151
|
Moeinian M, Abdolghaffari AH, Nikfar S, Momtaz S, Abdollahi M. Effects of alpha lipoic acid and its derivative "andrographolid-lipoic acid-1" on ulcerative colitis: A systematic review with meta-analysis of animal studies. J Cell Biochem 2018; 120:4766-4782. [PMID: 30362597 DOI: 10.1002/jcb.27807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
We aimed to review and meta-analyze the inflammatory and oxidative factors following alpha lipoic acid (ALA) and its derivative "andrographolid-lipoic acid-1" (AL-1) in ulcerative colitis (UC). ALA plays an important role in scavenging intracellular radicals and inflammatory elements. AL-1 is found in herbal medicines with potent anti-inflammatory properties. Data were collected from the Google Scholar, PubMed, Scopus, Evidence-based medicine/clinical trials, and Cochrane library database until 2017, which finally resulted in 22 animal studies (70 rats and 162 mice). The beneficial effects of ALA or AL-1 on the most important parameters of UC were reviewed; also, studies were considered separately in mice and rats. Administration of ALA and AL-1 significantly reduced the tumor necrosis factor-α level compared with the controls, while data were not noteworthy in the meta-analysis (mean differences = -18.57 [95% CI = -42.65 to 5.51], P = 0.13). In spite of insignificant decrease in meta-analysis outcomes (differences = 6.92 [95% CI = -39.33 to 53.16], P = 0.77), a significant reduction in myeloperoxidase activity was shown following ALA or AL-1 treatment compared with the controls. Despite significant differences in each study, we had to exclude some studies to homogenize data for meta-analyzing as they showed insignificant results. Interleukin 6, cyclooxygenase-2, glutathione, malondialdehyde, superoxide dismutase, histopathological score, macroscopic and microscopic scores, disease activity index, body weight change, and colon length were also reviewed. Most studies have emphasized on significant positive effects of ALA and AL-1. Comprehensive clinical trials are obligatory to determine the precious position of ALA or AL-1 in the management of UC.
Collapse
Affiliation(s)
- Mahsa Moeinian
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shekoufeh Nikfar
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
152
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
153
|
McKay R, Ghodasra M, Schardt J, Quan D, Pottash AE, Shang W, Jay SM, Payne GF, Chang MW, March JC, Bentley WE. A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: Toward applications for Crohn's disease. Bioeng Transl Med 2018; 3:209-221. [PMID: 30377661 PMCID: PMC6195910 DOI: 10.1002/btm2.10113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
For therapies targeting diseases of the gastrointestinal tract, we and others envision probiotic bacteria that synthesize and excrete biotherapeutics at disease sites. Toward this goal, we have engineered commensal E. coli that selectively synthesize and secrete a model biotherapeutic in the presence of nitric oxide (NO), an intestinal biomarker for Crohn's disease (CD). This is accomplished by co‐expressing the pore forming protein TolAIII with the biologic, granulocyte macrophage‐colony stimulating factor (GM‐CSF). We have additionally engineered these bacteria to accumulate at sites of elevated NO by engineering their motility circuits and controlling pseudotaxis. Importantly, because we have focused on in vitro test beds, motility and biotherapeutics production are spatiotemporally characterized. Together, the targeted recognition, synthesis, and biomolecule delivery comprises a “smart” probiotics platform that may have utility in the treatment of CD. Further, this platform could be modified to accommodate other pursuits by swapping the promoter and therapeutic gene to reflect other disease biomarkers and treatments, respectively.
Collapse
Affiliation(s)
- Ryan McKay
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Monil Ghodasra
- Fischell Dept. of Bioengineering University of Maryland College Park MD
| | - John Schardt
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda MD
| | - David Quan
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Alex Eli Pottash
- Fischell Dept. of Bioengineering University of Maryland College Park MD
| | - Wu Shang
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Steven M Jay
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda MD.,Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine Baltimore MD.,Program in Molecular and Cellular Biology University of Maryland College Park MD
| | - Gregory F Payne
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Matthew Wook Chang
- Dept. of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute National University of Singapore Singapore
| | - John C March
- Dept. of Biological and Environmental Engineering Cornell University Ithaca NY
| | - William E Bentley
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| |
Collapse
|
154
|
Oral treatment with Lactobacillus rhamnosus 64 during the early postnatal period improves the health of adult rats with TNBS-induced colitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
155
|
de Souza Costa M, Teles RHG, Dutra YM, Neto JCRM, de Brito TV, de Sousa Nunes Queiroz FF, do Vale DBN, de Souza LKM, Silva IS, dos Reis Barbosa AL, Medeiros JVR, Parizotto NA, de Carvalho Filgueiras M. Photobiomodulation reduces neutrophil migration and oxidative stress in mice with carrageenan-induced peritonitis. Lasers Med Sci 2018; 33:1983-1990. [DOI: 10.1007/s10103-018-2569-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/21/2018] [Indexed: 11/29/2022]
|
156
|
Anti-Inflammatory Effects of Fargesin on Chemically Induced Inflammatory Bowel Disease in Mice. Molecules 2018; 23:molecules23061380. [PMID: 29880739 PMCID: PMC6100621 DOI: 10.3390/molecules23061380] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
Fargesin is a bioactive lignan from Flos Magnoliae, an herb widely used in the treatment of allergic rhinitis, sinusitis, and headache in Asia. We sought to investigate whether fargesin ameliorates experimental inflammatory bowel disease (IBD) in mice. Oral administration of fargesin significantly attenuated the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice by decreasing the inflammatory infiltration and myeloperoxidase (MPO) activity, reducing tumor necrosis factor (TNF)-α secretion, and inhibiting nitric oxide (NO) production in colitis mice. The degradation of inhibitory κBα (IκBα), phosphorylation of p65, and mRNA expression of nuclear factor κB (NF-κB) target genes were inhibited by fargesin treatment in the colon of the colitis mice. In vitro, fargesin blocked the nuclear translocation of p-p65, downregulated the protein levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and dose-dependently inhibited the activity of NF-κB-luciferase in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Taken together, for the first time, the current study demonstrated the anti-inflammatory effects of fargesin on chemically induced IBD might be associated with NF-κB signaling suppression. The findings may contribute to the development of therapies for human IBD by using fargesin or its derivatives.
Collapse
|
157
|
Ma J, Yin G, Lu Z, Xie P, Zhou H, Liu J, Yu L. Casticin prevents DSS induced ulcerative colitis in mice through inhibitions of NF-κB pathway and ROS signaling. Phytother Res 2018; 32:1770-1783. [DOI: 10.1002/ptr.6108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jiamei Ma
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Ganghui Yin
- Department of Spine Surgery; The Third Affiliated Hospital of Southern Medical University; Guangzhou China
| | - Zibin Lu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Pei Xie
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Hongling Zhou
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Junshan Liu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| | - Linzhong Yu
- Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine; Southern Medical University; Guangzhou China
| |
Collapse
|
158
|
Cho J, Kweon HS, Huh SO, Sadra A. Augmented reduction in colonic inflammatory markers of dextran sulfate sodium-induced colitis with a combination of 5-aminosalicylic acid and AD-lico™ from Glycyrrhiza inflata. Anim Cells Syst (Seoul) 2018; 22:189-196. [PMID: 30460097 PMCID: PMC6138317 DOI: 10.1080/19768354.2018.1476409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
The primary aim of this study was to determine whether the oral administration of AD-lico™, a functional extract from Glycyrrhiza inflata in combination with 5-aminosalicylic acid (5-ASA) could ameliorate the inflammatory symptoms in dextran sulfate sodium (DSS)-induced colitis in rodents. This DSS rodent model is used to study drug candidates for colitis, as part of the spectrum of diseases falling under the inflammatory bowel disease (IBD) category. Here, with oral AD-lico™ administration, there was a substantial disruption of the colonic architectural changes due to DSS and a significant reduction in colonic myeloperoxidase (MPO) activity, a marker of colitis. In the same samples, there were also reduced levels of colonic and serum IL-6 in the oral AD-lico™ treated rats. This study also addressed the possible mechanisms for AD-lico™ mediated changes on colonic inflammation markers. These included the observations that AD-lico™ dampened the IL-6 proinflammatory-signaling pathway in THP-1 human monocytic cells and reduced the TNFα-mediated upregulation of surface adhesion molecule ICAM-1 in human umbilical vein endothelial cells (HUVECs). Finally, it was shown that AD-lico™ could be combined with 5-ASA in reducing the inflammatory markers for colorectal sites affected by colitis, a first study of its kind for a combination therapy.
Collapse
Affiliation(s)
| | | | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Korea.,ADbiotech Co. Ltd, Chuncheon, Korea
| |
Collapse
|
159
|
Rahimi N, Hassanipour M, Allahabadi NS, Sabbaghziarani F, Yazdanparast M, Dehpour A. Cirrhosis induced by bile duct ligation alleviates acetic acid intestinal damages in rats: Involvements of nitrergic and opioidergic systems. Pharmacol Rep 2018; 70:426-433. [DOI: 10.1016/j.pharep.2017.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/24/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
|
160
|
Zhao L, Zhang Y, Liu G, Hao S, Wang C, Wang Y. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food Funct 2018; 9:2796-2808. [PMID: 29691532 DOI: 10.1039/c7fo01490b] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effect of black rice anthocyanin-rich extract (BRAE) and rosmarinic acid (RA), alone and in combination, on dextran sulfate sodium (DSS)-induced colitis in mice. Results showed that administration of BRAE and RA, alone and in combination, significantly decreased the disease activity index (DAI) and the histological score of colons in DSS-induced colitis mice. Moreover, the administration of BRAE and RA, alone and in combination, not only reduced myeloperoxidase (MPO) and nitric oxide (NO) levels, but also inhibited the expression of pro-inflammatory mediators including interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Our results showed that BRAE decreased the histological score and TNF-α mRNA expression in a dose-dependent manner, while BRAE + RA dose-dependently attenuated the histological score and mRNA expression of IL-6. However, the benefits of RA were not dose-dependent within the dose range of 25-100 mg kg-1. The combination of BRAE and RA showed better inhibitory effect on the NO content and iNOS mRNA expression than BRAE or RA given alone, and was the most effective in ameliorating DSS-induced colitis at 100 mg kg-1. Notably, the BRAE and RA combination exhibited additive interactions in reducing MPO and NO levels, as well as the expression of some pro-inflammatory mediators (IL-6, IL-1β and iNOS), especially at 100 mg kg-1. In conclusion, dietary BRAE and RA, alone and in combination, alleviate the symptoms and inflammation of DSS-induced colitis in mice, and may provide a promising dietary approach for the management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | | | | | | | | | | |
Collapse
|
161
|
Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biol 2018; 17:348-354. [PMID: 29793168 PMCID: PMC6007813 DOI: 10.1016/j.redox.2018.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Dietary habits may strongly influence intestinal homeostasis. Oxysterols, the oxidized products of cholesterol present in cholesterol-containing foodstuffs, have been shown to exert pro-oxidant and pro-inflammatory effects, altering intestinal epithelial layer and thus contributing to the pathogenesis of human inflammatory bowel diseases and colon cancer. Extra virgin olive oil polyphenols possess antioxidant and anti-inflammatory properties, and concentrate in the intestinal lumen, where may help in preventing intestinal diseases. In the present study we evaluated the ability of an extra virgin olive oil phenolic extract to counteract the pro-oxidant and pro-inflammatory action of a representative mixture of dietary oxysterols in the human colon adenocarcinoma cell line (Caco-2) undergoing full differentiation into enterocyte-like cells. Oxysterols treatment significantly altered differentiated Caco-2 cells redox status, leading to oxidant species production and a decrease of GSH levels, after 1 h exposure, followed by an increase of cytokines production, IL-6 and IL-8, after 24 h. Oxysterol cell treatment also induced after 48 h an increase of NO release, due to the induction of iNOS. Pretreatment with the phenolic extract counteracted oxysterols effects, at least in part by modulating one of the main pathways activated in the cellular response to the action of oxysterols, the MAPK-NF-kB pathway. We demonstrated the ability of the phenolic extract to directly modulate p38 and JNK1/2 phosphorylation and activation of NF-kB, following its inhibitor IkB phosphorylation. The phenolic extract also inhibited iNOS induction, keeping NO concentration at the control level. Our results suggest a protective effect at intestinal level of extra virgin olive oil polyphenols, able to prevent or limit redox unbalance and the onset and progression of chronic intestinal inflammation. Dietary oxysterols exerted pro-oxidant and pro-inflammatory effects in differentiated Caco-2 cells. H2O2 production, GSH decrease, IL-6 and IL-8 release were detected. NO release due to iNOS induction was higher than controls in oxysterols treated cells. Olive oil phenolic extract efficiently counteracted oxysterols effects. Phenolic extract directly modulated p38 and JNK MAPK/NF-κB signaling axis.
Collapse
|
162
|
Abstract
Inflammatory bowel diseases broadly categorized into Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory disorders of the gastrointestinal tract with increasing prevalence worldwide. The etiology of the disease is complex and involves a combination of genetic, environmental, immunological and gut microbial factors. Recurring and bloody diarrhea is the most prevalent and debilitating symptom in IBD. The pathogenesis of IBD-associated diarrhea is multifactorial and is essentially an outcome of mucosal damage caused by persistent inflammation resulting in dysregulated intestinal ion transport, impaired epithelial barrier function and increased accessibility of the pathogens to the intestinal mucosa. Altered expression and/or function of epithelial ion transporters and channels is the principle cause of electrolyte retention and water accumulation in the intestinal lumen leading to diarrhea in IBD. Aberrant barrier function further contributes to diarrhea via leak-flux mechanism. Mucosal penetration of enteric pathogens promotes dysbiosis and exacerbates the underlying immune system further perpetuating IBD associated-tissue damage and diarrhea. Here, we review the mechanisms of impaired ion transport and loss of epithelial barrier function contributing to diarrhea associated with IBD.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Shubha Priyamvada
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA
| | - Waddah A Alrefai
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,b Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Pradeep K Dudeja
- a Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago , Chicago , IL , USA.,b Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
163
|
Direct and specific inhibition of constitutive nitric oxide synthase uniquely regulates brush border membrane Na-absorptive pathways in intestinal epithelial cells. Nitric Oxide 2018; 79:8-13. [PMID: 29702252 DOI: 10.1016/j.niox.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Pharmacological manipulations of constitutive nitric oxide (cNO) levels have been shown to have variable effects on Na absorption in vivo and in vitro in different tissues. Species differences, untoward in vivo effects (e.g. ENS, blood flow) and pharmacological non-specificity may account for these confounding observations. Thus, to directly and specifically determine the effect of cNO on brush border membrane Na/H exchange (NHE3) and Na-dependent glucose co-transport (SGLT-1), we inhibited cNO synthase (NOS3) with its siRNA in rat small intestinal epithelial cells (IEC-18) in vitro. As expected, intracellular cNO levels were reduced in siRNA NOS3 transfected cells. In these cells, SGLT-1 was significantly reduced compared to control. In contrast, NHE3 was significantly increased in siRNA NOS3 transfected cells. To determine if SGLT-1 changes were secondary to altered Na/K-ATPase, its activity was measured and found to be increased in NOS3 silenced cells. The mechanism of inhibition of SGLT-1 was secondary to diminished affinity of the co-transporter for glucose in NOS3 silenced cells. In contrast, the mechanism of stimulation of NHE3 is by increasing BBM exchanger numbers in siRNA NOS3 cells while the affinity was unaffected. Western blot studies of immunoreactive BBM proteins also confirmed the kinetic studies. All these data indicates that direct and specific inhibition of NOS3 with its siRNA inhibits SGLT-1 while stimulating NHE3 in the BBM. Thus, cNO uniquely and compensatorily regulates BBM NHE3 and SGLT-1 to maintain cellular Na homeostasis and these unique alterations by cNO are mediated by its intracellular 2nd messenger cGMP.
Collapse
|
164
|
Salami AT, Odukanmi OA, Oshode OO, Olaleye SB. Modulatory activities of Chrysophyllum albidum and its fractions on microflora and colonic pump activities during inflammatory phase of colitis healing in experimental mice. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
165
|
Kim GA, Ginga NJ, Takayama S. Integration of Sensors in Gastrointestinal Organoid Culture for Biological Analysis. Cell Mol Gastroenterol Hepatol 2018; 6:123-131.e1. [PMID: 29928682 PMCID: PMC6007820 DOI: 10.1016/j.jcmgh.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
The gastrointestinal (GI) tract regulates physiologic responses in complex ways beyond facilitating nutrient entry into the circulatory system. Because of the anatomic location of the GI tract, studying in vivo physiology of the human gut, including host cell interaction with the microbiota, is limited. GI organoids derived from human stem cells are gaining interest as they recapitulate in vivo cellular phenotypes and functions. An underdeveloped capability that would further enhance the utility of these miniature models of the GI tract is to use sensors to quantitatively characterize the organoid systems with high spatiotemporal resolution. In this review, we first discuss tools to capture changes in the fluid milieu of organoid cultures both in the organoid exterior as well as the luminal side of the organoids. The subsequent section describes approaches to characterize barrier functions across the epithelial layer of the GI organoids directly or after transferring the epithelial cells to a 2-dimensional culture format in Transwells or compartmentalized microchannel devices. The final section introduces recently developed bioengineered bacterial sensors that sense intestinal inflammation-related small molecules in the lumen using lambda cI/Cro genetic elements or fluorescence as readouts. Considering the small size and cystic shape of GI organoids, sensors used in conventional macroscopic intestinal models are often not suitable, particularly for time-lapse monitoring. Unmet needs for GI organoid analysis provides many opportunities for the development of noninvasive and miniaturized biosensors.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Bioengineered Sensor
- FITC, fluorescein isothiocyanate
- FITC-Dex, fluorescein isothiocyanate-dextran
- GI Organoids
- GI, gastrointestinal
- HIO, human intestinal organoid
- NO, nitric oxide
- Organoid Microenvironment
- RT-PCR, reverse-transcription polymerase chain reaction
- SNARF, seminaphtharhodafluor
- TCRS, 2-component regulatory system
- TEER, transepithelial/transendothelial electric resistance
Collapse
Affiliation(s)
- Ge-Ah Kim
- Department of Materials Science and Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas J. Ginga
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Shuichi Takayama
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
166
|
Kashfi K. The dichotomous role of H 2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018; 149:205-223. [PMID: 29397935 PMCID: PMC5866221 DOI: 10.1016/j.bcp.2018.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) a gaseous free radical is one of the ten smallest molecules found in nature, while hydrogen sulfide (H2S) is a gas that bears the pungent smell of rotten eggs. Both are toxic yet they are gasotransmitters of physiological relevance. There appears to be an uncanny resemblance between the general actions of these two gasotransmitters in health and disease. The role of NO and H2S in cancer has been quite perplexing, as both tumor promotion and inflammatory activities as well as anti-tumor and antiinflammatory properties have been described. These paradoxes have been explained for both gasotransmitters in terms of each having a dual or biphasic effect that is dependent on the local flux of each gas. In this review/commentary, I have discussed the major roles of NO and H2S in carcinogenesis, evaluating their dual nature, focusing on the enzymes that contribute to this paradox and evaluate the pros and cons of inhibiting or inducing each of these enzymes.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| |
Collapse
|
167
|
Kolomeichuk SN, Nizhnik YP, Makhova NN, Ovchinnikov IV. Cytotoxic and apoptotic activity of nitrofuroxans on lymphoma cells. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2232-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
168
|
Nagaraja S, Ankri S. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:19. [PMID: 29473019 PMCID: PMC5809450 DOI: 10.3389/fcimb.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
169
|
Yoshikawa Y, Murakami T, Katayanagi Y, Yasui K, Ohgo Y, Imai S, Ohashi N. Green Soybean Extract Ameliorates Dextran Sodium Sulfate-Induced Colitis. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Green-mature soybean ( Glycine max) extract (GSE) inhibits the progression of immunoglobulin E-mediated inflammation more than the ordinary yellow-pigmented soybean extract (YSE). The inhibition of nitric oxide (NO) production by GSE in lipopolysaccharide-stimulated RAW264.7 cells has been found to be lower than that by YSE. However, this inhibitory ability became markedly pronounced by visible light irradiation. We investigated the anti-inflammatory effects of GSE and visible light-irradiated GSE (L-GSE) on dextran sodium sulfate (DSS)-induced colitis, immunoglobulin E-independent inflammation, and assessed whether light irradiation affects their anti-inflammatory properties. The severity of DSS-induced colitis was moderated by the ingestion of any of the soybean extracts, and L-GSE was the most effective in moderating the progression in colitis. GSE and L-GSE, except for YSE, inhibited the mRNA expressions of pro-inflammatory cytokines and chemokine in mice colons. All soybean extracts suppressed the mRNA expression of inducible nitric oxide synthase (iNOS), whereas GSE and L-GSE also inhibited the expression of the iNOS protein in the early phase of colitis. These results suggest that GSE is likely to suppress NO production, unlike in vitro results. Unfortunately, a significant difference in the anti-inflammation ability of GSE and L-GSE was not observed in the DSS-induced colitis mice. However, GSE and L-GSE are likely to become new candidate agents for the inhibition of inflammation and excessive NO production.
Collapse
Affiliation(s)
- Yuko Yoshikawa
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Department of Preventive Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Takuya Murakami
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuki Katayanagi
- Health Care Research Center, Nissin Pharma Inc., Fujimino, Saitama 356-8511, Japan
| | - Kensuke Yasui
- Health Care Research Center, Nissin Pharma Inc., Fujimino, Saitama 356-8511, Japan
| | - Yasushi Ohgo
- Health Care Research Center, Nissin Pharma Inc., Fujimino, Saitama 356-8511, Japan
| | - Shinjiro Imai
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Norio Ohashi
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
170
|
Wang Y, Kim R, Hinman SS, Zwarycz B, Magness ST, Allbritton NL. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche. Cell Mol Gastroenterol Hepatol 2018; 5:440-453.e1. [PMID: 29675459 PMCID: PMC5904029 DOI: 10.1016/j.jcmgh.2018.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The relationship between intestinal stem cells (ISCs) and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.
Collapse
Key Words
- 3D, 3-dimensional
- BMP, Bone morphogenetic protein
- Bioengineering
- ECM, extracellular matrix
- Eph, erythropoietin-producing human hepatocellular receptor
- Ephrin, Eph family receptor interacting proteins
- Gradients
- IFN-γ, interferon-γ
- ISC, intestinal stem cell
- Intestinal Epithelial Cells
- NO, nitric oxide
- SFCA, short-chain fatty acids
- Stem Cell Niche
- TA, transit amplifying
- Wnt, wingless-related integration site
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Samuel S. Hinman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Bailey Zwarycz
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Scott T. Magness, PhD, Department of Biomedical Engineering, 111 Mason Farm Road, Room 4337 Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2284.
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Correspondence Address correspondence to: Nancy L. Allbritton, MD, PhD, Department of Biomedical Engineering, Chapman Hall, Room 241, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2963.
| |
Collapse
|
171
|
Barker EC, Kim BG, Yoon JH, Tochtrop GP, Letterio JJ, Choi SH. Potent suppression of both spontaneous and carcinogen-induced colitis-associated colorectal cancer in mice by dietary celastrol supplementation. Carcinogenesis 2018; 39:36-46. [PMID: 29069290 PMCID: PMC5862246 DOI: 10.1093/carcin/bgx115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
Celastrol is an anti-inflammatory natural triterpenoid, isolated from the herb Tripterygium wilfordii or thunder god vine. Here, we define mechanisms mediating anti-inflammatory activity of celastrol and demonstrate efficacy of a dietary celastrol supplement for chemoprevention of inflammation-driven carcinogenesis in mice. Dietary celastrol (31.25 ppm in rodent diet from 8 weeks to 25 weeks of age) is well tolerated and protects against LPS-induced acute inflammation in C57BL/6 mice, potently suppressing LPS-induction of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, Interleukin (IL)-6 and IL-1β. To test whether dietary celastrol suppresses inflammation-driven colorectal cancer (CRC), we employed a unique model of spontaneous, inflammation-driven CRC in mice harboring a germ line deletion of the p27Kip1 gene and a T cell-specific deletion of Smad4 gene (Smad4co/co;Lck-crep27Kip1-/-or DKO), which develop severe intestinal inflammation and carcinogenesis as early as 3 months of age. Exposure of DKO mice to daily dietary celastrol (12.5 ppm in diet) from 6 weeks of age significantly suppressed development of colitis-associated CRC (CAC). Celastrol chemoprevention of CAC in this new model of intestinal neoplasia was associated with significant suppression of iNOS at 4 months of age, and iNOS, COX-2 and NFκB at 6 months of age, with significant reduction in inflammatory cytokines, IL-6 and IL-1β. Chemoprevetion of CAC by dietary celastrol was further confirmed in the model of azoxymethane (AOM) plus dextran sodium sulfate (DSS)-induced carcinogenesis in C57BL/6 mice. These data suggest the potential for celastrol as a safe and effective dietary supplement in the chemoprevention of CAC in humans.
Collapse
Affiliation(s)
- Emily C Barker
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Byung-Gyu Kim
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Ji Hee Yoon
- University of Notre Dame, Notre Dame, Indiana
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - John J Letterio
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- The Angie Fowler Adolescent & Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children’s Hospital, Cleveland, Ohio
| | - Sung Hee Choi
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
172
|
Baranipour S, Amini Kadijani A, Qujeq D, Shahrokh S, Haghazali M, Mirzaei A, Asadzadeh-Aghdaei H. Inducible nitric oxide synthase as a potential blood-based biomarker in inflammatory bowel diseases. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:S124-S128. [PMID: 30774818 PMCID: PMC6347994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
AIM Here, we evaluated the role of (iNOS) as a blood-based biomarker of inflammatory bowel diseases (IBD). BACKGROUND Up-regulation of inducible nitric oxide synthase (iNOS) in the intestinal epithelial cells has been closely associated with the initiation and maintenance of intestinal inflammation in IBD. METHODS In a case-control design, 59 IBD patients and 30 healthy control subjects were participated in this study. A total of 10 ml blood sample was taken from each participant. Blood leukocytes were isolated and iNOS mRNA expression level was evaluated in the isolated leukocytes using relative quantitative Real-time PCR. RESULTS The patients' population included 40 ulcerative colitis (UC) and 19 Crohn's disease (CD) patients. The flare and remission phase of disease were seen in 43 and 16 patients, respectively. The mean iNOS mRNA expression was not significantly different between the IBD patients and healthy controls (p=0.056). The mean iNOS mRNA expression was significantly higher in the flare phase of the disease compared to the remission phase (p=0.039). No significant difference was observed between the mean iNOS mRNA expression in the blood leukocytes of UC and CD patients (p=0.82). CONCLUSION iNOS is differently expressed in the blood leukocytes of active vs. inactive IBD disease. Thus, it could be potentially used as a non-invasive blood-based biomarker of IBD.
Collapse
Affiliation(s)
- Saeed Baranipour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Azade Amini Kadijani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Haghazali
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
173
|
Ananthakrishnan AN, Luo C, Yajnik V, Khalili H, Garber JJ, Stevens BW, Cleland T, Xavier RJ. Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. Cell Host Microbe 2017; 21:603-610.e3. [PMID: 28494241 DOI: 10.1016/j.chom.2017.04.010] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/14/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays a central role in inflammatory bowel diseases (IBDs) pathogenesis and propagation. To determine whether the gut microbiome may predict responses to IBD therapy, we conducted a prospective study with Crohn's disease (CD) or ulcerative colitis (UC) patients initiating anti-integrin therapy (vedolizumab). Disease activity and stool metagenomes at baseline, and weeks 14, 30, and 54 after therapy initiation were assessed. Community α-diversity was significantly higher, and Roseburia inulinivorans and a Burkholderiales species were more abundant at baseline among CD patients achieving week 14 remission. Several significant associations were identified with microbial function; 13 pathways including branched chain amino acid synthesis were significantly enriched in baseline samples from CD patients achieving remission. A neural network algorithm, vedoNet, incorporating microbiome and clinical data, provided highest classifying power for clinical remission. We hypothesize that the trajectory of early microbiome changes may be a marker of response to IBD treatment.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Chengwei Luo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay Yajnik
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - John J Garber
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Thomas Cleland
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
174
|
Lu Z, Lu Y, Wang X, Wang F, Zhang Y. Activation of intestinal GR–FXR and PPARα–UGT signaling exacerbates ibuprofen-induced enteropathy in mice. Arch Toxicol 2017; 92:1249-1265. [DOI: 10.1007/s00204-017-2139-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022]
|
175
|
Sikder MOF, Yang S, Ganapathy V, Bhutia YD. The Na+/Cl−-Coupled, Broad-Specific, Amino Acid Transporter SLC6A14 (ATB0,+): Emerging Roles in Multiple Diseases and Therapeutic Potential for Treatment and Diagnosis. AAPS JOURNAL 2017; 20:12. [DOI: 10.1208/s12248-017-0164-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022]
|
176
|
Zidi S, Bediar-Boulaneb F, Belguendouz H, Belkhelfa M, Medjeber O, Laouar O, Henchiri C, Touil-Boukoffa C. Local pro-inflammatory cytokine and nitric oxide responses are elevated in patients with pterygium. Int J Immunopathol Pharmacol 2017; 30:395-405. [PMID: 29164949 PMCID: PMC5806814 DOI: 10.1177/0394632017742505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pterygium is a common ocular surface disease observed in humans. Chronic ultraviolet (UV) exposure is extensively recognized as an aetiological factor in the pathogenesis of this disease. This hypothesis is sustained by epidemiological and histopathological data in relation to UV injured skin. Although some findings have indicated that genetic factors, anti-apoptotic and immunological mechanisms are involved in the pathogenesis of pterygium, the mechanism by which it develops remains poorly understood. In this study, we analysed the in vivo production of IL-17A, IL-6, IL-10 and nitric oxide (NO) in the tears and sera from Algerian patients. Interestingly, we observed that IL-6, IL-17A and NO production in the tears and sera of all patients was strongly associated with inflammatory infiltration, NOS2, NF-κB and Bcl2 expression in pterygia biopsies. Collectively, our results indicate a relationship between local inflammation and anti-apoptotic processes in pterygium disease, leading to both tissue damage and enhanced cellular proliferation.
Collapse
Affiliation(s)
- S Zidi
- 1 Department of Biology, University of Guelma, Guelma, Algeria.,2 'Cytokines and NO Synthases Team', LBCM, FSB, USTHB, Algiers, Algeria.,3 Badji Mokhtar University, Annaba, Algeria
| | - F Bediar-Boulaneb
- 4 Department of Ophthalmology, Ibn Rochd University Hospital, Badji Mokhtar University, Annaba, Algeria
| | - H Belguendouz
- 2 'Cytokines and NO Synthases Team', LBCM, FSB, USTHB, Algiers, Algeria
| | - M Belkhelfa
- 2 'Cytokines and NO Synthases Team', LBCM, FSB, USTHB, Algiers, Algeria
| | - O Medjeber
- 2 'Cytokines and NO Synthases Team', LBCM, FSB, USTHB, Algiers, Algeria
| | - O Laouar
- 5 Department of Anatomopathology, Ibn Rochd University Hospital, Badji Mokhtar University, Annaba, Algeria
| | - C Henchiri
- 3 Badji Mokhtar University, Annaba, Algeria
| | - C Touil-Boukoffa
- 2 'Cytokines and NO Synthases Team', LBCM, FSB, USTHB, Algiers, Algeria
| |
Collapse
|
177
|
Park J, Pramanick S, Park D, Yeo J, Lee J, Lee H, Kim WJ. Therapeutic-Gas-Responsive Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702859. [PMID: 29024110 DOI: 10.1002/adma.201702859] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) is a crucial signaling molecule with various functions in physiological systems. Due to its potent biological effect, the preparation of responsive biomaterials upon NO having temporally transient properties is a challenging task. This study represents the first therapeutic-gas (i.e., NO)-responsive hydrogel by incorporating a NO-cleavable crosslinker. The hydrogel is rapidly swollen in response to NO, and not to other gases. Furthermore, the NO-responsive gel is converted to enzyme-responsive gels by cascade reactions from an enzyme to NO production for which the NO precursor is a substrate of the enzyme. The application of the hydrogel as a NO-responsive drug-delivery system is proved here by revealing effective protein drug release by NO infusion, and the hydrogel is also shown to be swollen by the NO secreted from the cultured cells. The NO-responsive hydrogel may prove useful in many applications, for example drug-delivery vehicles, inflammation modulators, and as a tissue scaffold.
Collapse
Affiliation(s)
- Junghong Park
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Swapan Pramanick
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dongsik Park
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jiwon Yeo
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihyun Lee
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 University Rd, Daejeon, 34141, Republic of Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
178
|
Singh P, Kaur S, Sharma A, Kaur G, Bhatti R. TNF-α and IL-6 inhibitors: Conjugates of N-substituted indole and aminophenylmorpholin-3-one as anti-inflammatory agents. Eur J Med Chem 2017; 140:92-103. [DOI: 10.1016/j.ejmech.2017.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023]
|
179
|
Effect of roxithromycin on mucosal damage, oxidative stress and pro-inflammatory markers in experimental model of colitis. Inflamm Res 2017; 67:147-155. [PMID: 28988395 DOI: 10.1007/s00011-017-1103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/07/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE AND DESIGN Roxithromycin, a macrolide antibiotic, exhibits anti-inflammatory property. The present study was designed to evaluate its protective effect in a rat model of colitis. METHODS The anti-inflammatory property of roxithromycin was first validated in rat paw edema model at 5 and 20 mg/kg doses where it produced 19 and 51% inhibition of paw swelling induced by carrageenan. The efficacy of roxithromycin was evaluated at these doses in a rat model where colitis was induced by intra-colonic instillation of acetic acid. Rats were divided into six groups viz. normal control, experimental control and drug-treated groups: roxithromycin 5 and 20 mg/kg, diclofenac 10 mg/kg and mesalazine 300 mg/kg. All drugs were given orally 1 h before induction of colitis. The macro and microscopic changes, mean ulcer score, mucus content and markers of oxidative stress and inflammation were evaluated in all the groups after 24 h. RESULTS Pretreatment with roxithromycin markedly decreased hyperemia, ulceration, edema and restored histological architecture. The protection afforded by roxithromycin was substantiated by dose-dependent increase in mucus content, normalization of markers of oxidative stress (GSH and TBARS) and levels of TNF-α, PGE2 and nitrite along with marked decrease in expression of NFκB (p65), IL-1β and COX-2. The protective effect of roxithromycin was found to be comparable to mesalazine while diclofenac was found ineffective. CONCLUSION Our study demonstrates that roxithromycin ameliorates experimental colitis by maintaining redox homeostasis, preserving mucosal integrity and downregulating NFκB-mediated pro-inflammatory signaling and suggests that it has a therapeutic potential in inflammatory conditions of the colon.
Collapse
|
180
|
Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X. Ginsenoside Rb1 inhibits free fatty acids‑induced oxidative stress and inflammation in 3T3‑L1 adipocytes. Mol Med Rep 2017; 16:9165-9172. [PMID: 28990058 DOI: 10.3892/mmr.2017.7710] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/14/2017] [Indexed: 11/05/2022] Open
Abstract
Free fatty acids (FFAs) increase in visceral fat and are inferred to be one of the underlying inducers of adipose tissue inflammation. In our previous study, it was demonstrated that ginsenoside Rb1 stimulates endothelial nitric oxide synthase (eNOS) and Sirtuin 1 to protect against endothelial cell senescence. In the present study, 3T3‑L1 adipocytes were exposed to 0.5 mM FFAs with or without Rb1 (10‑40 µM). Monocyte chemotactic protein‑1 (MCP‑1) and interleukin‑6 (IL‑6) secretion was measured using ELISA. Tumor necrosis factor‑α (TNF‑α) expression and nuclear factor‑κB (NF‑κB) p65 phosphorylation were detected using western blot analysis. Oxidative stress was determined via measuring intracellular reactive oxygen species (ROS) and nitric oxide (NO) production. The results demonstrated that MCP‑1 and IL‑6 secretion, as well as TNF‑α expression, were significantly increased following FFA treatment, which was attenuated by Rb1 in a dose‑dependent manner. Furthermore, Rb1 attenuated FFA‑induced NF‑κB phosphorylation, suggesting that the inhibitory effect of Rb1 on inflammatory cytokines was partially mediated through blockade of NF‑κB phosphorylation. Further experiments demonstrated that Rb1 ameliorated FFA‑induced ROS generation and NO reduction through upregulation of superoxide dismutase 2 and eNOS expression. Taken together, these results demonstrate proinflammatory and pro‑oxidant effects of FFA on 3T3‑L1 adipocytes, which are effectively ameliorated by Rb1. Suppression of inflammatory responses and oxidative stress may be a novel mechanism for attenuating the effect of Rb1 on adipocyte dysfunction.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhaojun Xiong
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Shujie Yu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Zhou
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yesheng Ling
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhenda Zheng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Guangyao Shi
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yongxiang Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
181
|
Rajagopal V, Pushpan CK, Antony H. Comparative effect of horse gram and black gram on inflammatory mediators and antioxidant status. J Food Drug Anal 2017; 25:845-853. [PMID: 28987361 PMCID: PMC9328873 DOI: 10.1016/j.jfda.2016.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 11/15/2022] Open
Abstract
A balanced diet is important for the overall well being of an individual. Pulses are an important part of a nutritive diet. Pulses have been consumed for at least 10,000 years and are among the most extensively used foods in the world. They are a rich source of protein and fiber, as well as a significant source of vitamins and minerals, such as iron, zinc, and magnesium. The purpose of this study was to compare the effect of two pulses, horse gram and black gram, on inflammatory mediators and the antioxidant enzymes. Two sets of experiments were conducted in rats which were fed with boiled and unboiled horse gram and black gram, at a dose of 100 mg/100 g body weight, for 21 days and 60 days. The results showed that horse gram supplementation for 21 days and 60 days significantly increased the activities of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase and showed no significant changes in the activities of the inflammatory mediators such as cyclooxygenase, lipoxygenase, myeloperoxidase, nitric oxide synthase, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), inter-leukin-1-beta (IL-1β), etc. However, the black gram (with skin and without skin) supplementation significantly increased activities of the inflammatory mediators and showed a significant decrease in the antioxidant enzymes in both the 21-day and 60-day experiments. Thus, these preliminary results demonstrate the anti-inflammatory and antioxidant potential of horse gram and the proinflammatory effects of black gram in rats. This is in accordance with the dietary regime advised by Ayurveda practitioners, where horse gram is to be included and black gram is to be excluded from the diet for conditions such as rheumatoid arthritis. Further studies are to be conducted to validate the same.
Collapse
Affiliation(s)
| | | | - Helen Antony
- Corresponding author. Associate Professor, Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthpuram, 695581, Kerala, India. E-mail address: (H. Antony)
| |
Collapse
|
182
|
Gynostemma pentaphyllum saponins attenuate inflammation in vitro and in vivo by inhibition of NF-κB and STAT3 signaling. Oncotarget 2017; 8:87401-87414. [PMID: 29152090 PMCID: PMC5675642 DOI: 10.18632/oncotarget.20997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Recent advances in the development of anti-inflammatory agents have improved their therapeutic outcome in inflammatory bowel disease (IBD), however, the presence of side effects and limited effectiveness hinder their widespread use. Therefore, novel compounds with strong anti-inflammatory efficacy are still required. In this study, we investigated the anti-inflammatory effect and potential mechanisms of Gynostemma pentaphyllum (Thunb.) Makino saponins (GpS), a major component of the herbal medicine widely used in Asian countries. In in vitro studies, we demonstrated that GpS dose dependently suppressed activation of macrophages, one of the main effectors in IBD. GpS also suppressed cytokine production and the activation of NF-κB and STAT3 signaling in lipopolysaccharide-induced macrophages, without affecting their viability. Further in vivo studies demonstrated that GpS could ameliorate the weight loss, increased disease activity index, colon shortening and histological damage associated with dextran sulfate sodium (DSS)-induced colitis in mice. In agreement with results from our in vitro experiments, GpS suppressed cytokine production and activation of NF-κB and STAT3 signaling in the colons of DSS-induced mice. In this study, we present for the first time, evidence of the therapeutic effect of GpS in IBD, highlighting its potential as an effective therapeutic against the disease.
Collapse
|
183
|
Capillary Flow Rates in the Duodenum of Pediatric Ulcerative Colitis Patients Are Increased and Unrelated to Inflammation. J Pediatr Gastroenterol Nutr 2017; 65:306-310. [PMID: 28045777 DOI: 10.1097/mpg.0000000000001495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Inflammatory bowel diseases (IBD), including Crohn disease (CD) and ulcerative colitis (UC), are chronic pediatric disorders. Changes in vasculature are described in IBD, but these could be secondary to inflammation and the role in pathogenesis is poorly understood. Assessing circulatory changes in typically unaffected sites in IBD (eg, duodenum), when inflammation is absent, can identify vascular changes associated with pathogenesis. The aim of the study is to measure capillary flow rates in duodenal mucosa using probe-based confocal laser endomicroscopy (pCLE) during endoscopy in children with IBD. METHODS Images of villi with visible blood vessels obtained using pCLE were captured as video sequences. Capillary flow rate (mm/s) was calculated by dividing the distance travelled by blood cells by the duration of the sequence. Flow rates were correlated with various clinical parameters. RESULTS Forty-five patients (22 non-IBD, 14 CD, 9 UC) were included in the study. Duodenal capillary flow rates were significantly higher in UC patients (0.75 ± 0.07 mm/s) as compared to non-IBD (0.57 ± 0.03) and CD (0.65 ± 0.04). There was no correlation between serum hemoglobin and albumin, disease activity indices, serum inflammatory markers, and capillary flow rates in patients. CONCLUSIONS This pilot study shows, for the first time, increased capillary blood flow in the duodenum of UC patients that was unrelated to inflammatory markers or disease activity. Thus, early vascular changes can be assessed using pCLE during endoscopy.
Collapse
|
184
|
Majumdar I, Ahuja V, Paul J. Altered expression of Tumor Necrosis Factor Alpha -Induced Protein 3 correlates with disease severity in Ulcerative Colitis. Sci Rep 2017; 7:9420. [PMID: 28842689 PMCID: PMC5572729 DOI: 10.1038/s41598-017-09796-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC), an inflammatory disorder of the colon arises from dysregulated immune response towards gut microbes. Transcription factor NFκB is a major regulatory component influencing mucosal inflammation. We evaluated expression of Tumor Necrosis Factor Alpha Induced Protein3 (TNFAIP3), the inhibitor of NFκB activation and its associated partners ITCH, RNF11 and Tax1BP1 in inflamed mucosa of UC patients. We found highly significant up-regulated mRNA expression of TNFAIP3 that negatively correlated with disease activity in UC. mRNA levels of ITCH, RNF11 and Tax1BP1 were significantly down-regulated. Significant positive correlation with disease activity was noted for Tax1BP1. All four genes showed significant down-regulation at protein level. mRNA levels of inducers of TNFAIP3 expression, NFκB p65 subunit and MAST3 was determined. There was significant increase in p65 mRNA expression and down-regulated MAST3 expression. This suggested that increase in NFκB expression regulates TNFAIP3 levels. Deficiency of TNFAIP3 expression resulted in significant up-regulation of NFκB p65 sub-unit as well as its downstream genes such as iNOS, an inflammatory marker, inhibitors of apoptosis like cIAP2 and XIAP and mediators of anti-apoptotic signals TRAF1 and TRAF2. Taken together, decreased expression of TNFAIP3 and its partners contribute to inflammation and up-regulation of apoptosis inhibitors that may create microenvironment for colorectal cancer.
Collapse
Affiliation(s)
- Ishani Majumdar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
185
|
Schreiber D, Marx L, Felix S, Clasohm J, Weyland M, Schäfer M, Klotz M, Lilischkis R, Erkel G, Schäfer KH. Anti-inflammatory Effects of Fungal Metabolites in Mouse Intestine as Revealed by In vitro Models. Front Physiol 2017; 8:566. [PMID: 28824460 PMCID: PMC5545603 DOI: 10.3389/fphys.2017.00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are chronic inflammatory disorders that can affect the whole gastrointestinal tract or the colonic mucosal layer. Current therapies aiming to suppress the exaggerated immune response in IBD largely rely on compounds with non-satisfying effects or side-effects. Therefore, new therapeutical options are needed. In the present study, we investigated the anti-inflammatory effects of the fungal metabolites, galiellalactone, and dehydrocurvularin in both an in vitro intestinal inflammation model, as well as in isolated myenteric plexus and enterocyte cells. Administration of a pro-inflammatory cytokine mix through the mesenteric artery of intestinal segments caused an up-regulation of inflammatory marker genes. Treatment of the murine intestinal segments with galiellalactone or dehydrocurvularin by application through the mesenteric artery significantly prevented the expression of pro-inflammatory marker genes on the mRNA and the protein level. Comparable to the results in the perfused intestine model, treatment of primary enteric nervous system (ENS) cells from the murine intestine with the fungal compounds reduced expression of cytokines such as IL-6, TNF-α, IL-1β, and inflammatory enzymes such as COX-2 and iNOS on mRNA and protein levels. Similar anti-inflammatory effects of the fungal metabolites were observed in the human colorectal adenocarcinoma cell line DLD-1 after stimulation with IFN-γ (10 ng/ml), TNF-α (10 ng/ml), and IL-1β (5 ng/ml). Our results show that the mesenterially perfused intestine model provides a reliable tool for the screening of new therapeutics with limited amounts of test compounds. Furthermore, we could characterize the anti-inflammatory effects of two novel active compounds, galiellalactone, and dehydrocurvularin which are interesting candidates for studies with chronic animal models of IBD.
Collapse
Affiliation(s)
- Dominik Schreiber
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany.,Department of Biotechnology, Technical University of KaiserslauternKaiserslautern, Germany
| | - Lisa Marx
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany
| | - Silke Felix
- Department of Biotechnology, Technical University of KaiserslauternKaiserslautern, Germany
| | - Jasmin Clasohm
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany
| | - Maximilian Weyland
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany
| | - Maximilian Schäfer
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany
| | - Markus Klotz
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany
| | - Rainer Lilischkis
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany
| | - Gerhard Erkel
- Department of Biotechnology, Technical University of KaiserslauternKaiserslautern, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences KaiserslauternKaiserslautern, Germany.,Pediatric Surgery, University Hospital MannheimMannheim, Germany
| |
Collapse
|
186
|
Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. Results Probl Cell Differ 2017; 62:181-207. [PMID: 28455710 DOI: 10.1007/978-3-319-54090-0_8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
187
|
Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenan-induced rats. Biomed Pharmacother 2017; 93:1055-1064. [PMID: 28738499 DOI: 10.1016/j.biopha.2017.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Codium fragile (Suringar) Hariot has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria and has been shown to have various biological effects. In this study, we evaluated the anti-inflammatory effects of aqueous extract of C. fragile (AECF) using in vitro and in vivo models. Nitric oxide (NO), prostaglandin E2 (PGE2), inflammatory-related mRNAs, and proteins were determined using the Griess assay, enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR), and western blotting, respectively. Our results indicate that pretreatment of cells with AECF (50, 100 and 200μg/mL) significantly inhibited LPS-induced secretion of NO and PGE2 in RAW264.7 cells without cytotoxicity. We also found that AECF (100 and 200μg/mL) inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 expression in a dose-dependent manner. Additionally, pretreatment of cells with AECF (100 and 200μg/mL) inhibited LPS-induced production of inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. It also prevented the nuclear translocation of nuclear factor (NF)-κB by suppressing the phosphorylation and degradation of inhibitor of NF-κB (IκB)-α. Furthermore, AECF (100 and 200μg/mL) inhibited the phosphorylation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38. In addition, orally administered 50, 100, and 200mg/kg body weight of AECF dose-dependently suppressed carrageenan-induced rat paw edema thickness by 6%, 31%, and 50% respectively, after 4h. Furthermore, the anti-inflammatory effect was comparable to that observed in animals treated with the standard drug diclofenac sodium (56%) in vivo. Collectively, our results suggest that AECF exerts potential anti-inflammatory effects by suppressing NF-κB activation and MAPKs pathways in vitro, as well as inhibiting carrageenan-induced rat paw edema thickness in vivo. These findings indicate that AECF could be further developed as an anti-inflammatory drug.
Collapse
|
188
|
Fábrega MJ, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, Gálvez J, Baldomà L. Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Front Microbiol 2017; 8:1274. [PMID: 28744268 PMCID: PMC5504144 DOI: 10.3389/fmicb.2017.01274] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli Nissle 1917 (EcN) is a probiotic strain with proven efficacy in inducing and maintaining remission of ulcerative colitis. However, the microbial factors that mediate these beneficial effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a direct pathway for delivering selected bacterial proteins and active compounds to the host. In fact, vesicles released by gut microbiota are emerging as key players in signaling processes in the intestinal mucosa. In the present study, the dextran sodium sulfate (DSS)-induced colitis mouse model was used to investigate the potential of EcN OMVs to ameliorate mucosal injury and inflammation in the gut. The experimental protocol involved pre-treatment with OMVs for 10 days before DSS intake, and a 5-day recovery period. Oral administration of purified EcN OMVs (5 μg/day) significantly reduced DSS-induced weight loss and ameliorated clinical symptoms and histological scores. OMVs treatment counteracted altered expression of cytokines and markers of intestinal barrier function. This study shows for the first time that EcN OMVs can mediate the anti-inflammatory and barrier protection effects previously reported for this probiotic in experimental colitis. Remarkably, translation of probiotics to human healthcare requires knowledge of the molecular mechanisms involved in probiotic–host interactions. Thus, OMVs, as a non-replicative bacterial form, could be explored as a new probiotic-derived therapeutic approach, with even lower risk of adverse events than probiotic administration.
Collapse
Affiliation(s)
- María-José Fábrega
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Alba Rodríguez-Nogales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - José Garrido-Mesa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Francesca Algieri
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Josefa Badía
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Rosa Giménez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Julio Gálvez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Laura Baldomà
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| |
Collapse
|
189
|
Effect of photobiomodulation therapy on reducing the chemo-induced oral mucositis severity and on salivary levels of CXCL8/interleukin 8, nitrite, and myeloperoxidase in patients undergoing hematopoietic stem cell transplantation: a randomized clinical trial. Lasers Med Sci 2017; 32:1801-1810. [DOI: 10.1007/s10103-017-2263-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/11/2017] [Indexed: 12/16/2022]
|
190
|
Aviello G, Knaus UG. ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br J Pharmacol 2017; 174:1704-1718. [PMID: 26758851 PMCID: PMC5446568 DOI: 10.1111/bph.13428] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
The intestine is composed of many distinct cell types that respond to commensal microbiota or pathogens with immune tolerance and proinflammatory signals respectively. ROS produced by mucosa-resident cells or by newly recruited innate immune cells are essential for antimicrobial responses and regulation of signalling pathways including processes involved in wound healing. Impaired ROS production due to inactivating patient variants in genes encoding NADPH oxidases as ROS source has been associated with Crohn's disease and pancolitis, whereas overproduction of ROS due to up-regulation of oxidases or altered mitochondrial function was linked to ileitis and ulcerative colitis. Here, we discuss recent advances in our understanding of how maintaining a redox balance is crucial to preserve gut homeostasis. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Aviello
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
| | - UG Knaus
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
- Conway Institute, School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
191
|
Trebicz-Geffen M, Shahi P, Nagaraja S, Vanunu S, Manor S, Avrahami A, Ankri S. Identification of S-Nitrosylated (SNO) Proteins in Entamoeba histolytica Adapted to Nitrosative Stress: Insights into the Role of SNO Actin and In vitro Virulence. Front Cell Infect Microbiol 2017; 7:192. [PMID: 28589096 PMCID: PMC5440460 DOI: 10.3389/fcimb.2017.00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
We have recently reported that Entamoeba histolytica trophozoites can adapt to toxic levels of the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). Even if the consequences of this adaptation on the modulation of gene expression in NO-adapted trophozoites (NAT) have been previously explored, insight on S-nitrosylated (SNO) proteins in NAT is missing. Our study aims to fill this knowledge gap by performing a screening of SNO proteins in NAT. Employing SNO resin-assisted capture (RAC), we identified 242 putative SNO proteins with key functions in calcium binding, enzyme modulation, redox homeostasis, and actin cytoskeleton. Of the SNO proteins in NAT, proteins that are associated with actin family cytoskeleton protein are significantly enriched. Here we report that the formation of actin filaments (F-actin) is impaired in NAT. Consequently, the ability of NAT to ingest erythrocytes and their motility and their cytopathic activity are impaired. These phenotypes can be imitated by treating control parasite with cytochalasin D (CytD), a drug that binds to F-actin polymer and prevent polymerization of actin monomers. Removal of GSNO from the culture medium of NAT restored the sensitivity of the parasite to nitrosative stress (NS) and its ability to form F-actin formation and its virulence. These results establish the central role of NO in shaping the virulence of the parasite through its effect on F-actin formation and highlight the impressive ability of this parasite to adapt to NS.
Collapse
Affiliation(s)
- Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Preeti Shahi
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Shai Vanunu
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Shiran Manor
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Amit Avrahami
- Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| |
Collapse
|
192
|
Tomuschat C, O'Donnell AM, Coyle D, Dreher N, Kelly D, Puri P. NOS-interacting protein (NOSIP) is increased in the colon of patients with Hirschsprungs's disease. J Pediatr Surg 2017; 52:772-777. [PMID: 28196663 DOI: 10.1016/j.jpedsurg.2017.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE Hirschsprung's associated enterocolitis (HAEC) is the most common cause of morbidity and mortality in Hirschsprung's disease (HSCR). Nitric oxide (NO) mediates intestinal homoeostasis and is inhibited by NOSIP, a modulator of NO production. We designed this study to investigate the expression of NOSIP in the colon of patients with HSCR. METHODS We investigated NOSIP, endothelial NO synthase, and neuronal NO synthase expression in both the aganglionic and ganglionic regions of HSCR patients (n=10) versus normal control colon (n=10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression were quantified using quantitative real-time polymerase chain reaction (qPCR), Western blot analysis, and densitometry. MAIN RESULTS qPCR and Western blot analysis demonstrate that NOSIP was significantly increased in the aganglionic and ganglionic colon compared to controls (p<0.05). Confocal microscopy revealed a markedly increased expression of NOSIP in the colon epithelium of patients with HSCR compared to controls. CONCLUSION To our knowledge, we demonstrate for the first time the expression of NOSIP in the human colon. While NOSIP expression was increased in HSCR vs. non-HSCR patients, no significant difference was observed in patients with HAEC. The increased expression of NOSIP in the aganglionic and ganglionic bowel of HSCR may contribute to the development of enterocolitis by inhibiting local NO production in patients with Hirschsprung's disease. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Anne-Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Nickolas Dreher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Danielle Kelly
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Ireland.
| |
Collapse
|
193
|
Sacco SA, Adolfsen KJ, Brynildsen MP. An integrated network analysis identifies how ArcAB enables metabolic oscillations in the nitric oxide detoxification network of Escherichia coli. Biotechnol J 2017; 12. [PMID: 28449226 DOI: 10.1002/biot.201600570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 11/06/2022]
Abstract
The virulences of many pathogens depend on their abilities to detoxify the immune antimicrobial nitric oxide (NO•). The functions of bacterial NO• detoxification machinery depend on oxygen (O2 ), with O2 inhibiting some enzymes, whereas others use it as a substrate. Previously, Escherichia coli NO• detoxification was found to be highly attenuated under microaerobic conditions and metabolic oscillations were observed. The oscillations in [NO•] and [O2 ] were found to result from the inhibitory action of NO• on aerobic respiration, the catalytic inactivation of NO• by Hmp (an NO• dioxygenase), and an imbalanced competition for O2 between Hmp and cytochrome terminal oxidase activity. Here the authors investigated the role of the ArcAB two component system (TCS) in microaerobic NO• detoxification. The authors observed that wild-type, ΔarcA, and ΔarcB had comparable initial NO• clearance times; however, the mutant cultures failed to exhibit [NO•] and [O2 ] oscillations. Using an approach that employed experimentation and computational modeling, the authors found that the loss of oscillations in ΔarcA was due to insufficient induction of cytochrome bd-I expression. Collectively, these results establish ArcAB as a TCS that influences NO• detoxification in E. coli within the physiologically-relevant microaerobic regime.
Collapse
Affiliation(s)
- Sarah A Sacco
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
194
|
Celiberto LS, Bedani R, Dejani NN, Ivo de Medeiros A, Sampaio Zuanon JA, Spolidorio LC, Tallarico Adorno MA, Amâncio Varesche MB, Carrilho Galvão F, Valentini SR, Font de Valdez G, Rossi EA, Cavallini DCU. Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLoS One 2017; 12:e0175935. [PMID: 28437455 PMCID: PMC5402984 DOI: 10.1371/journal.pone.0175935] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days. Methods Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo); Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals’ colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification. Results Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05). The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05). This group also showed an increase in short-chain fatty acids (propionate and acetate). Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes. Conclusions The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats.
Collapse
Affiliation(s)
- Larissa Sbaglia Celiberto
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Alimentos e Nutrição, SP, Brasil
| | - Raquel Bedani
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naiara Naiana Dejani
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto. Departamento de Bioquimica e Imunologia, SP, Brasil
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | - Alexandra Ivo de Medeiros
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | - José Antonio Sampaio Zuanon
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquara. Departametno de Fisiologia e Patologia, SP, Brasil
| | - Luis Carlos Spolidorio
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquara. Departametno de Fisiologia e Patologia, SP, Brasil
| | - Maria Angela Tallarico Adorno
- Universidade de São Paulo (USP), Faculdade de Engenharia, São Carlos. Departamento de Hidraúlica e Saneamento, SP, Brasil
| | | | - Fábio Carrilho Galvão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | - Sandro Roberto Valentini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Ciências Biológicas, SP, Brasil
| | | | - Elizeu Antonio Rossi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Alimentos e Nutrição, SP, Brasil
| | - Daniela Cardoso Umbelino Cavallini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara. Departamento de Alimentos e Nutrição, SP, Brasil
- * E-mail:
| |
Collapse
|
195
|
Fagundes RR, Taylor CT. Determinants of hypoxia-inducible factor activity in the intestinal mucosa. J Appl Physiol (1985) 2017; 123:1328-1334. [PMID: 28408694 DOI: 10.1152/japplphysiol.00203.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
The intestinal mucosa is exposed to fluctuations in oxygen levels due to constantly changing rates of oxygen demand and supply and its juxtaposition with the anoxic environment of the intestinal lumen. This frequently results in a state of hypoxia in the healthy mucosa even in the physiologic state. Furthermore, pathophysiologic hypoxia (which is more severe and extensive) is associated with chronic inflammatory diseases including inflammatory bowel disease (IBD). The hypoxia-inducible factor (HIF), a ubiquitously expressed regulator of cellular adaptation to hypoxia, is central to both the adaptive and the inflammatory responses of cells of the intestinal mucosa in IBD patients. In this review, we discuss the microenvironmental factors which influence the level of HIF activity in healthy and inflamed intestinal mucosae and the consequences that increased HIF activity has for tissue function and disease progression.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Graduate School of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
196
|
Coronado S, Barrios L, Zakzuk J, Regino R, Ahumada V, Franco L, Ocampo Y, Caraballo L. A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis. Parasite Immunol 2017; 39. [PMID: 28295446 DOI: 10.1111/pim.12425] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/05/2017] [Indexed: 12/20/2022]
Abstract
Helminthiasis may ameliorate inflammatory diseases, such as inflammatory bowel disease and asthma. Information about immunomodulators from Ascaris lumbricoides is scarce, but could be important considering the co-evolutionary relationships between helminths and humans. We evaluated the immunomodulatory effects of a recombinant cystatin from A. lumbricoides on an acute model of dextran sodium sulphate (DSS)-induced colitis in mice. From an A. lumbricoides cDNA library, we obtained a recombinant cystatin (rAl-CPI). Protease activity inhibition was demonstrated on cathepsin B and papain. Immunomodulatory effects were evaluated at two intraperitoneal doses (0.5 and 0.25 μg/G) on mice with DSS-induced colitis. Body weight, colon length, Disease Activity Index (DAI), histological inflammation score, myeloperoxidase (MPO) activity, gene expression of cytokines and cytokines levels in colon tissue were analysed. Treatment with rAl-CPI significantly reduced DAI, MPO activity and inflammation score without toxic effects. Also, IL-10 and TGF-B gene overexpression was observed in rAl-CPI-treated group compared to DSS-exposed control and healthy mice. Furthermore, a reduction in IL-6 and TNF-A expression was found, and this was confirmed by the levels of these cytokines in colonic tissue. In conclusion, rAl-CPI reduces inflammation in a mouse model of DSS-induced colitis, probably by increasing the expression of anti-inflammatory cytokines and reducing pro-inflammatory ones.
Collapse
Affiliation(s)
- S Coronado
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - L Barrios
- Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia
| | - J Zakzuk
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - R Regino
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - V Ahumada
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - L Franco
- Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia
| | - Y Ocampo
- Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia
| | - L Caraballo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
197
|
Jin BR, Chung KS, Cheon SY, Lee M, Hwang S, Noh Hwang S, Rhee KJ, An HJ. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci Rep 2017; 7:46252. [PMID: 28383063 PMCID: PMC5382778 DOI: 10.1038/srep46252] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), is a chronic inflammatory disorder of the colon. Although UC is generally treated with anti-inflammatory drugs or immunosuppressants, most of these treatments often prove to be inadequate. Rosmarinic acid (RA) is a phenolic ester included in various medicinal herbs such as Salvia miltiorrhiz and Perilla frutescens. Although RA has many biological and pharmacological activities, the anti-inflammatory effect of RA in colonic tissue remains unclear. In this study, we investigated the anti-inflammatory effects and underlying molecular mechanism of RA in mice with dextran sulphate sodium (DSS)-induced colitis. In the DSS-induced colitis model, RA significantly reduced the severity of colitis, as assessed by disease activity index (DAI) scores, colonic damage, and colon length. In addition, RA resulted in the reduction of the inflammatory-related cytokines, such as IL-6, IL-1β, and IL-22, and protein levels of COX-2 and iNOS in mice with DSS-induced colitis. Furthermore, RA effectively and pleiotropically inhibited nuclear factor-kappa B and signal transducer and activator of transcription 3 activation, and subsequently reduced the activity of pro-survival genes that depend on these transcription factors. These results demonstrate that RA has an ameliorative effect on colonic inflammation and thus a potential therapeutic role in colitis.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Minho Lee
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju-si, Gangwon-do 16493, Republic of Korea
| | - Sam Noh Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju-si, Gangwon-do 16493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju-si, Gangwon-do 16493, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Republic of Korea
| |
Collapse
|
198
|
Direito R, Lima A, Rocha J, Ferreira RB, Mota J, Rebelo P, Fernandes A, Pinto R, Alves P, Bronze R, Sepodes B, Figueira ME. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities. J Nutr Biochem 2017; 46:100-108. [PMID: 28494341 DOI: 10.1016/j.jnutbio.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/18/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023]
Abstract
Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD.
Collapse
Affiliation(s)
- Rosa Direito
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Lima
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - João Rocha
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo Boavida Ferreira
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Joana Mota
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Patrícia Rebelo
- Disease & Stress Biology Group, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Adelaide Fernandes
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Pinto
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paula Alves
- University of Coimbra, Faculty of Medicine and Instituto Português de Oncologia, Pólo Ciências da Saúde, Celas, 3000-354 Coimbra
| | - Rosário Bronze
- ITQB, Estação Agronómica Nacional, Av. da República, 2780-157 Oeiras, Portugal; IBET, Avenida da República, Quinta-do-Marquês, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Bruno Sepodes
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria-Eduardo Figueira
- University of Lisbon, Faculty of Pharmacy and Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
199
|
Kämpfer A, La Spina R, Gilliland D, Valzacchi S, Asturiol D, Stone V, Kinsner-Ovaskainen A. Silver Nanoparticles and Metallic Silver Interfere with the Griess Reaction: Reduction of Azo Dye Formation via a Competing Sandmeyer-Like Reaction. Chem Res Toxicol 2017; 30:1030-1037. [PMID: 28282135 DOI: 10.1021/acs.chemrestox.6b00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silver (Ag) is the most common nanomaterial (NM) in consumer products. Much research has been focused on elucidating the potential impact of Ag-containing NMs on human health, e.g., cytotoxicity, genotoxicity, or proinflammatory responses. In the case of proinflammatory responses, a frequently used end point is the induction of nitric oxide (NO), which is indirectly quantified as nitrite (NO2-) with the Griess reaction. After preliminary studies in a macrophage-like cell culture system showed anomalous false negative results in the presence of silver nanoparticles (Ag NPs), we studied the influence of Ag on the detection of NO2- in a cell-free environment. Solutions containing a known concentration of NaNO2 were prepared in H2O, PBS, or complete cell culture medium (CCM) and analyzed using the Griess reaction in the presence of Ag in its metallic or ionic state. In Milli-Q H2O, the impact of salts on the detection was investigated using NaCl and KBr. After completion of the Griess reaction, the samples were analyzed spectrophotometrically or chromatographically. It was found that the presence of metallic but not ionic Ag interfered with the quantification of NO2-. The effect was more pronounced in PBS and H2O containing NaCl or KBr. The chromatographical analysis provided evidence of a competing reaction consuming the intermediate diazonium salt, which is critical to the Griess reaction. These findings demonstrate yet another substantial interference of NMs with a frequently used in vitro assay. If gone unnoticed, this interference might cause false negative results and an impaired hazard assessment of Ag NMs.
Collapse
Affiliation(s)
- Angela Kämpfer
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Rita La Spina
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Douglas Gilliland
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Sandro Valzacchi
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - David Asturiol
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Vicki Stone
- Nanosafety Research Group, School of Life Sciences, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| |
Collapse
|
200
|
Qu T, Wang E, Jin B, Li W, Liu R, Zhao ZB. 5-Aminosalicylic acid inhibits inflammatory responses by suppressing JNK and p38 activity in murine macrophages. Immunopharmacol Immunotoxicol 2017; 39:45-53. [PMID: 28071183 DOI: 10.1080/08923973.2016.1274997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT 5-Aminosalicylic acid (5-ASA), as an anti-inflammatory drug, has been extensively used for the treatment of mild to moderate active ulcerative colitis (UC), but the possible mechanisms of action remain unclear. OBJECTIVE To investigate the effects of 5-ASA on the production of inflammatory mediators by murine macrophages stimulated with lipopolysaccharide (LPS), and determine the underlying pharmacological mechanism of action. MATERIALS AND METHODS The levels of nitric oxide (NO) and interleukin-6 (IL-6) were measured by Varioskan Flash and IL-6 Enzyme-Linked Immunosorbent Assay sets. Real time quantitative polymerase chain reaction was used to determine the level of induced nitric oxide synthase (iNOS). The effects of 5-ASA on iNOS, the c-Jun N-terminal kinases (JNKs), p38 and nuclear factor (NF)-κB signaling pathways were examined using western blotting. RESULTS 5-ASA suppressed the production of NO and IL-6, and also decreased the expression of iNOS in LPS-induced RAW264.7 cells. 5-ASA inhibited the phosphorylation of JNKs and p38, but did not block NF-κB activation at all doses tested. DISCUSSION AND CONCLUSION The results indicated that the anti-inflammatory effect of 5-ASA was mainly regulated by the inhibition of the JNKs, p38 pathways rather than NF-κB pathway. Further research is required to clarify the detailed mechanism of the action.
Collapse
Affiliation(s)
- Tingli Qu
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Erbing Wang
- b Chemical and Biological Engineering College of Taiyuan University of Science and Technology , Taiyuan , Shanxi , People's Republic of China
| | - Baofen Jin
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China.,c Fuyong People's Hospital , Shenzhen , Guangdong , People's Republic of China
| | - Weiping Li
- d Department of Pharmacology , Fenyang College Shanxi Medical University , Fenyang , Shanxi , People's Republic of China
| | - Ruiling Liu
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Zheng-Bao Zhao
- a School of Pharmaceutical Science of Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| |
Collapse
|