
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - Guan-Xiong Ye
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - Shi Wang
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - De-Biao Pan
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - Jun Wang
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - He-Juan Shen
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| | - Sheng-Qian Xu
- Department of Hepatobiliary Surgery, People Hospital of LiShui, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of LiShui University, Lishui, China
| |
Collapse
|
191
|
Halder D, Das S, R A, R S J. Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: a computational study. RSC Adv 2022; 12:21452-21467. [PMID: 35975074 PMCID: PMC9346375 DOI: 10.1039/d2ra03451d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is an obscure disease whose incidence is increasing worldwide day by day, and PI3Kα is one of the major targets for cell proliferation due to the mutation. Since PI3K is a class of kinase enzyme, and no in silico research has been performed on the inhibition of PI3Kα mutation by small molecules, we have selected the protein kinase inhibitor database and performed the energy minimization process by ligand preparation. The key objective of this research is to identify the potential hits from the protein kinase inhibitor library and further to perform lead optimization by a molecular docking and dynamics approach. And so, the protein was selected (PDB ID: 4JPS), having a unique inhibitor and a specific binding pocket with amino acid residue for the inhibition of kinase activity. After the docking protocol validation, structure-based virtual screening by molecular docking and MMGBSA binding affinity calculations were performed and a total of ten hits were reported. Detailed analysis of the best scoring molecules was performed with ADMET analysis, induced fit docking (IFD) and molecular dynamics (MD) simulation. Two molecules - 6943 and 34100 - were considered lead molecules and showed better results than the PI3K inhibitor Copanlisib in the docking assessment, ADMET analysis, and molecular dynamics simulation. Furthermore, the synthetic accessibility of the two compounds - 6943 and 34100 - was investigated using SwissADME, and the two lead molecules are easier to synthesize than the PI3K inhibitor Copanlisib. Computational drug discovery tools were used for identification of kinase inhibitors as anti-cancer agents for NSCLC in the present research.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal Karnataka-576104 India +919742351531
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal Karnataka-576104 India +919742351531
| | - Aiswarya R
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal Karnataka-576104 India +919742351531
| | - Jeyaprakash R S
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal Karnataka-576104 India +919742351531
| |
Collapse
|
192
|
Wu Z, Yu X, Zhang S, He Y, Guo W. The role of PI3K/AKT signaling pathway in gallbladder carcinoma. Am J Transl Res 2022; 14:4426-4442. [PMID: 35958463 PMCID: PMC9360899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The prognosis of gallbladder carcinoma (GBC) is poor, with a less than 5% five-year survival rate. Identifying the mechanisms underlying GBC occurrence and advancement is necessary to improve GBC patient prognosis and survival rates. The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (AKT) pathway is involved in cancer deterioration, tumor growth, cell proliferation, and distant metastasis. Studying the impacts of the PI3K/AKT pathway has resulted in the identification of key factors involved in GBC progression that might serve as therapeutic targets, promoting the development of new treatments. METHODS We reviewed recent literature exploring abnormal regulation of the PI3K/AKT pathway in gallbladder cancer, with a focus on abnormal RNA levels, protein level regulation, and drug treatment advances. RESULTS Further investigation of the regulation of small molecules and proteins by the PI3K/AKT pathway might ultimately provide new diagnostic or prognostic markers or cancer treatment targets. Recent studies have focused on RNA and proteins involved in the regulation of the cell cycle or cell movement in cancer progression via PI3K/AKT pathway, the use of anticancer drug combinations, or the anticancer effects of drugs not currently utilized for cancer treatment. CONCLUSIONS We herein review the known available molecules that affect the PI3K/AKT pathway in patients with GBC and the mechanisms of drug action associated with this pathway.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
193
|
Wang C, Shi J, Cai J, Zhang Y, Zheng X, Zhang N. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph. BMC Bioinformatics 2022; 23:277. [PMID: 35831792 PMCID: PMC9281118 DOI: 10.1186/s12859-022-04788-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data. A critical challenge in cancer genomics is identification of a few cancer driver genes whose mutations cause tumor growth. However, the majority of existing computational approaches underuse the co-occurrence mutation information of the individuals, which are deemed to be important in tumorigenesis and tumor progression, resulting in high rate of false positive. Results To make full use of co-mutation information, we present a random walk algorithm referred to as DriverRWH on a weighted gene mutation hypergraph model, using somatic mutation data and molecular interaction network data to prioritize candidate driver genes. Applied to tumor samples of different cancer types from The Cancer Genome Atlas, DriverRWH shows significantly better performance than state-of-art prioritization methods in terms of the area under the curve scores and the cumulative number of known driver genes recovered in top-ranked candidate genes. Besides, DriverRWH discovers several potential drivers, which are enriched in cancer-related pathways. DriverRWH recovers approximately 50% known driver genes in the top 30 ranked candidate genes for more than half of the cancer types. In addition, DriverRWH is also highly robust to perturbations in the mutation data and gene functional network data. Conclusion DriverRWH is effective among various cancer types in prioritizes cancer driver genes and provides considerable improvement over other tools with a better balance of precision and sensitivity. It can be a useful tool for detecting potential driver genes and facilitate targeted cancer therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04788-7.
Collapse
Affiliation(s)
- Chenye Wang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Junhan Shi
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Jiansheng Cai
- Department of Mathematics, Weifang University, Weifang, 261061, Shandong, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, China.
| |
Collapse
|
194
|
Targeting sphingosine kinase 1/2 by a novel dual inhibitor SKI-349 suppresses non-small cell lung cancer cell growth. Cell Death Dis 2022; 13:602. [PMID: 35831279 PMCID: PMC9279331 DOI: 10.1038/s41419-022-05049-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Sphingosine kinase 1 (SphK1) and sphingosine kinase (SphK2) are both important therapeutic targets of non-small cell lung cancer (NSCLC). SKI-349 is a novel, highly efficient and small molecular SphK1/2 dual inhibitor. Here in primary human NSCLC cells and immortalized cell lines, SKI-349 potently inhibited cell proliferation, cell cycle progression, migration and viability. The dual inhibitor induced mitochondrial depolarization and apoptosis activation in NSCLC cells, but it was non-cytotoxic to human lung epithelial cells. SKI-349 inhibited SphK activity and induced ceramide accumulation in primary NSCLC cells, without affecting SphK1/2 expression. SKI-349-induced NSCLC cell death was attenuated by sphingosine-1-phosphate and by the SphK activator K6PC-5, but was potentiated by the short-chain ceramide C6. Moreover, SKI-349 induced Akt-mTOR inactivation, JNK activation, and oxidative injury in primary NSCLC cells. In addition, SKI-349 decreased bromodomain-containing protein 4 (BRD4) expression and downregulated BRD4-dependent genes (Myc, cyclin D1 and Klf4) in primary NSCLC cells. At last, SKI-349 (10 mg/kg) administration inhibited NSCLC xenograft growth in nude mice. Akt-mTOR inhibition, JNK activation, oxidative injury and BRD4 downregulation were detected in SKI-349-treated NSCLC xenograft tissues. Taken together, targeting SphK1/2 by SKI-349 potently inhibits NSCLC cell growth in vitro and in vivo.
Collapse
|
195
|
Koulouris A, Tsagkaris C, Corriero AC, Metro G, Mountzios G. Resistance to TKIs in EGFR-Mutated Non-Small Cell Lung Cancer: From Mechanisms to New Therapeutic Strategies. Cancers (Basel) 2022; 14:3337. [PMID: 35884398 PMCID: PMC9320011 DOI: 10.3390/cancers14143337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) of the epidermal growth factor receptor (EGFR) in advanced mutant Non-Small Cell Lung Cancer (NSCLC) constitutes a therapeutic challenge. This review intends to summarize the existing knowledge about the mechanisms of resistance to TKIs in the context of EGFR mutant NSCLC and discuss its clinical and therapeutic implications. EGFR-dependent and independent molecular pathways have the potential to overcome or circumvent the activity of EGFR-targeted agents including the third-generation TKI, osimertinib, negatively impacting clinical outcomes. CNS metastases occur frequently in patients on EGFR-TKIs, due to the inability of first and second-generation agents to overcome both the BBB and the acquired resistance of cancer cells in the CNS. Newer-generation TKIs, TKIs targeting EGFR-independent resistance mechanisms, bispecific antibodies and antibody-drug conjugates or combinations of TKIs with other TKIs or chemotherapy, immunotherapy and Anti-Vascular Endothelial Growth Factors (anti-VEGFs) are currently in use or under investigation in EGFR mutant NSCLC. Liquid biopsies detecting mutant cell-free DNA (cfDNA) provide a window of opportunity to attack mutant clones before they become clinically apparent. Overall, EGFR TKIs-resistant NSCLC constitutes a multifaceted therapeutic challenge. Mapping its underlying mutational landscape, accelerating the detection of resistance mechanisms and diversifying treatment strategies are essential for the management of the disease.
Collapse
Affiliation(s)
- Andreas Koulouris
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden;
- Faculty of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | - Anna Chiara Corriero
- School of Medicine, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, UK;
| | - Giulio Metro
- Giulio Metro, Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
| | - Giannis Mountzios
- Clinical Trials Unit, Fourth Department of Medical Oncology, Henry Dunant Hospital Center, 11526 Athens, Greece
| |
Collapse
|
196
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
197
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
198
|
Electronic, spectroscopic, molecular docking and molecular dynamics studies of neutral and zwitterionic forms of 3, 4-dihydroxy-l-phenylalanine: A novel lung cancer drug. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
199
|
Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B, Ke B. Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med 2022; 12:e989. [PMID: 35857905 PMCID: PMC9299573 DOI: 10.1002/ctm2.989] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) contributes to overall tumor progression. In the current survey, we explored the ability of microRNA-20a (miR-20a) within these CAF-derived exosomes to influence non-small-cell lung cancer (NSCLC) progression. MATERIALS AND METHODS Normal tissue-associated fibroblasts (NAFs) and CAFs were collected from samples of NSCLC patient tumors and paracancerous lung tissues. Exosomes derived from these cells were then characterized via Western blotting, nanoparticle tracking analyses, and transmission electron microscopy. The expression of miR-20a was assessed via qPCR and fluorescence in situ hybridization (FISH). CCK-8, EdU uptake, and colony formation assessments were used for evaluating tumor proliferation, while Hoechst staining was performed to monitor the in vitro apoptotic death of tumor cells. A model of xenograft tumor established in nude mice was also used to evaluate in vivo tumor responses. RESULTS CAF-derived exosomes exhibited miR-20a upregulation and promoted NSCLC cell proliferation and resistance to cisplatin (DDP). Mechanistically, CAF-derived exosomes were discovered to transmit miR-20a to tumor cells wherein it was able to target PTEN to enhance DDP resistance and proliferation. Associated PTEN downregulation following exosome-derived miR-20a treatment enhanced PI3K/AKT pathway activation. CONCLUSION The achieved outcomes explain that CAFs can release miR-20a-containing exosomes capable of promoting NSCLC progression and chemoresistance, highlighting this pathway as a possible therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Weiliang Zhu
- Department of Cancer CenterZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Yuanyuan Huang
- Department of VIP RegionState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lin Zhuo
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Siyun Wang
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Shaobing Chen
- Department of Traditional Chinese MedicineZhujiang Hospital of Southern Medical UniversityGuangzhouChina
| | - Bei Zhang
- Department of VIP RegionState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bin Ke
- Department of VIP RegionState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
200
|
Chen P, Li X, Yu X, Yang M. Ginsenoside Rg1 Suppresses Non-Small-Cell Lung Cancer via MicroRNA-126-PI3K-AKT-mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1244836. [PMID: 35815288 PMCID: PMC9270109 DOI: 10.1155/2022/1244836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
As one of the most common cause of cancer death in the world, lung cancer causes approximately 1.6 million deaths annually. Among them, NSCLC accounts for approximately 85% of patients in whole lung cancer patients. Ginsenoside Rg1 has been confirmed to play an important role in various diseases including cancer. As one of miRNAs, miR-126 closely involves in pathogenesis of the several types of cancers including colorectal, prostate, bladder and gastric cancer, and so on. Thus, the present study aims to investigate effects of the Ginsenoside Rg1 on NSCLC and underlying mechanism. In the study, two lung cancer cell lines including A549 and H1650 were used. It was found that expression of miR-126 was decreased in PBMC of NSCLC patients compared to healthy control. Expression of miR-126 was decreased in cancer tissue compared to paracancerous tissues in NSCLC patients. Importantly, it was found Ginsenoside Rg1 could inhibit growth of lung cancer cells. miR-126 KD remarkably increased the expression of apoptosis genes including caspase 3 and caspase 9 and decreased cell viability in lung cancer cells including A549 and H1650 cells. Interesting, in silico analysis indicated that miR-126 could target PI3K signaling pathway, which was confirmed by WB assay. KD of PI3KR2 compromised promotion of miR-126 on cell apoptosis. Similarly, it was found that KD of mTOR compromised promotion of miR-126 on cell apoptosis. Inhibition of Ginsenoside Rg1 on growth of lung cancer cells was through miR-126 and mTOR. Thus, the present study confirmed that Ginsenoside Rg1 remarkably inhibit lung cancer, which is through microRNA-126-PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Panfeng Chen
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin 300192, China
| | - Xi Yu
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Min Yang
- Department of Respiratory and Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|