151
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
152
|
Riessland M, Orr ME. Translating the Biology of Aging into New Therapeutics for Alzheimer's Disease: Senolytics. J Prev Alzheimers Dis 2023; 10:633-646. [PMID: 37874084 PMCID: PMC11103249 DOI: 10.14283/jpad.2023.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The recent FDA-approval for amyloid lowering therapies reflects an unwavering commitment from the Alzheimer's disease (AD) research community to identify treatments for this leading cause of dementia. The clinical benefits achieved by reducing amyloid, though modest, provide evidence that disease modification is possible. Expanding the same tenacity to interventions targeting upstream drivers of AD pathogenesis could significantly impact the disease course. Advanced age is the greatest risk factor for developing AD. Interventions targeting biological aging offer the possibility of disrupting a foundational cause of AD. Senescent cells accumulate with age and contribute to inflammation and age-related diseases like AD. Senolytic drugs that clear senescent cells improve healthy aging, halt AD disease progression in animal models and are undergoing clinical testing. This review explores the biology of aging, the role of senescent cells in AD pathology, and various senotherapeutic approaches such as senolytics, dampening the SASP (senescence associated secretory phenotype), senescence pathway inhibition, vaccines, and prodrugs. We highlight ongoing clinical trials evaluating the safety and efficacy of the most advanced senolytic approach, dasatinib and quercetin (D+Q), including an ongoing Phase II senolytic trial supported by the Alzheimer's Drug Discovery Foundation (ADDF). Challenges in the field of senotherapy for AD, including target engagement and biomarker development, are addressed. Ultimately, this research pursuit may lead to an effective treatment for AD and provide the field with another disease-modifying therapy to be used, alone or in combination, with other emerging treatment options.
Collapse
Affiliation(s)
- M Riessland
- Miranda E. Orr, 575 Patterson Ave, Winston-Salem, NC 27101, Telephone Number: (336)716-7804,
| | | |
Collapse
|
153
|
Peng MQ, Karvonen-Gutierrez CA, Herman WH, Mukherjee B, Park SK. Phthalate exposure is associated with more rapid body fat gain in midlife women: The Study of Women's Health Across the Nation (SWAN) Multi-Pollutant Study. ENVIRONMENTAL RESEARCH 2023; 216:114685. [PMID: 36341787 PMCID: PMC9870605 DOI: 10.1016/j.envres.2022.114685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Obesity is a major threat to health, but the etiology of obesity is incompletely understood. Phthalates, synthetic chemicals ubiquitous in the environment, are suspected to have obesogenic effects, but the relationship of phthalates and obesity in humans remains uncertain. We examined whether phthalate exposure was associated with body fat gain in midlife women. We analyzed data from 1369 women in the Study of Women's Health Across the Nation Multi-Pollutant Study. Eleven phthalate metabolites measured in spot urine samples at baseline (1999/2000) were standardized with covariate-adjusted creatinine. Body weight (BW), fat mass (FM) from dual-energy X-ray absorptiometry (DXA), and body fat percentage (BF%) from DXA were measured near-annually until 2016/2017. For each metabolite, linear mixed effects models with time and log2(metabolite) interactions were examined, adjusting for demographic, lifestyle, and menopause-related factors. Analyses were conducted overall and stratified by baseline obesity status. As sensitivity analyses, all analyses were repeated using a second set of metabolites measured in 2002/2003. Higher levels of all metabolites except mono-carboxy-isononyl phthalate were associated with faster increases in BF%. Per doubling of metabolite concentrations, differences in five-year BF% change ranged from 0.03 percentage point (ppt) (95% confidence interval (CI): -0.03, 0.09) for mono-isobutyl phthalate to 0.09 ppt (95% CI: 0.02, 0.16) for mono(3-carboxypropyl) phthalate. Results were similar for FM change, but associations with BW change were mostly null. In stratified analyses by baseline obesity status, positive associations were strongest in women who were normal/underweight at baseline. When metabolites from 2002/2003 were used as exposures, most associations were attenuated and not statistically significant, but they remained positive for normal/underweight women. In conclusion, phthalate metabolites were associated with more rapid body fat gain in midlife women, but our results need confirmation given attenuation of estimates in the sensitivity analyses.
Collapse
Affiliation(s)
- Mia Q Peng
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States
| | - Carrie A Karvonen-Gutierrez
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States
| | - William H Herman
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan Medical School, 3110 Taubman Center, SPC 5368, 1500 East Medical Center Drive, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States; Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States; Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, United States.
| |
Collapse
|
154
|
Ausín-García C, Cervilla-Muñoz E, Demelo-Rodríguez P, Villalba-García MV, Alvarez-Sala Walther LA. Visceral extra-abdominal panniculitis after COVID19. Int J Rheum Dis 2022; 26:793-796. [PMID: 36565466 DOI: 10.1111/1756-185x.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
"Retractile mesenteritis" was the first name given to a rare, benign, inflammatory disease that affects the adipose tissue of the intestinal mesentery and less frequently other locations. Now labeled as mesenteric panniculitis, the pathogenic mechanism remains unclear. Several stimuli could be involved, and it is sometimes associated with other conditions such as malignancy or autoimmune diseases. We present a case of mesenteric panniculitis with extensive abdominal and extra-abdominal involvement that developed a few months after SARS-COV2 infection, raising the hypothesis of this virus as a potential trigger for autoinflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Cristina Ausín-García
- Internal Medicine Service, General University Hospital Gregorio Marañón, Madrid, Spain
| | - Eva Cervilla-Muñoz
- Internal Medicine Service, General University Hospital Gregorio Marañón, Madrid, Spain
| | | | | | | |
Collapse
|
155
|
Rudnicki M, Pislaru A, Rezvan O, Rullman E, Fawzy A, Nwadozi E, Roudier E, Gustafsson T, Haas TL. Transcriptomic profiling reveals sex-specific molecular signatures of adipose endothelial cells under obesogenic conditions. iScience 2022; 26:105811. [PMID: 36624843 PMCID: PMC9823135 DOI: 10.1016/j.isci.2022.105811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Female mice display greater adipose angiogenesis and maintain healthier adipose tissue than do males upon high-fat diet feeding. Through transcriptome analysis of endothelial cells (EC) from the white adipose tissue of male and female mice high-fat-fed for 7 weeks, we found that adipose EC exhibited pronouncedly sex-distinct transcriptomes. Genes upregulated in female adipose EC were associated with proliferation, oxidative phosphorylation, and chromatin remodeling contrasting the dominant enrichment for genes related to inflammation and a senescence-associated secretory of male EC. Similar sex-biased phenotypes of adipose EC were detectable in a dataset of aged EC. The highly proliferative phenotype of female EC was observed also in culture conditions. In turn, male EC displayed greater inflammatory potential than female EC in culture, based on basal and tumor necrosis factor alpha-stimulated patterns of gene expression. Our study provides insights into molecular programs that distinguish male and female EC responses to pathophysiological conditions.
Collapse
Affiliation(s)
- Martina Rudnicki
- School of Kinesiology and Health Science & Muscle Health Research Centre, York University, Toronto, Canada,Corresponding author
| | | | - Omid Rezvan
- School of Kinesiology and Health Science & Muscle Health Research Centre, York University, Toronto, Canada
| | - Eric Rullman
- Department Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Department Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Aly Fawzy
- School of Kinesiology and Health Science & Muscle Health Research Centre, York University, Toronto, Canada
| | - Emmanuel Nwadozi
- School of Kinesiology and Health Science & Muscle Health Research Centre, York University, Toronto, Canada
| | - Emilie Roudier
- School of Kinesiology and Health Science & Muscle Health Research Centre, York University, Toronto, Canada
| | - Thomas Gustafsson
- Department Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Department Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tara L. Haas
- School of Kinesiology and Health Science & Muscle Health Research Centre, York University, Toronto, Canada,Department of Biology, York University, Toronto, Canada,Corresponding author
| |
Collapse
|
156
|
Domingo P, Giralt M, Gavaldà-Navarro A, Blasco-Roset A, Delgado-Anglés A, Gallego-Escuredo JM, Gutiérrez MDM, Mateo MG, Cereijo R, Domingo JC, Villarroya F, Villarroya J. Adipose tissue aging partially accounts for fat alterations in HIV lipodystrophy. Adipocyte 2022; 11:143-152. [PMID: 35300561 PMCID: PMC8942446 DOI: 10.1080/21623945.2022.2042962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lipodystrophy is a major disturbance in people living with HIV-1 (PLWH). Several systemic alterations in PLWH are reminiscent of those that occur in ageing. It is unknown whether the lipodystrophy in PLWH is the consequence of accelerated ageing in adipose tissue. We compared systemic and adipose tissue disturbances in PLWH with those in healthy elderly individuals (~80 y old). We observed similarly enhanced expression of inflammation-related genes and decreased autophagy in adipose tissues from elderly individuals and PLWH. Indications of repressed adipogenesis and mitochondrial dysfunction were found specifically in PLWH, whereas reduced telomere length and signs of senesce were specific to elderly individuals. We conclude that ageing of adipose tissue accounts only partially for the alterations in adipose tissues of PLWH.
Collapse
Affiliation(s)
- Pere Domingo
- Infectious Diseases Unit and Institut de Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad Y Nutrición, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad Y Nutrición, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Delgado-Anglés
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - José Miguel Gallego-Escuredo
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Maria Del Mar Gutiérrez
- Infectious Diseases Unit and Institut de Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Maria Gracia Mateo
- Infectious Diseases Unit and Institut de Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Rubén Cereijo
- Infectious Diseases Unit and Institut de Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad Y Nutrición, Barcelona, Spain
| | - Joan Carles Domingo
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad Y Nutrición, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica I Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- Ciber Fisiopatología de la Obesidad Y Nutrición, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu Barcelona, Spain
| |
Collapse
|
157
|
Inflammaging: Implications in Sarcopenia. Int J Mol Sci 2022; 23:ijms232315039. [PMID: 36499366 PMCID: PMC9740553 DOI: 10.3390/ijms232315039] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
In a world in which life expectancy is increasing, understanding and promoting healthy aging becomes a contemporary demand. In the elderly, a sterile, chronic and low-grade systemic inflammation known as "inflammaging" is linked with many age-associated diseases. Considering sarcopenia as a loss of strength and mass of skeletal muscle related to aging, correlations between these two terms have been proposed. Better knowledge of the immune system players in skeletal muscle would help to elucidate their implications in sarcopenia. Characterizing the activators of damage sensors and the downstream effectors explains the inference with skeletal muscle performance. Sarcopenia has also been linked to chronic diseases such as diabetes, metabolic syndrome and obesity. Implications of inflammatory signals from these diseases negatively affect skeletal muscle. Autophagic mechanisms are closely related with the inflammasome, as autophagy eliminates stress signaling sent by damage organelles, but also acts with an immunomodulatory function affecting immune cells and cytokine release. The use of melatonin, an antioxidant, ROS scavenger and immune and autophagy modulator, or senotherapeutic compounds targeting senescent cells could represent strategies to counteract inflammation. This review aims to present the many factors regulating skeletal muscle inflammaging and their major implications in order to understand the molecular mechanisms involved in sarcopenia.
Collapse
|
158
|
Voynova E, Kulebyakin K, Grigorieva O, Novoseletskaya E, Basalova N, Alexandrushkina N, Arbatskiy M, Vigovskiy M, Sorokina A, Zinoveva A, Bakhchinyan E, Kalinina N, Akopyan Z, Tkachuk V, Tyurin-Kuzmin P, Efimenko A. Declined adipogenic potential of senescent MSCs due to shift in insulin signaling and altered exosome cargo. Front Cell Dev Biol 2022; 10:1050489. [PMID: 36467400 PMCID: PMC9714334 DOI: 10.3389/fcell.2022.1050489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.
Collapse
Affiliation(s)
- Elizaveta Voynova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Novoseletskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Arbatskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Sorokina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Zinoveva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Natalia Kalinina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Zhanna Akopyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elizaveta Voynova, ; Pyotr Tyurin-Kuzmin, ; Anastasia Efimenko,
| |
Collapse
|
159
|
Goodenough CG, Wogksch MD, Kundu M, Lear M, Thomas PG, Srivastava DK, Wang Z, Armstrong GT, Hudson MM, Robison LL, Ness KK. Associations between exercise capacity, p16 INK4a expression and inflammation among adult survivors of childhood cancer. Front Oncol 2022; 12:1014661. [PMID: 36425549 PMCID: PMC9679643 DOI: 10.3389/fonc.2022.1014661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Over 50% of childhood cancer survivors are exercise intolerant, with maximal aerobic capacities comparable to individuals decades older, suggesting early physiologic ageing. In addition, 36% of survivors are obese. Optimal exercise capacity provides a foundation to support daily function and healthy body habitus and is associated with benefits to cognition, cardiovascular health, and longevity. Cellular senescence and inflammation are key mechanisms that drive age-related disease, quantifiable as biomarkers in peripheral blood. AIMS This study aimed to evaluate associations between p16INKa, a biomarker of cellular senescence, and inflammation and exercise capacity among adult survivors of childhood cancer. MATERIALS AND METHODS Eligible survivors were recruited from the St. Jude Lifetime (SJLIFE) Cohort Study. Exercise capacity was assessed by maximal oxygen uptake (VO2, ml/kg/min) obtained via cardiopulmonary exercise testing using a modified Bruce protocol. Body fat (%) was determined from dual energy x-ray absorptiometry (DEXA). Peripheral blood samples were used to evaluate log2 p16INK4a mRNA expression, a biomarker of cellular senescence, and inflammation with high sensitivity C-reactive protein (hs-CRP) levels. Multivariable regression evaluated associations between p16INK4a, hs-CRP, body fat, and exercise capacity. RESULTS Participants included 185 five-year childhood cancer survivors (mean age 36.6 [range 20.1 - 55.7] years, 44% male, 77% non-Hispanic white, 53% leukemia/lymphoma). Compared to males, females had lower peak VO2 (mean ± SD, 22.5 ± 8.2 vs. 28.8 ± 7.7 ml/kg/min, p<0.01), higher p16INK4a expression (9.6 ± 1.2 vs. 9.2 ± 1.2 fold, p=0.02), and hs-CRP concentration (5.9 ± 8.4 vs. 3.3 ± 3.9 mg/L, p=0.01). Among females (n=103), hs-CRP concentration (β -0.2, 95% CI -0.34 to -0.05, p=0.01) and p16INK4a expression (β-5.32, 95% CI 10.42 to -0.22, p=0.04) were inversely associated and statistically significant with peak exercise capacity, with a significant interaction between p16INK4a expression and body fat (β 0.15, 95% CI 0.02 to 0.28, p=0.03). Among males (n=82), p16INK4a expression (β -1.01, 95% CI -2.14 to 0.12, p=0.08), and body fat (β -0.54, 95% CI -0.70 to -0.38, p<0.01) were inversely associated with peak exercise capacity. CONCLUSION Inflammation and p16INK4a expression, a biomarker of cellular senescence, are associated with lower exercise capacity in childhood cancer survivors, suggesting potential targets or outcome measures for interventions designed to prevent or remediate accelerated physiologic ageing in this population.
Collapse
Affiliation(s)
- Chelsea G. Goodenough
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Matthew D. Wogksch
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Mondira Kundu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Matthew Lear
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Deo Kumar Srivastava
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
160
|
Aldahhan RA, Motawei KH, Al-Hariri MT. Lipotoxicity-related sarcopenia: a review. J Med Life 2022; 15:1334-1339. [PMID: 36567835 PMCID: PMC9762358 DOI: 10.25122/jml-2022-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
A body of literature supports the postulation that a persistent lipid metabolic imbalance causes lipotoxicity, "an abnormal fat storage in the peripheral organs". Hence, lipotoxicity could somewhat explain the process of sarcopenia, an aging-related, gradual, and involuntary decline in skeletal muscle strength and mass associated with several health complications. This review focuses on the recent mechanisms underlying lipotoxicity-related sarcopenia. A vicious cycle occurs between sarcopenia and ectopic fat storage via a complex interplay of mitochondrial dysfunction, pro-inflammatory cytokine production, oxidative stress, collagen deposition, extracellular matrix remodeling, and life habits. The repercussions of lipotoxicity exacerbation of sarcopenia can include increased disability, morbidity, and mortality. This suggests that appropriate lipotoxicity management should be considered the primary target for the prevention and/or treatment of chronic musculoskeletal and other aging-related disorders. Further advanced research is needed to understand the molecular details of lipotoxicity and its consequences for sarcopenia and sarcopenia-related comorbidities.
Collapse
Affiliation(s)
| | - Kamaluddin Hasan Motawei
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Taha Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,Corresponding Author: Mohammed Taha Al-Hariri, Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. E-mail:
| |
Collapse
|
161
|
Beeri MS, Tirosh A, Lin H, Golan S, Boccara E, Sano M, Zhu CW. Stability in BMI over time is associated with a better cognitive trajectory in older adults. Alzheimers Dement 2022; 18:2131-2139. [PMID: 35049119 PMCID: PMC9296696 DOI: 10.1002/alz.12525] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Evidence on simultaneous changes in body mass index (BMI) and cognitive decline, which better reflect the natural course of both health phenomena, is limited. METHODS We capitalized on longitudinal data from 15,977 initially non-demented elderly from the Alzheimer's Disease Centers followed for 5 years on average. Changes in BMI were defined as (1) last minus first BMI, (2) mean of all follow-up BMIs minus first BMI, and (3) standard deviation of BMI change from baseline and all follow-up visits (representing variability). RESULTS Participants with significant changes in BMI (increase or decrease of ≥5%), or who had greater variability in BMI, had faster cognitive decline. This pattern was consistent irrespective of normal (BMI < 25; N = 5747), overweight (25 ≤ BMI < 30; N = 6302), or obese (BMI ≥ 30; N = 3928) BMI at baseline. CONCLUSIONS Stability in BMI predicts better cognitive trajectories suggesting clinical value in tracking BMI change, which is simple to measure, and may point to individuals whose cognition is declining.
Collapse
Affiliation(s)
- Michal Schnaider Beeri
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkUSA,The Joseph Sagol Neuroscience CenterSheba Medical CenterRamat GanIsrael
| | - Amir Tirosh
- Division of EndocrinologyDiabetes and MetabolismSheba Medical CenterRamat GanIsrael
| | - Hung‐Mo Lin
- Department of Health Population Sciences and PolicyCenter of BiostatisticsIcahn School of MedicineMount SinaiUSA
| | - Sapir Golan
- The Joseph Sagol Neuroscience CenterSheba Medical CenterRamat GanIsrael
| | - Ethel Boccara
- The Joseph Sagol Neuroscience CenterSheba Medical CenterRamat GanIsrael
| | - Mary Sano
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkUSA,GRECCJames J Peters VA Medical CenterBronxNew YorkUSA
| | - Carolyn W. Zhu
- Brookdale Department of Geriatrics and Palliative MedicineIcahn School of MedicineMount SinaiUSA,GRECCJames J Peters VA Medical CenterBronxNew YorkUSA
| |
Collapse
|
162
|
Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing 2022; 19:48. [PMID: 36289515 PMCID: PMC9598013 DOI: 10.1186/s12979-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Aging and obesity are high risk factors for several conditions and diseases. They are both associated with systemic inflammation and they are both ameliorated by a healthy life style, suggesting that they may share cellular and molecular pathways and underlying mechanisms. A close relationship between aging and obesity is also supported by the observation that the aging overweight/obese population is increasing worldwide, and mechanisms involved will be presented here. A focus of our work is to evaluate if obesity may be considered a good biomarker of accelerated aging of human antibody responses. We will summarize our published results showing the effects of obesity in accelerating age defects in the peripheral B cell pool and how these lead to dysfunctional humoral immunity.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3153, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
163
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
164
|
Chung JY, Jung HU, Kim DJ, Baek EJ, Kim HK, Kang JO, Lim JE, Oh B. Identification of five genetic variants with differential effects on obesity-related traits based on age. Front Genet 2022; 13:970657. [PMID: 36276968 PMCID: PMC9585212 DOI: 10.3389/fgene.2022.970657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a major public health concern, and its prevalence generally increases with age. As the number of elderly people is increasing in the aging population, the age-dependent increase in obesity has raised interest in the underlying mechanism. To understand the genetic basis of age-related increase in obesity, we identified genetic variants showing age-dependent differential effects on obesity. We conducted stratified analyses between young and old groups using genome-wide association studies of 355,335 United Kingom Biobank participants for five obesity-related phenotypes, including body mass index, body fat percentage, waist-hip ratio, waist circumference, and hip circumference. Using t-statistic, we identified five significant lead single nucleotide polymorphisms: rs2258461 with body mass index, rs9861311 and rs429358 with body fat percentage, rs2870099 with waist-hip ratio, and rs145500243 with waist circumference. Among these single nucleotide polymorphisms, rs429358, located in APOE gene was associated with diverse age-related diseases, such as Alzheimer’s disease, coronary artery disease, age-related degenerative macular diseases, and cognitive decline. The C allele of rs429358 gradually decreases body fat percentage as one grows older in the range of 40–69 years. In conclusion, we identified five genetic variants with differential effects on obesity-related phenotypes based on age using a stratified analysis between young and old groups, which may help to elucidate the mechanisms by which age influences the development of obesity.
Collapse
Affiliation(s)
- Ju Yeon Chung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- *Correspondence: Ji Eun Lim, ; Bermseok Oh,
| |
Collapse
|
165
|
Tiedemann LJ, Meyhöfer SM, Francke P, Beck J, Büchel C, Brassen S. Insulin sensitivity in mesolimbic pathways predicts and improves with weight loss in older dieters. eLife 2022; 11:76835. [PMID: 36170006 PMCID: PMC9519148 DOI: 10.7554/elife.76835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Central insulin is critically involved in the regulation of hedonic feeding. Insulin resistance in overweight has recently been shown to reduce the inhibitory function of insulin in the human brain. How this relates to effective weight management is unclear, especially in older people, who are highly vulnerable to hyperinsulinemia and in whom neural target systems of insulin action undergo age-related changes. Here, 50 overweight, non-diabetic older adults participated in a double-blind, placebo-controlled, pharmacological functional magnetic resonance imaging study before and after randomization to a 3-month caloric restriction or active waiting group. Our data show that treatment outcome in dieters can be predicted by baseline measures of individual intranasal insulin (INI) inhibition of value signals in the ventral tegmental area related to sweet food liking as well as, independently, by peripheral insulin sensitivity. At follow-up, both INI inhibition of hedonic value signals in the nucleus accumbens and peripheral insulin sensitivity improved with weight loss. These data highlight the critical role of central insulin function in mesolimbic systems for weight management in humans and directly demonstrate that neural insulin function can be improved by weight loss even in older age, which may be essential for preventing metabolic disorders in later life.
Collapse
Affiliation(s)
- Lena J Tiedemann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße, Germany
| | - Paul Francke
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Judith Beck
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Brassen
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
166
|
Wahlmueller M, Narzt MS, Missfeldt K, Arminger V, Krasensky A, Lämmermann I, Schaedl B, Mairhofer M, Suessner S, Wolbank S, Priglinger E. Establishment of In Vitro Models by Stress-Induced Premature Senescence for Characterizing the Stromal Vascular Niche in Human Adipose Tissue. Life (Basel) 2022; 12:life12101459. [PMID: 36294893 PMCID: PMC9605485 DOI: 10.3390/life12101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Acting as the largest energy reservoir in the body, adipose tissue is involved in longevity and progression of age-related metabolic dysfunction. Here, cellular senescence plays a central role in the generation of a pro-inflammatory environment and in the evolution of chronic diseases. Within the complexity of a tissue, identification and targeting of senescent cells is hampered by their heterogeneity. In this study, we generated stress-induced premature senescence 2D and 3D in vitro models for the stromal vascular niche of human adipose tissue. We established treatment conditions for senescence induction using Doxorubicin (Dox), starting from adipose-derived stromal/stem cells (ASCs), which we adapted to freshly isolated microtissue-stromal vascular fraction (MT-SVF), where cells are embedded within their native extracellular matrix. Senescence hallmarks for the established in vitro models were verified on different cellular levels, including morphology, cell cycle arrest, senescence-associated β-galactosidase activity (SA-βgal) and gene expression. Two subsequent exposures with 200 nM Dox for six days were suitable to induce senescence in our in vitro models. We demonstrated induction of senescence in the 2D in vitro models through SA-βgal activity, at the mRNA level (LMNB1, CDK1, p21) and additionally by G2/M phase cell cycle arrest in ASCs. Significant differences in Lamin B1 and p21 protein expression confirmed senescence in our MT-SVF 3D model. MT-SVF 3D cultures were composed of multiple cell types, including CD31, CD34 and CD68 positive cells, while cell death remained unaltered upon senescence induction. As heterogeneity and complexity of adipose tissue senescence is given by multiple cell types, our established senescence models that represent the perivascular niche embedded within its native extracellular matrix are highly relevant for future clinical studies.
Collapse
Affiliation(s)
- Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
| | - Karin Missfeldt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Verena Arminger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Anna Krasensky
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- Rockfish Bio AG, 1010 Vienna, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria
| | - Susanne Suessner
- Austrian Red Cross Blood Transfusion Service for Upper Austria, 4020 Linz, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- MorphoMed GmbH, 1030 Vienna, Austria
- Correspondence:
| |
Collapse
|
167
|
Jay Sarkar T, Hermsmeier M, L. Ross J, Scott Herron G. Genetic and Epigenetic Influences on Cutaneous Cellular Senescence. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.
Collapse
|
168
|
Ryu S, Sidorov S, Ravussin E, Artyomov M, Iwasaki A, Wang A, Dixit VD. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 2022; 55:1609-1626.e7. [PMID: 35963236 PMCID: PMC9474643 DOI: 10.1016/j.immuni.2022.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
The risk of chronic diseases caused by aging is reduced by caloric restriction (CR)-induced immunometabolic adaptation. Here, we found that the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), was inhibited by 2 years of 14% sustained CR in humans and elevated by obesity. SPARC converted anti-inflammatory macrophages into a pro-inflammatory phenotype with induction of interferon-stimulated gene (ISG) expression via the transcription factors IRF3/7. Mechanistically, SPARC-induced ISGs were dependent on toll-like receptor-4 (TLR4)-mediated TBK1, IRF3, IFN-β, and STAT1 signaling without engaging the Myd88 pathway. Metabolically, SPARC dampened mitochondrial respiration, and inhibition of glycolysis abrogated ISG induction by SPARC in macrophages. Furthermore, the N-terminal acidic domain of SPARC was required for ISG induction, while adipocyte-specific deletion of SPARC reduced inflammation and extended health span during aging. Collectively, SPARC, a CR-mimetic adipokine, is an immunometabolic checkpoint of inflammation and interferon response that may be targeted to delay age-related metabolic and functional decline.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Maxim Artyomov
- Section of Immunology, Washington School of Medicine, St Louis, MO 63110, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
169
|
El-Kafoury B, Mohamed F, Bahgat N, El Samad AA, Shawky M, Abdel-Hady EA. Failure of subcutaneous lipectomy to combat metabolic dysregulations in ovariectomy-induced obesity in young female rats. Hormones (Athens) 2022; 21:421-436. [PMID: 35486321 PMCID: PMC9464754 DOI: 10.1007/s42000-022-00371-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The deleterious effect of visceral adipose tissue accumulation is well known. However, the recent trend in liposuction is mal-directed toward easily accessible subcutaneous fat for the purpose of body shaping. The aim of the present study is to probe the metabolic effects of subcutaneous abdominal adipose tissue lipectomy in ovariectomized obese rats as well as the role of adipokines in these changes. METHODS The study was conducted on young female rats randomized into two main groups according to the duration of the experiment, namely, 5-week and 10-week. Both groups were subdivided as follows: sham-operated, ovariectomized, and ovariectomized lipectomized rat groups. The rats underwent measurement of body weight (BW) and determination of body mass index (BMI). Fasting blood glucose, lipid profile, liver function, plasma malondialdehyde, leptin, and adiponectin were estimated, and the content of both blood and hepatic tissue of reduced glutathione was assessed. In addition, histological study of the liver, aorta, and perirenal fat of all rat groups was performed. RESULTS Ovariectomy-induced obesity is marked by a significant increase in BW and BMI. Following subcutaneous lipectomy, the rats exhibited significant weight gain accompanied by fasting hyperglycemia, dyslipidemia, deterioration of synthetic function of the liver, and disturbed oxidant/antioxidant status. Histological examination revealed fatty infiltration of aortic and hepatic tissues. CONCLUSION Despite the immediate positive effect of subcutaneous lipectomy for weight loss and/or body shaping, multiple delayed hazards follow the procedure, which should be carefully considered.
Collapse
Affiliation(s)
- Bataa El-Kafoury
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nehal Bahgat
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer Abd El Samad
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Shawky
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
170
|
L'Hôte V, Mann C, Thuret JY. From the divergence of senescent cell fates to mechanisms and selectivity of senolytic drugs. Open Biol 2022; 12:220171. [PMID: 36128715 PMCID: PMC9490338 DOI: 10.1098/rsob.220171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cellular stress response that involves prolonged cell survival, a quasi-irreversible proliferative arrest and a modification of the transcriptome that sometimes includes inflammatory gene expression. Senescent cells are resistant to apoptosis, and if not eliminated by the immune system they may accumulate and lead to chronic inflammation and tissue dysfunction. Senolytics are drugs that selectively induce cell death in senescent cells, but not in proliferative or quiescent cells, and they have proved a viable therapeutic approach in multiple mouse models of pathologies in which senescence is implicated. As the catalogue of senolytic compounds is expanding, novel survival strategies of senescent cells are uncovered, and variations in sensitivity to senolysis between different types of senescent cells emerge. We propose herein a mechanistic classification of senolytic drugs, based on the level at which they target senescent cells: directly disrupting BH3 protein networks that are reorganized upon senescence induction; downregulating survival-associated pathways essential to senescent cells; or modulating homeostatic processes whose regulation is challenged in senescence. With this approach, we highlight the important diversity of senescent cells in terms of physiology and pathways of apoptosis suppression, and we describe possible avenues for the development of more selective senolytics.
Collapse
Affiliation(s)
- Valentin L'Hôte
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Carl Mann
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| |
Collapse
|
171
|
Lee G. Cellular Senescence: The Villain of Metabolic Disease?: Discovery of a distinct senescent cell population in obesity-induced metabolic dysfunction. Mol Cells 2022; 45:531-533. [PMID: 35950453 PMCID: PMC9385568 DOI: 10.14348/molcells.2022.0084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Senescent p21high cells in epididymal white adipose tissue (eWAT) aggravate metabolic dysfunction in obese animals. In obesity, p21high cells are specifically accumulated in stromal vascular fraction of eWAT and they have increased expression of inflammatory genes and NFκB signaling pathway. Transplantation of p21high cells provokes glucose intolerance whereas clearance of p21high cells by senolytic agents relieves insulin resistance in obese animals.
Collapse
Affiliation(s)
- Gung Lee
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
172
|
Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal Stem Cells (MSCs): A Novel Therapy for Type 2 Diabetes. Stem Cells Int 2022; 2022:8637493. [PMID: 36045953 PMCID: PMC9424025 DOI: 10.1155/2022/8637493] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Although plenty of drugs are currently available for type 2 diabetes mellitus (T2DM), a subset of patients still failed to restore normoglycemia. Recent studies proved that symptoms of T2DM patients who are unresponsive to conventional medications could be relieved with mesenchymal stem/stromal cell (MSC) therapy. However, the lack of systematic summary and analysis for animal and clinical studies of T2DM has limited the establishment of standard guidelines in anti-T2DM MSC therapy. Besides, the therapeutic mechanisms of MSCs to combat T2DM have not been thoroughly understood. In this review, we present an overview of the current status of MSC therapy in treating T2DM for both animal studies and clinical studies. Potential mechanisms of MSC-based intervention on multiple pathological processes of T2DM, such as β-cell exhaustion, hepatic dysfunction, insulin resistance, and systemic inflammation, are also delineated. Moreover, we highlight the importance of understanding the pharmacokinetics (PK) of transplanted cells and discuss the hurdles in MSC-based T2DM therapy toward future clinical applications.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
173
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
174
|
Liang Z, Zhang T, Liu H, Li Z, Peng L, Wang C, Wang T. Inflammaging: The ground for sarcopenia? Exp Gerontol 2022; 168:111931. [PMID: 35985553 DOI: 10.1016/j.exger.2022.111931] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a progressive skeletal muscle disease that occurs most commonly in the elderly population, contributing to increased costs and hospitalization. Exercise and nutritional therapy have been proven to be effective for sarcopenia, and some drugs can also alleviate declines in muscle mass and function due to sarcopenia. However, there is no specific pharmacological treatment for sarcopenia at present. This review will mainly discuss the relationship between inflammaging and sarcopenia. The increased secretion of proinflammatory cytokines with aging may be because of cellular senescence, immunosenescence, alterations in adipose tissue, damage-associated molecular patterns (DAMPs), and gut microbes due to aging. These sources of inflammaging can impact the sarcopenia process through direct or indirect pathways. Conversely, sarcopenia can also aggravate the process of inflammaging, creating a vicious cycle. Targeting sources of inflammaging can influence muscle function, which could be considered a therapeutic target for sarcopenia. Moreover, not only proinflammatory cytokines but also anti-inflammatory cytokines can influence muscle and inflammation and participate in the progression of sarcopenia. This review focuses on the effects of TNF-α, IL-6, and IL-10, which can be detected in plasma. Therefore, clearing chronic inflammation by targeting proinflammatory cytokines (TNF-α, IL-1, IL-6) and the inflammatory pathway (JAK/STAT, autophagy, NF-κB) may be effective in treating sarcopenia.
Collapse
Affiliation(s)
- Zejun Liang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tianxiao Zhang
- School of Healthcare Sciences, Cardiff University, Health Park, CF14 4XN Wales, UK
| | - Honghong Liu
- West China School of Nursing/West China Hospital, Sichuan University, NO.37 Alley, Chengdu 610041, Sichuan, PR China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lihong Peng
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, PR China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
175
|
Palmer AK, Jensen MD. Metabolic changes in aging humans: current evidence and therapeutic strategies. J Clin Invest 2022; 132:158451. [PMID: 35968789 PMCID: PMC9374375 DOI: 10.1172/jci158451] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aging and metabolism are inextricably linked, and many age-related changes in body composition, including increased central adiposity and sarcopenia, have underpinnings in fundamental aging processes. These age-related changes are further exacerbated by a sedentary lifestyle and can be in part prevented by maintenance of activity with aging. Here we explore the age-related changes seen in individual metabolic tissues - adipose, muscle, and liver - as well as globally in older adults. We also discuss the available evidence for therapeutic interventions such as caloric restriction, resistance training, and senolytic and senomorphic drugs to maintain healthy metabolism with aging, focusing on data from human studies.
Collapse
Affiliation(s)
| | - Michael D. Jensen
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
176
|
Thiagarajan D, Quadri N, Jawahar S, Zirpoli H, Del Pozo CH, López-Díez R, Hasan SN, Yepuri G, Gugger PF, Finlin BS, Kern PA, Gabbay K, Schmidt AM, Ramasamy R. Aldose reductase promotes diet-induced obesity via induction of senescence in subcutaneous adipose tissue. Obesity (Silver Spring) 2022; 30:1647-1658. [PMID: 35894077 DOI: 10.1002/oby.23496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Aldose reductase (AKR1B1 in humans; Akr1b3 in mice), a key enzyme of the polyol pathway, mediates lipid accumulation in the murine heart and liver. The study objective was to explore potential roles for AKR1B1/Akr1b3 in the pathogenesis of obesity and its complications. METHODS The study employed mice treated with an inhibitor of aldose reductase or mice devoid of Akr1b3 were used to determine their response to a high-fat diet. The study used subcutaneous adipose tissue-derived adipocytes to investigate mechanisms by which AKR1B1/Akr1b3 promotes diet-induced obesity. RESULTS Increased expression of aldose reductase and senescence in the adipose tissue of humans and mice with obesity were demonstrated. Genetic deletion of Akr1b3 or pharmacological blockade of AKRIB3 with zopolrestat reduced high-fat-diet-induced obesity, attenuated markers of adipose tissue senescence, and increased lipolysis. CONCLUSIONS AKR1B1/Akr1b3 modulation of senescence in subcutaneous adipose tissue contributes to aberrant metabolic responses to high-fat feeding. These data unveil new opportunities to target these pathways to combat obesity.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Saha Cardiovascular Research Center, Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Shabnam Jawahar
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Hylde Zirpoli
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Carmen Hurtado Del Pozo
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Syed Nurul Hasan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Brian S Finlin
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
177
|
Imamura Y, Suzuki K, Saijo H, Tanaka K. Longitudinal physiological remoulding of lower limb skin as a cause of diabetic foot ulcer: a histopathological examination. J Wound Care 2022; 31:S29-S35. [PMID: 36004943 DOI: 10.12968/jowc.2022.31.sup8.s29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Diabetic foot ulcer (DFU) is recognised as a severe complication in patients with type 2 diabetes. With the increasing incidence of diabetes, it represents a major medical challenge. Several models have been proposed to explain its aetiology; however, they have never been assessed by longitudinal histopathological examination, which this study aims to address. METHOD Multiplex-immunofluorescence analysis was carried out with lengthwise serial skin specimens obtained from the medial thigh, lower leg, ankle, dorsum of foot and acrotarsium close to the DFU region of a patient with type 2 diabetes receiving above the knee amputation. RESULTS Proximal-to-distal gradual loss of peripheral nerve was demonstrated, accompanied by compromised capillaries in the superficial papillary plexus and distended CD31-positive capillaries in the dorsum of foot. Neural fibres and capillaries were also significantly compromised in the sweat gland acinus in the ankle and dorsum of foot. Injuries in the superficial papillary plexus, sweat gland acinus, and sweat gland-associated adipose tissues were accompanied by significant infiltration of macrophages. These results indicated that longitudinal impairment of local blood circulation could be the cause of peripheral neuropathy, which initiated ulcer formation. Resultant chronic inflammation, involving sweat gland-associated adipose tissue, gave rise to impairment of wound healing, and thus DFU formation. CONCLUSION Longitudinal histopathological examination demonstrated that impairment of local microvascular circulation (rather than the systemic complication caused by type 2 diabetes) was considered the primary cause of peripheral neuropathy, which initiated ulceration. Together with chronic inflammation in the superficial papillary plexus and sweat gland-associated adipose tissue, it resulted in the development of a DFU. Although this is a study of just one individual's limb, our study provided a unique observation, contributing mechanistic insights into developing novel intervening strategies to prevent and treat DFUs.
Collapse
Affiliation(s)
- Yoshinobu Imamura
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroto Saijo
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsumi Tanaka
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
178
|
Adipose Tissue Aging and Metabolic Disorder, and the Impact of Nutritional Interventions. Nutrients 2022; 14:nu14153134. [PMID: 35956309 PMCID: PMC9370499 DOI: 10.3390/nu14153134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is the largest and most active endocrine organ, involved in regulating energy balance, glucose and lipid homeostasis and immune function. Adipose tissue aging processes are associated with brown adipose tissue whitening, white adipose tissue redistribution and ectopic deposition, resulting in an increase in age-related inflammatory factors, which then trigger a variety of metabolic syndromes, including diabetes and hyperlipidemia. Metabolic syndrome, in turn, is associated with increased inflammatory factors, all-cause mortality and cognitive impairment. There is a growing interest in the role of nutritional interventions in adipose tissue aging. Nowadays, research has confirmed that nutritional interventions, involving caloric restriction and the use of vitamins, resveratrol and other active substances, are effective in managing adipose tissue aging’s adverse effects, such as obesity. In this review we summarized age-related physiological characteristics of adipose tissue, and focused on what nutritional interventions can do in improving the retrogradation and how they do this.
Collapse
|
179
|
Papadopoulou A, Kalodimou VE, Mavrogonatou E, Karamanou K, Yiacoumettis AM, Panagiotou PN, Pratsinis H, Kletsas D. Decreased differentiation capacity and altered expression of extracellular matrix components in irradiation-mediated senescent human breast adipose-derived stem cells. IUBMB Life 2022; 74:969-981. [PMID: 35833571 DOI: 10.1002/iub.2659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Radiotherapy is widely used for the treatment of breast cancer. However, we have shown that ionizing radiation can provoke premature senescence in breast stromal cells. In particular, breast stromal fibroblasts can become senescent after irradiation both in vitro and in vivo and they express an inflammatory phenotype and an altered profile of extracellular matrix components, thus facilitating tumor progression. Adipose-derived stem cells (ASCs) represent another major component of the breast tissue stroma. They are multipotent cells and due to their ability to differentiate in multiple cell lineages they play an important role in tissue maintenance and repair in normal and pathologic conditions. Here, we investigated the characteristics of human breast ASCs that became senescent prematurely after their exposure to ionizing radiation. We found decreased expression levels of the specific mesenchymal cell surface markers CD105, CD73, CD44, and CD90. In parallel, we demonstrated a significantly reduced expression of transcription factors regulating osteogenic (i.e., RUNX2), adipogenic (i.e., PPARγ), and chondrogenic (i.e., SOX9) differentiation; this was followed by an analogous reduction in their differentiation capacity. Furthermore, they overexpress inflammatory markers, that is, IL-6, IL-8, and ICAM-1, and a catabolic phenotype, marked by the reduction of collagen type I and the increase of MMP-1 and MMP-13 expression. Finally, we detected changes in proteoglycan expression, for example, the upregulation of syndecan 1 and syndecan 4 and the downregulation of decorin. Notably, all these alterations, when observed in the breast stroma, represent poor prognostic factors for tumor development. In conclusion, we showed that ionizing radiation-mediated prematurely senescent human breast ASCs have a decreased differentiation potential and express specific changes adding to the formation of a permissive environment for tumor growth.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki E Kalodimou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantina Karamanou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Andreas M Yiacoumettis
- Plastic and Reconstructive Surgery Department, Metropolitan General Hospital, Athens, Greece
| | - Petros N Panagiotou
- Department of Plastic Surgery and Burns Unit, KAT General Hospital of Athens, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
180
|
Wu M, Huang Y, Zhu Q, Zhu X, Xue L, Xiong J, Chen Y, Wu C, Guo Y, Li Y, Wu M, Wang S. Adipose tissue and ovarian aging: Potential mechanism and protective strategies. Ageing Res Rev 2022; 80:101683. [PMID: 35817297 DOI: 10.1016/j.arr.2022.101683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Ovarian aging occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With the increase of life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Therefore, understanding the causes and molecular mechanisms of ovarian aging is very essential for the inhibition of age-related diseases and the promotion of health and longevity in women. Recently, studies have revealed an association between adipose tissue (AT) and ovarian aging. Alterations in the function and quantity of AT have profound consequences on ovarian function because AT is central for follicular development, lipid metabolism, and hormonal regulation. Moreover, the interplay between AT and the ovary is bidirectional, with ovary-derived signals directly affecting AT biology. In this review, we summarize the current knowledge of the complex molecular mechanisms controlling the crosstalk between the AT and ovarian aging, and further discuss how therapeutic targeting of the AT can delay ovarian aging.
Collapse
Affiliation(s)
- Meng Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yinuo Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
181
|
Sladitschek-Martens HL, Guarnieri A, Brumana G, Zanconato F, Battilana G, Xiccato RL, Panciera T, Forcato M, Bicciato S, Guzzardo V, Fassan M, Ulliana L, Gandin A, Tripodo C, Foiani M, Brusatin G, Cordenonsi M, Piccolo S. YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 2022; 607:790-798. [PMID: 35768505 PMCID: PMC7613988 DOI: 10.1038/s41586-022-04924-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
Abstract
Ageing is intimately connected to the induction of cell senescence1,2, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing3. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.
Collapse
Affiliation(s)
| | | | - Giulia Brumana
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Giusy Battilana
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Matteo Fassan
- Department of Medicine, University of Padua, Padua, Italy
| | - Lorenzo Ulliana
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Claudio Tripodo
- Department of Health Sciences Unit, Human Pathology Section, University of Palermo, Palermo, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padua, Padua, Italy
| | | | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
182
|
El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines 2022; 10:1507. [PMID: 35884812 PMCID: PMC9312797 DOI: 10.3390/biomedicines10071507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a severe complication of diabetes and a challenging medical condition. Conventional treatments for DFU have not been effective enough to reduce the amputation rates, which urges the need for additional treatment. Stem cell-based therapy for DFU has been investigated over the past years. Its therapeutic effect is through promoting angiogenesis, secreting paracrine factors, stimulating vascular differentiation, suppressing inflammation, improving collagen deposition, and immunomodulation. It is controversial which type and origin of stem cells, and which administration route would be the most optimal for therapy. We reviewed the different types and origins of stem cells and routes of administration used for the treatment of DFU in clinical and preclinical studies. Diabetes leads to the impairment of the stem cells in the diseased patients, which makes it less ideal to use autologous stem cells, and requires looking for a matching donor. Moreover, angioplasty could be complementary to stem cell therapy, and scaffolds have a positive impact on the healing process of DFU by stem cell-based therapy. In short, stem cell-based therapy is promising in the field of regenerative medicine, but more studies are still needed to determine the ideal type of stem cells required in therapy, their safety, proper dosing, and optimal administration route.
Collapse
Affiliation(s)
- Racha El Hage
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Tobias Arnold
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (U.K.); (T.A.)
| | - Irene Hinterseher
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Branderburg Theodor Fontane, Fehrbelliner Str. 38, 16816 Neuruppin, Germany;
- Berlin Institute of Health, Vascular Surgery Clinic, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Fakultät für Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane und der Brandenburgischen Technischen Universität Cottbus—Senftenberg, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
183
|
Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci 2022; 23:ijms23126655. [PMID: 35743097 PMCID: PMC9223561 DOI: 10.3390/ijms23126655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM). The intact collagen matrix ensures proper adhesion and mechanical tension in DFs, which allows these cells to maintain collagen homeostasis while ECM correctly regulates cellular processes. When the integrity of CM is destroyed, mechanotransduction is disrupted, which is accompanied by impairment of DF functioning and destruction of collagen homeostasis, thereby contributing to the progression of aging processes in skin tissues. This article considers in detail the processes of skin aging and associated changes in the skin layers, as well as the mechanisms of these processes at the molecular level.
Collapse
|
184
|
Ishaq A, Tchkonia T, Kirkland JL, Siervo M, Saretzki G. Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate. Exp Gerontol 2022; 163:111798. [PMID: 35390489 PMCID: PMC9214712 DOI: 10.1016/j.exger.2022.111798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Hypertrophy in white adipose tissue (WAT) can result in sustained systemic inflammation, hyperlipidaemia, insulin resistance, and onset of senescence in adipocytes. Inflammation and hypertrophy can be induced in vitro using palmitic acid (PA). WAT adipocytes have innately low β-oxidation capacity, while inorganic nitrate can promote a beiging phenotype, with promotion of β-oxidation when cells are exposed to nitrate during differentiation. We hypothesized that treatment of human adipocytes with PA in vitro can induce senescence, which might be attenuated by nitrate treatment through stimulation of β-oxidation to remove accumulated lipids. Differentiated subcutaneous and omental adipocytes were treated with PA and nitrate and senescence markers were analyzed. PA induced DNA damage and increased p16INK4a levels in both human subcutaneous and omental adipocytes in vitro. However, lipid accumulation and lipid droplet size increased after PA treatment only in subcutaneous adipocytes. Thus, hypertrophy and senescence seem not to be causally associated. Contrary to our expectations, subsequent treatment of PA-induced adipocytes with nitrate did not attenuate PA-induced lipid accumulation or senescence. Instead, we found a significantly beneficial effect of oleic acid (OA) on human subcutaneous adipocytes when applied together with PA, which reduced the DNA damage caused by PA treatment.
Collapse
Affiliation(s)
- Abbas Ishaq
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America
| | - Mario Siervo
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK; School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.
| |
Collapse
|
185
|
Effects of STAT3 on aging-dependent neovascularization impairment following limb ischemia: from bedside to bench. Aging (Albany NY) 2022; 14:4897-4913. [PMID: 35696641 PMCID: PMC9217700 DOI: 10.18632/aging.204122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Aging is a major risk factor for ischemic hypoxia-related diseases, including peripheral artery diseases (PADs). Signal transducer and activator of transcription 3 (STAT3) is a critical transcription activator in angiogenesis. Nevertheless, the effect of aging on endothelial cells and their responses to hypoxia are not well studied. Using a hindlimb hypoxic/ischemic model of aged mice, we found that aged mice (80-100-week-old) expressed significantly lower levels of angiogenesis than young mice (10-week-old). In our in vitro study, aged endothelial cells (≥30 passage) showed a significant accumulation of β-galactosidase and a high expression of aging-associated genes, including p16, p21, and hTERT compared with young cells (<10 passage). After 24 hours of hypoxia exposure, proliferation, migration and tube formation were significantly impaired in aged cells compared with young cells. Notably, STAT3 and angiogenesis-associated proteins such as PI3K/AKT were significantly downregulated in aged mouse limb tissues and aged cells. Further, using STAT3 siRNA, we found that suppressing STAT3 expression in endothelial cells impaired proliferation, migration and tube formation under hypoxia. Correspondingly, in patients with limb ischemia we also observed a higher expression of circulating STAT3, associated with a lower rate of major adverse limb events (MALEs). Collectively, STAT3 could be a biomarker reflecting the development of MALE in patients and also a regulator of age-dependent angiogenesis post limb ischemia. Additional studies are required to elucidate the clinical applications of STAT3.
Collapse
|
186
|
MDM2 Aggravates Adipose Tissue Dysfunction through Ubiquitin-mediated STEAP4 Degradation. iScience 2022; 25:104544. [PMID: 35747386 PMCID: PMC9209722 DOI: 10.1016/j.isci.2022.104544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Healthy adipose tissue is crucial to maintain normal energy homeostasis. Little is known about the role of murine double minute 2 (MDM2), an E3 ubiquitin ligase and has been highlighted in oncopathology, in adipose tissue. Our results indicated that MDM2 expression was associated with nutritional status. Mdm2 adipocyte-specific knock-in (Mdm2-AKI) mice exhibited exacerbated weight gain, insulin resistance, and decreased energy expenditure. Meanwhile, chronic high-fat diet (HFD) exposure caused obvious epididymal white adipose tissue (eWAT) dysfunction, such as senescence, apoptosis, and chronic inflammation, thereby leading to hepatic steatosis in Mdm2-AKI mice. Mechanically, MDM2 could interact with six-transmembrane epithelial antigen of prostate 4 (STEAP4) and inhibit STEAP4 expression through ubiquitin-mediated STEAP4 degradation. Thereinto, the K18 and K161 sites of STEAP4 were ubiquitin-modificated by MDM2. Finally, STEAP4 restoration in eWAT of Mdm2-AKI mice on a HFD rescued MDM2-induced adipose dysfunction, insulin resistance, and hepatic steatosis. Summary, the MDM2-STEAP4 axis in eWAT plays an important role in maintaining healthy adipose tissue function and improving hepatic steatosis. Murine double minute 2 (MDM2) overexpression intensifies high-fat diet-induced adipose tissue dysfunction Adipocyte MDM2 overexpression aggravates insulin resistance and hepatosteatosis MDM2 decreases six-transmembrane epithelial antigen of prostate 4 (STEAP4) expression by ubiquitin-dependent STEAP4 degradation STEAP4 overexpression in eWAT alleviates MDM2-induced metabolic disorder
Collapse
|
187
|
Tovy A, Reyes JM, Zhang L, Huang YH, Rosas C, Daquinag AC, Guzman A, Ramabadran R, Chen CW, Gu T, Gupta S, Ortinau L, Park D, Cox AR, Rau RE, Hartig SM, Kolonin MG, Goodell MA. Constitutive loss of DNMT3A causes morbid obesity through misregulation of adipogenesis. eLife 2022; 11:e72359. [PMID: 35635747 PMCID: PMC9150890 DOI: 10.7554/elife.72359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in DNMT3A lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes. These mice become morbidly obese due to adipocyte enlargement and tissue expansion. Adipose tissue in these mice exhibited defects in preadipocyte maturation and precocious activation of inflammatory gene networks, including interleukin-6 signaling. Adipocyte progenitor cell lines lacking DNMT3A exhibited aberrant differentiation. Furthermore, mice in which Dnmt3a was specifically ablated in adipocyte progenitors showed enlarged fat depots and increased progenitor numbers, partly recapitulating the TBRS obesity phenotypes. Loss of DNMT3A led to constitutive DNA hypomethylation, such that the DNA methylation landscape of young adipocyte progenitors resemble that of older wild-type mice. Together, our results demonstrate that DNMT3A coordinates both the central and local control of energy storage required to maintain normal weight and prevent inflammatory obesity.
Collapse
Affiliation(s)
- Ayala Tovy
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Linda Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of MedicineHoustonUnited States
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
| | - Carina Rosas
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Alexes C Daquinag
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science CenterHoustonUnited States
| | - Anna Guzman
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Raghav Ramabadran
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Chun-Wei Chen
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Tianpeng Gu
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sinjini Gupta
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Metabolic and Degenerative Disease, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at HoustonHoustonUnited States
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Metabolic and Degenerative Disease, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at HoustonHoustonUnited States
| | - Aaron R Cox
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of Medicine and Texas Children's HospitalHoustonUnited States
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Mikhail G Kolonin
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of MedicineHoustonUnited States
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
188
|
Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc 2022; 97:1844-1867. [PMID: 35569818 PMCID: PMC9541442 DOI: 10.1111/brv.12866] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Atherosclerosis, characterized by lipid‐rich plaques in the arterial wall, is an age‐related disorder and a leading cause of mortality worldwide. However, the specific mechanisms remain complex. Recently, emerging evidence has demonstrated that senescence of various types of cells, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, endothelial progenitor cells (EPCs), and adipose‐derived mesenchymal stem cells (AMSCs) contributes to atherosclerosis. Cellular senescence and atherosclerosis share various causative stimuli, in which dyslipidemia has attracted much attention. Dyslipidemia, mainly referred to elevated plasma levels of atherogenic lipids or lipoproteins, or functional impairment of anti‐atherogenic lipids or lipoproteins, plays a pivotal role both in cellular senescence and atherosclerosis. In this review, we summarize the current evidence for dyslipidemia‐induced cellular senescence during atherosclerosis, with a focus on low‐density lipoprotein (LDL) and its modifications, hydrolysate of triglyceride‐rich lipoproteins (TRLs), and high‐density lipoprotein (HDL), respectively. Furthermore, we describe the underlying mechanisms linking dyslipidemia‐induced cellular senescence and atherosclerosis. Finally, we discuss the senescence‐related therapeutic strategies for atherosclerosis, with special attention given to the anti‐atherosclerotic effects of promising geroprotectors as well as anti‐senescence effects of current lipid‐lowering drugs.
Collapse
Affiliation(s)
- Qunyan Xiang
- Department of Geriatrics, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Institute of Aging and Age‐related Disease Research Central South University Changsha Hunan 410011 PR China
| | - Feng Tian
- Department of Geriatric Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Shilan Zhang
- Department of Gastroenterology, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| |
Collapse
|
189
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
190
|
Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc Nutr Soc 2022; 81:146-161. [DOI: 10.1017/s0029665121003815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In recent years, a wealth of factors are associated with increased risk of developing non-alcoholic fatty liver disease (NAFLD) and NAFLD is now thought to increase the risk of multiple extra-hepatic diseases. The aim of this review is first to focus on the role of ageing and sex as key, poorly understood risk factors in the development and progression of NAFLD. Secondly, we aim to discuss the roles of white adipose tissue (WAT) and intestinal dysfunction, as producers of extra-hepatic factors known to further contribute to the pathogenesis of NAFLD. Finally, we aim to summarise the role of NAFLD as a multi-system disease affecting other organ systems beyond the liver. Both increased age and male sex increase the risk of NAFLD and this may be partly driven by alterations in the distribution and function of WAT. Similarly, changes in gut microbiota composition and intestinal function with ageing and chronic overnutrition are likely to contribute to the development of NAFLD both directly (i.e. by affecting hepatic function) and indirectly via exacerbating WAT dysfunction. Consequently, the presence of NAFLD significantly increases the risk of various extra-hepatic diseases including CVD, type 2 diabetes mellitus, chronic kidney disease and certain extra-hepatic cancers. Thus changes in WAT and intestinal function with ageing and chronic overnutrition contribute to the development of NAFLD – a multi-system disease that subsequently contributes to the development of other chronic cardiometabolic diseases.
Collapse
|
191
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
192
|
Accumulation of γδ T cells in visceral fat with aging promotes chronic inflammation. GeroScience 2022; 44:1761-1778. [PMID: 35477832 PMCID: PMC9213615 DOI: 10.1007/s11357-022-00572-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Adipose tissue dysfunction is strongly linked to the development of chronic inflammation and cardiometabolic disorders in aging. While much attention has been given to the role of resident adipose tissue immune cells in the disruption of homeostasis in obesity, age-specific effects remain understudied. Here, we identified and characterized a population of γδ T cells, which show unique age-dependent accumulation in the visceral adipose tissue (VAT) of both mice and humans. Diet-induced obesity likewise increased γδ T cell numbers; however, the effect was greater in the aged where the increase was independent of fat mass. γδ T cells in VAT express a tissue-resident memory T cell phenotype (CD44hiCD62LlowCD69+) and are predominantly IL-17A-producing cells. Transcriptome analyses of immunomagnetically purified γδ T cells identified significant age-associated differences in expression of genes related to inflammation, immune cell composition, and adipocyte differentiation, suggesting age-dependent qualitative changes in addition to the quantitative increase. Genetic deficiency of γδ T cells in old age improved the metabolic phenotype, characterized by increased respiratory exchange ratio, and lowered levels of IL-6 both systemically and locally in VAT. Decreased IL-6 was predominantly due to reduced production by non-immune stromal cells, primarily preadipocytes, and adipose-derived stem cells. Collectively, these findings suggest that an age-dependent increase of tissue-resident γδ T cells in VAT contributes to local and systemic chronic inflammation and metabolic dysfunction in aging.
Collapse
|
193
|
Hense JD, Garcia DN, Isola JV, Alvarado-Rincón JA, Zanini BM, Prosczek JB, Stout MB, Mason JB, Walsh PT, Brieño-Enríquez MA, Schadock I, Barros CC, Masternak MM, Schneider A. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. GeroScience 2022; 44:1747-1759. [PMID: 35460445 DOI: 10.1007/s11357-022-00573-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Senescent cells are in a cell cycle arrest state and accumulate with aging and obesity, contributing to a chronic inflammatory state. Treatment with senolytic drugs dasatinib and quercetin (D + Q) can reduce senescent cell burden in several tissues, increasing lifespan. Despite this, there are few reports about senescent cells accumulating in female reproductive tissues. Therefore, the aim of the study was to characterize the ovarian reserve and its relationship with cellular senescence in genetically obese mice (ob/ob). In experiment 1, ob/ob (n = 5) and wild-type (WT) mice (n = 5) at 12 months of age were evaluated. In experiment 2, 2-month-old female ob/ob mice were treated with senolytics (D + Q, n = 6) or placebo (n = 6) during the 4 months. Obese mice had more senescent cells in ovaries, indicated by increased p21 and p16 and lipofuscin staining and macrophage infiltration. Treatment with D + Q significantly reduced senescent cell burden in ovaries of obese mice. Neither obesity nor treatment with D + Q affected the number of ovarian follicles. In conclusion, our data indicate that obesity due to leptin deficiency increases the load of senescent cells in the ovary, which is reduced by treatment by senolytics. However, neither obesity nor D + Q treatment affected the ovarian reserve.
Collapse
Affiliation(s)
- Jéssica D Hense
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Pelotas, Brazil
| | - Driele N Garcia
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V Isola
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joao A Alvarado-Rincón
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Campus Utopía, Yopal, Casanare, Colombia
| | - Bianka M Zanini
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane B Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Patrick T Walsh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miguel A Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ines Schadock
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
194
|
Müller C, Zidek LM, Eichwald S, Kortman G, Koster MH, Calkhoven CF. Enhanced C/EBPβ function promotes hypertrophic versus hyperplastic fat tissue growth and prevents steatosis in response to high-fat diet feeding. eLife 2022; 11:e62625. [PMID: 35451956 PMCID: PMC9071262 DOI: 10.7554/elife.62625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic obesity is correlated with severe metabolic and cardiovascular diseases as well as with an increased risk for developing cancers. Obesity is usually characterized by fat accumulation in enlarged - hypertrophic - adipocytes that are a source of inflammatory mediators, which promote the development and progression of metabolic disorders. Yet, in certain healthy obese individuals, fat is stored in metabolically more favorable hyperplastic fat tissue that contains an increased number of smaller adipocytes that are less inflamed. In a previous study, we demonstrated that loss of the inhibitory protein-isoform C/EBPβ-LIP and the resulting augmented function of the transactivating isoform C/EBPβ-LAP promotes fat metabolism under normal feeding conditions and expands health- and lifespan in mice. Here, we show that in mice on a high-fat diet, LIP-deficiency results in adipocyte hyperplasia associated with reduced inflammation and metabolic improvements. Furthermore, fat storage in subcutaneous depots is significantly enhanced specifically in LIP-deficient male mice. Our data identify C/EBPβ as a regulator of adipocyte fate in response to increased fat intake, which has major implications for metabolic health and aging.
Collapse
Affiliation(s)
- Christine Müller
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Laura M Zidek
- Leibniz Institute on Aging - Fritz Lipmann InstituteJenaGermany
| | | | - Gertrud Kortman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Mirjam H Koster
- Division Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of GroningenGroningenNetherlands
- Leibniz Institute on Aging - Fritz Lipmann InstituteJenaGermany
| |
Collapse
|
195
|
McKenzie BA, Chen FL, Gruen ME, Olby NJ. Canine Geriatric Syndrome: A Framework for Advancing Research in Veterinary Geroscience. Front Vet Sci 2022; 9:853743. [PMID: 35529834 PMCID: PMC9069128 DOI: 10.3389/fvets.2022.853743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022] Open
Abstract
Biological aging is the single most important risk factor for disease, disability, and ultimately death in geriatric dogs. The effects of aging in companion dogs also impose significant financial and psychological burdens on their human caregivers. The underlying physiologic processes of canine aging may be occult, or early signs of aging may be ignored because of the misconception that biological aging is natural and therefore inevitable. The ability to detect, quantify, and mitigate the deleterious processes of canine aging would greatly enhance veterinary preventative medicine and animal welfare. In this paper we propose a new conceptual framework for aging in dogs, the Canine Geriatric Syndrome (CGS). CGS consists of the multiple, interrelated physical, functional, behavioral, and metabolic changes that characterize canine aging as well as the resulting clinical manifestations, including frailty, diminished quality of life, and age-associated disease. We also identify potential key components of a CGS assessment tool, a clinical instrument that would enable veterinarians to diagnose CGS and would facilitate the development and testing of interventions to prolong healthspan and lifespan in dogs by directly targeting the biological mechanisms of aging. There are many gaps in our knowledge of the mechanisms and phenotype of aging in dogs that must be bridged before a CGS assessment tool can be deployed. The conceptual framework of CGS should facilitate identifying these gaps and should stimulate research to better characterize the processes and effects of aging in dogs and to identify the most promising preventative strategies to target these.
Collapse
Affiliation(s)
| | - Frances L. Chen
- Cellular Longevity Inc., dba Loyal, San Francisco, CA, United States
| | - Margaret E. Gruen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Natasha J. Olby
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
196
|
Drapkina OM, Kontsevaya AV, Kalinina AM, Avdeev SM, Agaltsov MV, Alexandrova LM, Antsiferova AA, Aronov DM, Akhmedzhanov NM, Balanova YA, Balakhonova TV, Berns SA, Bochkarev MV, Bochkareva EV, Bubnova MV, Budnevsky AV, Gambaryan MG, Gorbunov VM, Gorny BE, Gorshkov AY, Gumanova NG, Dadaeva VA, Drozdova LY, Egorov VA, Eliashevich SO, Ershova AI, Ivanova ES, Imaeva AE, Ipatov PV, Kaprin AD, Karamnova NS, Kobalava ZD, Konradi AO, Kopylova OV, Korostovtseva LS, Kotova MB, Kulikova MS, Lavrenova EA, Lischenko OV, Lopatina MV, Lukina YV, Lukyanov MM, Mayev IV, Mamedov MN, Markelova SV, Martsevich SY, Metelskaya VA, Meshkov AN, Milushkina OY, Mukaneeva DK, Myrzamatova AO, Nebieridze DV, Orlov DO, Poddubskaya EA, Popovich MV, Popovkina OE, Potievskaya VI, Prozorova GG, Rakovskaya YS, Rotar OP, Rybakov IA, Sviryaev YV, Skripnikova IA, Skoblina NA, Smirnova MI, Starinsky VV, Tolpygina SN, Usova EV, Khailova ZV, Shalnova SA, Shepel RN, Shishkova VN, Yavelov IS. 2022 Prevention of chronic non-communicable diseases in Of the Russian Federation. National guidelines. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022; 21:3235. [DOI: 10.15829/1728-8800-2022-3235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
197
|
Vacurova E, Trnovska J, Svoboda P, Skop V, Novosadova V, Reguera DP, Petrezselyová S, Piavaux B, Endaya B, Spoutil F, Zudova D, Stursa J, Melcova M, Bielcikova Z, Werner L, Prochazka J, Sedlacek R, Huttl M, Hubackova SS, Haluzik M, Neuzil J. Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice. Nat Commun 2022; 13:1866. [PMID: 35387987 PMCID: PMC8987092 DOI: 10.1038/s41467-022-29486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.
Collapse
Affiliation(s)
- Eliska Vacurova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslava Trnovska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vojtech Skop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Vendula Novosadova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Silvia Petrezselyová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Benoit Piavaux
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Berwini Endaya
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Frantisek Spoutil
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Martina Huttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
198
|
Kita A, Saito Y, Miura N, Miyajima M, Yamamoto S, Sato T, Yotsuyanagi T, Fujimiya M, Chikenji TS. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5:310. [PMID: 35383267 PMCID: PMC8983691 DOI: 10.1038/s42003-022-03266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Pathologic diabetic wound healing is caused by sequential and progressive deterioration of hemostasis, inflammation, proliferation, and resolution/remodeling. Cellular senescence promotes wound healing; however, diabetic wounds exhibit low levels of senescent factors and accumulate senescent cells, which impair the healing process. Here we show that the number of p15INK4B + PDGFRα + senescent mesenchymal cells in adipose tissue increases transiently during early phases of wound healing in both non-diabetic mice and humans. Transplantation of adipose tissue from diabetic mice into non-diabetic mice results in impaired wound healing and an altered cellular senescence–associated secretory phenotype (SASP), suggesting that insufficient induction of adipose tissue senescence after injury is a pathological mechanism of diabetic wound healing. These results provide insight into how regulation of senescence in adipose tissue contributes to wound healing and could constitute a basis for developing therapeutic treatment for wound healing impairment in diabetes. Type-2 diabetic adipose tissue impairs transient senescence during wound healing with expression of different components of the senescence-associated secretory phenotype (SASP), and this is associated with deteriorated wound healing.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takatoshi Yotsuyanagi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan. .,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
199
|
Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis 2022; 13:300. [PMID: 35379822 PMCID: PMC8980023 DOI: 10.1038/s41419-022-04752-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.
Collapse
Affiliation(s)
- Min-Yi Ou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hao Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
200
|
Xie H, Liu X, Zhou Q, Huang T, Zhang L, Gao J, Wang Y, Liu Y, Yan T, Zhang S, Wang CY. DNA Methylation Modulates Aging Process in Adipocytes. Aging Dis 2022; 13:433-446. [PMID: 35371604 PMCID: PMC8947842 DOI: 10.14336/ad.2021.0904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aging has been recognized to be a highly complex biological health problem with a high risk of chronic diseases, including type 2 diabetes, atherosclerosis, chronic bronchitis or emphysema, cancer and Alzheimer's disease. Particularly, age-related turnover in adipose tissue is a major contributor to metabolic syndromes and shortened lifespan. Adipocytes undergo senescence in early stage, which results in adipose tissue metabolic dysfunction, redistribution, and inflammation. The well-established association between DNA methylation (DNAm) and aging has been observed in the past few decades. Indeed, age-related alteration in DNAm is highly tissue-specific. This review intends to summarize the advancements how DNAm changes coupled with aging process in adipose tissue, by which DNAm regulates cellular senescence, metabolic function, adipokine secretion and beiging process in adipocytes. Elucidation of the effect of DNAm on adipose aging would have great potential to the development of epigenetic therapeutic strategies against aging-related diseases in clinical settings.
Collapse
Affiliation(s)
- Hao Xie
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Liu
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuhan Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|