151
|
|
152
|
Boasso A. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. SCIENTIFICA 2013; 2013:580968. [PMID: 24455433 PMCID: PMC3885208 DOI: 10.1155/2013/580968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Type I interferon (IFN-I) play a critical role in the innate immune response against viral infections. They actively participate in antiviral immunity by inducing molecular mechanisms of viral restriction and by limiting the spread of the infection, but they also orchestrate the initial phases of the adaptive immune response and influence the quality of T cell immunity. During infection with the human immunodeficiency virus type 1 (HIV-1), the production of and response to IFN-I may be severely altered by the lymphotropic nature of the virus. In this review I consider the different aspects of virus sensing, IFN-I production, signalling, and effects on target cells, with a particular focus on the alterations observed following HIV-1 infection.
Collapse
Affiliation(s)
- Adriano Boasso
- Immunology Section, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
153
|
Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N, McKell R, Rosowski EE, Julien L, Butty V, Dardé ML, Ajzenberg D, Fitzgerald K, Young LH, Saeij JPJ. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog 2013; 9:e1003779. [PMID: 24367253 PMCID: PMC3868521 DOI: 10.1371/journal.ppat.1003779] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
Collapse
Affiliation(s)
- Mariane B. Melo
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Quynh P. Nguyen
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Cynthia Cordeiro
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
- Internal Medicine Department, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Musa A. Hassan
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Ninghan Yang
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Renée McKell
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Emily E. Rosowski
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Lindsay Julien
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Vincent Butty
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
| | - Marie-Laure Dardé
- Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, Centre Hospitalier-Universitaire Dupuytren, Limoges, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges, France
| | - Daniel Ajzenberg
- Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, Centre Hospitalier-Universitaire Dupuytren, Limoges, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges, France
| | - Katherine Fitzgerald
- University of Massachusetts Medical School, Division of Infectious Diseases and Immunology, Worcester, Massachusetts, United States of America
| | - Lucy H. Young
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeroen P. J. Saeij
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
154
|
Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci U S A 2013; 110:19902-7. [PMID: 24248387 DOI: 10.1073/pnas.1313152110] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 μg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.
Collapse
|
155
|
Vitour D, Doceul V, Ruscanu S, Chauveau E, Schwartz-Cornil I, Zientara S. Induction and control of the type I interferon pathway by Bluetongue virus. Virus Res 2013; 182:59-70. [PMID: 24211608 PMCID: PMC7114367 DOI: 10.1016/j.virusres.2013.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
A general review describing the current knowledge on the type I IFN pathway. Description of several mechanisms evolved by viruses to counteract this antiviral response. An up-to-date review on the interaction of BTV and the type I IFN pathway in vivo and in vitro. Description of the cellular sensors involved in the induction of IFN-α/β synthesis upon BTV infection in haematopoietic and non-haematopoietic cells. Description of the strategies evolved by BTV to counteract this cellular antiviral response.
The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/β) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-β in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-β as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/β synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-β synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.
Collapse
Affiliation(s)
- Damien Vitour
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Virginie Doceul
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Jouy-en-Josas, France.
| | - Emilie Chauveau
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | - Stéphan Zientara
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| |
Collapse
|
156
|
Gurkan S, Cabinian A, Lopez V, Bhaumik M, Chang JM, Rabson AB, Mundel P. Inhibition of type I interferon signalling prevents TLR ligand-mediated proteinuria. J Pathol 2013; 231:248-56. [PMID: 24151637 DOI: 10.1002/path.4235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms by which inflammation or autoimmunity causes proteinuric kidney disease remain elusive. Yet proteinuria is a hallmark and a prognostic indicator of kidney disease, and also an independent risk factor for cardiovascular morbidity and mortality. Podocytes are an integral component of the kidney filtration barrier and podocyte injury leads to proteinuria. Here we show that podocytes, which receive signals from the vascular space including circulating antigens, constitutively express TLR1–6 and TLR8. We find that podocytes can respond to TLR ligands including staphylococcal enterotoxin B (SEB), poly I:C, or lipopolysaccharide (LPS) with pro-inflammatory cytokine release and activation of type I interferon (IFN) signalling. This in turn stimulates podocyte B7-1 expression and actin remodelling in vitro and transient proteinuria in vivo. Importantly, the treatment of mice with a type I IFN receptor-blocking antibody (Ab) prevents LPS-induced proteinuria. These results significantly extend our understanding of podocyte response to immune stimuli and reveal a novel mechanism for infection- or inflammation-induced transient proteinuria. Dysregulation or aberrant activation of this response may result in persistent proteinuria and progressive glomerular disease. In summary, the inhibition of glomerular type I IFN signalling with anti-IFN Abs may be a novel therapy for proteinuric kidney diseases.
Collapse
|
157
|
Abstract
Although type I interferons (IFN-I) were initially defined as potent antiviral agents, they can also cause decreased host resistance to some bacterial and viral infections. The many antiviral functions of the IFN-I include direct suppression of viral replication and activation of the immune response against viruses. In addition to their antiviral effects, IFN-I are also protective against several extracellular bacterial infections, in part, by promoting the induction of TNF-α and nitric oxide. In contrast, there is a negative effect of IFN-I on host resistance during chronic infection with lymphocytic choriomeningitis virus (LCMV) and acute infections with intracellular bacteria. In the case of LCMV, chronic IFN-I signaling induces adaptive immune system suppression. Blockade of IFN-I signaling removes the suppression and allows CD4 T-cell- and IFN-γ-mediated resolution of the infection. During acute intracellular bacterial infection, IFN-I suppress innate immunity by at least two defined mechanisms. During Francisella infection, IFN-I prevent IL-17 upregulation on γδ T cells and neutrophil recruitment. Following Listeria infection, IFN-I promote the cell death of macrophages and lymphocytes, which leads to innate immune suppression. These divergent findings for the role of IFN-I on pathogen control emphasize the complexity of the interferons system and force more mechanistic evaluation of its role in pathogenesis. This review evaluates IFN-I during infection with an emphasis on work carried out IFN-I-receptor-deficient mice.
Collapse
Affiliation(s)
- Javier Antonio Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
158
|
Lee MS, Park CH, Jeong YH, Kim YJ, Ha SJ. Negative regulation of type I IFN expression by OASL1 permits chronic viral infection and CD8⁺ T-cell exhaustion. PLoS Pathog 2013; 9:e1003478. [PMID: 23874199 PMCID: PMC3715418 DOI: 10.1371/journal.ppat.1003478] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
The type I interferons (IFN-Is) are critical not only in early viral control but also in prolonged T-cell immune responses. However, chronic viral infections such as those of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in humans and lymphocytic choriomeningitis virus (LCMV) in mice overcome this early IFN-I barrier and induce viral persistence and exhaustion of T-cell function. Although various T-cell-intrinsic and -extrinsic factors are known to contribute to induction of chronic conditions, the roles of IFN-I negative regulators in chronic viral infections have been largely unexplored. Herein, we explored whether 2'-5' oligoadenylate synthetase-like 1 (OASL1), a recently defined IFN-I negative regulator, plays a key role in the virus-specific T-cell response and viral defense against chronic LCMV. To this end, we infected Oasl1 knockout and wild-type mice with LCMV CL-13 (a chronic virus) and monitored T-cell responses, serum cytokine levels, and viral titers. LCMV CL-13-infected Oasl1 KO mice displayed a sustained level of serum IFN-I, which was primarily produced by splenic plasmacytoid dendritic cells, during the very early phase of infection (2-3 days post-infection). Oasl1 deficiency also led to the accelerated elimination of viremia and induction of a functional antiviral CD8 T-cell response, which critically depended on IFN-I receptor signaling. Together, these results demonstrate that OASL1-mediated negative regulation of IFN-I production at an early phase of infection permits viral persistence and suppresses T-cell function, suggesting that IFN-I negative regulators, including OASL1, could be exciting new targets for preventing chronic viral infection.
Collapse
Affiliation(s)
- Myeong Sup Lee
- Genome Research Center, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Chan Hee Park
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yun Hee Jeong
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Joon Kim
- Genome Research Center, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Integrated Omics for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, Republic of Korea
- * E-mail: (YJK); (SJH)
| | - Sang-Jun Ha
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail: (YJK); (SJH)
| |
Collapse
|
159
|
JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood 2013; 122:1464-77. [PMID: 23863895 DOI: 10.1182/blood-2013-04-498956] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The acquired gain-of-function V617F mutation in the Janus Kinase 2 (JAK2(V617F)) is the main mutation involved in BCR/ABL-negative myeloproliferative neoplasms (MPNs), but its effect on hematopoietic stem cells as a driver of disease emergence has been questioned. Therefore, we reinvestigated the role of endogenous expression of JAK2(V617F) on early steps of hematopoiesis as well as the effect of interferon-α (IFNα), which may target the JAK2(V617F) clone in humans by using knock-in mice with conditional expression of JAK2(V617F) in hematopoietic cells. These mice develop a MPN mimicking polycythemia vera with large amplification of myeloid mature and precursor cells, displaying erythroid endogenous growth and progressing to myelofibrosis. Interestingly, early hematopoietic compartments [Lin-, LSK, and SLAM (LSK/CD48-/CD150+)] increased with the age. Competitive repopulation assays demonstrated disease appearance and progressive overgrowth of myeloid, Lin-, LSK, and SLAM cells, but not lymphocytes, from a low number of engrafted JAK2(V617F) SLAM cells. Finally, IFNα treatment prevented disease development by specifically inhibiting JAK2(V617F) cells at an early stage of differentiation and eradicating disease-initiating cells. This study shows that JAK2(V617F) in mice amplifies not only late but also early hematopoietic cells, giving them a proliferative advantage through high cell cycling and low apoptosis that may sustain MPN emergence but is lost upon IFNα treatment.
Collapse
|
160
|
Corre B, Perrier J, El Khouri M, Cerboni S, Pellegrini S, Michel F. Type I interferon potentiates T-cell receptor mediated induction of IL-10-producing CD4⁺ T cells. Eur J Immunol 2013; 43:2730-40. [PMID: 23839924 DOI: 10.1002/eji.201242977] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/26/2013] [Accepted: 06/18/2013] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFNs) have the dual ability to promote the development of the immune response and exert an anti-inflammatory activity. We analyzed the integrated effect of IFN-α, TCR signal strength, and CD28 costimulation on human CD4⁺ T-cell differentiation into cell subsets producing the anti- and proinflammatory cytokines IL-10 and IFN-γ. We show that IFN-α boosted TCR-induced IL-10 expression in activated peripheral CD45RA⁺CD4⁺ T cells and in whole blood cultures. The functional cooperation between TCR and IFN-α efficiently occurred at low engagement of receptors. Moreover, IFN-α rapidly cooperated with anti-CD3 stimulation alone. IFN-α, but not IL-10, drove the early development of type I regulatory T cells that were mostly IL-10⁺ Foxp3⁻ IFN-γ⁻ and favored IL-10 expression in a fraction of Foxp3⁺ T cells. Our data support a model in which IFN-α costimulates TCR toward the production of IL-10 whose level can be amplified via an autocrine feedback loop.
Collapse
Affiliation(s)
- Béatrice Corre
- Department of Immunology, Unit of Cytokine Signaling, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
161
|
Knudsen ML, Johansson DX, Kostic L, Nordström EKL, Tegerstedt K, Pasetto A, Applequist SE, Ljungberg K, Sirard JC, Liljeström P. The adjuvant activity of alphavirus replicons is enhanced by incorporating the microbial molecule flagellin into the replicon. PLoS One 2013; 8:e65964. [PMID: 23785460 PMCID: PMC3681802 DOI: 10.1371/journal.pone.0065964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022] Open
Abstract
Ligands of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) stimulate innate and adaptive immune responses and are considered as potent adjuvants. Combinations of ligands might act in synergy to induce stronger and broader immune responses compared to stand-alone ligands. Alphaviruses stimulate endosomal TLRs 3, 7 and 8 as well as the cytoplasmic PRR MDA-5, resulting in induction of a strong type I interferon (IFN) response. Bacterial flagellin stimulates TLR5 and when delivered intracellularly the cytosolic PRR NLRC4, leading to secretion of proinflammatory cytokines. Both alphaviruses and flagellin have independently been shown to act as adjuvants for antigen-specific antibody responses. Here, we hypothesized that alphavirus and flagellin would act in synergy when combined. We therefore cloned the Salmonella Typhimurium flagellin (FliC) gene into an alphavirus replicon and assessed its adjuvant activity on the antibody response against co-administered antigen. In mice immunized with recombinant alphavirus, antibody responses were greatly enhanced compared to soluble FliC or control alphavirus. Both IgG1 and IgG2a/c responses were increased, indicating an enhancement of both Th1 and Th2 type responses. The adjuvant activity of FliC-expressing alphavirus was diminished but not abolished in the absence of TLR5 or type I IFN signaling, suggesting the contribution of several signaling pathways and some synergistic and redundant activity of its components. Thus, we have created a recombinant adjuvant that stimulates multiple signaling pathways of innate immunity resulting in a strong and broad antibody response.
Collapse
Affiliation(s)
- Maria L Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Eloranta ML, Alm GV, Rönnblom L. Disease mechanisms in rheumatology--tools and pathways: plasmacytoid dendritic cells and their role in autoimmune rheumatic diseases. ACTA ACUST UNITED AC 2013; 65:853-63. [PMID: 23280551 DOI: 10.1002/art.37821] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
163
|
Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJM. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182-90. [PMID: 23706598 DOI: 10.1016/j.smim.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 01/15/2023]
Abstract
The insight that the immune system is involved in tumor resistance is gaining momentum and this has led to the development of immunotherapeutic strategies aiming at enhancement of immune-mediated tumor destruction. Although some of these strategies have moderate clinical benefit, most stand-alone therapies fail to significantly affect progressive disease and survival or do so only in a minority of patients. Research on the mechanisms underlying the generation of immune responses against tumors and the immune evasion by tumors has emphasized that various mechanisms simultaneously prevent effective immunity against cancer including inefficient presentation of tumor antigens by dendritic cells and induction of negative immune regulation by regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs). Thus the design of therapies that simultaneously improve effective tumor immunity and counteract immune evasion by tumors seems most desirable for clinical efficacy. As it is unlikely that a single immunotherapeutic strategy addresses all necessary requirements, combinatorial strategies that act synergistically need to be developed. Here we discuss the current knowledge and prospects of treatment with synthetic peptide vaccines that stimulate tumor-specific T-cell responses combined with adjuvants, immune modulating antibodies, cytokines and chemotherapy. We conclude that combinatorial approaches have the best potency to accomplish the most significant tumor destruction but further research is required to optimize such approaches.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
164
|
Pan H, Ma Y, Wang D, Wang J, Jiang H, Pan S, Zhao B, Wu Y, Xu D, Sun X, Liu L, Xu Z. Effect of IFN-α on KC and LIX expression: role of STAT1 and its effect on neutrophil recruitment to the spleen after lipopolysaccharide stimulation. Mol Immunol 2013; 56:12-22. [PMID: 23644631 DOI: 10.1016/j.molimm.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 01/11/2023]
Abstract
The spleen is a crucial lymphoid organ. It is involved in the recruitment of various immunocytes to their correct locations using specific chemokines, but little is known concerning the role of type-I interferon (IFN) in the regulation of chemokines. In this study, we first used protein microarrays to assess the expression of keratinocyte-derived chemokine (KC) and lipopolysaccharide-induced CXC chemokine (LIX) in murine spleens. Both expressions were smoothly enhanced by IFN-α pretreatment after LPS injection. Then, we focused on the IFN-α regulation of KC, LIX, and their target cells, neutrophils, using an IFN-α neutralizing antibody and fludarabine (specific signal transducers and activators of transcription 1 - STAT1 inhibitor). Next, LPS was found to attenuate the production of KC and LIX in spleen. Even the elevated production of chemokines caused by exogenous IFN-α was found to be attenuated by fludarabine pretreatment. We later determined that the marginal zone and red pulp are the main sites of KC and LIX production. Last, we determined that the number of neutrophils was slightly increased by IFN-α treatment and diminished by IFN-α neutralization or fludarabine treatment. Further, the elevated neutrophils due to exogenous IFN-α were partially reversed by fludarabine pretreatment. In this way, these results indicate that IFN-α facilitates KC and LIX expression in mouse spleens after an LPS challenge. This effect was found to be mainly dependent upon the activation of STAT1, it may be involved in the recruitment of neutrophils to the spleen for the clearance of pathogens.
Collapse
Affiliation(s)
- Huayang Pan
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Shimizu K, Asakura M, Shinga J, Sato Y, Kitahara S, Hoshino K, Kaisho T, Schoenberger SP, Ezaki T, Fujii SI. Invariant NKT cells induce plasmacytoid dendritic cell (DC) cross-talk with conventional DCs for efficient memory CD8+ T cell induction. THE JOURNAL OF IMMUNOLOGY 2013; 190:5609-19. [PMID: 23630347 DOI: 10.4049/jimmunol.1300033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A key goal of vaccine immunotherapy is the generation of long-term memory CD8(+) T cells capable of mediating immune surveillance. We discovered a novel intercellular pathway governing the development of potent memory CD8(+) T cell responses against cell-associated Ags that is mediated through cross-presentation by XCR1(+) dendritic cells (DCs). Generation of CD8(+) memory T cells against tumor cells pulsed with an invariant NKT cell ligand depended on cross-talk between XCR1(+) and plasmacytoid DCs that was regulated by IFN-α/IFN-αR signals. IFN-α production by plasmacytoid DCs was stimulated by an OX40 signal from the invariant NKT cells, as well as an HMGB1 signal from the dying tumor cells. These findings reveal a previously unknown pathway of intercellular collaboration for the generation of tumor-specific CD8(+) memory T cells that can be exploited for strategic vaccination in the setting of tumor immunotherapy.
Collapse
Affiliation(s)
- Kanako Shimizu
- Research Unit for Cellular Immunotherapy, Research Center for Allergy and Immunology, The Institute of Physical and Chemical Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Fujikura D, Chiba S, Muramatsu D, Kazumata M, Nakayama Y, Kawai T, Akira S, Kida H, Miyazaki T. Type-I interferon is critical for FasL expression on lung cells to determine the severity of influenza. PLoS One 2013; 8:e55321. [PMID: 23408968 PMCID: PMC3568138 DOI: 10.1371/journal.pone.0055321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/21/2012] [Indexed: 01/09/2023] Open
Abstract
Infection of influenza A virus in mammals induces hyper lung pneumonia, which often causes lethal diseases. FasL is a specific ligand of Fas, which is a type-I transmembrane protein to induce cell death. Previously, it has been reported that the hyper induction of gene expression associated with Fas signal is observed in lethal influenza A virus infection. More importantly, it was also reported that functional mutation of the FasL gene protects the host against influenza A virus infection. These observations suggest that induction of FasL signal is functionally associated with the severity of influenza. However, regulation of the induction of FasL or Fas by influenza A virus infection is still unknown. Here, we demonstrated that FasL is induced after the viral infection, and inhibition of the Fas/FasL signal by treatment with a recombinant decoy receptor for FasL (Fas-Fc) increases the survival rate of mice after lethal infection of influenza A virus as well as functional mutation of the FasL gene in gld/gld mice. In addition, the induction level of FasL gene expression in the lung was correlated with the severity of influenza. We also showed that a variety of types of cells in the lung express FasL after the viral infection. Furthermore, type-I interferon induced by the viral infection was shown to be critical for induction of FasL protein expression in the lung. These findings suggested that expression of FasL protein induced by type-I IFN on the lung cell surface is critical to determine the severity of influenza.
Collapse
Affiliation(s)
- Daisuke Fujikura
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
- Japan Science and Technology Agency, Innovation Plaza Hokkaido, Kita-ku, Sapporo, Hokkaido, 060-0819, Japan
| | - Satoko Chiba
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
| | - Daisuke Muramatsu
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
- Aureo Science Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
| | - Mika Kazumata
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
- Aureo Science Co., Ltd., Kita-ku, Sapporo, Hokkaido, Japan
| | - Yosuke Nakayama
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
| | - Taro Kawai
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Kida
- Japan Science and Technology Agency, Innovation Plaza Hokkaido, Kita-ku, Sapporo, Hokkaido, 060-0819, Japan
- Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
- Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
- Office International des Epizooties (OIE) Reference Laboratory for Highly Pathogenic Avian Influenza, Sapporo, Hokkaido, Japan
| | - Tadaaki Miyazaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita-ku, Sapporo, Hokkaido, Japan
- Japan Science and Technology Agency, Innovation Plaza Hokkaido, Kita-ku, Sapporo, Hokkaido, 060-0819, Japan
- * E-mail:
| |
Collapse
|
167
|
Abstract
The innate immune system is responsible for recognizing invading pathogens and initiating a protective response. In particular, the retinoic acid-inducible gene 1 protein (RIG-I) participates in the recognition of single- and double-stranded RNA viruses. RIG-I activation leads to the production of an appropriate cytokine and chemokine cocktail that stimulates an antiviral state and drives the adaptive immune system toward an efficient and specific response against the ongoing infection. One of the best-characterized natural RIG-I agonists is the defective interfering (DI) RNA produced by Sendai virus strain Cantell. This 546-nucleotide RNA is a well-known activator of the innate immune system and an extremely potent inducer of type I interferon. We designed an in vitro-transcribed RNA that retains the type I interferon stimulatory properties, and the RIG-I affinity of the Sendai virus produced DI RNA both in vitro and in vivo. This in vitro-synthesized RNA is capable of enhancing the production of anti-influenza virus hemagglutinin (HA)-specific IgG after intramuscular or intranasal coadministration with inactivated H1N1 2009 pandemic vaccine. Furthermore, our adjuvant is equally effective at increasing the efficiency of an influenza A/Puerto Rico/8/34 virus inactivated vaccine as a poly(I·C)- or a squalene-based adjuvant. Our in vitro-transcribed DI RNA represents an excellent tool for the study of RIG-I agonists as vaccine adjuvants and a starting point in the development of such a vaccine.
Collapse
|
168
|
Zeestraten ECM, Speetjens FM, Welters MJP, Saadatmand S, Stynenbosch LFM, Jongen R, Kapiteijn E, Gelderblom H, Nijman HW, Valentijn ARPM, Oostendorp J, Fathers LM, Drijfhout JW, van de Velde CJH, Kuppen PJK, van der Burg SH, Melief CJM. Addition of interferon-α to the p53-SLP® vaccine results in increased production of interferon-γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int J Cancer 2012; 132:1581-91. [PMID: 22948952 DOI: 10.1002/ijc.27819] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/09/2012] [Indexed: 12/25/2022]
Abstract
We previously established safety and immunogenicity of a p53 synthetic long peptides (p53-SLP®) vaccine. In the current trial, we investigated whether combination of interferon-alpha (IFN-α) with p53-SLP® is both safe and able to improve the induced p53-specific IFN-γ response. Eleven colorectal cancer patients successfully treated for metastatic disease were enrolled in this study. Of these, nine patients completed follow-up after two injections with p53-SLP® together with IFN-α. Safety and p53-specific immune responses were determined before and after vaccination. Furthermore, cryopreserved PBMCs were compared head-to-head to cryopreserved PBMCs obtained in our previous trial with p53-SLP® only. Toxicity of p53-SLP® vaccination in combination with IFN-α was limited to Grade 1 or 2, with predominantly small ongoing swellings at the vaccination site. All patients harbored p53-specific T cells after vaccination and most patients showed p53-specific antibodies. Compared to the previous trial, addition of IFN-α significantly improved the frequency of p53-specific T cells in IFN-γ ELISPOT. Moreover, in this trial, p53-specific T cells were detectable in blood samples of all patients in a direct ex vivo multiparameter flowcytometric assay, opposed to only 2 of 10 patients vaccinated with p53-SLP® only. Finally, patients in this trial displayed a broader p53-specific immunoglobulin-G response, indicating an overall better p53-specific T-helper response. Our study shows that p53-SLP® vaccination combined with IFN-α injection is safe and capable of inducing p53-specific immunity. When compared to a similar trial with p53-SLP® vaccination alone the combination was found to induce significantly more IFN-γ producing p53-specific T cells.
Collapse
|
169
|
Sin WX, Li P, Yeong JPS, Chin KC. Activation and regulation of interferon-β in immune responses. Immunol Res 2012; 53:25-40. [PMID: 22411096 DOI: 10.1007/s12026-012-8293-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferons (IFNs) were discovered more than half a century ago, and extensive research has since identified multifarious roles for type I IFN in human immune responses. Here, we review the functions of IFN-β in innate and adaptive immunity. We also discuss the activation and influence of IFN-β on myeloid cell types, including monocytes and dendritic cells, as well as address the effects of IFN-β on T cells and B cells. Findings from our own laboratory, which explores the molecular mechanisms of IFN-β activation by LPS and viruses, as well as from other groups investigating the regulation of IFN-β by viral proteins and endogenous factors are described. The effects of post-translational modifications of the interferon regulatory factor (IRF)-3 on IFN-β induction are also highlighted. Many unanswered questions remain concerning the regulation of the type I IFN response in inflammation, especially the role of transcription factors in the modulation of inflammatory gene expression, and these questions will form the basis for exciting avenues of future research.
Collapse
Affiliation(s)
- Wei-Xiang Sin
- Laboratory of Gene Regulation and Inflammation, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04 Immunos, Biopolis, Singapore
| | | | | | | |
Collapse
|
170
|
Pritchard AL, White OJ, Burel JG, Upham JW. Innate interferons inhibit allergen and microbial specific T(H)2 responses. Immunol Cell Biol 2012; 90:974-7. [PMID: 22825591 DOI: 10.1038/icb.2012.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several studies provided evidence of innate interferons (IFNs) regulating T(H)2 cytokine production using purified CD4(+) memory cells and T(H)2 polarisation via interleukin-4 (IL-4). Vitally, none of these previous studies examined IFN attenuation of T(H)2 responses to allergen or antigen. This study therefore sought to investigate the abrogation of specific allergen- and antigen-stimulated T(H)2 response in peripheral blood mononuclear cells (PBMC) derived from 12 sensitised individuals by IFN-β and IFN-λ. PBMC were cultured in the presence of house dust mite (HDM) allergen, rhinovirus (RV), influenza vaccine and tetanus toxoid (TT)±either IFN-β or IFN-λ for 3 and 5 days. IFN-γ, IL-5 and IL-13 protein levels were measured by ELISA. Quantitative PCR (qPCR) was used to investigate induction of genes involved in control of T(H)2 cytokines. No alteration in T(H)1 IFN-γ allergen/antigen response was observed with addition of IFN-β or IFN-λ. Consistent abrogation of T(H)2 response to HDM and influenza was observed with IFN-β at both time points; attenuation was observed by day 5 with RV and TT. IFN-λ had no consistent effect on T(H)2 production except in the presence of RV (multiplicity of infection=5); a decrease in IL-5 alone was observed in the presence of trivalent inactivated influenza vaccine. GATA binding protein 3 (GATA3) and suppressors of cytokine signalling3 mRNA were differentially regulated in HDM and influenza-stimulated cultures±IFN-β. We concluded that IFN-β produced a strong and consistent abrogation of T(H)2 cytokine production in the presence of a range of allergen and antigen stimulants.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Lung and Allergy Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Buranda, Brisbane, Australia.
| | | | | | | |
Collapse
|
171
|
Chauveau E, Doceul V, Lara E, Adam M, Breard E, Sailleau C, Viarouge C, Desprat A, Meyer G, Schwartz-Cornil I, Ruscanu S, Charley B, Zientara S, Vitour D. Sensing and control of bluetongue virus infection in epithelial cells via RIG-I and MDA5 helicases. J Virol 2012; 86:11789-99. [PMID: 22915805 PMCID: PMC3486277 DOI: 10.1128/jvi.00430-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/12/2012] [Indexed: 12/24/2022] Open
Abstract
Bluetongue virus (BTV), an arthropod-borne member of the Reoviridae family, is a double-stranded RNA virus that causes an economically important livestock disease that has spread across Europe in recent decades. Production of type I interferon (alpha/beta interferon [IFN-α/β]) has been reported in vivo and in vitro upon BTV infection. However, the cellular sensors and signaling pathways involved in this process remain unknown. Here we studied the mechanisms responsible for the production of IFN-β in response to BTV serotype 8. Upon BTV infection of A549 cells, expression of IFN-β and other proinflammatory cytokines was strongly induced at both the protein and mRNA levels. This response appeared to be dependent on virus replication, since exposure to UV-inactivated virus failed to induce IFN-β. We also demonstrated that BTV infection activated the transcription factors IFN regulatory factor 3 and nuclear factor κB. We investigated the role of several pattern recognition receptors in this response and showed that expression of IFN-β was greatly reduced after small-interfering-RNA-mediated knockdown of the RNA helicase encoded by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated gene 5 (MDA5). In contrast, silencing of MyD88, Toll-like receptor 3, or the recently described DexD/H-box helicase DDX1 sensor had no or a weak effect on IFN-β induction, suggesting that the RIG-I-like receptor pathway is specifically engaged for BTV sensing. Moreover, we also showed that overexpression of either RIG-I or MDA5 impaired BTV expression in infected A549 cells. Overall, this indicates that RIG-I and MDA5 can both contribute to the recognition and control of BTV infection.
Collapse
Affiliation(s)
- Emilie Chauveau
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Virginie Doceul
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Estelle Lara
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Micheline Adam
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Emmanuel Breard
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Corinne Sailleau
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Cyril Viarouge
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Alexandra Desprat
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Gilles Meyer
- Université de Toulouse, INP, ENVT, INRA, UMR1225 IHAP, Toulouse, France
| | | | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Domaine de Vilvert, Jouy-en-Josas, France
| | - Bernard Charley
- Virologie et Immunologie Moléculaires, UR892 INRA, Domaine de Vilvert, Jouy-en-Josas, France
| | - Stéphan Zientara
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| | - Damien Vitour
- ANSES, Maisons-Alfort Laboratory for Animal Health, ANSES, INRA, ENVA, UMR 1161 Virology, Maisons-Alfort, France
| |
Collapse
|
172
|
Mitrović M, Arapović J, Traven L, Krmpotić A, Jonjić S. Innate immunity regulates adaptive immune response: lessons learned from studying the interplay between NK and CD8+ T cells during MCMV infection. Med Microbiol Immunol 2012; 201:487-95. [PMID: 22965169 DOI: 10.1007/s00430-012-0263-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 01/04/2023]
Abstract
Natural killer (NK) cells play a crucial role in early immune response against cytomegalovirus infection. A large and mounting body of data indicate that these cells are involved in the regulation of the adaptive immune response as well. By using mouse cytomegalovirus (MCMV) as a model, several groups provided novel insights into the role of NK cells in the development and kinetics of antiviral CD8(+) T cell response. Depending on infection conditions, virus strain and the genetic background of mice used, NK cells are either positive or negative regulators of the CD8(+) T cell response. At present, there is no unique explanation for the observed differences between various experimental systems used. In this review we discuss the mechanisms involved in the interplay between NK and CD8(+) T cells in the early control of MCMV infection.
Collapse
Affiliation(s)
- Maja Mitrović
- Department of Histology and Embryology, University of Rijeka, B. Branchetta 20, 51 000 Rijeka, Croatia
| | | | | | | | | |
Collapse
|
173
|
Fang M, Xu N, Shao X, Yang J, Wu N, Yao H. Inhibitory effects of human immunodeficiency virus gp120 and Tat on CpG-A-induced inflammatory cytokines in plasmacytoid dendritic cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:797-804. [PMID: 22814248 DOI: 10.1093/abbs/gms062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), not only inhibit viral replication, but also play an essential role in linking the innate and adaptive immune system. In this study, we explored the effects of human immunodeficiency virus (HIV) gp120 and tat on CpG-A-induced inflammatory cytokines in pDCs. The results provided fundamental insights into HIV pathogenesis that may hold promise for preventative and even curative strategies. pDCs were isolated using blood DC antigen 4 (BDCA-4) DC isolation kit, and the purity was analyzed using BDCA-2 antibody by flow cytometry. pDCs and peripheral blood mononuclear cells (PBMCs) were stimulated by either CpG-A (5 µg/ml), gp120 (0.5 µg/ml), tat (0.5 µg/ml), or CpG-A treatment combined with gp120 or tat. The production of type I interferons (IFNs) and other inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interlukine-6 (IL-6), and interferon-gamma-inducible protein-10 (IP-10) in the culture supernatant, was determined by enzyme-linked immunosorbent assay. The results showed that CpG-A induced high levels of type I IFNs and other inflammatory cytokines, including TNF-α, IL-6, and IP-10, in pDCs. Concomitant treatment with gp120 reduced the levels of IFN-α, IFN-β, TNF-α, IL-6, and IP-10 induced by CpG-A in pDCs by 79%, 53%, 60%, 50%, and 34%, respectively, while tat suppressed them by 88%, 66%, 71%, 64%, and 53%, respectively. Similar results were demonstrated in CpG-A-treated PBMCs. In conclusion, gp120 and tat are effective inhibitors of the CpG-A-mediated induction of type I IFNs and other inflammatory cytokines from pDCs and PBMCs.
Collapse
Affiliation(s)
- Meixin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
174
|
The role of dendritic cells in asthma. J Allergy Clin Immunol 2012; 129:889-901. [PMID: 22464668 DOI: 10.1016/j.jaci.2012.02.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are known to play a central role in sensing the presence of foreign antigens and infectious agents and in initiating appropriate immune responses. More recently, an additional role has been discovered for DCs in determining whether the response to potential environmental allergens will be one of tolerance or whether a vigorous response along allergic pathways will be initiated. This review discusses ways in which DCs participate specifically in initiating allergic responses, particularly those associated with allergic asthma, and how interventions focused on DCs might lead to new therapeutic approaches to asthma.
Collapse
|
175
|
Pritchard AL, Carroll ML, Burel JG, White OJ, Phipps S, Upham JW. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: a regulatory mechanism with relevance to asthma. THE JOURNAL OF IMMUNOLOGY 2012; 188:5898-905. [PMID: 22611238 DOI: 10.4049/jimmunol.1103507] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human rhinoviruses (RV) cause only minor illness in healthy individuals, but can have deleterious consequences in people with asthma. This study sought to examine normal homeostatic mechanisms regulating adaptive immunity to RV in healthy humans, focusing on effects of IFN-αβ and plasmacytoid dendritic cells (pDC) on Th2 immune responses. PBMC were isolated from 27 healthy individuals and cultured with RV16 for up to 5 d. In some experiments, IFN-αβ was neutralized using a decoy receptor that blocks IFN signaling, whereas specific dendritic cell subsets were depleted from cultures with immune-magnetic beads. RV16 induced robust expression of IFN-α, IFN-β, multiple IFN-stimulated genes, and T cell-polarizing factors within the first 24 h. At 5 d, the production of memory T cell-derived IFN-γ, IL-10, and IL-13, but not IL-17A, was significantly elevated. Neutralizing the effects of type-I IFN with the decoy receptor B18R led to a significant increase in IL-13 synthesis, but had no effect on IFN-γ synthesis. Depletion of pDC from RV-stimulated cultures markedly inhibited IFN-α secretion, and led to a significant increase in expression and production of the Th2 cytokines IL-5 (p = 0.02), IL-9 (p < 0.01), and IL-13 (p < 0.01), but had no effect on IFN-γ synthesis. Depletion of CD1c(+) dendritic cells did not alter cytokine synthesis. In healthy humans, pDC and the IFN-αβ they secrete selectively constrain Th2 cytokine synthesis following RV exposure in vitro. This important regulatory mechanism may be lost in asthma; deficient IFN-αβ synthesis and/or pDC dysfunction have the potential to contribute to asthma exacerbations during RV infections.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Lung and Allergy Research Centre, School of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia.
| | | | | | | | | | | |
Collapse
|
176
|
Gough DJ, Messina NL, Clarke CJP, Johnstone RW, Levy DE. Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 2012; 36:166-74. [PMID: 22365663 DOI: 10.1016/j.immuni.2012.01.011] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/16/2012] [Accepted: 01/31/2012] [Indexed: 02/07/2023]
Abstract
Interferons (IFNs) were discovered as cytokines induced during and protecting from viral infection. They have been documented to play essential roles in numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Recent data have also uncovered a potentially darker side to IFN, including roles in inflammatory diseases, such as autoimmunity and diabetes. IFN can have effects in the absence of acute infection, highlighting a physiologic role for constitutive IFN. Type I IFNs are constitutively produced at vanishingly low quantities and yet exert profound effects, mediated in part through modulation of signaling intermediates required for responses to diverse cytokines. We review evidence for a yin-yang of IFN function through its role in modulating crosstalk between multiple cytokines by both feedforward and feedback regulation of common signaling intermediates and postulate a homeostatic role for IFN through tonic signaling in the absence of acute infection.
Collapse
Affiliation(s)
- Daniel J Gough
- New York University Medical Center, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
177
|
Mechanisms behind functional avidity maturation in T cells. Clin Dev Immunol 2012; 2012:163453. [PMID: 22611418 PMCID: PMC3351025 DOI: 10.1155/2012/163453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor (TCR) cannot undergo affinity maturation. Nevertheless, antigen-primed T cells significantly increase their antigen responsiveness compared to antigen-inexperienced (naïve) T cells in a process called functional avidity maturation. This paper covers studies that describe differences in T-cell antigen responsiveness during T-cell differentiation along with examples of the mechanisms behind functional avidity maturation in T cells.
Collapse
|
178
|
Szabo A, Bene K, Gogolák P, Réthi B, Lányi Á, Jankovich I, Dezső B, Rajnavölgyi E. RLR-mediated production of interferon-β by a human dendritic cell subset and its role in virus-specific immunity. J Leukoc Biol 2012; 92:159-69. [PMID: 22517920 DOI: 10.1189/jlb.0711360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytosolic RIG-I-like helicases (RLR) are PRRs involved in type I IFN production and antiviral immunity. This study focuses to the comparison of the expression, function, and signaling cascades associated to RLR in the previously identified CD14(-)DC-SIGN(+)PPARγ(low)CD1a(+) and CD14(low)DC-SIGN(+)PPARγ(high)CD1a(-) human moDC subsets. Our results revealed that the expression of RLR genes and proteins as well as the activity of the coupled signaling pathways are significantly higher in the CD1a(+) subset than in its phenotypically and functionally distinct counterpart. Specific activation of RLR in moDCs by poly(I:C) or influenza virus was shown to induce the secretion of IFN-β via IRF3, whereas induction of proinflammatory cytokine responses were predominantly controlled by TLR3. The requirement of RLR-mediated signaling in CD1a(+) moDCs for priming naïve CD8(+) T lymphocytes and inducing influenza virus-specific cellular immune responses was confirmed by RIG-I/MDA5 silencing, which abrogated these functions. Our results demonstrate the subset-specific activation of RLR and the underlying mechanisms behind its cytokine secretion profile and identify CD1a(+) moDCs as an inflammatory subset with specialized functional activities. We also provide evidence that this migratory DC subset can be detected in human tonsil and reactive LNs.
Collapse
Affiliation(s)
- Attila Szabo
- Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 2012; 86:4082-90. [PMID: 22318135 DOI: 10.1128/jvi.06535-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.
Collapse
|
180
|
Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M, Meyer HH, Spencer TE, Minten M, Sax G, Winter G, Wolf E. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biol Reprod 2012; 86:46. [DOI: 10.1095/biolreprod.111.094771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
181
|
The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:508-14. [PMID: 22301694 DOI: 10.1128/cvi.05490-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5-pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5-pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5-pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5-pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV.
Collapse
|
182
|
Robinson BA, Estep RD, Messaoudi I, Rogers KS, Wong SW. Viral interferon regulatory factors decrease the induction of type I and type II interferon during rhesus macaque rhadinovirus infection. J Virol 2012; 86:2197-211. [PMID: 22156526 PMCID: PMC3302421 DOI: 10.1128/jvi.05047-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 11/17/2011] [Indexed: 01/20/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus and rhesus macaque rhadinovirus (RRV), two closely related gammaherpesviruses, are unique in their expression of viral homologs of cellular interferon regulatory factors (IRFs), termed viral IRFs (vIRFs). To assess the role of vIRFs during de novo infection, we have utilized the bacterial artificial chromosome clone of wild-type RRV(17577) (WT(BAC) RRV) to generate a recombinant virus with all 8 of the vIRFs deleted (vIRF-ko RRV). The infection of primary rhesus fibroblasts and peripheral blood mononuclear cells (PBMCs) with vIRF-ko RRV resulted in earlier and increased induction of type I interferon (IFN) (IFN-α/β) and type II IFN (IFN-γ). Additionally, plasmacytoid dendritic cells maintained higher levels of IFN-α production in PBMC cultures infected with vIRF-ko RRV than in cultures infected with WT(BAC) RRV. Moreover, the nuclear accumulation of phosphorylated IRF-3, which is necessary for the induction of type I IFN, was also inhibited following WT(BAC) RRV infection. These findings demonstrate that during de novo RRV infection, vIRFs are inhibiting the induction of IFN at the transcriptional level, and one potential mechanism for this is the disruption of the activation and localization of IRF-3.
Collapse
Affiliation(s)
- Bridget A. Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Ryan D. Estep
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Ilhem Messaoudi
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Kelsey S. Rogers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Scott W. Wong
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
183
|
González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12:125-35. [PMID: 22222875 PMCID: PMC3727154 DOI: 10.1038/nri3133] [Citation(s) in RCA: 746] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- José M González-Navajas
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0663, USA.
| | | | | | | |
Collapse
|
184
|
Plasmacytoid dendritic cells in HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:71-107. [PMID: 22975872 DOI: 10.1007/978-1-4614-4433-6_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells that are specialized to produce interferon-alpha (IFNα) and participate in activating adaptive immune responses. Although IFNα inhibits HIV-1 (HIV) replication in vitro, pDCs may act as inflammatory and immunosuppressive dendritic cells (DCs) rather than classical antigen-presenting cells during chronic HIV infection in vivo, contributing more to HIV pathogenesis than to protection. Improved understanding of HIV-pDC interactions may yield potential new avenues of discovery to prevent HIV transmission, to blunt chronic immune activation and exhaustion, and to enhance beneficial adaptive immune responses. In this chapter we discuss pDC biology, including pDC development from progenitors, trafficking and localization of pDCs in the body, and signaling pathways involved in pDC activation. We focus on the role of pDCs in HIV transmission, chronic disease progression and immune activation, and immunosuppression through regulatory T cell development. Lastly, we discuss potential future directions for the field which are needed to strengthen our current understanding of the role of pDCs in HIV transmission and pathogenesis.
Collapse
|
185
|
Wiesel M, Crouse J, Bedenikovic G, Sutherland A, Joller N, Oxenius A. Type-I IFN drives the differentiation of short-lived effector CD8+T cells in vivo. Eur J Immunol 2011; 42:320-9. [DOI: 10.1002/eji.201142091] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/17/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022]
|
186
|
Viral interferon regulatory factors are critical for delay of the host immune response against rhesus macaque rhadinovirus infection. J Virol 2011; 86:2769-79. [PMID: 22171275 DOI: 10.1128/jvi.05657-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related gamma-2 herpesvirus rhesus macaque (RM) rhadinovirus (RRV) are the only known viruses to encode viral homologues of the cellular interferon (IFN) regulatory factors (IRFs). Recent characterization of a viral IRF (vIRF) deletion clone of RRV (vIRF-knockout RRV [vIRF-ko RRV]) demonstrated that vIRFs inhibit induction of type I and type II IFNs during RRV infection of peripheral blood mononuclear cells. Because the IFN response is a key component to a host's antiviral defenses, this study has investigated the role of vIRFs in viral replication and the development of the immune response during in vivo infection in RMs, the natural host of RRV. Experimental infection of RMs with vIRF-ko RRV resulted in decreased viral loads and diminished B cell hyperplasia, a characteristic pathology during acute RRV infection that often develops into more severe lymphoproliferative disorders in immune-compromised animals, similar to pathologies in KSHV-infected individuals. Moreover, in vivo infection with vIRF-ko RRV resulted in earlier and sustained production of proinflammatory cytokines and earlier induction of an anti-RRV T cell response compared to wild-type RRV infection. These findings reveal the broad impact that vIRFs have on pathogenesis and the immune response in vivo and are the first to validate the importance of vIRFs during de novo infection in the host.
Collapse
|
187
|
The NK cell response to mouse cytomegalovirus infection affects the level and kinetics of the early CD8(+) T-cell response. J Virol 2011; 86:2165-75. [PMID: 22156533 DOI: 10.1128/jvi.06042-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells and CD8(+) T cells play a prominent role in the clearance of mouse cytomegalovirus (MCMV) infection. The role of NK cells in modulating the CD8(+) T-cell response to MCMV infection is still the subject of intensive research. For analyzing the impact of NK cells on mounting of a CD8(+) T-cell response and the contribution of these cells to virus control during the first days postinfection (p.i.), we used C57BL/6 mice in which NK cells are specifically activated through the Ly49H receptor engaged by the MCMV-encoded ligand m157. Our results indicate that the requirement for CD8(+) T cells in early MCMV control inversely correlates with the engagement of Ly49H. While depletion of CD8(+) T cells has only a minor effect on the early control of wild-type MCMV, CD8(+) T cells are essential in the control of Δm157 virus. The frequencies of virus epitope-specific CD8(+) T cells and their activation status were higher in mice infected with Δm157 virus. In addition, these mice showed elevated levels of alpha interferon (IFN-α) and several other proinflammatory cytokines as early as 1.5 days p.i. Although the numbers of conventional dendritic cells (cDCs) were reduced later during infection, particularly in Δm157-infected mice, they were not significantly affected at the peak of the cytokine response. Altogether, we concluded that increased antigen load, preservation of early cDCs' function, and higher levels of innate cytokines collectively account for an enhanced CD8(+) T-cell response in C57BL/6 mice infected with a virus unable to activate NK cells via the Ly49H-m157 interaction.
Collapse
|
188
|
Pinto AK, Daffis S, Brien JD, Gainey MD, Yokoyama WM, Sheehan KCF, Murphy KM, Schreiber RD, Diamond MS. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. PLoS Pathog 2011; 7:e1002407. [PMID: 22144897 PMCID: PMC3228803 DOI: 10.1371/journal.ppat.1002407] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/13/2011] [Indexed: 02/07/2023] Open
Abstract
A genetic absence of the common IFN-α/β signaling receptor (IFNAR) in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/-) mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+) T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+) T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+) T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/-) mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+) T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+) T cell response at a stage distinct from the initial priming event.
Collapse
Affiliation(s)
- Amelia K. Pinto
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephane Daffis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James D. Brien
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria D. Gainey
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kathleen C. F. Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
189
|
Melanoma differentiation-associated gene 5 is critical for protection against Theiler's virus-induced demyelinating disease. J Virol 2011; 86:1531-43. [PMID: 22090123 DOI: 10.1128/jvi.06457-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection of dendritic and glial cells with Theiler's murine encephalomyelitis virus (TMEV) induces various cytokines via Toll-like receptor- and melanoma differentiation-associated gene 5 (MDA5)-dependent pathways. However, the involvement and role of MDA5 in cytokine gene activation and the pathogenesis of TMEV-induced demyelinating disease are largely unknown. In this study, we demonstrate that MDA5 plays a critical role in the production of TMEV-induced alpha interferon (IFN-α) during early viral infection and in protection against the development of virus-induced demyelinating disease. Our results indicate that MDA5-deficient 129SvJ mice display significantly higher viral loads and apparent demyelinating lesions in the central nerve system (CNS) accompanied by clinical symptoms compared with wild-type 129SvJ mice. During acute viral infection, MDA5-deficient mice produced elevated levels of chemokines, consistent with increased cellular infiltration, but reduced levels of IFN-α, known to control T cell responses and cellular infiltration. Additional studies with isolated CNS glial cells from these mice suggest that cells from MDA5-deficient mice are severely compromised in the production of IFN-α upon viral infection, which results in increased cellular infiltration and viral loads in the CNS. Despite inadequate stimulation, the overall T cell responses to the viral determinants were significantly elevated in MDA5-deficient mice, reflecting the increased cellular infiltration. Therefore, the lack of MDA5-mediated IFN-α production may facilitate a massive viral load and elevated cellular infiltration in the CNS during early viral infection, leading to the pathogenesis of demyelinating disease.
Collapse
|
190
|
Sanz Y, De Pama G, Laparra M. Unraveling the ties between celiac disease and intestinal microbiota. Int Rev Immunol 2011; 30:207-18. [PMID: 21787226 DOI: 10.3109/08830185.2011.599084] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Celiac disease is a multifactorial disorder that involves interactions between genetic and environmental factors. Gluten proteins are responsible for the symptoms of celiac disease, but other environmental factors that influence the intestinal ecosystem, including the milk-feeding type and gastrointestinal infections, may also play a role. Moreover, intestinal dysbiosis, characterized by increased Gram-negative bacteria and reduced bifidobacteria, has been detected in celiac disease patients. This review summarizes current knowledge of the associations between the intestinal microbiota and celiac disease and its possible modes of action in pathogenesis. Deeper understanding of these interactions can help redefine how this disorder is investigated.
Collapse
Affiliation(s)
- Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia, Spain.
| | | | | |
Collapse
|
191
|
Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun 2011; 80:254-65. [PMID: 22006569 DOI: 10.1128/iai.05549-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Because epithelial cells are the major cell type productively infected with Chlamydia during genital tract infections, the overall goal of our research was to understand the contribution of infected epithelial cells to the host defense. We previously showed that Toll-like receptor 3 (TLR3) is the critical pattern recognition receptor in oviduct epithelial (OE) cells that is stimulated during Chlamydia infection, resulting in the synthesis of beta interferon (IFN-β). Here, we present data that implicates TLR3 in the expression of a multitude of other innate-inflammatory immune modulators including interleukin-6 (IL-6), CXCL10, CXCL16, and CCL5. We demonstrate that Chlamydia-induced expression of these cytokines is severely disrupted in TLR3-deficient OE cells, whereas Chlamydia replication in the TLR3-deficient cells is more efficient than in wild-type OE cells. Pretreatment of the TLR3-deficient OE cells with 50 U of IFN-β/ml prior to infection diminished Chlamydia replication and restored the ability of Chlamydia infection to induce IL-6, CXCL10, and CCL5 expression in TLR3-deficient OE cells; however, CXCL16 induction was not restored by IFN-β preincubation. Our findings were corroborated in pathway-focused PCR arrays, which demonstrated a multitude of different inflammatory genes that were defectively regulated during Chlamydia infection of the TLR3-deficient OE cells, and we found that some of these genes were induced only when IFN-β was added prior to infection. Our OE cell data implicate TLR3 as an essential inducer of IFN-β and other inflammatory mediators by epithelial cells during Chlamydia infection and highlight the contribution of TLR3 to the inflammatory cytokine response.
Collapse
|
192
|
Bograd AJ, Suzuki K, Vertes E, Colovos C, Morales EA, Sadelain M, Adusumilli PS. Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunol Immunother 2011; 60:1509-27. [PMID: 21913025 DOI: 10.1007/s00262-011-1103-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, primary pleural malignancy with poor prognosis, hypothesized to originate from a chronic inflammatory state within the pleura. Similar to what has been observed in other solid tumors (melanoma, ovarian and colorectal cancer), clinical and pre-clinical MPM investigations have correlated anti-tumor immune responses with improved survival. As such, a better understanding of the complex MPM tumor microenvironment is imperative in strategizing successful immunotherapies. Herein, we review the immune responses vital to the development and progression of MPM, as well as assess the role of immunomodulatory therapies, highlighting recent pre-clinical and clinical immunotherapy investigations.
Collapse
Affiliation(s)
- Adam J Bograd
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
IL-12 selectively programs effector pathways that are stably expressed in human CD8+ effector memory T cells in vivo. Blood 2011; 118:3890-900. [PMID: 21832277 DOI: 10.1182/blood-2011-05-357111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD8(+) cytotoxic T lymphocytes play a major role in defense against intracellular pathogens, and their functions are specified by antigen recognition and innate cytokines. IL-12 and IFN-α/β are potent "signal 3" cytokines that are involved in both effector and memory cell development. Although the majority of effector cells are eliminated as inflammation resolves, some survive within the pool of memory cells and retain immediate effector function. In this study, we demonstrate that IL-12 instructs a unique program of effector cell differentiation that is distinct from IFN-α/β. Moreover, effector memory (T(EM)) cells within peripheral blood display many common attributes of cells differentiated in vitro in response to IL-12, including proinflammatory cytokine secretion and lytic activity. A pattern of IL-12-induced genes was identified that demarcate T(EM) from central memory cells, and the ontologies of these genes correlated precisely with their effector functions. Further, we uncovered a unique program of gene expression that was acutely regulated by IL-12 and reflected in stable gene expression patterns within T(EM), but not T central memory cells in vivo. Thus, this study directly links a selective set of IL-12-induced genes to the programming of effector functions within the stable population of human CD8(+) T(EM) cells in vivo.
Collapse
|
194
|
Katz JD, Janssen EM. Breaking T cell tolerance to beta cell antigens by merocytic dendritic cells. Cell Mol Life Sci 2011; 68:2873-83. [PMID: 21626409 DOI: 10.1007/s00018-011-0730-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/28/2022]
Abstract
In type 1 diabetes (T1D), a break in central and peripheral tolerance results in antigen-specific T cells destroying insulin-producing, pancreatic beta cells. Herein, we discuss the critical sub-population of dendritic cells responsible for mediating both the cross-presentation of islet antigen to CD8(+) T cells and the direct presentation of beta cell antigen to CD4(+) T cells. These cells, termed merocytic dendritic cells (mcDC), are more numerous in non-obese diabetic (NOD), and antigen-loaded mcDC rescue CD8(+) T cells from peripheral anergy and deletion, and stimulate islet-reactive CD4(+) T cells. When purified from the pancreatic lymph nodes of overtly diabetic NOD mice, mcDC can break peripheral T cell tolerance to beta cell antigens in vivo and induce rapid onset T cell-mediated T1D in young NOD mouse. Thus, the mcDC subset appears to represent the long-sought critical antigen-presenting cell responsible for breaking peripheral tolerance to beta cell antigen in vivo.
Collapse
Affiliation(s)
- Jonathan D Katz
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|