151
|
PIDS: A User-Friendly Plant DNA Fingerprint Database Management System. Genes (Basel) 2020; 11:genes11040373. [PMID: 32235513 PMCID: PMC7230844 DOI: 10.3390/genes11040373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 11/23/2022] Open
Abstract
The high variability and somatic stability of DNA fingerprints can be used to identify individuals, which is of great value in plant breeding. DNA fingerprint databases are essential and important tools for plant molecular research because they provide powerful technical and information support for crop breeding, variety quality control, variety right protection, and molecular marker-assisted breeding. Building a DNA fingerprint database involves the production of large amounts of heterogeneous data for which storage, analysis, and retrieval are time and resource consuming. To process the large amounts of data generated by laboratories and conduct quality control, a database management system is urgently needed to track samples and analyze data. We developed the plant international DNA-fingerprinting system (PIDS) using an open source web server and free software that has automatic collection, storage, and efficient management functions based on merging and comparison algorithms to handle massive microsatellite DNA fingerprint data. PIDS also can perform genetic analyses. This system can match a corresponding capillary electrophoresis image on each primer locus as fingerprint data to upload to the server. PIDS provides free customization and extension of back-end functions to meet the requirements of different laboratories. This system can be a significant tool for plant breeders and can be applied in forensic science for human fingerprint identification, as well as in virus and microorganism research.
Collapse
|
152
|
Grass RN, Heckel R, Dessimoz C, Stark WJ. Genomic Encryption of Digital Data Stored in Synthetic DNA. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert N. Grass
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Reinhard Heckel
- Department of Electrical and Computer Engineering Rice University 6100 Main Street Houston TX 77005 USA
- Department of Electrical and Computer Engineering Technical University of Munich Munich Germany
| | - Christophe Dessimoz
- Department of Computational Biology and Center for Integrative Genomics University of Lausanne Lausanne Switzerland
- Swiss Institute of Bioinformatics Lausanne Switzerland
- Department of Genetics, Evolution & Environment and Department of Computer Science University College London UK
| | - Wendelin J. Stark
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
153
|
Grass RN, Heckel R, Dessimoz C, Stark WJ. Genomic Encryption of Digital Data Stored in Synthetic DNA. Angew Chem Int Ed Engl 2020; 59:8476-8480. [PMID: 32083389 DOI: 10.1002/anie.202001162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 01/17/2023]
Abstract
Today, we can read human genomes and store digital data robustly in synthetic DNA. Herein, we report a strategy to intertwine these two technologies to enable the secure storage of valuable information in synthetic DNA, protected with personalized keys. We show that genetic short tandem repeats (STRs) contain sufficient entropy to generate strong encryption keys, and that only one technology, DNA sequencing, is required to simultaneously read the key and the data. Using this approach, we experimentally generated 80 bit strong keys from human DNA, and used such a key to encrypt 17 kB of digital information stored in synthetic DNA. Finally, the decrypted information was recovered perfectly from a single massively parallel sequencing run.
Collapse
Affiliation(s)
- Robert N Grass
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Reinhard Heckel
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.,Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Christophe Dessimoz
- Department of Computational Biology and Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Genetics, Evolution & Environment and Department of Computer Science, University College, London, UK
| | - Wendelin J Stark
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
154
|
Venta PJ, Nguyen AK, Senut MC, Poulos WG, Prukudom S, Cibelli JB. A 13-plex of tetra- and penta-STRs to identify zebrafish. Sci Rep 2020; 10:3851. [PMID: 32123258 PMCID: PMC7052278 DOI: 10.1038/s41598-020-60842-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
The zebrafish species Danio rerio has become one of the major vertebrate model organisms used in biomedical research. However, there are aspects of the model that need to be improved. One of these is the ability to identify individual fish and fish lines by DNA profiling. Although many dinucleotide short tandem repeat (diSTR) markers are available for this and similar purposes, they have certain disadvantages such as an excessive polymerase slippage ("stutter") that causes difficulties in automated genotyping and cross-laboratory comparisons. Here we report on the development of a 13-plex of tetranucleotide and pentanucleotide STRs (tetraSTRs and pentaSTRs, respectively) that have low stutter. The system uses an inexpensive universal primer labelling system, which can easily be converted to a direct labeling system if desired. This 13-plex was examined in three zebrafish lines (NHGRI-1, kca33Tg, and kca66Tg, originally obtained from ZIRC). The average observed heterozygosity (Ho) and expected heterozygosity (He) in these highly inbred lines were 0.291 and 0.359, respectively, which is very similar to what has been found with diSTRs. The probability of identity (PI) for all fish tested was 2.1 × 10-5 and the PI for siblings (PIsib) was 6.4 × 10-3, as calculated by the Genalex package. Ninety percent of the fish tested were correctly identified with their respective strains. It is also demonstrated that this panel can be used to confirm doubled-haploid cell lines. This multiplex should find multiple uses for improving the accuracy and reproducibility of studies using the zebrafish model.
Collapse
Affiliation(s)
- Patrick J Venta
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA. .,Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| | - Anthony K Nguyen
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48823, USA
| | - Marie-Claude Senut
- Biomilab LLC, Lansing, MI, 48910, USA.,Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - William G Poulos
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA
| | - Sukumal Prukudom
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Jose B Cibelli
- Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48823, USA. .,Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
155
|
Okamoto K, Kurita T, Nagano M, Sato Y, Aoyama H, Saitoh S, Shinzato N, Toda M. Development of 22 Microsatellite Markers for Assessing Hybridization in the Genus Gekko (Squamata: Gekkonidae). CURRENT HERPETOLOGY 2020. [DOI: 10.5358/hsj.39.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kota Okamoto
- 1Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903–0213,
| | - Takaki Kurita
- 2Chiba Biodiversity Center, 955–2 Aoba-cho, Chuo-ku, Chiba 260–8682, JAPAN
| | - Masahiro Nagano
- 3Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita-shi, Oita 870–1192, JAPAN
| | - Yukuto Sato
- 4Center for Strategic Research Project, Organization for Research Promotion, University of the Ryuky
| | - Hiroaki Aoyama
- 5Research Planning Office, Organization for Research Promotion, University of the Ryukyus, Nishihara
| | - Seikoh Saitoh
- 6College of Economics and Environmental Policy, Okinawa International University, 2–6–1 Ginowan, Gin
| | - Naoya Shinzato
- 7Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903–0213, JAPAN
| | - Mamoru Toda
- 7Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903–0213, JAPAN
| |
Collapse
|
156
|
Sugiura N, Ochiai K, Yamamoto T, Kato T, Kawamoto Y, Omi T, Hayama SI. Examining multiple paternity in the raccoon dog (Nyctereutes procyonoides) in Japan using microsatellite analysis. J Vet Med Sci 2020; 82:479-482. [PMID: 32101823 PMCID: PMC7192729 DOI: 10.1292/jvms.19-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed the genotypes of three pregnant females and their litters to investigate the
phenomenon of multiple paternity in wild raccoon dogs (Nyctereutes
procyonoides) using 17 microsatellite markers. If a female has mated with only
one male during estrus, then the maximum number of paternal alleles will not exceed two
among littermates with the same father. The results revealed two out of three litters had
three or four paternal alleles at one or five microsatellite loci. Therefore, the female
had mated with more than one male during estrus. To the best of our knowledge, the present
study is the first to report the possibility of multiple paternity in wild raccoon
dogs.
Collapse
Affiliation(s)
- Natsuko Sugiura
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Kazuhiko Ochiai
- Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Toshiaki Yamamoto
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yoshi Kawamoto
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Toshinori Omi
- Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
157
|
Li TT, Tang B, Bai X, Wang XL, Luo XN, Yan HB, Zhu HF, Jia H, Liu XL, Liu MY. Development of genome-wide polymorphic microsatellite markers for Trichinella spiralis. Parasit Vectors 2020; 13:58. [PMID: 32046770 PMCID: PMC7014596 DOI: 10.1186/s13071-020-3929-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background Trichinella nematodes are globally distributed food-borne pathogens, in which Trichinella spiralis is the most common species in China. Microsatellites are a powerful tool in population genetics and phylogeographic analysis. However, only a few microsatellite markers were reported in T. spiralis. Thus, there is a need to develop and validate genome-wide microsatellite markers for T. spiralis. Methods Microsatellites were selected from shotgun genomic sequences using MIcroSAtellite identification tool (MISA). The identified markers were validated in 12 isolates of T. spiralis in China. Results A total of 93,140 microsatellites were identified by MISA from 9267 contigs in T. spiralis genome sequences, in which 16 polymorphic loci were selected for validation by PCR with single larvae from 12 isolates of T. spiralis in China. There were 7–19 alleles per locus (average 11.25 alleles per locus). The observed heterozygosity (HO) and expected heterozygosity (HE) ranged from 0.325 to 0.750 and 0.737 to 0.918, respectively. The polymorphism information content (PIC) ranged from 0.719 to 0.978 (average 0.826). Among the 16 loci, markers for 10 loci could be amplified from all 12 international standard strains of Trichinella spp. Conclusions Sixteen highly polymorphic markers were selected and validated for T. spiralis. Primary phylogenetic analysis showed that these markers might serve as a useful tool for genetic studies of Trichinella parasites.![]()
Collapse
Affiliation(s)
- Ting-Ting Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xue-Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xue-Nong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong-Fei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiao-Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
158
|
Aiello D, Ferradini N, Torelli L, Volpi C, Lambalk J, Russi L, Albertini E. Evaluation of Cross-Species Transferability of SSR Markers in Foeniculum vulgare. PLANTS (BASEL, SWITZERLAND) 2020; 9:E175. [PMID: 32024130 PMCID: PMC7076658 DOI: 10.3390/plants9020175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Fennel (Foeniculum vulgare) is a species belonging to the Apiaceae family, well known for its nutritional and pharmacological properties. Despite the economic and agricultural relevance, its genomic and transcriptomic data remain poor. Microsatellites-also known as simple sequence repeats (SSRs)-are codominant markers widely used to perform cross-amplification tests starting from markers developed in related species. SSRs represent a powerful tool, especially for those species lacking genomic information. In this study, a set of primers previously designed in Daucus carota for polymorphic SSR loci was tested in commercial varieties and breeding lines of fennel in order to: (i) test their cross-genera transferability, (ii) look at their efficiency in assessing genetic diversity, and (iii) identify their usefulness for marker-assisted selection (MAS) in breeding programs. Thirty-nine SSR markers from carrot were selected and tested for their transferability score, and only 23% of them resulted suitable for fennel. The low rate of SSR transferability between the two species evidences the difficulties of the use of genomic SSR in cross-genera transferability.
Collapse
Affiliation(s)
- Domenico Aiello
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (D.A.); (N.F.); (L.T.); (L.R.)
| | - Nicoletta Ferradini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (D.A.); (N.F.); (L.T.); (L.R.)
| | - Lorenzo Torelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (D.A.); (N.F.); (L.T.); (L.R.)
| | - Chiara Volpi
- Enza Zaden Italia Research S.r.l. SS., 01016 Tarquinia, Italy;
| | - Joep Lambalk
- Enza Zaden, Research and Development B.V. P.O. Box 7, 1600AA Enkhuizen, The Netherlands;
| | - Luigi Russi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (D.A.); (N.F.); (L.T.); (L.R.)
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (D.A.); (N.F.); (L.T.); (L.R.)
| |
Collapse
|
159
|
Diao Y, Larsen MM, Kamvar ZN, Zhang C, Li S, Wang W, Lin D, Peng Q, Knaus BJ, Foster ZSL, Grünwald NJ, Liu X. Genetic Differentiation and Clonal Expansion of Chinese Botrytis cinerea Populations from Tomato and Other Crops in China. PHYTOPATHOLOGY 2020; 110:428-439. [PMID: 31454305 DOI: 10.1094/phyto-09-18-0347-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Botrytis cinerea is an important pathogen of vegetable and fruit crops but little is known about its population structure and genetics in China. We hypothesized that the geographic populations of B. cinerea in China would be genetically differentiated by host, geographic location, and/or year. In this study, we collected 393 B. cinerea isolates representing 28 populations from tomato, cherry, and nectarine from 2006 to 2014 in China. The isolates were analyzed using 14 microsatellite markers, including six new markers that provided more genotyping power than the eight previously published loci. We also investigated the B. cinerea population structure and inferred its mode of reproduction and dispersal based on genotype data. High genotypic diversity was detected in all populations, and clonal reproduction was dominant. Southern China populations harbored more genotypes than northern populations. Differentiation by host plant was evident. Between 2011 and 2012, genotypes changed only slightly among years for Liaoning populations, but they changed substantially among years for the Shanghai and Fujian populations. Clonal dispersal was detected and the farthest dispersal distance was estimated to be about 1,717 km. Two high-frequency genotypes were widely distributed in more than 10 populations and across several years. Our results provide useful, novel information for plant breeding programs and control of B. cinerea in China.
Collapse
Affiliation(s)
- Yongzhao Diao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China 100193
- Horticultural Crops Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330, U.S.A
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A
| | - Meredith M Larsen
- Horticultural Crops Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330, U.S.A
| | - Zhian N Kamvar
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China 100193
| | - Shuo Li
- China Animal Disease Control Center, Beijing, China 100125
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China 100193
| | - Dong Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China 100193
| | - Qin Peng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China 100193
| | - Brian J Knaus
- Horticultural Crops Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330, U.S.A
| | - Zachary S L Foster
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR 97330, U.S.A
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China 100193
| |
Collapse
|
160
|
Tibihika PD, Curto M, Alemayehu E, Waidbacher H, Masembe C, Akoll P, Meimberg H. Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus, L. 1758) in East African natural and stocked populations. BMC Evol Biol 2020; 20:16. [PMID: 32000675 PMCID: PMC6990601 DOI: 10.1186/s12862-020-1583-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The need for enhancing the productivity of fisheries in Africa triggered the introduction of non-native fish, causing dramatic changes to local species. In East Africa, the extensive translocation of Nile tilapia (Oreochromis niloticus) is one of the major factors in this respect. Using 40 microsatellite loci with SSR-GBS techniques, we amplified a total of 664 individuals to investigate the genetic structure of O. niloticus from East Africa in comparison to Ethiopian and Burkina Faso populations. RESULTS All three African regions were characterized by independent gene-pools, however, the Ethiopian population from Lake Tana was genetically more divergent (Fst = 2.1) than expected suggesting that it might be a different sub-species. In East Africa, the genetic structure was congruent with both geographical location and anthropogenic activities (Isolation By Distance for East Africa, R2 = 0.67 and Uganda, R2 = 0.24). O. niloticus from Lake Turkana (Kenya) was isolated, while in Uganda, despite populations being rather similar to each other, two main natural catchments were able to be defined. We show that these two groups contributed to the gene-pool of different non-native populations. Moreover, admixture and possible hybridization with other tilapiine species may have contributed to the genetic divergence found in some populations such as Lake Victoria. We detected other factors that might be affecting Nile tilapia genetic variation. For example, most of the populations have gone through a reduction in genetic diversity, which can be a consequence of bottleneck (G-W, < 0.5) caused by overfishing, genetic erosion due to fragmentation or founder effect resulting from stocking activities. CONCLUSIONS The anthropogenic activities particularly in the East African O. niloticus translocations, promoted artificial admixture among Nile Tilapia populations. Translocations may also have triggered hybridization with the native congenerics, which needs to be further studied. These events may contribute to outbreeding depression and hence compromising the sustainability of the species in the region.
Collapse
Affiliation(s)
- Papius Dias Tibihika
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Wien, Austria
- National Agricultural Research Organization, Kachwekano Zonal Agricultural Research and Development Institute, P.O. Box 421, Kabale, Uganda
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Wien, Austria
| | - Esayas Alemayehu
- National Agricultural Research Organization, Kachwekano Zonal Agricultural Research and Development Institute, P.O. Box 421, Kabale, Uganda
- Institute for Hydrobiology and Aquatic Ecosystems Management, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33/DG, 1180 Wien, Austria
| | - Herwig Waidbacher
- National Fishery and Aquatic Life Research Centre, P.O. Box 64, Addis Ababa, Sebeta Ethiopia
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences-Makerere University Kampala, P. O. Box, 7062 Kampala, Uganda
| | - Peter Akoll
- Department of Zoology, Entomology and Fisheries Sciences-Makerere University Kampala, P. O. Box, 7062 Kampala, Uganda
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Wien, Austria
| |
Collapse
|
161
|
Mathema VB, Nakeesathit S, Pagornrat W, Smithuis F, White NJ, Dondorp AM, Imwong M. Polymorphic markers for identification of parasite population in Plasmodium malariae. Malar J 2020; 19:48. [PMID: 31992308 PMCID: PMC6988369 DOI: 10.1186/s12936-020-3122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background Molecular genotyping in Plasmodium serves many aims including providing tools for studying parasite population genetics and distinguishing recrudescence from reinfection. Microsatellite typing, insertion-deletion (INDEL) and single nucleotide polymorphisms is used for genotyping, but only limited information is available for Plasmodium malariae, an important human malaria species. This study aimed to provide a set of genetic markers to facilitate the study of P. malariae population genetics. Methods Markers for microsatellite genotyping and pmmsp1 gene polymorphisms were developed and validated in symptomatic P. malariae field isolates from Myanmar (N = 37). Fragment analysis was used to determine allele sizes at each locus to calculate multiplicity of infections (MOI), linkage disequilibrium, heterozygosity and construct dendrograms. Nucleotide diversity (π), number of haplotypes, and genetic diversity (Hd) were assessed and a phylogenetic tree was constructed. Genome-wide microsatellite maps with annotated regions of newly identified markers were constructed. Results Six microsatellite markers were developed and tested in 37 P. malariae isolates which showed sufficient heterozygosity (0.530–0.922), and absence of linkage disequilibrium (IAS=0.03, p value > 0.05) (N = 37). In addition, a tandem repeat (VNTR)-based pmmsp1 INDEL polymorphisms marker was developed and assessed in 27 P. malariae isolates showing a nucleotide diversity of 0.0976, haplotype gene diversity of 0.698 and identified 14 unique variants. The size of VNTR consensus repeat unit adopted as allele was 27 base pairs. The markers Pm12_426 and pmmsp1 showed greatest diversity with heterozygosity scores of 0.920 and 0.835, respectively. Using six microsatellites markers, the likelihood that any two parasite strains would have the same microsatellite genotypes was 8.46 × 10−4 and was further reduced to 1.66 × 10−4 when pmmsp1 polymorphisms were included. Conclusions Six novel microsatellites genotyping markers and a set of pmmsp1 VNTR-based INDEL polymorphisms markers for P. malariae were developed and validated. Each marker could be independently or in combination employed to access genotyping of the parasite. The newly developed markers may serve as a useful tool for investigating parasite diversity, population genetics, molecular epidemiology and for distinguishing recrudescence from reinfection in drug efficacy studies.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supatchara Nakeesathit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharee Pagornrat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Frank Smithuis
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Medical Action Myanmar, Yangon, Myanmar.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
162
|
Maduna SN, Vivian-Smith A, Jónsdóttir ÓDB, Imsland AKD, Klütsch CFC, Nyman T, Eiken HG, Hagen SB. Genome- and transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: molecular tools for aquaculture, conservation and fisheries management. Sci Rep 2020; 10:559. [PMID: 31953426 PMCID: PMC6968997 DOI: 10.1038/s41598-019-57071-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
The lumpfish Cyclopterus lumpus is commercially exploited in numerous areas of its range in the North Atlantic Ocean, and is important in salmonid aquaculture as a biological agent for controlling sea lice. Despite the economic importance, few genetic resources for downstream applications, such as linkage mapping, parentage analysis, marker-assisted selection (MAS), quantitative trait loci (QTL) analysis, and assessing adaptive genetic diversity are currently available for the species. Here, we identify both genome- and transcriptome-derived microsatellites loci from C. lumpus to facilitate such applications. Across 2,346 genomic contigs, we detected a total of 3,067 microsatellite loci, of which 723 were the most suitable ones for primer design. From 116,555 transcriptomic unigenes, we identified a total of 231,556 microsatellite loci, which may indicate a high coverage of the available STRs. Out of these, primer pairs could only be designed for 6,203 loci. Dinucleotide repeats accounted for 89 percent and 52 percent of the genome- and transcriptome-derived microsatellites, respectively. The genetic composition of the dominant repeat motif types showed differences from other investigated fish species. In the genome-derived microsatellites AC/GT (67.8 percent), followed by AG/CT (15.1 percent) and AT/AT (5.6 percent) were the major motifs. Transcriptome-derived microsatellites showed also most dominantly the AC/GT repeat motif (33 percent), followed by A/T (26.6 percent) and AG/CT (11 percent). Functional annotation of microsatellite-containing transcriptomic sequences showed that the majority of the expressed sequence tags encode proteins involved in cellular and metabolic processes, binding activity and catalytic reactions. Importantly, STRs linked to genes involved in immune system process, growth, locomotion and reproduction were discovered in the present study. The extensive genomic marker information reported here will facilitate molecular ecology studies, conservation initiatives and will benefit many aspects of the breeding programmes of C. lumpus.
Collapse
Affiliation(s)
- Simo N Maduna
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, P.O. Box 115, NO-1431, Ås, Norway.
| | - Adam Vivian-Smith
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forestry and Forest Resources, P.O. Box 115, NO-1431, Ås, Norway
| | | | - Albert K D Imsland
- Akvaplan-niva, Iceland Office, Akralind 4, 201, Kópavogur, Iceland.,Department of Biosciences, University of Bergen, 5020, Bergen, Norway
| | - Cornelya F C Klütsch
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, P.O. Box 115, NO-1431, Ås, Norway
| | - Tommi Nyman
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, P.O. Box 115, NO-1431, Ås, Norway
| | - Hans Geir Eiken
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, P.O. Box 115, NO-1431, Ås, Norway
| | - Snorre B Hagen
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, P.O. Box 115, NO-1431, Ås, Norway.
| |
Collapse
|
163
|
Restrepo-Escobar N, Márquez EJ. Microsatellite loci development for three catfish species from northwestern South America. NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2019-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The Neotropical catfish species Ageneiosus pardalis, Pimelodus grosskopfii, and Sorubim cuspicaudus are important fishery resources in Colombia that show historical declines in their capture. This study used next-generation sequencing with 454 FLX technology (Roche Applied Science) and bioinformatics analysis to develop between 18 and 24 microsatellite loci for these species. The novel microsatellite loci showed high values of polymorphic information content -PIC (A. pardalis: 0.601-0.903, P. grosskopfii: 0.748-0.946 and S. cuspicaudus: 0.383-0.876), and the average number of alleles/locus ranged from 7-15 for A. pardalis, 9-30 for P. grosskopfii and 5-14 for S. cuspicaudus. The average observed and expected heterozygosities were respectively, 0.757 ± 0.035 and 0.834 ± 0.015 for A. pardalis; 0.596 ± 0.040 and 0.881 ± 0.009 for P. grosskopfii; and 0.747 ± 0.031 and 0.757 ± 0.025 for S. cuspicaudus. For future studies, these loci can be useful to estimate the genetic diversity and population structure in these three Neotropical catfishes.
Collapse
|
164
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
165
|
Terrones A, Juan A. Seventeen new microsatellites for Tamarix gallica and cross-amplification in Tamarix species. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11317. [PMID: 31993259 PMCID: PMC6976893 DOI: 10.1002/aps3.11317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Microsatellite markers were developed for the western Mediterranean tree Tamarix gallica (Tamaricaceae) as part of a study of its genetic diversity and structure. METHODS AND RESULTS Seventeen microsatellite markers were developed for T. gallica, 14 of which were polymorphic. These microsatellites have di-, tri-, and tetranucleotide repeats with 1-13 alleles per locus and population. Levels of observed and expected heterozygosity ranged from 0.000 to 0.900 and from 0.000 to 0.863, respectively. Six microsatellites showed significant deviations from Hardy-Weinberg equilibrium in at least one population. Cross-amplification in 19 Tamarix species showed a wide transferability to other species of the genus. CONCLUSIONS The 14 new polymorphic microsatellite markers will be used to assess the genetic diversity and population genetic structure of T. gallica. Additionally, the successful cross-species amplification suggests their potential usefulness for investigating species delimitation and population genetics in the genus Tamarix.
Collapse
Affiliation(s)
- Alejandro Terrones
- Departamento de Ciencias Ambientales y Recursos NaturalesUniversidad de AlicanteCarretera de San Vicente s/n03690San Vicente del Raspeig, AlicanteSpain
| | - Ana Juan
- Departamento de Ciencias Ambientales y Recursos NaturalesUniversidad de AlicanteCarretera de San Vicente s/n03690San Vicente del Raspeig, AlicanteSpain
| |
Collapse
|
166
|
Bessa-Silva A, Vallinoto M, Sampaio I, Flores-Villela OA, Smith EN, Sequeira F. The roles of vicariance and dispersal in the differentiation of two species of the Rhinella marina species complex. Mol Phylogenet Evol 2019; 145:106723. [PMID: 31891757 DOI: 10.1016/j.ympev.2019.106723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022]
Abstract
The high levels of Neotropical biodiversity are commonly associated with the intense Neogene-Quaternary geological events and climate dynamics. Here, we investigate the evolutionary history of two species of Neotropical closely related amphibians (R. horribilis and R. marina). We combine published data with new mitochondrial DNA sequences and multiple nuclear markers, including 12 microsatellites. The phylogenetic analyses showed support for grouping the samples in two main clades; R. horribilis (Central America and Mexico) and R. marina (South America east of the Andes). However, the phylogenetic inferences also show an evident mito-nuclear discordance. We use Approximate Bayesian Computation (ABC) to test the role of different events in the diversification between the two groups recovered. We found that both species were affected primarily by a recent Pleistocene divergence, which was similar to the divergence estimate revealed by the Isolation-with-Migration model, under persistent bidirectional gene flow through time. We provide the first evidence that R. horribilis is differentiated from the South American R. marina at the nuclear level supporting the taxonomic status of R. horribilis, which has been controversial for more than a century.
Collapse
Affiliation(s)
- Adam Bessa-Silva
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, 68 600-000 Pará, Brazil; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Marcelo Vallinoto
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, 68 600-000 Pará, Brazil; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.
| | - Iracilda Sampaio
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, 68 600-000 Pará, Brazil
| | - Oscar A Flores-Villela
- Museo de Zoología, Department of Evolutionary Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, External Circuit of Ciudad Universitaria, Mexico City 04510, Mexico
| | - Eric N Smith
- Department of Biology, The University of Texas at Arlington, Arlington, TX, USA; The Amphibian and Reptile Diversity Research Center, University of Texas at Arlington, Arlington, TX, USA
| | - Fernando Sequeira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
167
|
Vašek J, Čílová D, Melounová M, Svoboda P, Vejl P, Štikarová R, Vostrý L, Kuchtová P, Ovesná J. New EST-SSR Markers for Individual Genotyping of Opium Poppy Cultivars ( Papaver somniferum L.). PLANTS 2019; 9:plants9010010. [PMID: 31861643 PMCID: PMC7020189 DOI: 10.3390/plants9010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
High-quality simple sequence repeat (SSR) markers are invaluable tools for revealing genetic variability which could be utilized for many purposes, such as breeding new varieties or the identifying current ones, among other applications. Based on the analysis of 3.7 million EST sequences and 15 genomic sequences from bacterial artificial chromosome (BAC) libraries, 200 trinucleotide genic (EST)-SSR and three genomic (gSSR) markers were tested, where 17 of them fulfilled all criteria for quality markers. Moreover, the reproducibility of these new markers was verified by two genetics laboratories, with a mean error rate per allele and per locus equal to 0.17%. These markers were tested on 38 accessions of Papaver somniferum and nine accessions of another five species of the Papaver and Argemone genera. In total, 118 alleles were detected for all accessions (median = 7; three to ten alleles per locus) and 88 alleles (median = 5; three to nine alleles per locus) within P. somniferum alone. Multivariate methods and identity analysis revealed high resolution capabilities of the new markers, where all but three pair accessions (41 out of 47) had a unique profile and opium poppy was distinguished from other species.
Collapse
Affiliation(s)
- Jakub Vašek
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
- Correspondence: ; Tel.: +420-22438-2562
| | - Daniela Čílová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Martina Melounová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Pavel Svoboda
- Crop Research Institute, Division of Crop Genetics and Breeding, Drnovská 507/73, 6 Ruzyně, 16106 Prague, Czech Republic; (P.S.); (J.O.)
| | - Pavel Vejl
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Radka Štikarová
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Luboš Vostrý
- Czech University of Life Sciences Prague, FAFNR, Department of Genetics and Breeding, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic; (D.Č.); (M.M.); (P.V.); (R.Š.); (L.V.)
| | - Perla Kuchtová
- Czech University of Life Sciences, FAFNR, Department of Agroecology and Crop Production, Kamýcká 129, 6 Suchdol, 16500 Prague, Czech Republic;
| | - Jaroslava Ovesná
- Crop Research Institute, Division of Crop Genetics and Breeding, Drnovská 507/73, 6 Ruzyně, 16106 Prague, Czech Republic; (P.S.); (J.O.)
| |
Collapse
|
168
|
Hossam Mahmoud A, Mohammed Abu-Tarbush F, Alshaik M, Aljumaah R, Saleh A. Genetic diversity and population genetic structure of six dromedary camel ( camelus dromedarius) populations in Saudi Arabia. Saudi J Biol Sci 2019; 27:1384-1389. [PMID: 32346350 PMCID: PMC7182790 DOI: 10.1016/j.sjbs.2019.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Camels are an integral and essential component of the Saudi Arabian heritage. The genetic diversity and population genetic structure of dromedary camels are poorly documented in Saudi Arabia so this study was carried out to investigate the genetic diversity of both local and exotic camel breeds. The genetic diversity was evaluated within and among camel populations using 21 microsatellite loci. Hair and blood samples were collected from 296 unrelated animals representing 4 different local breeds, namely Majaheem (MG), Maghateer (MJ), Sofr (SO), and Shaul (SH), and two exotic breeds namely Sawahli (SL) and Somali (SU). Nineteen out of 21 microsatellite loci generated multi-locus fingerprints for the studied camel individuals, with an average of 13.3 alleles per locus. Based on the genetic analyses, the camels were divided into two groups: one contained the Saudi indigenous populations (MG, MJ, SH and SO) and the other contained the non-Saudi ones (SU and SL). There was very little gene flow occurring between the two groups. The African origin of SU and SL breeds may explain their close genetic relationship. It is anticipated that the genetic diversity assessment is important to preserve local camel genetic resources and develop future breeding programs to improve camel productivity.
Collapse
Affiliation(s)
- Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohammed Alshaik
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riyadh Aljumaah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amgad Saleh
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
169
|
Testing microsatellite loci for individual identification of captive African grey parrots (Psittacus erithacus): a molecular tool for parentage analysis that will aid in monitoring legal trade. CONSERV GENET RESOUR 2019. [DOI: 10.1007/s12686-019-01127-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
170
|
Fustier MA, Martínez-Ainsworth NE, Aguirre-Liguori JA, Venon A, Corti H, Rousselet A, Dumas F, Dittberner H, Camarena MG, Grimanelli D, Ovaskainen O, Falque M, Moreau L, de Meaux J, Montes-Hernández S, Eguiarte LE, Vigouroux Y, Manicacci D, Tenaillon MI. Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genet 2019; 15:e1008512. [PMID: 31860672 PMCID: PMC6944379 DOI: 10.1371/journal.pgen.1008512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/06/2020] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.
Collapse
Affiliation(s)
- Margaux-Alison Fustier
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Natalia E. Martínez-Ainsworth
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Jonás A. Aguirre-Liguori
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Venon
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Hélène Corti
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Agnès Rousselet
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Fabrice Dumas
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Hannes Dittberner
- Institute of Botany, University of Cologne Biocenter, Cologne, Germany
| | - María G. Camarena
- Campo Experimental Bajío, InstitutoNacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Mexico
| | - Daniel Grimanelli
- UMR Diversité, Adaptation et Développement des plantes, Université de Montpellier, Institut de Recherche pour le développement, Montpellier, France
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthieu Falque
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Laurence Moreau
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Juliette de Meaux
- Institute of Botany, University of Cologne Biocenter, Cologne, Germany
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, InstitutoNacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yves Vigouroux
- UMR Diversité, Adaptation et Développement des plantes, Université de Montpellier, Institut de Recherche pour le développement, Montpellier, France
| | - Domenica Manicacci
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| | - Maud I. Tenaillon
- Génétique Quantitative et Evolution – Le Moulon, Université Paris-Saclay, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
171
|
Tian R, Zhang C, Huang Y, Guo X, Chen M. A Novel Software and Method for the Efficient Development of Polymorphic SSR Loci Based on Transcriptome Data. Genes (Basel) 2019; 10:E917. [PMID: 31717904 PMCID: PMC6895799 DOI: 10.3390/genes10110917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Traditional methods for developing polymorphic microsatellite loci without reference sequences are time-consuming and labor-intensive, and the polymorphisms of simple sequence repeat (SSR) loci developed from expressed sequence tag (EST) databases are generally poor. To address this issue, in this study, we developed a new software (PSSRdt) and established an effective method for directly obtaining polymorphism details of SSR loci by analyzing diverse transcriptome data. The new method includes three steps, raw data processing, PSSRdt application, and loci extraction and verification. To test the practicality of the method, we successfully obtained 1940 potential polymorphic SSRs from the transcript dataset combined with 44 pea aphid transcriptomes. Fifty-two SSR loci obtained by the new method were selected for validating the polymorphic characteristics by genotyping in pea aphid individuals. The results showed that over 92% of SSR loci were polymorphic and 73.1% of loci were highly polymorphic. Our new software and method provide an innovative approach to microsatellite development based on RNA-seq data, and open a new path for the rapid mining of numerous loci with polymorphism to add to the body of research on microsatellites.
Collapse
Affiliation(s)
| | | | | | | | - Maohua Chen
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, China; (R.T.); (C.Z.); (Y.H.); (X.G.)
| |
Collapse
|
172
|
Päckert M, Ait Belkacem A, Wolfgramm H, Gast O, Canal D, Giacalone G, Lo Valvo M, Vamberger M, Wink M, Martens J, Stuckas H. Genetic admixture despite ecological segregation in a North African sparrow hybrid zone (Aves, Passeriformes, Passer domesticus × Passer hispaniolensis). Ecol Evol 2019; 9:12710-12726. [PMID: 31788209 PMCID: PMC6875665 DOI: 10.1002/ece3.5744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Under different environmental conditions, hybridization between the same species might result in different patterns of genetic admixture. Particularly, species pairs with large distribution ranges and long evolutionary history may have experienced several independent hybridization events over time in different zones of overlap. In birds, the diverse hybrid populations of the house sparrow (Passer domesticus) and the Spanish sparrow (Passer hispaniolensis) provide a striking example. Throughout their range of sympatry, these two species do not regularly interbreed; however, a stabilized hybrid form (Passer italiae) exists on the Italian Peninsula and on several Mediterranean islands. The spatial distribution pattern on the Eurasian continent strongly contrasts the situation in North Africa, where house sparrows and Spanish sparrows occur in close vicinity of phenotypically intermediate populations across a broad mosaic hybrid zone. In this study, we investigate patterns of divergence and admixture among the two parental species, stabilized and nonstabilized hybrid populations in Italy and Algeria based on a mitochondrial marker, a sex chromosomal marker, and 12 microsatellite loci. In Algeria, despite strong spatial and temporal separation of urban early-breeding house sparrows and hybrids and rural late-breeding Spanish sparrows, we found strong genetic admixture of mitochondrial and nuclear markers across all study populations and phenotypes. That pattern of admixture in the North African hybrid zone is strikingly different from i) the Iberian area of sympatry where we observed only weak asymmetrical introgression of Spanish sparrow nuclear alleles into local house sparrow populations and ii) the very homogenous Italian sparrow population where the mitogenome of one parent (P. domesticus) and the Z-chromosomal marker of the other parent (P. hispaniolensis) are fixed. The North African sparrow hybrids provide a further example of enhanced hybridization along with recent urbanization and anthropogenic land-use changes in a mosaic landscape.
Collapse
Affiliation(s)
- Martin Päckert
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| | - Abdelkrim Ait Belkacem
- Laboratoire d'Exploration et de Valorisation des Écosystèmes SteppiquesFaculté des Sciences de la nature et de la vieUniversité de DjelfaDjelfaAlgeria
| | - Hannes Wolfgramm
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| | - Oliver Gast
- Institute of Vertebrate Biology Brno & Masaryk University BrnoBrnoCzech Republic
| | - David Canal
- Department of Evolutionary EcologyEstación Biológica de Doñana—CSICSevilleSpain
- Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA‐UNLPam) & Instituto de las Ciencias de la Tierra y Ambientales de La Pampa (INCITAP)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Santa RosaArgentina
| | | | - Mario Lo Valvo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Melita Vamberger
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| | - Michael Wink
- Department of BiologyInstitute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
| | - Jochen Martens
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| | - Heiko Stuckas
- Senckenberg Naturhistorische Sammlungen Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System ResearchDresdenGermany
| |
Collapse
|
173
|
Complete chloroplast genome sequence and phylogenetic analysis of wasabi (Eutrema japonicum) and its relatives. Sci Rep 2019; 9:14377. [PMID: 31591417 PMCID: PMC6779752 DOI: 10.1038/s41598-019-49667-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
In Japan, two Eutrema species, wasabi (Eutrema japonicum, the important traditional Japanese condiment) and yuriwasabi (E. tenue), have been recognized as endemic species. We sequenced complete chloroplast (cp) genomes of seven wasabi and yuriwasabi accessions from Japan to study their phylogeny and evolution, using molecular dating of species divergence. Phylogenetic analyses of the complete cp DNA of these two Japanese species and five other Eurasian Eutrema species revealed that wasabi and yuriwasabi did not form a monophyletic group. One yuriwasabi accession (Gifu) formed a clade with E. yunnanense from China, indicating that this accession should be considered as a different species from the other yuriwasabi accessions. We reveal that Japanese Eutrema species diverged from the ‘E. yunnanense–yuriwasabi (Gifu)’ clade approximately 1.3 million years ago (Mya), suggesting that the connection between Japan and the Eurasian continent has existed more recently than the Quaternary period. The abundance of cp sequence data in this study also allowed the detection of genetic differentiation among wasabi cultivars. The two polymorphic sites detected between ‘Fujidaruma’ and ‘Shimane No.3’ were used to develop genotyping markers. The cp genome information provided here will thus inform the evolutionary histories of Japanese Eutrema species and help in genotyping wasabi cultivars.
Collapse
|
174
|
Saito T, Sakuta G, Kobayashi H, Ouchi K, Inatomi S. Genetically Independent Tetranucleotide to Hexanucleotide Core Motif SSR Markers for Identifying Lentinula edodes Cultivars. MYCOBIOLOGY 2019; 47:466-472. [PMID: 32010468 PMCID: PMC6968638 DOI: 10.1080/12298093.2019.1665331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
For the purpose of protecting the rights of Lentinula edodes breeders, we developed a new simple sequence repeat (SSR) marker set consisting only of genetically independent tetranucleotide or longer core motifs. Using available genome sequences for five L. edodes strains, we designed primers for 13 SSR markers that amplified polymorphic sequences in 20 L. edodes cultivars. We evaluated the independence of every possible marker pair based on genotype data. Consequently, eight genetically independent markers were selected. The polymorphic information content values of the markers ranged from 0.269 to 0.764, with an average of 0.409. The markers could distinguish among 20 L. edodes cultivars and produced highly repeatable and reproducible results. The markers developed in this study will enable the precise identification of L. edodes cultivars, and may be useful for protecting breeders' rights.
Collapse
Affiliation(s)
- Teruaki Saito
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Genki Sakuta
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | | | - Kenji Ouchi
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Satoshi Inatomi
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| |
Collapse
|
175
|
Telfer E, Graham N, Macdonald L, Li Y, Klápště J, Resende M, Neves LG, Dungey H, Wilcox P. A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS One 2019; 14:e0222640. [PMID: 31568509 PMCID: PMC6768539 DOI: 10.1371/journal.pone.0222640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
Development of genome-wide resources for application in genomic selection or genome-wide association studies, in the absence of full reference genomes, present a challenge to the forestry industry, where longer breeding cycles could benefit from the accelerated selection possible through marker-based breeding value predictions. In particular, large conifer megagenomes require a strategy to reduce complexity, whilst ensuring genome-wide coverage is achieved. Using a transcriptome-based reference template, we have successfully developed a high density exome capture genotype-by-sequencing panel for radiata pine (Pinus radiata D.Don), capable of capturing in excess of 80,000 single nucleotide polymorphism (SNP) markers with a minor allele frequency above 0.03 in the population tested. This represents approximately 29,000 gene models from a core set of 48,914 probes. A set of 704 SNP markers capable of pedigree reconstruction and differentiating individual genotypes were tested within two full-sib mapping populations. While as few as 70 markers could reconstruct parentage in almost all cases, the impact of missing genotypes was noticeable in several offspring. Therefore, 60 sets of 110 randomly selected SNP markers were compared for both parentage reconstruction and clone differentiation. The performance in parentage reconstruction showed little variation over 60 iterations. However, there was notable variation in discriminatory power between closely related individuals, indicating a higher density SNP marker panel may be required to elucidate hidden relationships in complex pedigrees.
Collapse
Affiliation(s)
- Emily Telfer
- New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand
| | - Natalie Graham
- New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand
| | - Lucy Macdonald
- New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand
| | - Yongjun Li
- New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand
| | - Jaroslav Klápště
- New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand
| | - Marcio Resende
- Horticultural Sciences, University of Florida, Gainesville, FL, United States of America
- RAPiD Genomics LLC, Gainesville, FL, United States of America
| | | | - Heidi Dungey
- New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand
| | - Phillip Wilcox
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| |
Collapse
|
176
|
Isolation and characterisation of 14 novel microsatellite markers through Next Generation Sequencing for the commercial Atlantic seabob shrimp Xiphopenaeus kroyeri. Mol Biol Rep 2019; 46:6565-6569. [PMID: 31402429 DOI: 10.1007/s11033-019-05026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Assessing population genetic structure is a crucial step to support fisheries and conservation management. DNA microsatellite molecular markers are a widely used tool in population genotyping. In the present study, we characterised and developed 14 novel polymorphic microsatellite markers for a decapod crustacean, the Atlantic seabob shrimp Xiphopenaeus kroyeri (Heller, 1862), through rapid and cost-effective Illumina shotgun sequencing and a Galaxy-based bioinformatic pipeline. We genotyped 60 individuals from 2 populations with the newly developed microsatellites, resulting in the detection of 3 to 29 alleles per locus. Four loci deviated from Hardy-Weinberg equilibrium. Cross-amplification in a cryptic congeneric species was successful for eight loci (57%). The microsatellite loci developed in this study will be highly relevant for genetic and evolutionary studies of X. kroyeri, and for the stock management of this commercially exploited species.
Collapse
|
177
|
Genetic diversity and population structure of Garcinia paucinervis, an endangered species using microsatellite markers. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
178
|
Genetic diversity and population structure of the threatened chocolate mahseer (Neolissochilus hexagonolepis McClelland 1839) based on SSR markers: implications for conservation management in Northeast India. Mol Biol Rep 2019; 46:5237-5249. [DOI: 10.1007/s11033-019-04981-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
|
179
|
Ito H, Inoue-Murayama M. The Tsushima leopard cat exhibits extremely low genetic diversity compared with the Korean Amur leopard cat: Implications for conservation. PeerJ 2019; 7:e7297. [PMID: 31341743 PMCID: PMC6637929 DOI: 10.7717/peerj.7297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/14/2019] [Indexed: 11/20/2022] Open
Abstract
We examined genetic diversity of the wild Tsushima leopard cat-a regional population of the Amur leopard cat-using microsatellite markers. In addition, we compared genetic diversity of the Tsushima leopard cat with that of the Korean population of Amur leopard cat. Although bias should be considered when applying cross-species amplification, the Tsushima leopard cat showed a lower index of molecular genetic diversity than did the Korean population. These results were consistent with those obtained using other genetic markers, such as mitochondrial DNA and Y chromosome sequences. This low genetic diversity of the wild Tsushima leopard cat may be derived from the founding population. Furthermore, our results suggest that the captive populations held in Japanese zoos may show extremely low genetic diversity, leading to difficulties in genetic management of the Tsushima leopard cat. Moreover, the two regional populations were clearly separated using these marker sets. In the present study, we demonstrated that the genetic diversity of the Tsushima leopard cat is extremely low compared with that of the continental regional population. Importantly, the Japanese captive population for ex situ conservation was derived from a founding population with extremely low genetic diversity; hence, we assume that both the captive and wild populations showed extremely low genetic diversities. Our findings emphasize the need to develop carefully considered management strategies for genetic conservation.
Collapse
Affiliation(s)
- Hideyuki Ito
- Kyoto City Zoo, Kyoto, Kyoto, Japan.,Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Kyoto, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
180
|
Detailed characterization of repeat motifs of nine canid microsatellite loci in African painted dogs (Lycaon pictus). MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
181
|
Olivares G, Peña-Ahumada B, Peñailillo J, Payacán C, Moncada X, Saldarriaga-Córdoba M, Matisoo-Smith E, Chung KF, Seelenfreund D, Seelenfreund A. Human mediated translocation of Pacific paper mulberry [Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae)]: Genetic evidence of dispersal routes in Remote Oceania. PLoS One 2019; 14:e0217107. [PMID: 31216291 PMCID: PMC6583976 DOI: 10.1371/journal.pone.0217107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
Paper mulberry, Broussonetia papyrifera (L.) L’Hér. ex Vent. (Moraceae), a dioecious species, was transported by humans from Taiwan to the islands of Remote Oceania. Its introduction and cultivation in Remote Oceania was intentional due to its cultural importance as a fiber source for barkcloth textiles. The aim of this study was to explore the genetic diversity and structure of paper mulberry populations within Remote Oceania in order to infer dispersal patterns that may reflect past human interaction among island groups. We present the integrated analysis of 380 samples (313 contemporary and 67 herbarium specimens) collected in Near and Remote Oceania. Genetic characterization was based on a set of ten microsatellites developed for B. papyrifera and complemented with the analysis of the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker and the chloroplast ndhF–rpl32 intergenic spacer. Microsatellite data identify a total of 64 genotypes, despite this being a clonally propagated crop, and show three major dispersal hubs within Remote Oceania, centered on the islands of Fiji, Tonga, and Pitcairn. Of 64 genotypes identified, 55 correspond to genotypes associated to female-sexed plants that probably descend from plants introduced by the prehistoric Austronesian-speaking voyagers. The ratio of accessions to genotypes between herbarium and contemporary samples, suggests recent loss of genetic diversity. In addition to the chloroplast haplotypes described previously, we detected two new haplotypes within Remote Oceania both originating in Taiwan. This is the first study of a commensal species to show genetic structuring within Remote Oceania. In spite of the genetic bottleneck, the presence of only one sex, a timespan of less than 5000 years, and asexual propagation of this crop in Remote Oceania, we detect genetic diversity and regional structuring. These observations suggest specific migration routes between island groups within Remote Oceania.
Collapse
Affiliation(s)
- Gabriela Olivares
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Bárbara Peña-Ahumada
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Johany Peñailillo
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudia Payacán
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Moncada
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago, Chile
| | | | - Kuo-Fang Chung
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Daniela Seelenfreund
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail: (DS); (AS)
| | - Andrea Seelenfreund
- Escuela de Antropología, Facultad de Ciencias Sociales, Universidad Academia de Humanismo Cristiano, Santiago, Chile
- * E-mail: (DS); (AS)
| |
Collapse
|
182
|
Miller WL, Edson J, Pietrandrea P, Miller-Butterworth C, Walter WD. Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus). BMC Genet 2019; 20:49. [PMID: 31170908 PMCID: PMC6554959 DOI: 10.1186/s12863-019-0750-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/20/2019] [Indexed: 11/30/2022] Open
Abstract
Background Microsatellite loci have been used extensively over the past two decades to study the genetic characteristics of non-model species. The ease of microsatellite development and ability to adapt markers from related species has led to the proliferation of available markers for many commonly studied species. Because it is often infeasible to genotype individuals across all available loci, researchers generally rely on subsets of markers. Marker choice can bias inferences made using disparate suites of loci. This has been a primary motivation for efforts to identify uniform marker panels. Here, we use the geographic distribution of previous studies to identify microsatellite loci for white-tailed deer (Odocoileus virginianus) with the potential for widespread use, and we evaluate the effectiveness of this panel in a portion of the range where few previous studies have been conducted. The purpose was to consolidate the numerous genetic resources for this species into a manageable panel and to provide a uniform methodology that improves comparisons between past and future studies. Results We reviewed microsatellite panels from 58 previous or ongoing projects and identified 106 candidate loci. We developed a multiplex protocol and evaluated the efficacy of 17 of the most commonly used loci using 720 DNA samples collected from the Mid-Atlantic region of the United States of America. Amplification errors were detected in six of these loci. The 11 remaining loci were highly polymorphic, exhibited low frequencies of null alleles, and were easy to interpret with the aid of allele binning software. Conclusions The development of broadly-applicable, core microsatellite panels has the potential to improve repeatability and comparative ability for commonly studied species. The properties of the consolidated 11 microsatellite panel suggest that they are applicable for many common research objectives for white-tailed deer. The geographic distribution of previous studies using these markers provides a greater degree of confidence regarding the robustness to common sources of error related to amplification anomalies, such as null alleles, relative to loci with more limited use. While this does not replace further evaluation of genotyping errors, it does provide a common platform that benefits future research studies. Electronic supplementary material The online version of this article (10.1186/s12863-019-0750-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William L Miller
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA. .,Present Address: Calvin College Department of Biology, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA.
| | - Jessie Edson
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| | | | | | - W David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
183
|
Morris AB, Shaw J. Markers in time and space: A review of the last decade of plant phylogeographic approaches. Mol Ecol 2019; 27:2317-2333. [PMID: 29675939 DOI: 10.1111/mec.14695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/28/2023]
Abstract
Plant studies comprise a relatively small proportion of the phylogeographic literature, likely as a consequence of the fundamental challenges posed by the complex genomic structures and life history strategies of these organisms. Comparative plastomics (i.e., comparisons of mutation rates within and among regions of the chloroplast genome) across plant lineages has led to an increased understanding of which markers are likely to provide the most information at low taxonomic levels. However, the extent to which the results of such work have influenced the literature has not been fully assessed, nor has the extent to which plant phylogeographers explicitly analyse markers in time and space, both of which are integral components of the field. Here, we reviewed more than 400 publications from the last decade of plant phylogeography to specifically address the following questions: (i) What is the phylogenetic breadth of studies to date? (ii) What molecular markers have been used, and why were they chosen? (iii) What kinds of markers are most frequently used and in what combinations? (iv) How frequently are divergence time estimation and ecological niche modelling used in plant phylogeography? Our results indicate that chloroplast DNA sequence data remain the primary tool of choice, followed distantly by nuclear DNA sequences and microsatellites. Less than half (42%) of all studies use divergence time estimation, while even fewer use ecological niche modelling (14%). We discuss the implications of our findings, as well as the need for community standards on data reporting.
Collapse
Affiliation(s)
- Ashley B Morris
- Department of Biology and Center for Molecular Biosciences, Middle Tennessee State University, Murfreesboro, Tennessee
| | - Joey Shaw
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee
| |
Collapse
|
184
|
Application of high-throughput amplicon sequencing-based SSR genotyping in genetic background screening. BMC Genomics 2019; 20:444. [PMID: 31159719 PMCID: PMC6547574 DOI: 10.1186/s12864-019-5800-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/05/2022] Open
Abstract
Background Host genetic backgrounds affect gene functions. The genetic backgrounds of genetically engineered organisms must be identified to confirm their genetic backgrounds identity with those of recipients. Marker-assisted backcrossing (MAB), transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) editing are three commonly used genetic engineering techniques. However, methods for genetic background screening between genetically engineered organisms and corresponding recipients suffer from low efficiency, low accuracy or high cost. Results Here, we improved our previously reported AmpSeq-SSR method, an amplicon sequencing-based simple sequence repeat (SSR) genotyping method, by selecting SSR loci with high polymorphism among varieties. Ultimately, a set of 396 SSRs was generated and applied to evaluate the genetic backgrounds identity between rice lines developed through MAB, transgenesis, and CRISPR/Cas9 editing and the respective recipient rice. We discovered that the percentage of different SSRs between the MAB-developed rice line and its recipient was as high as 23.5%. In contrast, only 0.8% of SSRs were different between the CRISPR/Cas9-system-mediated rice line and its recipient, while no SSRs showed different genotypes between the transgenic rice line and its recipient. Furthermore, most differential SSRs induced by MAB technology were located in non-coding regions (62.9%), followed by untranslated regions (21.0%) and coding regions (16.1%). Trinucleotide repeats were the most prevalent type of altered SSR. Most importantly, all altered SSRs located in coding regions were trinucleotide repeats. Conclusions This method is not only useful for the background evaluation of genetic resources but also expands our understanding of the unintended effects of different genetic engineering techniques. While the work we present focused on rice, this method can be readily extended to other organisms. Electronic supplementary material The online version of this article (10.1186/s12864-019-5800-4) contains supplementary material, which is available to authorized users.
Collapse
|
185
|
Del Castillo Múnera J, Quesada-Ocampo LM, Rojas A, Chilvers MI, Hausbeck MK. Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan. PLANT DISEASE 2019; 103:859-867. [PMID: 30908944 DOI: 10.1094/pdis-03-18-0394-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pythium ultimum causes seedling damping-off and root and crown rot in greenhouse ornamental plants. To understand the population dynamics and assess population structure of P. ultimum in Michigan floriculture crops, simple sequence repeats (SSRs) were developed using the previously published P. ultimum predicted transcriptome. A total of 166 isolates sampled from 2011 to 2013 from five, one, and three greenhouses in Kalamazoo, Kent, and Wayne Counties, respectively, were analyzed using six polymorphic and fluorescently labeled SSR markers. The average unbiased Simpson's index (λu, 0.95), evenness (E5, 0.56), and recovery of 12 major clones out of the 65 multilocus genotypes obtained, suggests that P. ultimum is not a recent introduction into Michigan greenhouses. Analyses revealed a clonal population, with limited differentiation among seasons, hosts, and counties sampled. Results also indicated the presence of common genotypes among years, suggesting that sanitation measures should be enhanced to eradicate resident P. ultimum populations. Finally, the presence of common genotypes among counties suggests that there is an exchange of infected plant material among greenhouse facilities, or that there is a common source of inoculum coming to the region. Continued monitoring of pathogen populations will enhance our understanding of population dynamics of P. ultimum in Michigan and facilitate improvement of control strategies.
Collapse
Affiliation(s)
| | | | - Alejandro Rojas
- 3 Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Martin I Chilvers
- 4 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824
| | - Mary K Hausbeck
- 4 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 48824
| |
Collapse
|
186
|
López-Uribe MM, Jha S, Soro A. A trait-based approach to predict population genetic structure in bees. Mol Ecol 2019; 28:1919-1929. [PMID: 30667117 DOI: 10.1111/mec.15028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life-history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species-level life-history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei's GST, Hedrick's G'ST , and Jost's D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick's G'ST and Jost's D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania
| | - Shalene Jha
- Deparment of Integrative Biology, The University of Texas at Austin, Austin, Texas
| | - Antonella Soro
- Institute for Biology, Martin-Luther University, Halle (Saale), Germany
| |
Collapse
|
187
|
McLennan EA, Wright BR, Belov K, Hogg CJ, Grueber CE. Too much of a good thing? Finding the most informative genetic data set to answer conservation questions. Mol Ecol Resour 2019; 19:659-671. [DOI: 10.1111/1755-0998.12997] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Elspeth A. McLennan
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Belinda R. Wright
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Katherine Belov
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
- San Diego Zoo Global San Diego California
| |
Collapse
|
188
|
Ono T, Kouguchi T, Ishikawa A, Nagano AJ, Takenouchi A, Igawa T, Tsudzuki M. Quantitative trait loci mapping for the shear force value in breast muscle of F2 chickens. Poult Sci 2019; 98:1096-1101. [PMID: 30329107 DOI: 10.3382/ps/pey493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The shear force value is one of the major traits that determine meat quality. In the present study, we performed QTL analysis for chicken breast muscle shear force value at 7 wk of age using 545 single nucleotide polymorphism (SNP) markers developed via restriction-site associated DNA sequencing (RAD-seq). An F2 resource family was generated by mating Oh-Shamo, a native Japanese chicken breed, and the White Plymouth Rock chicken breed. A total of 215 F2 birds were produced. Simple interval mapping revealed one significant main-effect QTL between 6.28 and 8.10 Mb SNPs on the chromosome Z with a logarithm of odds score of 5.53 at the genome-wide 5% level. At this QTL, the confidence interval, phenotypic variance explained, and additive effect were 26 cM, 12.24%, and -0.31 in males and -0.34 in females, respectively. No QTL with epistatic interaction effects were detected. To our knowledge, this is the first report on a QTL affecting the shear force value in the chicken breast muscle, using SNP markers derived from RAD-seq.
Collapse
Affiliation(s)
- Takashi Ono
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | - Akira Ishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.,Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Atsushi Takenouchi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takeshi Igawa
- Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Hiroshima 739-8528, Japan.,Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masaoki Tsudzuki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.,Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
189
|
Zhu J, Lv M, Zhou N, Chen D, Jiang Y, Wang L, He W, Peng D, Li Z, Qu S, Wang Y, Wang H, Luo H, An G, Liang W, Zhang L. Genotyping polymorphic microhaplotype markers through the Illumina® MiSeq platform for forensics. Forensic Sci Int Genet 2019; 39:1-7. [DOI: 10.1016/j.fsigen.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/07/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023]
|
190
|
de la Filia AG, Fenn-Moltu G, Ross L. No evidence for an intragenomic arms race under paternal genome elimination in Planococcus mealybugs. J Evol Biol 2019; 32:491-504. [PMID: 30776169 DOI: 10.1111/jeb.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co-evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three-generation pedigree: microsatellite markers and sex-specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co-evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gyda Fenn-Moltu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
191
|
Martin C, Viruel MA, Lora J, Hormaza JI. Polyploidy in Fruit Tree Crops of the Genus Annona (Annonaceae). FRONTIERS IN PLANT SCIENCE 2019; 10:99. [PMID: 30804968 PMCID: PMC6378316 DOI: 10.3389/fpls.2019.00099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/22/2019] [Indexed: 05/22/2023]
Abstract
Genome duplication or polyploidy is one of the main factors of speciation in plants. It is especially frequent in hybrids and very valuable in many crops. The genus Annona belongs to the Annonaceae, a family that includes several fruit tree crops, such as cherimoya (Annona cherimola), sugar apple (Annona squamosa), their hybrid atemoya (A. cherimola × A. squamosa) or pawpaw (Asimina triloba). In this work, genome content was evaluated in several Annona species, A. triloba and atemoya. Surprisingly, while the hybrid atemoya has been reported as diploid, flow cytometry analysis of a progeny obtained from an interspecific cross between A. cherimola and A. squamosa showed an unusual ploidy variability that was also confirmed karyotype analysis. While the progeny from intraspecific crosses of A. cherimola showed polyploid genotypes that ranged from 2.5 to 33%, the hybrid atemoyas from the interspecific cross showed 35% of triploids from a total of 186 genotypes analyzed. With the aim of understanding the possible implications of the production of non-reduced gametes, pollen performance, pollen size and frequency distribution of pollen grains was quantified in the progeny of this cross and the parents. A large polymorphism in pollen grain size was found within the interspecific progeny with higher production of unreduced pollen in triploids (38%) than in diploids (29%). Moreover, using PCR amplification of selected microsatellite loci, while 13.7% of the pollen grains from the diploids showed two alleles, 41.28% of the grains from the triploids amplified two alleles and 5.63% showed up to three alleles. This suggests that the larger pollen grains could correspond to diploid and, in a lower frequency, to triploid pollen. Pollen performance was also affected with lower pollen germination in the hybrid triploids than in both diploid parents. The results confirm a higher percentage of polyploids in the interspecific cross, affecting pollen grain size and pollen performance. The occurrence of unreduced gametes in A. cherimola, A. squamosa and their interspecific progeny that may result in abnormalities of ploidy such as the triploids and tetraploids observed in this study, opens an interesting opportunity to study polyploidy in Annonaceae.
Collapse
Affiliation(s)
| | | | | | - José I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
192
|
Flanagan SP, Jones AG. The future of parentage analysis: From microsatellites to SNPs and beyond. Mol Ecol 2019; 28:544-567. [PMID: 30575167 DOI: 10.1111/mec.14988] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental insights into behaviour, ecology and evolution. Microsatellite markers have long been the king of parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to parents. However, microsatellite markers have seen a sharp decline in use with the rise of next-generation sequencing technologies, especially in the study of population genetics and local adaptation. The time is ripe to review the current state of parentage analysis and see how it stands to be affected by the emergence of next-generation sequencing approaches. We find that single nucleotide polymorphisms (SNPs), the typical next-generation sequencing marker, remain underutilized in parentage analysis but are gaining momentum, with 58 SNP-based parentage analyses published thus far. Many of these papers, particularly the earlier ones, compare the power of SNPs and microsatellites in a parentage context. In virtually every case, SNPs are at least as powerful as microsatellite markers. As few as 100-500 SNPs are sufficient to resolve parentage completely in most situations. We also provide an overview of the analytical programs that are commonly used and compatible with SNP data. As the next-generation parentage enterprise grows, a reliance on likelihood and Bayesian approaches, as opposed to strict exclusion, will become increasingly important. We discuss some of the caveats surrounding the use of next-generation sequencing data for parentage analysis and conclude that the future is bright for this important realm of molecular ecology.
Collapse
Affiliation(s)
- Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| |
Collapse
|
193
|
Lemopoulos A, Prokkola JM, Uusi‐Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P, Koljonen M, Koskiniemi J, Vainikka A. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness - Implications for brown trout conservation. Ecol Evol 2019; 9:2106-2120. [PMID: 30847096 PMCID: PMC6392366 DOI: 10.1002/ece3.4905] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.
Collapse
Affiliation(s)
- Alexandre Lemopoulos
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Jenni M. Prokkola
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Silva Uusi‐Heikkilä
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anti Vasemägi
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Estonian University of Life SciencesInstitute of Veterinary Medicine and Animal SciencesTartuEstonia
| | - Ari Huusko
- Natural Resources Institute Finland (Luke), Kainuu Fisheries Research StationPaltamoFinland
| | - Pekka Hyvärinen
- Natural Resources Institute Finland (Luke), Kainuu Fisheries Research StationPaltamoFinland
| | | | - Jarmo Koskiniemi
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Anssi Vainikka
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
194
|
An RNA Sequencing Transcriptome Analysis and Development of EST-SSR Markers in Chinese Hawthorn through Illumina Sequencing. FORESTS 2019. [DOI: 10.3390/f10020082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chinese hawthorn (Crataegus pinnatifida) is an important ornamental and economic horticultural plant. However, the lack of molecular markers has limited the development and utilization of hawthorn germplasm resources. Simple sequence repeats (SSRs) derived from expressed sequence tags (ESTs) allow precise and effective cultivar characterization and are routinely used for genetic diversity analysis. Thus, we first reported the development of polymorphic EST-SSR markers in C. pinnatifida with perfect repeats using Illumina RNA-Seq technique. In total, we investigated 14,364 unigenes, from which 5091 EST-SSR loci were mined. Di-nucleotides (2012, 39.52%) were the most abundant SSRs, followed by mono- (1989, 39.07%), and tri-nucleotides (1024, 20.11%). On the basis of these EST-SSRs, a total of 300 primer pairs were designed and used for polymorphism analysis in 70 accessions collected from different geographical regions of China. Of 239 (79.67%) pairs of primer-generated amplification products, 163 (54.33%) pairs of primers showed polymorphism. Finally, 33 primers with high polymorphism were selected for genetic diversity analysis and tested on 70 individuals with low-cost fluorescence-labeled M13 primers using capillary electrophoresis genotyping platform. A total of 108 alleles were amplified by 33 SSR markers, with the number of alleles (Na) ranging from 2 to 14 per locus (mean: 4.939), and the effective number of alleles (Ne) ranging from 1.258 to 3.214 (mean: 2.221). The mean values of gene diversity (He), observed heterozygosity (Ho), and polymorphism information content (PIC) were 0.524 (range 0.205–0.689), 0.709 (range 0.132–1.000), and 0.450 (range 0.184–0.642), respectively. Furthermore, the dendrogram constructed based on the EST-SSR separated the cultivars into two main clusters. In sum, our study was the first comprehensive study on the development and analysis of a large set of SSR markers in hawthorn. The results suggested that the use of NGS techniques for SSR development represented a powerful tool for genetic studies. Additionally, fluorescence-labeled M13 markers proved to be a valuable method for genotyping. All of these EST-SSR markers have agronomic potential and constitute a scientific basis for future studies on the identification, classification, and innovation of hawthorn germplasms.
Collapse
|
195
|
Martin FN, Zhang Y, Cooke DEL, Coffey MD, Grünwald NJ, Fry WE. Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs. PLoS One 2019; 14:e0208606. [PMID: 30601865 PMCID: PMC6314598 DOI: 10.1371/journal.pone.0208606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
In many parts of the world the damaging potato late blight pathogen, Phytophthora infestans, is spread as a succession of clonal lineages. The discrimination of genetic diversity within such evolving populations provides insights into the processes generating novel lineages and the pathways and drivers of pathogen evolution and dissemination at local and global scales. This knowledge, in turn, helps optimise management practices. Here we combine two key methods for dissecting mitochondrial and nuclear diversity and resolve intra and inter-lineage diversity of over 100 P. infestans isolates representative of key clonal lineages found globally. A novel set of PCR primers that amplify five target regions are provided for mitochondrial DNA sequence analysis. These five loci increased the number of mtDNA haplotypes resolved from four with the PCR RFLP method to 37 (17, 6, 8 and 4 for Ia, Ib, IIa, and IIb haplotypes, respectively, plus 2 Herb-1 haplotypes). As with the PCR RFLP method, two main lineages, I and II were defined. Group I contained 25 mtDNA haplotypes that grouped broadly according to the Ia and Ib types and resolved several sub-clades amongst the global sample. Group II comprised two distinct clusters with four haplotypes corresponding to the RFLP type IIb and eight haplotypes resolved within type IIa. The 12-plex SSR assay revealed 90 multilocus genotypes providing accurate discrimination of dominant clonal lineages and other genetically diverse isolates. Some association of genetic diversity and geographic region of contemporary isolates was observed; US and Mexican isolates formed a loose grouping, distinct from isolates from Europe, South America and other regions. Diversity within clonal lineages was observed that varied according to the age of the clone. In combination, these fine-scale nuclear and maternally inherited mitochondrial markers enabled a greater level of discrimination among isolates than previously available and provided complementary perspectives on evolutionary questions relating to the diversity, phylogeography and the origins and spread of clonal lineages of P. infestans.
Collapse
Affiliation(s)
- Frank N. Martin
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, California, United States of America
| | - Yonghong Zhang
- Plant Pathology and Microbiology Department, University of California, Riverside, California, United States of America
| | | | - Mike D. Coffey
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Niklaus J. Grünwald
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - William E. Fry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
196
|
Matur F, Yanchukov A, Çolak F, Sözen M. Two major clades of blind mole rats (Nannospalax sp.) revealed by mtDNA and microsatellite genotyping in Western and Central Turkey. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
197
|
Tibihika PD, Curto M, Dornstauder-Schrammel E, Winter S, Alemayehu E, Waidbacher H, Meimberg H. Application of microsatellite genotyping by sequencing (SSR-GBS) to measure genetic diversity of the East African Oreochromis niloticus. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
198
|
Xia Y, Luo W, Yuan S, Zheng Y, Zeng X. Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species. BMC Genomics 2018; 19:886. [PMID: 30526480 PMCID: PMC6286531 DOI: 10.1186/s12864-018-5329-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/28/2018] [Indexed: 11/14/2022] Open
Abstract
Background Even though microsatellite loci frequently have been isolated using recently developed next-generation sequencing (NGS) techniques, this task is still difficult because of the subsequent polymorphism screening requires a substantial amount of time. Selecting appropriate polymorphic microsatellites is a critical issue for ecological and evolutionary studies. However, the extent to which assembly strategy, read length, sequencing depth, and library layout produce a measurable effect on microsatellite marker development remains unclear. Here, we use six frog species for genome skimming and two frog species for transcriptome sequencing to develop microsatellite markers, and investigate the effect of different isolation strategies on the yield of microsatellites. Results The results revealed that the number of isolated microsatellites increases with increased data quantity and read length. Assembly strategy could influence the yield and the polymorphism of microsatellite development. Larger k-mer sizes produced fewer total number of microsatellite loci, but these loci had a longer repeat length, suggesting greater polymorphism. However, the proportion of each type of nucleotide repeats was not affected; dinucleotide repeats were always the dominant type. Finally, the transcriptomic microsatellites displayed lower levels of polymorphisms and were less abundant than genomic microsatellites, but more likely to be functionally linked loci. Conclusions These observations provide deep insight into the evolution and distribution of microsatellites and how different isolation strategies affect microsatellite development using NGS. Electronic supplementary material The online version of this article (10.1186/s12864-018-5329-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,College of Bioengineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
199
|
Viruel J, Haguenauer A, Juin M, Mirleau F, Bouteiller D, Boudagher‐Kharrat M, Ouahmane L, La Malfa S, Médail F, Sanguin H, Nieto Feliner G, Baumel A. Advances in genotyping microsatellite markers through sequencing and consequences of scoring methods for Ceratonia siliqua (Leguminosae). APPLICATIONS IN PLANT SCIENCES 2018; 6:e01201. [PMID: 30598859 PMCID: PMC6303155 DOI: 10.1002/aps3.1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/28/2018] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Simple sequence repeat (SSR) or microsatellite markers have been used in a broad range of studies mostly scoring alleles on the basis of amplicon size as a proxy for the number of repeat units of an SSR motif. However, additional sources of variation within the SSR or in the flanking regions have largely remained undetected. METHODS In this study, we implemented a next-generation sequencing-based genotyping approach in a newly characterized set of 18 nuclear SSR markers for the carob tree, Ceratonia siliqua. Our aim was to evaluate the effect of three different methods of scoring molecular variation present within microsatellite markers on the genetic diversity and structure results. RESULTS The analysis of the sequences of 77 multilocus genotypes from four populations revealed SSR variation and additional sources of polymorphism in 87% of the loci analyzed (42 single-nucleotide polymorphisms and five insertion/deletion polymorphisms), as well as divergent paralog copies in two loci. Ignoring sequence variation under standard amplicon size genotyping resulted in incorrect identification of 69% of the alleles, with important effects on the genetic diversity and structure estimates. DISCUSSION Next-generation sequencing allows the detection and scoring of SSRs, single-nucleotide polymorphisms, and insertion/deletion polymorphisms to increase the resolution of population genetic studies.
Collapse
Affiliation(s)
- Juan Viruel
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Anne Haguenauer
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Marianick Juin
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Fatma Mirleau
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Delphine Bouteiller
- Institut du Cerveau et de la Moelle épinière (ICM)Hôpital Pitié Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
| | - Magda Boudagher‐Kharrat
- Laboratoire Caractérisation Génétique des PlantesFaculté des sciencesUniversité Saint‐JosephB.P. 11‐514 Riad El SolhBeirut1107 2050Lebanon
| | - Lahcen Ouahmane
- Laboratoire d'Ecologie et EnvironnementFaculté des Sciences SemlaliaUniversité Cadi AyyadMarrakeshMorocco
| | - Stefano La Malfa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A)Università degli Studi di CataniaVia Valdisavoia 595123CataniaItaly
| | - Frédéric Médail
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| | - Hervé Sanguin
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD)Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)MontpellierFrance
- LSTM [LSTM is sponsored by University of Montpellier, CIRAD, IRD, INRA, Montpellier SupAgro]TA A‐82/J Campus International de BaillarguetFR‐34398Montpellier CEDEX 5France
| | | | - Alex Baumel
- Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) [IMBE is sponsored by Aix Marseille University, Avignon University, Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)]Station marine d'Endoume, Chemin de la Batterie des LionsFR‐13007MarseilleFrance
| |
Collapse
|
200
|
Isolation and characterization of 21 polymorphic microsatellite loci for the rockpool shrimp Palaemon elegans using Illumina MiSeq sequencing. Sci Rep 2018; 8:17197. [PMID: 30464178 PMCID: PMC6249324 DOI: 10.1038/s41598-018-35408-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022] Open
Abstract
The rockpool shrimp Palaemon elegans is considered an important crustacean species within the European coastline fauna. This species is experiencing an ongoing geographical expansion beyond its native distribution range due to unintentional human introductions. A better knowledge of the genetic diversity, geographic structure and connectivity of its populations is necessary. In the present study, microsatellite loci were isolated using the Illumina MiSeq platform. The microsatellite-enriched library sequencing produced 3.9 million raw reads. Reads were processed and primer pairs were designed for microsatellite sequences amplification. Ninety-six microsatellite loci were preliminary screened in individuals from Atlantic and Mediterranean localities. From them, 21 loci exhibited reliable polymorphism and were thoroughly characterized in 30 individuals from a Cantabrian locality (Spain). No linkage disequilibrium between pairs of loci was detected. Number of alleles per locus ranged from 2 to 12. Observed and expected heterozygosities ranged from 0.033 to 0.833 and from 0.033 to 0.869 respectively. No significant departure from the Hardy-Weinberg equilibrium was detected in most of loci. This is the first time that microsatellite markers have been developed for P. elegans. This characterized microsatellite suite provides new suitable tools for further analyses, facilitating the understanding of population genetics both in natural and introduced populations.
Collapse
|