151
|
Lee K, Lina JM, Gotman J, Grova C. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity. Neuroimage 2016; 134:434-449. [PMID: 27046111 DOI: 10.1016/j.neuroimage.2016.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/08/2016] [Accepted: 03/21/2016] [Indexed: 01/05/2023] Open
Abstract
Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI.
Collapse
Affiliation(s)
- Kangjoo Lee
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Duff Medical Building, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada.
| | - Jean-Marc Lina
- École de Technologie Supérieure, 1100 Rue Notre-Dame O, Montreal, QC H3C 1K3, Canada; Centre de Recherches Mathématiques, Université de Montréal, Pavillon André-Aisenstadt 2920 Chemin de la tour, Room 5357, Montreal, QC H3T 1J4, Canada
| | - Jean Gotman
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Duff Medical Building, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada; Centre de Recherches Mathématiques, Université de Montréal, Pavillon André-Aisenstadt 2920 Chemin de la tour, Room 5357, Montreal, QC H3T 1J4, Canada; Physics Department and PERFORM Centre, Concordia University, 7200 Rue Sherbrooke St. W, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
152
|
Lopour BA, Staba RJ, Stern JM, Fried I, Ringach DL. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials. J Neural Eng 2016; 13:026031. [PMID: 26975603 DOI: 10.1088/1741-2560/13/2/026031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. APPROACH Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. MAIN RESULTS We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. SIGNIFICANCE The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity in epilepsy and the relationship between functional properties and imaging findings. Beyond epilepsy, we expect that the impulse response could be more broadly applied as a measure of long-range functional connectivity in studies of cognition.
Collapse
Affiliation(s)
- Beth A Lopour
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
153
|
Wei W, Zhang Z, Xu Q, Yang F, Sun K, Lu G. More Severe Extratemporal Damages in Mesial Temporal Lobe Epilepsy With Hippocampal Sclerosis Than That With Other Lesions: A Multimodality MRI Study. Medicine (Baltimore) 2016; 95:e3020. [PMID: 26962820 PMCID: PMC4998901 DOI: 10.1097/md.0000000000003020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) presents different clinical presentations from that with other lesions (OL). It is significant to investigate the neural mechanism underlying the different clinical presentations using neuroimaging study.Thirty mTLE patients with mTLE-HS, 30 mTLE patients with other lesions (mTLE-OL), and 30 age- and sex-matched healthy controls were involved. Amplitude of low-frequency fluctuation (ALFF) analysis-based resting-state functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM) based morphometric MRI were employed to describing functional and structural imaging alterations in mTLE. Imaging parameters of ALFF and gray matter volume (GMV) were compared among groups and correlated with clinical variables and cognitive scores.For parameter of ALFF, both patient groups of mTLE-HS and mTLE-OL showed decrease in the frontal cortices relative to the healthy controls; mTLE-HS showed more decrease in the prefrontal and brain default regions relative to mTLE-OL. For GMV, both patient groups showed decrease in the frontal cortex, thalamus, and cerebellum; mTLE-HS showed more GMV decrease relative to the mTLE-OL, also mainly in the prefrontal and brain default regions. In both patient groups, the prefrontal regions showed negative correlation between GMV and epilepsy duration.This work revealed distinct alteration patterns of functional and structural brain organizations in mTLEs with different forms. MTLE-HS, despite with smaller lesion size of the pathological focus, presented more severe functional and structural damages in the extratemporal regions than mTLE-OL. The findings provided imaging evidence to support the proposal that mTLE-HS is a special epilepsy syndrome.
Collapse
Affiliation(s)
- Wei Wei
- From the Department of Medical Imaging (WW, ZZ, QX, GL), Department of Neurology (QX), Department of Neurosurgery (FY), Jinling Hospital, Nanjing University School of Medicine, and State Key Laboratory of Analytical Chemistry for Life Science (ZZ, GL), Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
154
|
Mohan A, Roberto AJ, Mohan A, Lorenzo A, Jones K, Carney MJ, Liogier-Weyback L, Hwang S, Lapidus KA. The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:49-57. [PMID: 27505016 PMCID: PMC4797836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The relationship of cortical structure and specific neuronal circuitry to global brain function, particularly its perturbations related to the development and progression of neuropathology, is an area of great interest in neurobehavioral science. Disruption of these neural networks can be associated with a wide range of neurological and neuropsychiatric disorders. Herein we review activity of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease, Epilepsy (Temporal Lobe Epilepsy - TLE), attention deficit hyperactivity disorder (ADHD), and mood disorders. We discuss the implications of DMN disruptions and their relationship to the neurocognitive model of each disease entity, the utility of DMN assessment in clinical evaluation, and the changes of the DMN following treatment.
Collapse
Affiliation(s)
| | - Aaron J. Roberto
- Clinical fellow, Child and Adolescent Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Aileen Lorenzo
- Resident physician, Adult Psychiatry, Westchester Medical Center, New York Medical College, Westchester, New York
| | - Kathryn Jones
- Clinical fellow, Child and Adolescent Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Luis Liogier-Weyback
- Neurosurgery resident physician, Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Soonjo Hwang
- University of Nebraska Medical Center, Omaha, Nebraska
| | | |
Collapse
|
155
|
Coito A, Genetti M, Pittau F, Iannotti GR, Thomschewski A, Höller Y, Trinka E, Wiest R, Seeck M, Michel CM, Plomp G, Vulliemoz S. Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: A high density EEG study. Epilepsia 2016; 57:402-11. [DOI: 10.1111/epi.13308] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ana Coito
- Functional Brain Mapping Lab; Department of Fundamental Neurosciences; University of Geneva; Geneva Switzerland
| | - Melanie Genetti
- Functional Brain Mapping Lab; Department of Fundamental Neurosciences; University of Geneva; Geneva Switzerland
| | - Francesca Pittau
- EEG and Epilepsy Unit; University Hospital of Geneva; Geneva Switzerland
| | - Giannina R. Iannotti
- Functional Brain Mapping Lab; Department of Fundamental Neurosciences; University of Geneva; Geneva Switzerland
| | - Aljoscha Thomschewski
- Department of Neurology; Paracelsus Medical University and Center for Cognitive Neuroscience; Salzburg Austria
| | - Yvonne Höller
- Department of Neurology; Paracelsus Medical University and Center for Cognitive Neuroscience; Salzburg Austria
| | - Eugen Trinka
- Department of Neurology; Paracelsus Medical University and Center for Cognitive Neuroscience; Salzburg Austria
| | - Roland Wiest
- Institute for Diagnostic and Interventional Neuroradiology; University of Bern; Bern Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit; University Hospital of Geneva; Geneva Switzerland
| | - Christoph M. Michel
- Functional Brain Mapping Lab; Department of Fundamental Neurosciences; University of Geneva; Geneva Switzerland
| | - Gijs Plomp
- Functional Brain Mapping Lab; Department of Fundamental Neurosciences; University of Geneva; Geneva Switzerland
- Department of Psychology; University of Fribourg; Fribourg Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit; University Hospital of Geneva; Geneva Switzerland
| |
Collapse
|
156
|
Nedic S, Stufflebeam SM, Rondinoni C, Velasco TR, dos Santos AC, Leite JP, Gargaro AC, Mujica-Parodi LR, Ide JS. Using network dynamic fMRI for detection of epileptogenic foci. BMC Neurol 2015; 15:262. [PMID: 26689596 PMCID: PMC4687299 DOI: 10.1186/s12883-015-0514-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/04/2015] [Indexed: 01/21/2023] Open
Abstract
Background Epilepsy is one of the most prevalent neurological disorders. It remains medically intractable for about one-third of patients with focal epilepsy, for whom precise localization of the epileptogenic zone responsible for seizure initiation may be critical for successful surgery. Existing fMRI literature points to widespread network disturbances in functional connectivity. Per previous scalp and intracranial EEG studies and consistent with excessive local synchronization during interictal discharges, we hypothesized that, relative to same regions in healthy controls, epileptogenic foci would exhibit less chaotic dynamics, identifiable via entropic analyses of resting state fMRI time series. Methods In order to first validate this hypothesis on a cohort of patients with known ground truth, here we test individuals with well-defined epileptogenic foci (left mesial temporal lobe epilepsy). We analyzed voxel-wise resting-state fMRI time-series using the autocorrelation function (ACF), an entropic measure of regulation and feedback, and performed follow-up seed-to-voxel functional connectivity analysis. Disruptions in connectivity of the region exhibiting abnormal dynamics were examined in relation to duration of epilepsy and patients’ cognitive performance using a delayed verbal memory recall task. Results ACF analysis revealed constrained (less chaotic) functional dynamics in left temporal lobe epilepsy patients, primarily localized to ipsilateral temporal pole, proximal to presumed focal points. Autocorrelation decay rates differentiated, with 100 % accuracy, between patients and healthy controls on a subject-by-subject basis within a leave-one-subject out classification framework. Regions identified via ACF analysis formed a less efficient network in patients, as compared to controls. Constrained dynamics were linked with locally increased and long-range decreased connectivity that, in turn, correlated significantly with impaired memory (local left temporal connectivity) and epilepsy duration (left temporal – posterior cingulate cortex connectivity). Conclusions Our current results suggest that data driven functional MRI methods that target network dynamics hold promise in providing clinically valuable tools for identification of epileptic regions.
Collapse
Affiliation(s)
- Sanja Nedic
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA. .,Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Steven M Stufflebeam
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Carlo Rondinoni
- Department of Neurosciences and Behavior, University of Sao Paulo (USP), Ribeirao Preto, SP, 14049, Brazil.
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavior, University of Sao Paulo (USP), Ribeirao Preto, SP, 14049, Brazil.
| | - Antonio C dos Santos
- Department of Neurosciences and Behavior, University of Sao Paulo (USP), Ribeirao Preto, SP, 14049, Brazil.
| | - Joao P Leite
- Department of Neurosciences and Behavior, University of Sao Paulo (USP), Ribeirao Preto, SP, 14049, Brazil.
| | - Ana C Gargaro
- Department of Neurosciences and Behavior, University of Sao Paulo (USP), Ribeirao Preto, SP, 14049, Brazil.
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA. .,Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Jaime S Ide
- Department of Biomedical Engineering, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA. .,Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA. .,Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, SP, 12231, Brazil.
| |
Collapse
|
157
|
Nazem-Zadeh MR, Elisevich K, Air EL, Schwalb JM, Divine G, Kaur M, Wasade VS, Mahmoudi F, Shokri S, Bagher-Ebadian H, Soltanian-Zadeh H. DTI-based response-driven modeling of mTLE laterality. NEUROIMAGE-CLINICAL 2015; 11:694-706. [PMID: 27330966 PMCID: PMC4900487 DOI: 10.1016/j.nicl.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
Abstract
Purpose To develop lateralization models for distinguishing between unilateral and bilateral mesial temporal lobe epilepsy (mTLE) and determining laterality in cases of unilateral mTLE. Background mTLE is the most common form of medically refractory focal epilepsy. Many mTLE patients fail to demonstrate an unambiguous unilateral ictal onset. Intracranial EEG (icEEG) monitoring can be performed to establish whether the ictal origin is unilateral or truly bilateral with independent bitemporal ictal origin. However, because of the expense and risk of intracranial electrode placement, much research has been done to determine if the need for icEEG can be obviated with noninvasive neuroimaging methods, such as diffusion tensor imaging (DTI). Methods Fractional anisotropy (FA) was used to quantify microstructural changes reflected in the diffusivity properties of the corpus callosum, cingulum, and fornix, in a retrospective cohort of 31 patients confirmed to have unilateral (n = 24) or bilateral (n = 7) mTLE. All unilateral mTLE patients underwent resection with an Engel class I outcome. Eleven were reported to have hippocampal sclerosis on pathological analysis; nine had undergone prior icEEG. The bilateral mTLE patients had undergone icEEG demonstrating independent epileptiform activity in both right and left hemispheres. Twenty-three nonepileptic subjects were included as controls. Results In cases of right mTLE, FA showed significant differences from control in all callosal subregions, in both left and right superior cingulate subregions, and in forniceal crura. Comparison of right and left mTLE cases showed significant differences in FA of callosal genu, rostral body, and splenium and the right posteroinferior and superior cingulate subregions. In cases of left mTLE, FA showed significant differences from control only in the callosal isthmus. Significant differences in FA were identified when cases of right mTLE were compared with bilateral mTLE cases in the rostral and midbody callosal subregions and isthmus. Based on 11 FA measurements in the cingulate, callosal and forniceal subregions, a response-driven lateralization model successfully differentiated all cases (n = 54) into groups of unilateral right (n = 12), unilateral left (n = 12), and bilateral mTLE (n = 7), and nonepileptic control (23). Conclusion The proposed response-driven DTI biomarker is intended to lessen diagnostic ambiguity of laterality in cases of mTLE and help optimize selection of surgical candidates. Application of this model shows promise in reducing the need for invasive icEEG in prospective cases. Develop response-driven lateralization model using diffusion tensor imaging Distinguish between unilateral and bilateral mesial temporal lobe epilepsy (mTLE) Determine or lessen diagnostic ambiguity of laterality in cases of unilateral mTLE Optimize selection of surgical candidates Reduction of the need for intracranial EEG
Collapse
Affiliation(s)
| | - Kost Elisevich
- Department of Clinical Neurosciences, Spectrum Health Medical Group, Division of Neurosurgery, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ellen L Air
- Neurosurgery Department, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Jason M Schwalb
- Neurosurgery Department, Henry Ford Health System, Detroit, MI 48202, USA.
| | - George Divine
- Public Health Sciences Department, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Manpreet Kaur
- Neurosurgery Department, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | - Fariborz Mahmoudi
- Radiology and Research Administration Department, Henry Ford Health System, Detroit, MI 48202, USA; Computer and IT engineering Faculty, Islamic Azad University, Qazvin Branch, Iran.
| | - Saeed Shokri
- Radiology and Research Administration Department, Henry Ford Health System, Detroit, MI 48202, USA; School of Computer Science, Wayne State University, Detroit, MI 48202, USA.
| | - Hassan Bagher-Ebadian
- Radiology and Research Administration Department, Henry Ford Health System, Detroit, MI 48202, USA; Neurology Department, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Hamid Soltanian-Zadeh
- Radiology and Research Administration Department, Henry Ford Health System, Detroit, MI 48202, USA; Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer, University of Tehran, Tehran, Iran.
| |
Collapse
|
158
|
Li H, Fan W, Yang J, Song S, Liu Y, Lei P, Shrestha L, Mella G, Chen W, Xu H. Asymmetry in cross-hippocampal connectivity in unilateral mesial temporal lobe epilepsy. Epilepsy Res 2015; 118:14-21. [PMID: 26561924 DOI: 10.1016/j.eplepsyres.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/15/2015] [Accepted: 10/25/2015] [Indexed: 01/06/2023]
Abstract
Mesial temporal lobe epilepsy (mTLE) is mostly characterized by hippocampal sclerosis (HS) changes. Although considerable progress has been made in understanding the altered functional network of mTLE patients, whether one side of the abnormal hippocampal (HP) structure will affect the other healthy side of the hippocampal network is still unclear. Here, we used a seed-based method to explore the commonly alterative hippocampal network in mTLE patients by comparing the bilateral hippocampal network of unilateral mTLE patients with healthy control participants. We observed that both sides of the hippocampal network in unilateral mTLE patients were changed independent of the affected or "healthy" side, which may suggest a common plasticity network for both sides of hippocampal sclerosis mesial temporal lobe epilepsy patients. Furthermore, using the HP as the ROI, we found that the functional connectivity of the intra-HP in the left mTLE-HS group was moderately positively correlated with the duration of the disease, while a strong negative correlation between functional connectivity of the intra-HP and duration were detected in the right mTLE-HS group, which suggested that it was easier for the right HP than the left HP to communicate with the contralateral HP according to the progression of mTLE disease because the hippocampus plays different roles in the communication and compensatory mechanism associated with the contralateral side of the hemisphere. We hope that this potential relevance may help us to better characterize mTLE with hippocampal sclerosis and ultimately assist in providing a better diagnosis and more accurate invasive treatments of mTLE.
Collapse
Affiliation(s)
- Hong Li
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jie Yang
- Department of Communication Sciences and Disorders, Massachusetts General Hospital Institute of Health Professions, Boston, MA, USA.
| | - Shuyan Song
- School of Life Science and Technology, Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yuan Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ping Lei
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lochan Shrestha
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Grace Mella
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wei Chen
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Radiology and Medical Imaging Center, The First People's Hospital of Yibin, Sichuan 644000, China.
| | - Haibo Xu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
159
|
Wu C, Boorman DW, Gorniak RJ, Farrell CJ, Evans JJ, Sharan AD. The effects of anatomic variations on stereotactic laser amygdalohippocampectomy and a proposed protocol for trajectory planning. Neurosurgery 2015; 11 Suppl 2:345-56; discussion 356-7. [PMID: 25850599 DOI: 10.1227/neu.0000000000000767] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stereotactic laser amygdalohippocampectomy (SLAH) is a promising minimally invasive alternative for mesial temporal lobe epilepsy. As seizure outcome has been associated with the extent of amygdalar and hippocampal ablation, it is important to select a safe trajectory optimizing involvement of both structures; however, variations in temporal anatomy significantly affect the overall complexity of planning. OBJECTIVE To quantify anatomic variables of SLAH and facilitate stereotactic planning by developing a protocol for optimally targeting the amygdalohippocampal complex (AHC). METHODS We performed a retrospective analysis of 19 SLAHs. Anatomic measurements from preoperative magnetic resonance imaging and laser trajectory measurements from coregistered postoperative magnetic resonance imaging were taken in 11 patients. Simple linear regression analysis was performed to identify significant predictor variables determining ablation extent. Based on these data, a protocol for optimal trajectory planning was developed and subsequently implemented in 8 patients. RESULTS The medial angle of the laser trajectory correlated with the medial angle of the AHC. The length of amygdalar cannulation was predictive of its ablation volume. All trajectories passed through a posteroinferior corridor formed by the lateral ventricle superiorly and collateral sulcus inferiorly. Our protocol facilitated planning and increased the volume of AHC ablation. CONCLUSION The medial AHC angle dictates the medial trajectory angle and a path from the posteroinferior corridor through the hippocampus and the center of the amygdala dictates the caudal angle. These observations led to a protocol for long-axis AHC cannulation that maintains an extraventricular trajectory to minimize hemorrhage risk and targets the center of the amygdala to optimize ablation volumes.
Collapse
Affiliation(s)
- Chengyuan Wu
- Departments of *Neurosurgery and ‡Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
160
|
Ji GJ, Zhang Z, Xu Q, Wei W, Wang J, Wang Z, Yang F, Sun K, Jiao Q, Liao W, Lu G. Connectome Reorganization Associated With Surgical Outcome in Temporal Lobe Epilepsy. Medicine (Baltimore) 2015; 94:e1737. [PMID: 26448031 PMCID: PMC4616737 DOI: 10.1097/md.0000000000001737] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To identify the distinct pattern of anatomical network reorganization in surgically refractory mesial temporal lobe epilepsy (MTLE) patients using a longitudinal design. We collected longitudinal diffusion-weighted images of 19 MTLE patients before and after anterior temporal lobectomy. Patients were classified as seizure-free (SF) or nonseizure-free (NSF) at least 1 year after surgery. We constructed whole-brain anatomical networks derived from white matter tractography and evaluated network connectivity measures by graph theoretical analysis. The reorganization trajectories of network measures in SF and NSF patients were investigated by two-way mixed analysis of variance, with factors "group" (SF vs NSF) and "treatment" (presurgery vs postsurgery). Widespread brain structures showed opposite reorganization trajectories in FS and NSF groups (interaction effect). Most of them showed group difference before surgery and then converge after surgery, suggesting that surgery remodeled these structures into a similar status. Conversly, contralateral amygdala-planum-temporale and thalamic-parietal tracts showed higher connectivity strength in NSF than in SF patients after surgery, indicating maladaptive neuroplastic responses to surgery in NSF patients. Our findings suggest that surgical outcomes are associated not only with the preoperative pattern of anatomical connectivity, but also with connectome reconfiguration following surgery. The reorganization of contralateral temporal lobe and corticothalamic tracts may be particularly important for seizure control in MTLE.
Collapse
Affiliation(s)
- Gong-Jun Ji
- From the Laboratory of Cognitive Neuropsychology, Department of Medical Psychology, Anhui Medical University, Hefei (G-JJ); Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University (G-JJ, JW, WL); Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou (G-JJ, JW, WL); Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine (ZZ, QX, WW, GL); Department of Medical Imaging, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School (ZW); Department of Neurology, Jinling Hospital (FY); Department of Neurosurgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing (KS); Department of Radiology, Taishan Medical University, Tai'an (QJ); and Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China (WL)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Gleichgerrcht E, Kocher M, Bonilha L. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy. Epilepsia 2015; 56:1660-8. [DOI: 10.1111/epi.13133] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Ezequiel Gleichgerrcht
- Department of Neurology; Medical University of South Carolina; Charleston South Carolina U.S.A
| | - Madison Kocher
- Department of Neurology; Medical University of South Carolina; Charleston South Carolina U.S.A
| | - Leonardo Bonilha
- Department of Neurology; Medical University of South Carolina; Charleston South Carolina U.S.A
| |
Collapse
|
162
|
Bernhardt BC, Bonilha L, Gross DW. Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy Behav 2015; 50:162-70. [PMID: 26159729 DOI: 10.1016/j.yebeh.2015.06.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach.
Collapse
Affiliation(s)
- Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, SC, USA
| | - Donald W Gross
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
163
|
Lega B, Dionisio S, Flanigan P, Bingaman W, Najm I, Nair D, Gonzalez-Martinez J. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
164
|
Bharath RD, Sinha S, Panda R, Raghavendra K, George L, Chaitanya G, Gupta A, Satishchandra P. Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI. AJNR Am J Neuroradiol 2015; 36:1890-8. [PMID: 26294642 DOI: 10.3174/ajnr.a4373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/25/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The frequency of seizures is an important factor that can alter functional brain connectivity. Analysis of this factor in patients with epilepsy is complex because of disease- and medication-induced confounders. Because patients with hot-water epilepsy generally are not on long-term drug therapy, we used seed-based connectivity analysis in these patients to assess connectivity changes associated with seizure frequency without confounding from antiepileptic drugs. MATERIALS AND METHODS Resting-state fMRI data from 36 patients with hot-water epilepsy (18 with frequent seizures [>2 per month] and 18 with infrequent seizures [≤2 per month]) and 18 healthy age- and sex-matched controls were analyzed for seed-to-voxel connectivity by using 106 seeds. Voxel wise paired t-test analysis (P < .005, corrected for false-discovery rate) was used to identify significant intergroup differences between these groups. RESULTS Connectivity analysis revealed significant differences between the 2 groups (P < .001). Patients in the frequent-seizure group had increased connectivity within the medial temporal structures and widespread areas of poor connectivity, even involving the default mode network, in comparison with those in the infrequent-seizure group. Patients in the infrequent-seizure group had focal abnormalities with increased default mode network connectivity and decreased left entorhinal cortex connectivity. CONCLUSIONS The results of this study suggest that seizure frequency can alter functional brain connectivity, which can be visualized by using resting-state fMRI. Imaging features such as diffuse network abnormalities, involvement of the default mode network, and recruitment of medial temporal lobe structures were seen only in patients with frequent seizures. Future studies in more common epilepsy groups, however, will be required to further establish this finding.
Collapse
Affiliation(s)
- R D Bharath
- From the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.) Advanced Brain Imaging Facility (R.D.B., R.P.), Cognitive Neuroscience Center, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - S Sinha
- Neurology (S.S., K.R., G.C., P.S.)
| | - R Panda
- From the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.) Advanced Brain Imaging Facility (R.D.B., R.P.), Cognitive Neuroscience Center, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | | | - L George
- From the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.)
| | | | - A Gupta
- From the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.)
| | | |
Collapse
|
165
|
Van Den Berge N, Vanhove C, Descamps B, Dauwe I, van Mierlo P, Vonck K, Keereman V, Raedt R, Boon P, Van Holen R. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain. PLoS One 2015; 10:e0133245. [PMID: 26193653 PMCID: PMC4508110 DOI: 10.1371/journal.pone.0133245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/24/2015] [Indexed: 01/12/2023] Open
Abstract
Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
- * E-mail:
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Benedicte Descamps
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Ine Dauwe
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Vincent Keereman
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium
| | - Roel Van Holen
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| |
Collapse
|
166
|
Ridley BGY, Rousseau C, Wirsich J, Le Troter A, Soulier E, Confort-Gouny S, Bartolomei F, Ranjeva JP, Achard S, Guye M. Nodal approach reveals differential impact of lateralized focal epilepsies on hub reorganization. Neuroimage 2015; 118:39-48. [PMID: 26070261 DOI: 10.1016/j.neuroimage.2015.05.096] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/30/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
The impact of the hemisphere affected by impairment in models of network disease is not fully understood. Among such models, focal epilepsies are characterised by recurrent seizures generated in epileptogenic areas also responsible for wider network dysfunction between seizures. Previous work focusing on functional connectivity within circumscribed networks suggests a divergence of network integrity and compensatory capacity between epilepsies as a function of the laterality of seizure onset. We evaluated the ability of complex network theory to reveal changes in focal epilepsy in global and nodal parameters using graph theoretical analysis of functional connectivity data obtained with resting-state fMRI. Graphs of functional connectivity networks were derived from 19 right and 13 left focal epilepsy patients and 15 controls. Topological metrics (degree, local efficiency, global efficiency and modularity) were computed for a whole-brain, atlas-defined network. We also calculated a hub disruption index for each graph metric, measuring the capacity of the brain network to demonstrate increased connectivity in some nodes for decreased connectivity in others. Our data demonstrate that the patient group as a whole is characterised by network-wide pattern of reorganization, even while global parameters fail to distinguish between groups. Furthermore, multiple metrics indicate that epilepsies with differently lateralized epileptic networks are asymmetric in their burden on functional brain networks; with left epilepsy patients being characterised by reduced efficiency and modularity, while in right epilepsy patients we provide the first evidence that functional brain networks are characterised by enhanced connectivity and efficiency at some nodes whereas reduced in others.
Collapse
Affiliation(s)
- Ben Gendon Yeshe Ridley
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Celia Rousseau
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Jonathan Wirsich
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Arnaud Le Troter
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Elisabeth Soulier
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Sylvianne Confort-Gouny
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Fabrice Bartolomei
- APHM, Hôpital de la Timone, Service de Neurophysiologie Clinique, 13005 Marseille, France; Aix-Marseille Université, INSERM, Institut de Neuroscience des Systèmes U1106, 13005 Marseille, France.
| | - Jean-Philippe Ranjeva
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| | - Sophie Achard
- Centre National de la Recherche Scientifique, Grenoble Image Parole Signal Automatique, 38402 Grenoble, France.
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13005 Marseille, France; APHM, Hôpital de la Timone, Pôle d'Imagerie Médicale, CEMEREM, 13005 Marseille, France.
| |
Collapse
|
167
|
Hsiao FJ, Yu HY, Chen WT, Kwan SY, Chen C, Yen DJ, Yiu CH, Shih YH, Lin YY. Increased Intrinsic Connectivity of the Default Mode Network in Temporal Lobe Epilepsy: Evidence from Resting-State MEG Recordings. PLoS One 2015; 10:e0128787. [PMID: 26035750 PMCID: PMC4452781 DOI: 10.1371/journal.pone.0128787] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/30/2015] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological signature of resting state oscillatory functional connectivity within the default mode network (DMN) during spike-free periods in temporal lobe epilepsy (TLE) remains unclear. Using magnetoencephalographic (MEG) recordings, this study investigated how the connectivity within the DMN was altered in TLE, and we examined the effect of lateralized TLE on functional connectivity. Sixteen medically intractable TLE patients and 22 controls participated in this study. Whole-scalp 306-channel MEG epochs without interictal spikes generated from both MEG and EEG data were analyzed using a minimum norm estimate (MNE) and source-based imaginary coherence analysis. With this processing, we obtained the cortical activation and functional connectivity within the DMN. The functional connectivity was increased between DMN and the right medial temporal (MT) region at the delta band and between DMN and the bilateral anterior cingulate cortex (ACC) regions at the theta band. The functional change was associated with the lateralization of TLE. The right TLE showed enhanced DMN connectivity with the right MT while the left TLE demonstrated increased DMN connectivity with the bilateral MT. There was no lateralization effect of TLE upon the DMN connectivity with ACC. These findings suggest that the resting-state functional connectivity within the DMN is reinforced in temporal lobe epilepsy during spike-free periods. Future studies are needed to examine if the altered functional connectivity can be used as a biomarker for treatment responses, cognitive dysfunction and prognosis in patients with TLE.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FJH); (YYL)
| | - Hsiang-Yu Yu
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien Chen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Jen Yen
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Hing Yiu
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Laboratory of Neurophysiology at Medical Research Division, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (FJH); (YYL)
| |
Collapse
|
168
|
Gregory AM, Nenert R, Allendorfer JB, Martin R, Kana RK, Szaflarski JP. The effect of medial temporal lobe epilepsy on visual memory encoding. Epilepsy Behav 2015; 46:173-84. [PMID: 25934583 DOI: 10.1016/j.yebeh.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 11/30/2022]
Abstract
Effective visual memory encoding, a function important for everyday functioning, relies on episodic and semantic memory processes. In patients with medial temporal lobe epilepsy (MTLE), memory deficits are common as the structures typically involved in seizure generation are also involved in acquisition, maintenance, and retrieval of episodic memories. In this study, we used group independent component analysis (GICA) combined with Granger causality analysis to investigate the neuronal networks involved in visual memory encoding during a complex fMRI scene-encoding task in patients with left MTLE (LMTLE; N=28) and in patients with right MTLE (RMTLE; N=18). Additionally, we built models of memory encoding in LMTLE and RMTLE and compared them with a model of healthy memory encoding (Nenert et al., 2014). For those with LMTLE, we identified and retained for further analyses and model generation 7 ICA task-related components that were attributed to four different networks: the frontal and posterior components of the DMN, visual network, auditory-insular network, and an "other" network. For those with RMTLE, ICA produced 9 task-related components that were attributed to the somatosensory and cerebellar networks in addition to the same networks as in patients with LMTLE. Granger causality analysis revealed group differences in causality relations within the visual memory network and MTLE-related deviations from normal network function. Our results demonstrate differences in the networks for visual memory encoding between those with LMTLE and those with RMTLE. Consistent with previous studies, the organization of memory encoding is dependent on laterality of seizure focus and may be mediated by functional reorganization in chronic epilepsy. These differences may underlie the observed differences in memory abilities between patients with LMTLE and patients with RMTLE and highlight the modulating effects of epilepsy on the network for memory encoding.
Collapse
Affiliation(s)
- A M Gregory
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - R Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - R Martin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - R K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| |
Collapse
|
169
|
Haneef Z, Chiang S, Yeh HJ, Engel J, Stern JM. Functional connectivity homogeneity correlates with duration of temporal lobe epilepsy. Epilepsy Behav 2015; 46:227-33. [PMID: 25873437 PMCID: PMC4458387 DOI: 10.1016/j.yebeh.2015.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
Temporal lobe epilepsy (TLE) is often associated with progressive changes to seizures, memory, and mood during its clinical course. However, the cerebral changes related to this progression are not well understood. Because the changes may be related to changes in brain networks, we used functional connectivity MRI (fcMRI) to determine whether brain network parameters relate to the duration of TLE. Graph theory-based analysis of the sites of reported regions of TLE abnormality was performed on resting-state fMRI data in 48 subjects: 24 controls, 13 patients with left TLE, and 11 patients with right TLE. Various network parameters were analyzed including betweenness centrality (BC), clustering coefficient (CC), path length (PL), small-world index (SWI), global efficiency (GE), connectivity strength (CS), and connectivity diversity (CD). These were compared for patients with TLE as a group, compared to controls, and for patients with left and right TLE separately. The association of changes in network parameters with epilepsy duration was also evaluated. We found that CC, CS, and CD decreased in subjects with TLE compared to control subjects. Analyzed according to epilepsy duration, patients with TLE showed a progressive reduction in CD. In conclusion, we found that several network parameters decreased in patients with TLE compared to controls, which suggested reduced connectivity in TLE. Reduction in CD associated with epilepsy duration suggests a homogenization of connections over time in TLE, indicating a reduction of the normal repertoire of stronger and weaker connections to other brain regions.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Neurology Care Line, Michael E DeBakey VA Medical Center, Houston, TX, USA.
| | - Sharon Chiang
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Hsiang J. Yeh
- Department of Neurology, University of California, Los Angeles, California, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, California, USA
| | - John M. Stern
- Department of Neurology, University of California, Los Angeles, California, USA
| |
Collapse
|
170
|
Zhang Z, Xu Q, Liao W, Wang Z, Li Q, Yang F, Zhang Z, Liu Y, Lu G. Pathological uncoupling between amplitude and connectivity of brain fluctuations in epilepsy. Hum Brain Mapp 2015; 36:2756-66. [PMID: 25879781 DOI: 10.1002/hbm.22805] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 11/11/2022] Open
Abstract
Amplitude and functional connectivity are two fundamental parameters for describing the spontaneous brain fluctuations. These two parameters present close coupling in physiological state, and present different alteration patterns in epilepsy revealed by functional MRI (fMRI). We hypothesized that the alteration of coupling between these two imaging parameters may be underpinned by specific pathological factors of epilepsy, and can be employed to improve the capability for epileptic focus detection. Forty-seven patients (26 left- and 21 right-sided) with mesial temporal lobe epilepsy (mTLE) and 32 healthy controls underwent resting-state fMRI scans. All patients were detected to have interictal epileptic discharges on simultaneous electroencephalograph (EEG) recordings. Amplitude-connectivity coupling was calculated by correlating amplitude and functional connectivity density of low-frequency brain fluctuations. We observed reduced amplitude-connectivity coupling associated with epileptic discharges in the mesial temporal regions in both groups of patients, and increased coupling associated with epilepsy durations in the posterior regions of the default-mode network in the right-sided patients. Moreover, we proposed a new index of amplitude subtracting connectivity, which elevated imaging contrast for differentiating the patients from the controls. The findings indicated that epileptic discharges and chronic damaging effect of epilepsy might both contribute to alterations of amplitude-connectivity coupling in different pivotal regions in mTLE. Investigation on imaging coupling provides synergistic approach for describing brain functional changing features in epilepsy.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wei Liao
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Center for Cognition and Brain Disorders, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhengge Wang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qian Li
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zongjun Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yijun Liu
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
171
|
Memarian N, Madsen SK, Macey PM, Fried I, Engel J, Thompson PM, Staba RJ. Ictal depth EEG and MRI structural evidence for two different epileptogenic networks in mesial temporal lobe epilepsy. PLoS One 2015; 10:e0123588. [PMID: 25849340 PMCID: PMC4388829 DOI: 10.1371/journal.pone.0123588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
Hypersynchronous (HYP) and low voltage fast (LVF) activity are two separate ictal depth EEG onsets patterns often recorded in presurgical patients with MTLE. Evidence suggests the mechanisms generating HYP and LVF onset seizures are distinct, including differential involvement of hippocampal and extra-hippocampal sites. Yet the extent of extra-hippocampal structural alterations, which could support these two common seizures, is not known. In the current study, preoperative MRI from 24 patients with HYP or LVF onset seizures were analyzed to determine changes in cortical thickness and relate structural changes to spatiotemporal properties of the ictal EEG. Overall, onset and initial ipsilateral spread of HYP onset seizures involved mesial temporal structures, whereas LVF onset seizures involved mesial and lateral temporal as well as orbitofrontal cortex. MRI analysis found reduced cortical thickness correlated with longer duration of epilepsy. However, in patients with HYP onsets, the most affected areas were on the medial surface of each hemisphere, including parahippocampal regions and cingulate gyrus, whereas in patients with LVF onsets, the lateral surface of the anterior temporal lobe and orbitofrontal cortex showed the greatest effect. Most patients with HYP onset seizures were seizure-free after resective surgery, while a higher proportion of patients with LVF onset seizures had only worthwhile improvement. Our findings confirm the view that recurrent seizures cause progressive changes in cortical thickness, and provide information concerning the structural basis of two different epileptogenic networks responsible for MTLE. One, identified by HYP ictal onsets, chiefly involves hippocampus and is associated with excellent outcome after standardized anteromedial temporal resection, while the other also involves lateral temporal and orbitofrontal cortex and a seizure-free surgical outcome occurs less after this procedure. These results suggest that a more extensive tailored resection may be required for patients with the second type of MTLE.
Collapse
Affiliation(s)
- Negar Memarian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Sarah K. Madsen
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Paul M. Macey
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Paul M. Thompson
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Richard J. Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
172
|
Taylor PN, Han CE, Schoene-Bake JC, Weber B, Kaiser M. Structural connectivity changes in temporal lobe epilepsy: Spatial features contribute more than topological measures. NEUROIMAGE-CLINICAL 2015; 8:322-8. [PMID: 26106557 PMCID: PMC4473265 DOI: 10.1016/j.nicl.2015.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 02/14/2015] [Indexed: 11/29/2022]
Abstract
Background Previous studies reported reduced volumes of many brain regions for temporal lobe epilepsy (TLE). It has also been suggested that there may be widespread changes in network features of TLE patients. It is not fully understood, however, how these two observations are related. Methods Using magnetic resonance imaging data, we perform parcellation of the brains of 22 patients with left TLE and 39 non-epileptic controls. In each parcellated region of interest (ROI) we computed the surface area and, using diffusion tensor imaging and deterministic tractography, infer the number of streamlines and their average length between each pair of connected ROIs. For comparison to previous studies, we use a connectivity ‘weight’ and investigate how ROI surface area, number of streamlines & mean streamline length contribute to such weight. Results We find that although there are widespread significant changes in surface area and position of ROIs in patients compared to controls, the changes in connectivity are much more subtle. Significant changes in connectivity weight can be accounted for by decreased surface area and increased streamline count. Conclusion Changes in the surface area of ROIs can be a reliable biomarker for TLE with a large influence on connectivity. However, changes in structural connectivity via white matter streamlines are more subtle with a relatively lower influence on connection weights. Using MRI data, we analyse 22 patients with left TLE and 39 non-epileptic controls. With a connectomics approach we investigate how nodal properties such as surface area influence connectivity weight. We find significant atrophy (reduced node size) in many brain areas in patients with TLE. We show only subtle changes in connectivity. When both node size and node connectivity are combined we find significant changes in connection weight.
Collapse
Affiliation(s)
- Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University, United Kingdom
| | - Cheol E Han
- Dept. of Biomedical Engineering, Korea University, Seoul, Republic of Korea ; Dept. of Brain and Cognitive Sciences, Seoul National University, Republic of Korea
| | - Jan-Christoph Schoene-Bake
- Center for Pediatric and Adolescent Medicine, Freiburg University, Freiburg, Germany ; Dept. of Epileptology, University of Bonn, Bonn, Germany
| | - Bernd Weber
- Dept. of Epileptology, University of Bonn, Bonn, Germany ; Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University, United Kingdom ; Institute of Neuroscience, Newcastle University, United Kingdom
| |
Collapse
|
173
|
Dansereau CL, Bellec P, Lee K, Pittau F, Gotman J, Grova C. Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment. Front Neurosci 2014; 8:419. [PMID: 25565949 PMCID: PMC4274904 DOI: 10.3389/fnins.2014.00419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022] Open
Abstract
The spatial coherence of spontaneous slow fluctuations in the blood-oxygen-level dependent (BOLD) signal at rest is routinely used to characterize the underlying resting-state networks (RSNs). Studies have demonstrated that these patterns are organized in space and highly reproducible from subject to subject. Moreover, RSNs reorganizations have been suggested in pathological conditions. Comparisons of RSNs organization have been performed between groups of subjects but have rarely been applied at the individual level, a step required for clinical application. Defining the notion of modularity as the organization of brain activity in stable networks, we propose Detection of Abnormal Networks in Individuals (DANI) to identify modularity changes at the individual level. The stability of each RSN was estimated using a spatial clustering method: Bootstrap Analysis of Stable Clusters (BASC) (Bellec et al., 2010). Our contributions consisted in (i) providing functional maps of the most stable cores of each networks and (ii) in detecting “abnormal” individual changes in networks organization when compared to a population of healthy controls. DANI was first evaluated using realistic simulated data, showing that focussing on a conservative core size (50% most stable regions) improved the sensitivity to detect modularity changes. DANI was then applied to resting state fMRI data of six patients with focal epilepsy who underwent multimodal assessment using simultaneous EEG/fMRI acquisition followed by surgery. Only patient with a seizure free outcome were selected and the resected area was identified using a post-operative MRI. DANI automatically detected abnormal changes in 5 out of 6 patients, with excellent sensitivity, showing for each of them at least one “abnormal” lateralized network closely related to the epileptic focus. For each patient, we also detected some distant networks as abnormal, suggesting some remote reorganization in the epileptic brain.
Collapse
Affiliation(s)
- Christian L Dansereau
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University Montreal, QC, Canada ; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Functional Neuroimaging Unit, Université de Montréal Montreal, QC, Canada
| | - Pierre Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Functional Neuroimaging Unit, Université de Montréal Montreal, QC, Canada ; Department of Computer Science and Operations Research, University of Montreal Montreal, Quebec, Canada
| | - Kangjoo Lee
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University Montreal, QC, Canada ; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Francesca Pittau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Jean Gotman
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University Montreal, QC, Canada ; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; Physics Department, PERFORM Center, Concordia University Montreal, QC, Canada
| |
Collapse
|
174
|
Morgan VL, Conrad BN, Abou-Khalil B, Rogers BP, Kang H. Increasing structural atrophy and functional isolation of the temporal lobe with duration of disease in temporal lobe epilepsy. Epilepsy Res 2014; 110:171-8. [PMID: 25616470 DOI: 10.1016/j.eplepsyres.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Due to pharmacoresistant seizures and the underutilization of surgical treatments, a large number of temporal lobe epilepsy (TLE) patients experience seizures for years or decades. The goal of this study was to generate a predictive model of duration of disease with the least number of parameters possible in order to identify and quantify the significant volumetric and functional indicators of TLE progression. METHODS Two cohorts of subjects including 12 left TLE, 21 right TLE and 20 healthy controls (duration = 0) were imaged on a 3T MRI scanner using high resolution T1-weighted structural MRI and 20 min of resting functional MRI scanning. Multivariate linear regression methods were used to compute a predictive model of duration of disease using 49 predictors including functional connectivity and gray matter volumes computed from these images. RESULTS No model developed from the full set of data accurately predicted the duration of disease across the entire range from 3 to 50 years. We then performed the regression on 35 subjects with durations of disease in the range 10 to 35 years. The resulting predictive model showed that longer durations were associated with reductions in functional connectivity from the ipsilateral temporal lobe to the contralateral temporal lobe, precuneus and mid cingulate, and with decreases in volume of the ipsilateral hippocampus and pallidum. CONCLUSIONS Functional and volumetric parameters accurately predicted duration of disease in TLE. The findings suggest that TLE is associated with a gradual functional isolation and significant progressive structural atrophy of the ipsilateral temporal lobe over years of duration in the range of 10-35 years. Furthermore, these changes can also be detected in the contralateral hemisphere in these patients, but to a lesser degree.
Collapse
Affiliation(s)
- Victoria L Morgan
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Benjamin N Conrad
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
175
|
Caciagli L, Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front Neurosci 2014; 8:411. [PMID: 25565942 PMCID: PMC4263093 DOI: 10.3389/fnins.2014.00411] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022] Open
Abstract
The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| |
Collapse
|
176
|
Jacobs J, Menzel A, Ramantani G, Körbl K, Assländer J, Schulze-Bonhage A, Hennig J, LeVan P. Negative BOLD in default-mode structures measured with EEG-MREG is larger in temporal than extra-temporal epileptic spikes. Front Neurosci 2014; 8:335. [PMID: 25477775 PMCID: PMC4235409 DOI: 10.3389/fnins.2014.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/05/2014] [Indexed: 11/13/2022] Open
Abstract
Introduction: EEG-fMRI detects BOLD changes associated with epileptic interictal discharges (IED) and can identify epileptogenic networks in epilepsy patients. Besides positive BOLD changes, negative BOLD changes have sometimes been observed in the default-mode network, particularly using group analysis. A new fast fMRI sequence called MREG (Magnetic Resonance Encephalography) shows increased sensitivity to detect IED-related BOLD changes compared to the conventional EPI sequence, including frequent occurrence of negative BOLD responses in the DMN. The present study quantifies the concordance between the DMN and negative BOLD related to IEDs of temporal and extra-temporal origin. Methods: Focal epilepsy patients underwent simultaneous EEG-MREG. Areas of overlap were calculated between DMN regions, defined as precuneus, posterior cingulate, bilateral inferior parietal and mesial prefrontal cortices according to a standardized atlas, and significant negative BOLD changes revealed by an event-related analysis based on the timings of IED seen on EEG. Correlation between IED number/lobe of origin and the overlap were calculated. Results: 15 patients were analyzed, some showing IED over more than one location resulting in 30 different IED types. The average overlap between negative BOLD and DMN was significantly larger in temporal (23.7 ± 19.6 cm3) than extra-temporal IEDs (7.4 ± 5.1 cm3, p = 0.008). There was no significant correlation between the number of IEDs and the overlap between DMN structures and negative BOLD areas. Discussion: MREG results in an increased sensitivity to detect negative BOLD responses related to focal IED in single patients, with responses often occurring in DMN regions. In patients with high overlap with the DMN, this suggests that epileptic IEDs may be associated with a brief decrease in attention and cognitive ability. Interestingly this observation was not dependent on the frequency of IED but more common in IED of temporal origin.
Collapse
Affiliation(s)
- Julia Jacobs
- Department of Neuropediatrics and Muscular Diseases, University Medical Center Freiburg Freiburg, Germany ; Epilepsy Center, University Medical Center Freiburg Freiburg, Germany
| | - Antonia Menzel
- Department of Neuropediatrics and Muscular Diseases, University Medical Center Freiburg Freiburg, Germany
| | - Georgia Ramantani
- Epilepsy Center, University Medical Center Freiburg Freiburg, Germany
| | - Katharina Körbl
- Department of Neuropediatrics and Muscular Diseases, University Medical Center Freiburg Freiburg, Germany
| | | | | | | | | |
Collapse
|
177
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
178
|
Faizo NL, Burianová H, Gray M, Hocking J, Galloway G, Reutens D. Identification of pre-spike network in patients with mesial temporal lobe epilepsy. Front Neurol 2014; 5:222. [PMID: 25389415 PMCID: PMC4211386 DOI: 10.3389/fneur.2014.00222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/13/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.
Collapse
Affiliation(s)
- Nahla L Faizo
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia
| | - Hana Burianová
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia ; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University , Sydney, NSW , Australia
| | - Marcus Gray
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia
| | - Julia Hocking
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia ; School of Psychology and Counseling, Queensland University of Technology , Brisbane, QLD , Australia
| | - Graham Galloway
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland , Brisbane, QLD , Australia ; Royal Brisbane and Women's Hospital , Brisbane, QLD , Australia
| |
Collapse
|
179
|
Lopes R, Moeller F, Besson P, Ogez F, Szurhaj W, Leclerc X, Siniatchkin M, Chipaux M, Derambure P, Tyvaert L. Study on the Relationships between Intrinsic Functional Connectivity of the Default Mode Network and Transient Epileptic Activity. Front Neurol 2014; 5:201. [PMID: 25346721 PMCID: PMC4193009 DOI: 10.3389/fneur.2014.00201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
Rationale: Simultaneous recording of electroencephalogram and functional MRI (EEG–fMRI) is a powerful tool for localizing epileptic networks via the detection of hemodynamic changes correlated with interictal epileptic discharges (IEDs). fMRI can be used to study the long-lasting effect of epileptic activity by assessing stationary functional connectivity during the resting-state period [especially, the connectivity of the default mode network (DMN)]. Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) are associated with low responsiveness and disruption of DMN activity. A dynamic functional connectivity approach might enable us to determine the effect of IEDs on DMN connectivity and to better understand the correlation between DMN connectivity changes and altered consciousness. Method: We studied dynamic changes in DMN intrinsic connectivity and their relation to IEDs. Six IGE patients (with generalized spike and slow-waves) and 6 TLE patients (with unilateral left temporal spikes) were included. Functional connectivity before, during, and after IEDs was estimated using a sliding window approach and compared with the baseline period. Results: No dependence on window size was observed. The baseline DMN connectivity was decreased in the left hemisphere (ipsilateral to the epileptic focus) in TLEs and was less strong but remained bilateral in IGEs. We observed an overall increase in DMN intrinsic connectivity prior to the onset of IEDs in both IGEs and TLEs. After IEDs in TLEs, we found that DMN connectivity increased before it returned to baseline values. Most of the DMN regions with increased connectivity before and after IEDs were lateralized to the left hemisphere in TLE (i.e., ipsilateral to the epileptic focus). Conclusion: Results suggest that DMN connectivity may facilitate IED generation and may be affected at the time of the IED. However, these results need to be confirmed in a larger independent cohort.
Collapse
Affiliation(s)
- Renaud Lopes
- UMR 1046, University of Lille 2 , Lille , France ; In vivo Imaging Core Facility, IMPRT-IFR114, Lille University Medical Center , Lille , France
| | - Friederike Moeller
- Department of Neuropaediatrics, Christian-Albrechts-University , Kiel , Germany
| | - Pierre Besson
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| | | | - William Szurhaj
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| | - Xavier Leclerc
- UMR 1046, University of Lille 2 , Lille , France ; In vivo Imaging Core Facility, IMPRT-IFR114, Lille University Medical Center , Lille , France
| | - Michael Siniatchkin
- Department of Neuropaediatrics, Christian-Albrechts-University , Kiel , Germany
| | - Mathilde Chipaux
- Department of Pediatric Neurosurgery, Fondation Ophtalmologique A. de Rothschild , Paris , France
| | - Philippe Derambure
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| | - Louise Tyvaert
- UMR 1046, University of Lille 2 , Lille , France ; Department of Clinical Neurophysiology, Lille University Medical Center , Lille , France
| |
Collapse
|
180
|
Differences in graph theory functional connectivity in left and right temporal lobe epilepsy. Epilepsy Res 2014; 108:1770-81. [PMID: 25445238 DOI: 10.1016/j.eplepsyres.2014.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/07/2014] [Accepted: 09/20/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. METHODS Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. RESULTS Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. CONCLUSION Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications.
Collapse
|
181
|
Xu Q, Zhang Z, Liao W, Xiang L, Yang F, Wang Z, Chen G, Tan Q, Jiao Q, Lu G. Time-shift homotopic connectivity in mesial temporal lobe epilepsy. AJNR Am J Neuroradiol 2014; 35:1746-52. [PMID: 24742802 DOI: 10.3174/ajnr.a3934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Voxel-mirrored intrinsic functional connectivity allows the depiction of interhemispheric homotopic connections in the human brain, whereas time-shift intrinsic functional connectivity allows the detection of the extent of brain injury by measuring hemodynamic properties. We combined time-shift voxel-mirrored homotopic connectivity analyses to investigate the alterations in homotopic connectivity in mesial temporal lobe epilepsy and assessed the value of applying this approach to epilepsy lateralization and the prediction of surgical outcomes in mesial temporal lobe epilepsy. MATERIALS AND METHODS Resting-state functional MR imaging data were acquired from patients with unilateral mesial temporal lobe epilepsy (n=62) (31 left- and 31 right-side) and healthy controls (n=33). Dynamic interhemispheric homotopic architecture seeding from each hemisphere was individually calculated by 0, 1, 2, and 3 repetition time time-shift voxel-mirrored homotopic connectivity. Voxel-mirrored homotopic connectivity maps were compared between the patient and control groups by using 1-way ANOVA for each time-shift condition, separately. Group comparisons were further performed on the laterality of voxel-mirrored homotopic connectivity in each time-shift condition. Finally, we correlated the interhemispheric homotopic connection to the surgical outcomes in a portion of the patients (n=20). RESULTS The patients with mesial temporal lobe epilepsy showed decreased homotopic connectivity in the mesial temporal structures, temporal pole, and striatum. Alterations of the bihemispheric homotopic connectivity were lateralized along with delays in the time-shift in mesial temporal lobe epilepsy. The patients with unsuccessful surgical outcomes presented larger interhemispheric voxel-mirrored homotopic connectivity differences. CONCLUSIONS This study showed whole patterns of dynamic alterations of interhemispheric homotopic connectivity in mesial temporal lobe epilepsy, extending the knowledge of abnormalities in interhemispheric connectivity in this condition. Time-shift voxel-mirrored homotopic connectivity has the potential for lateralization of unilateral mesial temporal lobe epilepsy and may have the capability of predicting surgical outcomes in this condition.
Collapse
Affiliation(s)
- Q Xu
- From the Departments of Medical Imaging (Q.X., Z.Z., W.L., L.X., Q.J., G.L.)
| | - Z Zhang
- From the Departments of Medical Imaging (Q.X., Z.Z., W.L., L.X., Q.J., G.L.)
| | - W Liao
- From the Departments of Medical Imaging (Q.X., Z.Z., W.L., L.X., Q.J., G.L.) Center for Cognition and Brain Disorders and the Affiliated Hospital (W.L.), Hangzhou Normal University, Hangzhou, China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments (W.L.), Hangzhou, China
| | - L Xiang
- From the Departments of Medical Imaging (Q.X., Z.Z., W.L., L.X., Q.J., G.L.)
| | | | - Z Wang
- Department of Medical Imaging (Z.W.), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Q Tan
- Neurosurgery (Q.T.), Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Q Jiao
- From the Departments of Medical Imaging (Q.X., Z.Z., W.L., L.X., Q.J., G.L.) Department of Medical Imaging (Q.J.), Taishan Medical College, TaiAn, China
| | - G Lu
- From the Departments of Medical Imaging (Q.X., Z.Z., W.L., L.X., Q.J., G.L.)
| |
Collapse
|
182
|
Fraschini M, Demuru M, Puligheddu M, Floridia S, Polizzi L, Maleci A, Bortolato M, Hillebrand A, Marrosu F. The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS. Neurosci Lett 2014; 580:153-7. [PMID: 25123446 DOI: 10.1016/j.neulet.2014.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/10/2014] [Accepted: 08/03/2014] [Indexed: 12/11/2022]
Abstract
Vagal nerve stimulation (VNS) is a therapeutic add-on treatment for patients with pharmaco-resistant epilepsy. The mechanism of action is still largely unknown. Previous studies have shown that brain network topology during the inter-ictal period in epileptic patients deviates from normal configuration. In the present paper, we investigate the relationship between clinical improvement induced by VNS and alterations in brain network topology. We hypothesize that, as a consequence of the VNS add-on treatment, functional brain network architecture shifts back toward a more efficient configuration in patients responding to VNS. Electroencephalographic (EEG) recordings from ten patients affected by pharmaco-resistant epilepsy were analyzed in the classical EEG frequency bands. The phase lag index (PLI) was used to estimate functional connectivity between EEG channels and the minimum spanning tree (MST) was computed in order to characterize VNS-induced alterations in network topology in a bias-free way. Our results revealed a clear network re-organization, in terms of MST modification, toward a more integrated architecture in patients responding to the VNS. In particular, the results show a significant interaction effect between benefit from VNS (responders/non-responders) and condition (pre/post VNS implantation) in the theta band. This finding suggests that the positive effect induced by VNS add-on treatment in epileptic patients is related to a clear network re-organization and that this network modification can reveal the long debated mechanism of action of VNS. Therefore, MST analysis could be useful in evaluating and monitoring the efficacy of VNS add-on treatment potentially in both epilepsy and psychiatric diseases.
Collapse
Affiliation(s)
- Matteo Fraschini
- Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Cagliari, Italy.
| | - Matteo Demuru
- Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Università di Cagliari, Cagliari, Italy
| | - Simona Floridia
- Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Cagliari, Italy
| | - Lorenzo Polizzi
- Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Alberto Maleci
- Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Università di Cagliari, Cagliari, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Francesco Marrosu
- Dipartimento di Sanità Pubblica, Medicina Clinica e Molecolare, Università di Cagliari, Cagliari, Italy; Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| |
Collapse
|
183
|
Haneef Z, Lenartowicz A, Yeh HJ, Engel J, Stern JM. Network analysis of the default mode network using functional connectivity MRI in Temporal Lobe Epilepsy. J Vis Exp 2014:e51442. [PMID: 25146174 DOI: 10.3791/51442] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine; Neurology Care Line, Michael E. DeBakey VA Medical Center;
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Hsiang J Yeh
- Department of Neurology, University of California, Los Angeles
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles
| | - John M Stern
- Department of Neurology, University of California, Los Angeles
| |
Collapse
|
184
|
Morgan VL, Abou-Khalil B, Rogers BP. Evolution of functional connectivity of brain networks and their dynamic interaction in temporal lobe epilepsy. Brain Connect 2014; 5:35-44. [PMID: 24901036 DOI: 10.1089/brain.2014.0251] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study presents a cross-sectional investigation of functional networks in temporal lobe epilepsy (TLE) as they evolve over years of disease. Networks of interest were identified based on a priori hypotheses: the network of seizure propagation ipsilateral to the seizure focus, the same regions contralateral to seizure focus, the cross hemisphere network of the same regions, and a cingulate midline network. Resting functional magnetic resonance imaging data were acquired for 20 min in 12 unilateral TLE patients, and 12 age- and gender-matched healthy controls. Functional changes within and between the four networks as they evolve over years of disease were quantified by standard measures of static functional connectivity and novel measures of dynamic functional connectivity. The results suggest an initial disruption of cross-hemispheric networks and an increase in static functional connectivity in the ipsilateral temporal network accompanying the onset of TLE seizures. As seizures progress over years, the static functional connectivity across the ipsilateral network diminishes, while dynamic functional connectivity measures show the functional independence of this ipsilateral network from the network of midline regions of the cingulate declines. This implies a gradual breakdown of the seizure onset and early propagation network involving the ipsilateral hippocampus and temporal lobe as it becomes more synchronous with the network of regions responsible for secondary generalization of the seizures, a process that may facilitate the spread of seizures across the brain. Ultimately, the significance of this evolution may be realized in relating it to symptoms and treatment outcomes of TLE.
Collapse
Affiliation(s)
- Victoria L Morgan
- 1 Department of Radiology, Vanderbilt University , Nashville, Tennessee
| | | | | |
Collapse
|
185
|
Liu JV, Kobylarz EJ, Darcey TM, Lu Z, Wu YC, Meng M, Jobst BC. Improved mapping of interictal epileptiform discharges with EEG-fMRI and voxel-wise functional connectivity analysis. Epilepsia 2014; 55:1380-8. [DOI: 10.1111/epi.12733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Junjie V. Liu
- M.D. Class of 2015; Geisel School of Medicine at Dartmouth; Hanover New Hampshire U.S.A
| | - Erik J. Kobylarz
- Department of Neurology; Dartmouth-Hitchcock Medical Center; Lebanon New Hampshire U.S.A
| | - Terrance M. Darcey
- Department of Neurology; Dartmouth-Hitchcock Medical Center; Lebanon New Hampshire U.S.A
| | - Zhengang Lu
- Department of Psychological and Brain Sciences; Dartmouth College; Hanover New Hampshire U.S.A
| | - Yu-Chien Wu
- Department of Psychological and Brain Sciences; Dartmouth College; Hanover New Hampshire U.S.A
| | - Ming Meng
- Department of Psychological and Brain Sciences; Dartmouth College; Hanover New Hampshire U.S.A
| | - Barbara C. Jobst
- Department of Neurology; Dartmouth-Hitchcock Medical Center; Lebanon New Hampshire U.S.A
| |
Collapse
|
186
|
Pasquini L, Scherr M, Tahmasian M, Meng C, Myers NE, Ortner M, Mühlau M, Kurz A, Förstl H, Zimmer C, Grimmer T, Wohlschläger AM, Riedl V, Sorg C. Link between hippocampus' raised local and eased global intrinsic connectivity in AD. Alzheimers Dement 2014; 11:475-84. [DOI: 10.1016/j.jalz.2014.02.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/18/2013] [Accepted: 02/20/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Lorenzo Pasquini
- Department of Neuroradiology; Technische Universität München; Munich Germany
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
| | - Martin Scherr
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
- Department of Neurology, Christian Doppler Klinik; Paracelsus Medical University Salzburg; Salzburg Austria
| | - Masoud Tahmasian
- Department of Neuroradiology; Technische Universität München; Munich Germany
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
- Department of Nuclear Medicine; Technische Universität München; Munich Germany
| | - Chun Meng
- Department of Neuroradiology; Technische Universität München; Munich Germany
| | - Nicholas E. Myers
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
- Department of Experimental Psychology; Oxford University; Oxford United Kingdom
| | - Marion Ortner
- Department of Psychiatry; Technische Universität München; Munich Germany
| | - Mark Mühlau
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
- Department of Neurology of Klinikum rechts der Isar; Technische Universität München; Munich Germany
| | - Alexander Kurz
- Department of Psychiatry; Technische Universität München; Munich Germany
| | - Hans Förstl
- Department of Psychiatry; Technische Universität München; Munich Germany
| | - Claus Zimmer
- Department of Neuroradiology; Technische Universität München; Munich Germany
| | - Timo Grimmer
- Department of Psychiatry; Technische Universität München; Munich Germany
| | - Afra M. Wohlschläger
- Department of Neuroradiology; Technische Universität München; Munich Germany
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
| | - Valentin Riedl
- Department of Neuroradiology; Technische Universität München; Munich Germany
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
- Department of Nuclear Medicine; Technische Universität München; Munich Germany
| | - Christian Sorg
- Department of Neuroradiology; Technische Universität München; Munich Germany
- TUM-Neuroimaging Center; Technische Universität München; Munich Germany
- Department of Psychiatry; Technische Universität München; Munich Germany
| |
Collapse
|
187
|
Maneshi M, Vahdat S, Fahoum F, Grova C, Gotman J. Specific resting-state brain networks in mesial temporal lobe epilepsy. Front Neurol 2014; 5:127. [PMID: 25071712 PMCID: PMC4095676 DOI: 10.3389/fneur.2014.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/27/2014] [Indexed: 11/13/2022] Open
Abstract
We studied with functional magnetic resonance imaging (fMRI) differences in resting-state networks between patients with mesial temporal lobe epilepsy (MTLE) and healthy subjects. To avoid any a priori hypothesis, we use a data-driven analysis assessing differences between groups independently of structures involved. Shared and specific independent component analysis (SSICA) is an exploratory method based on independent component analysis, which performs between-group network comparison. It extracts and classifies components (networks) in those common between groups and those specific to one group. Resting fMRI data were collected from 10 healthy subjects and 10 MTLE patients. SSICA was applied multiple times with altered initializations and different numbers of specific components. This resulted in many components specific to patients and to controls. Spatial clustering identified the reliable resting-state networks among all specific components in each group. For each reliable specific network, power spectrum analysis was performed on reconstructed time-series to estimate connectivity in each group and differences between groups. Two reliable networks, corresponding to statistically significant clusters robustly detected with clustering were labeled as specific to MTLE and one as specific to the control group. The most reliable MTLE network included hippocampus and amygdala bilaterally. The other MTLE network included the postcentral gyri and temporal poles. The control-specific network included bilateral precuneus, anterior cingulate, thalamus, and parahippocampal gyrus. Results indicated that the two MTLE networks show increased connectivity in patients, whereas the control-specific network shows decreased connectivity in patients. Our findings complement results from seed-based connectivity analysis (1). The pattern of changes in connectivity between mesial temporal lobe structures and other areas may help us understand the cognitive impairments often reported in patients with MTLE.
Collapse
Affiliation(s)
- Mona Maneshi
- Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Shahabeddin Vahdat
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal , Montreal, QC , Canada
| | - Firas Fahoum
- Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Christophe Grova
- Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada ; Multimodal Functional Imaging Laboratory, Department of Biomedical Engineering, McGill University , Montreal, QC , Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| |
Collapse
|
188
|
Centeno M, Carmichael DW. Network Connectivity in Epilepsy: Resting State fMRI and EEG-fMRI Contributions. Front Neurol 2014; 5:93. [PMID: 25071695 PMCID: PMC4081640 DOI: 10.3389/fneur.2014.00093] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
There is a growing body of evidence pointing toward large-scale networks underlying the core phenomena in epilepsy, from seizure generation to cognitive dysfunction or response to treatment. The investigation of networks in epilepsy has become a key concept to unlock a deeper understanding of the disease. Functional imaging can provide valuable information to characterize network dysfunction; in particular resting state fMRI (RS-fMRI), which is increasingly being applied to study brain networks in a number of diseases. In patients with epilepsy, network connectivity derived from RS-fMRI has found connectivity abnormalities in a number of networks; these include the epileptogenic, cognitive and sensory processing networks. However, in majority of these studies, the effect of epileptic transients in the connectivity of networks has been neglected. EEG–fMRI has frequently shown networks related to epileptic transients that in many cases are concordant with the abnormalities shown in RS studies. This points toward a relevant role of epileptic transients in the network abnormalities detected in RS-fMRI studies. In this review, we summarize the network abnormalities reported by these two techniques side by side, provide evidence of their overlapping findings, and discuss their significance in the context of the methodology of each technique. A number of clinically relevant factors that have been associated with connectivity changes are in turn associated with changes in the frequency of epileptic transients. These factors include different aspects of epilepsy ranging from treatment effects, cognitive processes, or transition between different alertness states (i.e., awake–sleep transition). For RS-fMRI to become a more effective tool to investigate clinically relevant aspects of epilepsy it is necessary to understand connectivity changes associated with epileptic transients, those associated with other clinically relevant factors and the interaction between them, which represents a gap in the current literature. We propose a framework for the investigation of network connectivity in patients with epilepsy that can integrate epileptic processes that occur across different time scales such as epileptic transients and disease duration and the implications of this approach are discussed.
Collapse
Affiliation(s)
- Maria Centeno
- Imaging and Biophysics Unit, Institute of Child Health, University College London , London , UK ; Epilepsy Unit, Great Ormond Street Hospital , London , UK
| | - David W Carmichael
- Imaging and Biophysics Unit, Institute of Child Health, University College London , London , UK ; Epilepsy Unit, Great Ormond Street Hospital , London , UK
| |
Collapse
|
189
|
Allendorfer JB, Heyse H, Mendoza L, Nelson EB, Eliassen JC, Storrs JM, Szaflarski JP. Physiologic and cortical response to acute psychosocial stress in left temporal lobe epilepsy - a pilot cross-sectional fMRI study. Epilepsy Behav 2014; 36:115-23. [PMID: 24907497 DOI: 10.1016/j.yebeh.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022]
Abstract
Stress is commonly reported as a seizure precipitant in individuals with poorly controlled seizures including temporal lobe epilepsy. The aim of the study was to assess the neural and physiologic correlates of psychosocial stress response during functional magnetic resonance imaging (fMRI) and their relationship with seizure occurrence in patients with left temporal lobe epilepsy (LTLE). We enrolled 23 patients with LTLE and 23 age- and sex-matched healthy controls (HCs); all underwent fMRI with control math task (CMT) and stress math task (SMT) and pre-/post-fMRI salivary cortisol analysis (acute stress reactivity calculated as % reduction from post-stress to recovery baseline; dCORT). The Beck Depression Inventory-II (BDI-II) and Perceived Stress Scale (PSS-10) were administered. T-tests of performance and cortisol variables were performed. Processing and single-subject modeling of fMRI response to CMT positive feedback and SMT negative feedback, group comparisons, and whole-brain correlation of seizure occurrence and fMRI response in patients with poorly controlled LTLE were performed. Patients with LTLE and healthy controls were similar in demographics, math performance, heart rate, and PSS-10 scores (all p>0.05). Patients with LTLE exhibited greater dCORT (p=0.048) and lower BDI-II scores (p=0.016) compared with HCs. Patients with poorly controlled LTLE showed a positive association between seizure frequency and dCORT (r=0.73, p=0.016). Functional MRI activation to feedback was similar between groups, including midfrontal, temporal, parietal, and occipital regions. Regression analyses revealed no group differences to positive feedback, but, compared with HCs, patients with LTLE showed decreased activation to negative feedback in the left cerebellum/middle occipital/fusiform gyri, left hippocampus/parahippocampus, bilateral medial frontal/cingulate/superior frontal gyri, right postcentral gyrus/inferior parietal lobule, and right insula/postcentral gyrus (p<0.05, corrected). Patients with poorly controlled LTLE showed negative association between seizure frequency and activation in the bilateral subgenual anterior cingulate (p<0.05, corrected). This study is the first to characterize the cortical and physiologic responses to acute psychosocial stress and to show a significant relationship between seizure control in LTLE and both the hypothalamic-pituitary-adrenal axis and fMRI signal reactivity to acute psychosocial stress. These findings extend our understanding of the complex interplay between stress, physiologic stress markers, and seizures/epilepsy.
Collapse
Affiliation(s)
- Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Heidi Heyse
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Lucy Mendoza
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Erik B Nelson
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - James C Eliassen
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Judd M Storrs
- Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA; Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, USA; Department of Psychiatry, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
190
|
Functional connectivity between right and left mesial temporal structures. Brain Struct Funct 2014; 220:2617-23. [PMID: 24908158 DOI: 10.1007/s00429-014-0810-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study is to investigate functional connectivity between right and left mesial temporal structures using cerebrocerebral evoked potentials. We studied seven patients with drug-resistant focal epilepsy who were explored with stereotactically implanted depth electrodes in bilateral hippocampi. In all patients cerebrocerebral evoked potentials evoked by stimulation of the fornix were evaluated as part of a research project assessing fornix stimulation for control of hippocampal seizures. Stimulation of the fornix elicited responses in the ipsilateral hippocampus in all patients with a mean latency of 4.6 ms (range 2-7 ms). Two patients (29 %) also had contralateral hippocampus responses with a mean latency of 7.5 ms (range 5-12 ms) and without involvement of the contralateral temporal neocortex or amygdala. This study confirms the existence of connections between bilateral mesial temporal structures in some patients and explains seizure discharge spreading between homotopic mesial temporal structures without neocortical involvement.
Collapse
|
191
|
Allendorfer JB, Szaflarski JP. Contributions of fMRI towards our understanding of the response to psychosocial stress in epilepsy and psychogenic nonepileptic seizures. Epilepsy Behav 2014; 35:19-25. [PMID: 24785430 DOI: 10.1016/j.yebeh.2014.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/26/2022]
Abstract
There are multiple definitions of stress. For this review, as a reference point, we will use the concept of acute emotional/psychosocial stress ("stress"). The presence of acute stress has been reported to have a significant effect on seizure control, with several studies showing patients with seizure disorders being able to predict with reasonable accuracy seizure occurrence within the following hours or days. However, neuroimaging investigations of the pathophysiological mechanisms underlying stress reactivity (e.g., hypothalamic-pituitary-adrenal (HPA) axis activation) in humans, in general, and in patients with seizure disorders, in particular, are scarce. The reasons for this are multiple and likely include difficulty with designing appropriate probes that test various aspects of stress response, obtaining approval for studies that induce stress in patients who are prone to having stress-induced seizures, difficulties with assessing the physiological response to stress inside the scanner (e.g., heart rate, respiratory rate, oxygenation, cortisol levels, and galvanic skin responses), participant identification, and choice of epilepsy syndrome for investigation. With the recent explosion of neuroimaging literature focusing on correlating stress of various types and levels with cortical activations in healthy and diseased populations, it is incumbent upon us to examine the available neuroimaging data in patients with seizure disorders in order to identify the existing gaps and the needs/directions for future investigations. This approach is consistent with the goals of several of the 2014 Benchmarks for Epilepsy Research for the National Institute of Neurological Disorders and Stroke and the American Epilepsy Society.
Collapse
Affiliation(s)
- Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
192
|
Linking DMN connectivity to episodic memory capacity: what can we learn from patients with medial temporal lobe damage? NEUROIMAGE-CLINICAL 2014; 5:188-96. [PMID: 25068108 PMCID: PMC4110351 DOI: 10.1016/j.nicl.2014.05.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022]
Abstract
Computational models predict that focal damage to the Default Mode Network (DMN) causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE) that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs) and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities. Focal structural damage correlates with widespread functional change in DMN in mTLE. Greater DMN connectivity alterations reflect worse clinical memory measures. Structural integrity moderates influence of functional connectivity on memory. Interhemispheric integration of MTL into posterior DMN may be key to better memory.
Collapse
|
193
|
Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy. NEUROIMAGE-CLINICAL 2014; 4:668-75. [PMID: 24936418 PMCID: PMC4053646 DOI: 10.1016/j.nicl.2014.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/01/2014] [Accepted: 04/13/2014] [Indexed: 02/05/2023]
Abstract
There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network.
Collapse
|
194
|
Liu M, Chen Z, Beaulieu C, Gross DW. Disrupted anatomic white matter network in left mesial temporal lobe epilepsy. Epilepsia 2014; 55:674-682. [PMID: 24650167 DOI: 10.1111/epi.12581] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Brain imaging studies have shown widespread structural abnormalities in patients with temporal lobe epilepsy (TLE) within and beyond the affected temporal lobe, suggesting an altered network. Graph theoretical analysis based on white matter tractography has provided a new perspective to evaluate the connectivity of the brain. The alterations in the topologic properties of a whole brain white matter network in patients with TLE remain unknown. The purpose of this study was to examine the white matter network in a cohort of patients with left TLE and mesial temporal sclerosis (mTLE) compared to healthy controls. METHODS Anatomic brain networks of 16 patients with left mTLE were compared to those of 21 healthy controls. A white matter structural network was constructed from diffusion tensor tractography for each participant, and network parameters were compared between the patient and control groups. RESULTS Patients with left mTLE exhibited concurrent decreases of global and local efficiencies and widespread reduction of regional efficiency in ipsilateral temporal, bilateral frontal, and bilateral parietal areas. Communication hubs, such as the left precuneus, were also altered in patients with mTLE compared to controls. SIGNIFICANCE Our results demonstrate white matter network disruption in patients with left mTLE, supporting the notion that mTLE is a systemic brain disorder.
Collapse
Affiliation(s)
- Min Liu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
195
|
Labudda K, Mertens M, Steinkroeger C, Bien CG, Woermann FG. Lesion side matters - an fMRI study on the association between neural correlates of watching dynamic fearful faces and their evaluation in patients with temporal lobe epilepsy. Epilepsy Behav 2014; 31:321-8. [PMID: 24210457 DOI: 10.1016/j.yebeh.2013.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/27/2022]
Abstract
Most studies assessing facial affect recognition in patients with TLE reported emotional disturbances in patients with TLE. Results from the few fMRI studies assessing neural correlates of affective face processing in patients with TLE are divergent. Some, but not all, found asymmetrical mesiotemporal activations, i.e., stronger activations within the hemisphere contralateral to seizure onset. Little is known about the association between neural correlates of affect processing and subjective evaluation of the stimuli presented. Therefore, we investigated the neural correlates of processing dynamic fearful faces in 37 patients with mesial temporal lobe epilepsy (TLE; 18 with left-sided TLE (lTLE), 19 with right-sided TLE (rTLE)) and 20 healthy subjects. We additionally assessed individual ratings of the fear intensity and arousal perception of the fMRI stimuli and correlated these data with the activations induced by the fearful face paradigm and activation lateralization within the mesiotemporal structures (in terms of individual lateralization indices, LIs). In healthy subjects, whole-brain analysis showed bilateral activations within a widespread network of mesial and lateral temporal, occipital, and frontal areas. The patient groups activated different parts of this network. In patients with lTLE, we found predominantly right-sided activations within the mesial and lateral temporal cortices and the superior frontal gyrus. In patients with rTLE, we observed bilateral activations in the posterior regions of the lateral temporal lobe and within the occipital cortex. Mesiotemporal region-of-interest analysis showed bilateral symmetric activations associated with watching fearful faces in healthy subjects. According to the region of interest and LI analyses, in the patients with lTLE, mesiotemporal activations were lateralized to the right hemisphere. In the patients with rTLE, we found left-sided mesiotemporal activations. In patients with lTLE, fear ratings were comparable to those of healthy subjects and were correlated with relatively stronger activations in the right compared to the left amygdala. Patients with rTLE showed significantly reduced fear ratings compared to healthy subjects, and we did not find associations with amygdala lateralization. Although we found stronger activations within the contralateral mesial temporal lobe in the majority of all patients, our results suggest that only in the event of left-sided mesiotemporal damage is the right mesial temporal lobe able to preserve intact facial fear recognition. In the event of right-sided mesiotemporal damage, fear recognition is disturbed. This underlines the hypothesis that the right amygdala is biologically predisposed to processing fear, and its function cannot be fully compensated in the event of right-sided mesiotemporal damage.
Collapse
Affiliation(s)
- Kirsten Labudda
- Mara Hospital, Bethel Epilepsy Center, Maraweg 21, 33617 Bielefeld, Germany
| | - Markus Mertens
- Mara Hospital, Bethel Epilepsy Center, Maraweg 21, 33617 Bielefeld, Germany
| | | | - Christian G Bien
- Mara Hospital, Bethel Epilepsy Center, Maraweg 21, 33617 Bielefeld, Germany
| | | |
Collapse
|
196
|
Coan AC, Campos BM, Yasuda CL, Kubota BY, Bergo FPG, Guerreiro CAM, Cendes F. Frequent seizures are associated with a network of gray matter atrophy in temporal lobe epilepsy with or without hippocampal sclerosis. PLoS One 2014; 9:e85843. [PMID: 24475055 PMCID: PMC3903486 DOI: 10.1371/journal.pone.0085843] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022] Open
Abstract
Objective Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS). Methods We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures. Results Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions. Conclusion Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.
Collapse
Affiliation(s)
- Ana C. Coan
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
| | - Brunno M. Campos
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
| | - Clarissa L. Yasuda
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
| | - Bruno Y. Kubota
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
| | - Felipe PG. Bergo
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
| | - Carlos AM. Guerreiro
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, State University of Campinas, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
197
|
Coan AC, Cendes F. Understanding the spectrum of temporal lobe epilepsy: contributions for the development of individualized therapies. Expert Rev Neurother 2014; 13:1383-94. [DOI: 10.1586/14737175.2013.857604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
198
|
Abstract
Limbic epilepsy refers to a condition that consists of epileptic seizures that originate in or preferentially involve the limbic system. The majority of cases are medically refractory, necessitating surgical resection when possible. However, even resection of structures thought to be responsible for seizure generation may not leave a patient seizure free. While mesial temporal lobe limbic structures are centrally involved, there is growing evidence that the epileptogenic network consists of a broader area, involving structures outside of the temporal lobe and the limbic system. Information on structural, functional, and metabolic connectivity in patients with limbic epilepsy is available from a large body of studies employing methods such as MRI, EEG, MEG, fMRI, PET, and SPECT scanning, implicating the involvement of various brain regions in the epileptogenic network. To date, there are no consistent and conclusive findings to define the exact boundaries of this network, but it is possible that in the future studies of network connectivity in the individual patient may allow more tailored treatment and prognosis in terms of surgical resection.
Collapse
|
199
|
Haneef Z, Lenartowicz A, Yeh HJ, Levin HS, Engel J, Stern JM. Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia 2013; 55:137-45. [PMID: 24313597 DOI: 10.1111/epi.12476] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) affects brain areas beyond the temporal lobes due to connections of the hippocampi and other temporal lobe structures. Using functional connectivity magnetic resonance imaging (MRI), we determined the changes of hippocampal networks in TLE to assess for a more complete distribution of abnormality. METHODS Regions of interest (ROIs) were defined in the right and left hippocampi in three groups of participants: left TLE (n = 13), right TLE (n = 11), and healthy controls (n = 16). Brain regions functionally connected to these ROIs were identified by correlating resting-state low-frequency functional MRI (fMRI) blood oxygenation level-dependent (BOLD) signal fluctuations. The grouped results were compared using independent sample t-test. RESULTS TLE was associated with increased hippocampal connectivity involving several key areas of the limbic network (temporal lobe, insula, thalamus), frontal lobes, angular gyrus, basal ganglia, brainstem, and cerebellum, along with reduced connectivity involving areas of the sensorimotor cortex (visual, somatosensory, auditory, primary motor) and the default mode network (precuneus). Left TLE had more marked connectivity changes than right TLE. SIGNIFICANCE The observed connectivity changes in TLE indicate dysfunctional networks that underlie widespread brain involvement in TLE. There are identifiable differences in the connectivity of the hippocampi between left and right TLE.
Collapse
Affiliation(s)
- Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A; Department of Neurology, Michael E DeBakey VA Medical Center, Houston, Texas, U.S.A
| | | | | | | | | | | |
Collapse
|
200
|
DeSalvo MN, Douw L, Tanaka N, Reinsberger C, Stufflebeam SM. Altered structural connectome in temporal lobe epilepsy. Radiology 2013; 270:842-8. [PMID: 24475828 DOI: 10.1148/radiol.13131044] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To study differences in the whole-brain structural connectomes of patients with left temporal lobe epilepsy (TLE) and healthy control subjects. MATERIALS AND METHODS This study was approved by the institutional review board, and all individuals gave signed informed consent. Sixty-direction diffusion-tensor imaging and magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) magnetic resonance imaging volumes were analyzed in 24 patients with left TLE and in 24 healthy control subjects. MP-RAGE volumes were segmented into 1015 regions of interest (ROIs) spanning the entire brain. Deterministic white matter tractography was performed after voxelwise tensor calculation. Weighted structural connectivity matrices were generated by using the pairwise density of connecting fibers between ROIs. Graph theoretical measures of connectivity networks were compared between groups by using linear models with permutation testing. RESULTS Patients with TLE had 22%-45% reduced (P < .01) distant connectivity in the medial orbitofrontal cortex, temporal cortex, posterior cingulate cortex, and precuneus, compared with that in healthy subjects. However, local connectivity, as measured by means of network efficiency, was increased by 85%-270% (P < .01) in the medial and lateral frontal cortices, insular cortex, posterior cingulate cortex, precuneus, and occipital cortex in patients with TLE as compared with healthy subjects. CONCLUSION This study suggests that TLE involves altered structural connectivity in a network that reaches beyond the temporal lobe, especially in the default mode network.
Collapse
Affiliation(s)
- Matthew N DeSalvo
- From the Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Suite 2301, Charlestown, MA 02129 (M.N.D., L.D., N.T., C.R., S.M.S.); Department of Radiology, Massachusetts General Hospital, Charlestown, Mass (M.N.D., L.D., N.T., S.M.S.); and Department of Neurology, Brigham and Women's Hospital, Boston, Mass (C.R.)
| | | | | | | | | |
Collapse
|