151
|
Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Nazia Tabassum
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- The University of Central Punjab Johar Town Lahore 54000 Pakistan
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
| |
Collapse
|
152
|
Kinetic stability studies of HBV vaccine in a microneedle patch. Int J Pharm 2019; 567:118489. [DOI: 10.1016/j.ijpharm.2019.118489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 02/02/2023]
|
153
|
|
154
|
Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm 2019; 140:121-140. [DOI: 10.1016/j.ejpb.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
155
|
Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109717. [PMID: 31349403 DOI: 10.1016/j.msec.2019.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
In the twenty-first century, microneedles based drug delivery is drawing attention worldwide in the research due to current signs of progress in the controlled release drug delivery through microneedles. The microneedles represent a promising technology to deliver therapeutic compounds into the skin for chronic complications like osteoporosis, diabetes, cancer and induction of immune responses from protein and DNA vaccines. However, the delivery of hydrophilic drugs and macromolecular agents are challenging. In this write up authors included the meticulous illustration of the chronological development of fabrication of microneedles with respect to an assortment of techniques, their modifications, clinical trials and regulatory perspectives period of 2000-2019. This review summarizes characterization, fabrications, biological applications and challenges. Additionally, relevant patents based on microneedle from USPTO) database are also highlighted.
Collapse
Affiliation(s)
- Sanjay Sharma
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Ketan Hatware
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Prashant Bhadane
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Sainath Sindhikar
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Dinesh K Mishra
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India.
| |
Collapse
|
156
|
Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art. Eur J Pharm Biopharm 2019; 137:95-111. [DOI: 10.1016/j.ejpb.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
|
157
|
Wang W, Liu HM, Zhou J, Wang YG, Feng X, Tang H, Yan Q, Zhu RS, Wu YW, Wang XG, He D, Chen F. Skin test of tuberculin purified protein derivatives with a dissolving microneedle-array patch. Drug Deliv Transl Res 2019; 9:795-801. [DOI: 10.1007/s13346-019-00629-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
158
|
Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability. J Mater Chem B 2019; 7:7515-7524. [DOI: 10.1039/c9tb01994d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microneedles are primarily designed for enhancing transdermal drug delivery in a minimally invasive manner.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Mengmeng Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Ruihao Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Lei Zhang
- Institute of Sericulture and Systems Biology, Southwest University
- Chongqing
- China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing 400715
| |
Collapse
|
159
|
Li S, Li W, Prausnitz M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv Transl Res 2018; 8:1043-1052. [PMID: 29948917 DOI: 10.1007/s13346-018-0549-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microneedle (MN) patches provide a simple method for delivery of drugs that might otherwise require hypodermic injection. Conventional MN patch fabrication methods typically can load only one or possibly multiple miscible agents with the same formulation on all MNs, which limits the combination and spatial distribution of drugs and formulations having different properties (such as solubility) in a single patch. In this study, we coated MNs individually instead of coating all MNs from the same formulation, making possible a patch where each individual MN is coated with different formulations and drugs. In this way, individually coated MN patches co-delivered multiple agents with different physicochemical characteristics (immiscible molecules, proteins, and nanoparticles) and in different spatial patterns in the skin. MN loading was adjusted by modifying the number of coating layers, and co-delivery of multiple agents was demonstrated in the porcine skin. We conclude that individually coating MNs enables co-delivery of multiple different compounds and formulations with needle-by-needle spatial control in the skin.
Collapse
Affiliation(s)
- Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Wei Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mark Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
160
|
Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery. Drug Deliv Transl Res 2018; 8:1034-1042. [PMID: 29845379 DOI: 10.1007/s13346-018-0547-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rapidly separating microneedles (RS-PP-MNs), composed of PVA (separable arrow head) MNs and a poly(L-lactide-co-D, L-lactide) (PLA) supporting array, are used for transdermal delivery system at high humidity. The fabricated RS-PP-MNs should have sufficient mechanical strength at different humidity. In general, the water adsorption rate was increased with increasing humidity; by contrast, storage time was decreased with increasing humidity. The higher water adsorption rate indicated the lower mechanical strength, thereby lowering drug delivery efficiency. The prepared RS-PP-MNs could be successfully inserted within the skin at high humid atmosphere due to PLA supporting array. The bright field and fluorescence microscopic images suggested the probable real-time applicability of RS-PP-MNs. The in vitro and in vivo assay suggested that RS-PP-MNs potentially were able to deliver the drugs at high humidity condition. The significant improvement in the drug delivery efficiency and skin penetration ability was observed compared with the traditional MNs. In addition, the fabrication of RS-PP-MNs is facile and scalable. Therefore, the prepared RS-PP-MNs with supporting solid PLA array might be advantageous in real-time applications. This study is of great importance for the MN field as it offers more theoretical support for clinical applications.
Collapse
|
161
|
Babity S, Roohnikan M, Brambilla D. Advances in the Design of Transdermal Microneedles for Diagnostic and Monitoring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803186. [PMID: 30353663 DOI: 10.1002/smll.201803186] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Due to their intrinsic advantages over classical hypodermic needles, microneedles have received much attention over the last two decades and will likely soon appear in clinics. Although the vast majority of research is focused on designing microneedles for the painless delivery of drugs, their applications for diagnostic purposes have also provided promising results. In this paper, the main advances in the field of microneedles for diagnostic and patient monitoring purposes are introduced and critically discussed.
Collapse
Affiliation(s)
- Samuel Babity
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Mahdi Roohnikan
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
162
|
Prakoeswa CRS, Pratiwi FD, Herwanto N, Citrashanty I, Indramaya DM, Murtiastutik D, Sukanto H, Rantam FA. The effects of amniotic membrane stem cell-conditioned medium on photoaging. J DERMATOL TREAT 2018; 30:478-482. [PMID: 30265171 DOI: 10.1080/09546634.2018.1530438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Photoaging is a complex biologic process that affects various layers of the skin with the major damage seen in the connective tissue of the dermis. Although rarely fatal, photoaging can significantly contribute to a loss of quality of life; therefore, it deserves attention. Researchers are continually searching for new compounds to develop rejuvenation therapies. Nowadays, the stem cell population has been discovered, and it shows capability to rejuvenate the skin. Material and methods: This was an analytic experimental research conducted on a total of 48 women who were randomized into two groups: 24 women received amniotic membrane stem cell-conditioned medium (AMSC-CM) and the other 24 women received normal saline (NS). We applied the drug for three times with an interval of 2 weeks. Microneedling was used to enhance epidermal penetration. We evaluated the progression of photoaging on Weeks 0, 4, and 8, as well as the side effects. Results: The improvement in photoaging after treatment showed significant better effects with the AMSC-CM than with NS (p < .05). There were minimal transient side effects in either of the study groups. Conclusion: AMSC-CM has the capability to improve clinical photoaging and is a promising option for rejuvenation therapy.
Collapse
Affiliation(s)
- Cita Rosita Sigit Prakoeswa
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | | | - Nanny Herwanto
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Irmadita Citrashanty
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Diah Mira Indramaya
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Dwi Murtiastutik
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Hari Sukanto
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Fedik A Rantam
- c Stem Cell Laboratory , Institute of Tropical Disease, Universitas Airlangga , Surabaya , Indonesia.,d Virology and Immunology Laboratory, Faculty of Veterinary Medicine, Department of Microbiology , Universitas Airlangga , Surabaya , Indonesia
| |
Collapse
|
163
|
Naito C, Katsumi H, Suzuki T, Quan YS, Kamiyama F, Sakane T, Yamamoto A. Self-Dissolving Microneedle Arrays for Transdermal Absorption Enhancement of Human Parathyroid Hormone (1-34). Pharmaceutics 2018; 10:pharmaceutics10040215. [PMID: 30400376 PMCID: PMC6320955 DOI: 10.3390/pharmaceutics10040215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
Human parathyroid hormone (1-34) (PTH) has been widely used as the subcutaneous injection formulation for the treatment of osteoporosis. In the present study, we developed an efficient transdermal delivery system of PTH by using dissolving microneedle arrays (MNs) composed of hyaluronic acid (HA) for the treatment of osteoporosis. PTH-loaded MNs, with needle length 800 µm, were fabricated via a micro-molding method. The stability of PTH in MNs was found to be 6-fold higher than that of PTH solution when stored at room temperature (15–20 °C) for one month. Micron-scale pores were clearly visible in rat skin following application of PTH-loaded MNs. PTH-loaded MNs were completely dissolved by 60 min following application to rat skin. The bioavailability (BA) of PTH relative to subcutaneous injection was 100 ± 4% following application of PTH-loaded MNs in rats. In addition, PTH-loaded MNs were found to effectively suppress decreases in bone density in a rat model of osteoporosis. Furthermore, no skin irritation was observed at the site of application in rats. These findings indicate that our dissolving MNs have a potential use in formulations for the transdermal delivery of PTH and for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chihiro Naito
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Tomoko Suzuki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co., Ltd., Minami-ku, Kyoto 601-8014, Japan.
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co., Ltd., Minami-ku, Kyoto 601-8014, Japan.
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
164
|
Kang G, Tu TNT, Kim S, Yang H, Jang M, Jo D, Ryu J, Baek J, Jung H. Adenosine-loaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration. Int J Cosmet Sci 2018; 40:199-206. [PMID: 29574973 DOI: 10.1111/ics.12453] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/08/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. METHODS Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS® premium, Dermascan® C, Cutometer® MPA580, and Corneometer® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. RESULTS The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P < 0.05). The dissolving microneedle patches had a long-lasting effect on the average wrinkle depth (P < 0.05), only showed efficacy in dermal density (P < 0.05), had an early improving effect on elasticity (P < 0.05), and demonstrated better hydration efficacy (P < 0.001). No adverse effects were observed in either group during the test period. CONCLUSIONS In the clinical efficacy test of four skin-improvement parameters, adenosine-loaded dissolving microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no adverse reactions. These adenosine-loaded dissolving microneedle patches are expected to be safe, effective, and novel cosmetics for skin improvement.
Collapse
Affiliation(s)
- G Kang
- Department of Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Juvic Inc., Building 102, Yonsei Engineering Research Park, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - T N T Tu
- Life Science and Biotechnology, Underwood International College, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - S Kim
- Department of Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - H Yang
- Department of Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Juvic Inc., Building 102, Yonsei Engineering Research Park, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - M Jang
- Department of Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Juvic Inc., Building 102, Yonsei Engineering Research Park, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - D Jo
- Dermapro Skin Research Center, 30 Bangbaejoongang-ro, Seocho-gu, Seoul, 06684, Korea
| | - J Ryu
- Dermapro Skin Research Center, 30 Bangbaejoongang-ro, Seocho-gu, Seoul, 06684, Korea
| | - J Baek
- Dermapro Skin Research Center, 30 Bangbaejoongang-ro, Seocho-gu, Seoul, 06684, Korea
| | - H Jung
- Department of Biotechnology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Juvic Inc., Building 102, Yonsei Engineering Research Park, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
165
|
Insulin–eukaryotic model membrane interaction: Mechanistic insight of insulin fibrillation and membrane disruption. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1917-1926. [DOI: 10.1016/j.bbamem.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
|
166
|
Luu E, Ita KB, Morra MJ, Popova IE. The Influence of Microneedles on the Percutaneous Penetration of Selected Antihypertensive Agents: Diltiazem Hydrochloride and Perindopril Erbumine. Curr Drug Deliv 2018; 15:1449-1458. [PMID: 30058488 PMCID: PMC6340158 DOI: 10.2174/1567201815666180730125941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well documented in the scientific literature that high blood pressure can lead to cardiovascular disease. Untreated hypertension has clinical consequences such as coronary artery disease, stroke or kidney failure. Diltiazem hydrochloride (DH), a calcium-channel blocker, and perindopril erbumine (PE), an inhibitor of the angiotensin converting enzyme are used for the management of hypertension. OBJECTIVE This project will examine the effect of microneedle rollers on the transport of DH and PE across pig ear skin. The use of the transcutaneous route of administration reduces and in sometimes eliminates the trauma and pain associated with injections. Furthermore, there is increased patient compliance. The purpose of this project was to study the effect of stainless steel microneedles on the transdermal delivery of DH and PE. METHOD We utilized vertical Franz diffusion cells to study in vitro transport of DH and PE across microneedle- treated pig ear skin. Confocal laser scanning microscopy (CLSM) was used to characterize microchannel depth. Transdermal flux values were determined from the slope of the linear portion of the cumulative amount versus time curve. RESULTS There was a 113.59-fold increase in the transdermal permeation of DH following the application of microneedle roller compared to passive diffusion. CONCLUSION In the case of PE, there was an 11.99-fold increase in the drug transport across pig skin following the application of microneedle rollers in comparison with passive diffusion. Student's t-test and Mann-Whitney's rank sum test were used to determine statistically significant differences between experimental and control groups.
Collapse
Affiliation(s)
- Emmy Luu
- College of Pharmacy, Touro University California, Mare Island-Vallejo, CA, United States
| | - Kevin B Ita
- College of Pharmacy, Touro University California, Mare Island-Vallejo, CA, United States
| | - Matthew J Morra
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, ID 83844-2339, United States
| | - Inna E Popova
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, ID 83844-2339, United States
| |
Collapse
|
167
|
Feng L, Shi N, Cai S, Qiao X, Chu P, Wang H, Long F, Yang H, Yang Y, Wang Y, Yu H. De Novo Molecular Design of a Novel Octapeptide That Inhibits In Vivo Melanogenesis and Has Great Transdermal Ability. J Med Chem 2018; 61:6846-6857. [PMID: 30011202 DOI: 10.1021/acs.jmedchem.8b00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cutaneous hyperpigmentation from excess melanogenesis causes serious pigmentary disorders and even melasma. Short peptides (SPs) are garnering attention lately owing to their therapeutic potential in dermatological diseases and low systemic side effects. Here, we show an octapeptide, ansin2, designed de novo from antioxidant SPs we previously reported, significantly inhibiting melanogenesis in B16 cells by decreasing tyrosinase production via regulating the MITF pathway. Ansin2 could also inhibit tyrosinase function by covering its catalytic pocket, which was simulated in docking and LIGPLOT studies. Topical application of ansin2 exhibited evident protection in UVB-induced pigmentation in guinea pig models both in terms of prophylaxis and treatment. Interestingly, unlike other hydrophilic and peptidic drugs that need delivery systems, ansin2 can be efficiently delivered topically to the epidermis and dermis per se without an affiliated moiety. Given that ansin2 lacks unwanted toxicities and immunogenicity, it holds great potential in treating hyperpigmentation in the cosmetics and pharmaceutical industries.
Collapse
Affiliation(s)
- Lan Feng
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Nannan Shi
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Shasha Cai
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Xue Qiao
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Peng Chu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Hui Wang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Feida Long
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Huaixin Yang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Yongliang Yang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| | - Yipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Haining Yu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian , Liaoning 116024 , China
| |
Collapse
|
168
|
Richter-Johnson J, Kumar P, Choonara YE, du Toit LC, Pillay V. Therapeutic applications and pharmacoeconomics of microneedle technology. Expert Rev Pharmacoecon Outcomes Res 2018; 18:359-369. [PMID: 29889571 DOI: 10.1080/14737167.2018.1485100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Microneedle (MN) arrays contain a backing plate with multiple microscopic projections to puncture the skin and can be used to deliver drug in a minimally invasive way. Advantages of MNs are numerous including administration of large molecules, avoiding first-pass metabolism, ease of administration, lack of pain, site-specific drug targeting, and dose reduction due to increased absorption efficacy. The growth in the transdermal market has been fueled by an increasing number of chronic disease patients and a demand for easy and pain-free drug administration. AREAS COVERED This paper highlights the use of MNs as a drug delivery system and discusses their potential market impact from a cost perspective. A number of clinical trials have been conducted and are listed to illustrate the potential applications of MNs for therapeutic use. Furthermore, the cosmetic market has made use of the MN technology, indicating that MNs can be used safely, efficaciously, and on a commercial scale. Furthermore, the cost-effectiveness of MNs is discussed. EXPERT COMMENTARY For MNs to become commercially available for therapeutic use, a number of factors will need to be considered: safety, ease of use, manufacturing and storage, uptake, effectiveness, and regulatory requirements.
Collapse
Affiliation(s)
- Jolanda Richter-Johnson
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Lisa C du Toit
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
169
|
Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:E208. [PMID: 29783676 PMCID: PMC5983264 DOI: 10.3390/toxins10050208] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Vincent Martin
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Andrew Splevins
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Saif Shubber
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, Wrexham LL13 9UF, UK.
| | | | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Philippe Picaut
- Ipsen Bioscience, 650 Kendall Street, Cambridge, MA 02142, USA.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
170
|
Chinnadayyala SR, Park I, Cho S. Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array. Mikrochim Acta 2018; 185:250. [DOI: 10.1007/s00604-018-2770-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
171
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
172
|
Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, Roberts JA, Gordon AC, Hope W, Georgiou P, Cass AEG, Holmes AH. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother 2018; 73:835-843. [PMID: 29211877 PMCID: PMC5890674 DOI: 10.1093/jac/dkx458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients.
Collapse
Affiliation(s)
- T M Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - D O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | - P Herrero
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - S Sharma
- College of Engineering, Swansea University, Swansea, UK
| | - L S P Moore
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - E de Barra
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - J A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine and Centre for Translational Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - A C Gordon
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - W Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - P Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - A E G Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, Kensington Campus, London, UK
| | - A H Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| |
Collapse
|
173
|
Patel V, Sharma OP, Mehta T. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin Drug Deliv 2018; 15:351-368. [PMID: 29465253 DOI: 10.1080/17425247.2018.1444025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. AREAS COVERED This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. EXPERT OPINION The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.
Collapse
Affiliation(s)
- Viral Patel
- a Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy , Nirma University , Ahmedabad , India
| | - Om Prakash Sharma
- b Pharmaceutical Technology Centre , Cadila Healthcare Limited , Ahmedabad , India
| | - Tejal Mehta
- a Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy , Nirma University , Ahmedabad , India
| |
Collapse
|
174
|
Wang QL, Ren JW, Chen BZ, Jin X, Zhang CY, Guo XD. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
175
|
Hutton ARJ, Quinn HL, McCague PJ, Jarrahian C, Rein-Weston A, Coffey PS, Gerth-Guyette E, Zehrung D, Larrañeta E, Donnelly RF. Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. Int J Pharm 2018; 541:56-63. [PMID: 29471143 PMCID: PMC5884307 DOI: 10.1016/j.ijpharm.2018.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 11/20/2022]
Abstract
Vitamin K deficiency within neonates can result in vitamin K deficiency bleeding. Ensuring that newborns receive vitamin K is particularly critical in places where access to health care and blood products and transfusions is limited. The World Health Organization recommends that newborns receive a 1 mg intramuscular injection of vitamin K at birth. Evidence from multiple surveillance studies shows that the introduction of vitamin K prophylaxis reduces the incidence of vitamin K deficiency bleeding. Despite these recommendations, coverage of vitamin K prophylactic treatment in low-resource settings is limited. An intramuscular injection is the most common method of vitamin K administration in neonates. In low- and middle-income countries, needle sharing may occur, which may result in the spread of bloodborne diseases. The objective of our study was to investigate the manufacture of microneedles for the delivery of vitamin K. Following microneedle fabrication, we performed insertion studies to assess the microneedle’s mechanical properties. Results indicate that vitamin K in a microneedle array was successfully delivered in vitro across neonatal porcine skin with 1.80 ± 0.08 mg delivered over 24 h. Therefore, this initial study shows that microneedles do have the potential to prevent vitamin K deficiency bleeding. Future work will assess delivery of vitamin K in microneedle array in vivo.
Collapse
Affiliation(s)
- Aaron R J Hutton
- School of Pharmacy, Queen's University, Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen L Quinn
- School of Pharmacy, Queen's University, Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Paul J McCague
- School of Pharmacy, Queen's University, Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | | | | | | | | | - Darin Zehrung
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University, Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University, Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
176
|
Wang QL, Zhang XP, Chen BZ, Guo XD. Dissolvable layered microneedles with core-shell structures for transdermal drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:143-147. [DOI: 10.1016/j.msec.2017.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/02/2017] [Accepted: 11/17/2017] [Indexed: 01/27/2023]
|
177
|
Nanovesicular systems loaded with a recently approved second generation type-5 phospodiesterase inhibitor (avanafil): I. Plackett-Burman screening and characterization. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
178
|
In Vivo Experimental Study of Noninvasive Insulin Microinjection through Hollow Si Microneedle Array. MICROMACHINES 2018; 9:mi9010040. [PMID: 30393315 PMCID: PMC6187700 DOI: 10.3390/mi9010040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
An experimental study of in vivo insulin delivery through microinjection by using hollow silicon microneedle array is presented. A case study was carried out on a healthy human subject in vivo to determine the influence of delivery parameters on drug transfer efficiency. As a microinjection device, a hollow microneedle array (13 × 13 mm2) having 100 microneedles (220 µm high, 130 µm-outer diameter and 50 µm-inner diameter) was designed and fabricated using classical microfabrication techniques. The efficiency of the delivery process was first characterized using methylene blue and a saline solution. Based on these results, the transfer efficiency was found to be predominantly limited by the inability of viable epidermis to absorb and allow higher drug transport toward the capillary-rich region. Two types of fast-acting insulin were used to provide evidence of efficient delivery by hollow MNA to a human subject. By performing blood analyses, infusion of more-concentrated insulin (200 IU/mL, international units (IU)) exhibited similar blood glucose level drop (5–7%) compared to insulin of standard concentration (100 IU/mL), however, significant increase of serum insulin (40–50%) with respect to the preinfusion values was determined. This was additionally confirmed by a distinctive increase of insulin to C-peptide ratio as compared to preinfusion ratio. Moreover, we noticed that this route of administration mimics a multiple dose regimen, able to get a “steady state” for insulin plasma concentration.
Collapse
|
179
|
Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018; 270:184-202. [DOI: 10.1016/j.jconrel.2017.11.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022]
|
180
|
Abstract
The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.
Collapse
Affiliation(s)
- Om Prakash Sharma
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Viral Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
181
|
Ita K. Dissolving microneedles for transdermal drug delivery: Advances and challenges. Biomed Pharmacother 2017; 93:1116-1127. [DOI: 10.1016/j.biopha.2017.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
|
182
|
Iriarte C, Awosika O, Rengifo-Pardo M, Ehrlich A. Review of applications of microneedling in dermatology. Clin Cosmet Investig Dermatol 2017; 10:289-298. [PMID: 28848356 PMCID: PMC5556180 DOI: 10.2147/ccid.s142450] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microneedling (MN) is a novel therapeutic modality in dermatology. Through physical trauma from needle penetration, MN induces a wound healing cascade with minimal damage to the epidermis. This allows for enhancement in the absorption of mainstay topical therapies across the thick stratum corneum. MN has become increasingly utilized over the last several years as it is a relatively simple procedure that is cost-effective, well tolerated, and offers both cosmetic and therapeutic benefits. The ability to treat localized areas of disease has led to numerous studies gauging its potential in focal diseases of inflammation, dyschromia, and photodamage. This review discusses the principles and evidence behind the expanding applications of MN. It has shown promising results as an adjuvant therapy for enhanced drug delivery in the treatment of atrophic scars, alopecia, actinic keratoses, and disorders of pigmentation such as melasma. The efficacy in treatment of vitiligo remains limited. Overall, the procedure has few adverse sequelae compared to other therapies, is highly efficacious, and is a viable resurfacing option for skin of color. Future research is needed to determine the frequency, interval, and specific device settings that foster optimal results. Additionally, large controlled trials are needed to shed light on the utility of MN as an evidence-based regimen for the treatment of various dermatologic conditions.
Collapse
Affiliation(s)
- Christopher Iriarte
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Olabola Awosika
- Department of Dermatology, The George Washington Medical Faculty Associates, Washington, DC, USA
| | - Monica Rengifo-Pardo
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Dermatology, The George Washington Medical Faculty Associates, Washington, DC, USA
| | - Alison Ehrlich
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Dermatology, The George Washington Medical Faculty Associates, Washington, DC, USA
| |
Collapse
|
183
|
Sachan R, Jaipan P, Zhang JY, Degan S, Erdmann D, Tedesco J, Vanderwal L, Stafslien SJ, Negut I, Visan A, Dorcioman G, Socol G, Cristescu R, Chrisey DB, Narayan RJ. Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation. Int J Bioprint 2017; 3:004. [PMID: 33094188 PMCID: PMC7575625 DOI: 10.18063/ijb.2017.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 11/23/2022] Open
Abstract
Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentration-dependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.
Collapse
Affiliation(s)
- Roger Sachan
- Wake Early College of Health and Sciences, Raleigh, North Carolina, USA
| | - Panupong Jaipan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Detlev Erdmann
- Department of Surgery, Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Lyndsi Vanderwal
- Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
| | - Shane J Stafslien
- Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Anita Visan
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Gabriela Dorcioman
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
184
|
Gong MM, Sinton D. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chem Rev 2017. [PMID: 28627178 DOI: 10.1021/acs.chemrev.7b00024] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.
Collapse
Affiliation(s)
- Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
185
|
Protti S, Albini A, Viswanathan R, Greer A. Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochem Photobiol 2017; 93:1139-1153. [DOI: 10.1111/php.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Stefano Protti
- PhotoGreen Lab Department of Chemistry University of Pavia Pavia Italy
| | - Angelo Albini
- PhotoGreen Lab Department of Chemistry University of Pavia Pavia Italy
| | | | - Alexander Greer
- Department of Chemistry Brooklyn College Brooklyn NY
- Ph.D. Program in Chemistry The Graduate Center of the City University of New York New York City NY
| |
Collapse
|
186
|
Chege M, McConville A, Davis J. Microneedle drug delivery systems: Appraising opportunities for improving safety and assessing areas of concern. ACS CHEMICAL HEALTH & SAFETY 2017. [DOI: 10.1016/j.jchas.2016.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
187
|
Hu X, Yu J, Qian C, Lu Y, Kahkoska AR, Xie Z, Jing X, Buse JB, Gu Z. H 2O 2-Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS NANO 2017; 11:613-620. [PMID: 28051306 PMCID: PMC5568789 DOI: 10.1021/acsnano.6b06892] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A self-regulated "smart" insulin administration system would be highly desirable for diabetes management. Here, a glucose-responsive insulin delivery device, which integrates H2O2-responsive polymeric vesicles (PVs) with a transcutaneous microneedle-array patch was prepared to achieve a fast response, excellent biocompatibility, and painless administration. The PVs are self-assembled from block copolymer incorporated with polyethylene glycol (PEG) and phenylboronic ester (PBE)-conjugated polyserine (designated mPEG-b-P(Ser-PBE)) and loaded with glucose oxidase (GOx) and insulin. The polymeric vesicles function as both moieties of the glucose sensing element (GOx) and the insulin release actuator to provide basal insulin release as well as promote insulin release in response to hyperglycemic states. In the current study, insulin release responds quickly to elevated glucose and its kinetics can be modulated by adjusting the concentration of GOx loaded into the microneedles. In vivo testing indicates that a single patch can regulate glucose levels effectively with reduced risk of hypoglycemia.
Collapse
Affiliation(s)
- Xiuli Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, 130022, People’s Republic of China
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chenggen Qian
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Anna R. Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Zhigang Xie
- State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, 130022, People’s Republic of China
| | - Xiabin Jing
- State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, 130022, People’s Republic of China
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Corresponding Author:
| |
Collapse
|
188
|
Ito Y, Kobuchi S, Inoue G, Kakumu E, Aoki M, Sakaeda T, Takada K. Dissolving microneedles for enhanced local delivery of capsaicin to rat skin tissue. J Drug Target 2016; 25:420-424. [PMID: 27918217 DOI: 10.1080/1061186x.2016.1266650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capsaicin-loaded dissolving microneedles (DMNs) were prepared to investigate the analgesic effect of capsaicin on the skin. The dimensions of each microneedle (MN) were as follows: diameter of the basement, 17 mm; length, 500 μm; and width, 300 μm. The average capsaicin content in the DMNs loaded with a low and high dose of capsaicin was 8.8 ± 0.5 mg and 12.5 ± 0.4 mg. Almost all the capsaicin, 99.3 ± 4.1% and 99.7 ± 2.2% for low-dose and high-dose DMNs were released within 20 min. High amounts of capsaicin were recovered with 102.8 ± 0.1% of capsaicin after storage at 23 °C for 90 days. The pharmacological activity of capsaicin DMNs was compared to that of capsaicin cream as a positive control, by measuring the idiospasm of depilated rat skin. The time required to achieve 50% idiospasm suppression was 26.3 ± 1.9 min and 53.0 ± 2.3 min for low-dose and high-dose DMNs. A pharmacokinetic study showed high tissue capsaicin levels of 660.2 ± 120.6 and 1805.3 ± 218.1 μg/g wet weight for low-dose and high-dose DMNs at 5 min after administration. The results suggest that DMNs could exert a rapid local analgesic action on the skin.
Collapse
Affiliation(s)
- Yukako Ito
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Shinji Kobuchi
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Genta Inoue
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Eisaku Kakumu
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Miki Aoki
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | - Toshiyuki Sakaeda
- a Department of Pharmacokinetics , Kyoto Pharmaceutical University , Yamashina-ku , Kyoto , Japan
| | | |
Collapse
|
189
|
Wang QL, Zhu DD, Liu XB, Chen BZ, Guo XD. Microneedles with Controlled Bubble Sizes and Drug Distributions for Efficient Transdermal Drug Delivery. Sci Rep 2016; 6:38755. [PMID: 27929104 PMCID: PMC5144082 DOI: 10.1038/srep38755] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 01/30/2023] Open
Abstract
Drug loaded dissolving microneedles (DMNs) fabricated with water soluble polymers have received increasing attentions as a safe and efficient transdermal drug delivery system. Usually, to reach a high drug delivery efficiency, an ideal drug distribution is gathering more drugs in the tip or the top part of DMNs. In this work, we introduce an easy and new method to introduce a bubble with controlled size into the body of DMNs. The introduction of bubbles can prevent the drug diffusion into the whole body of the MNs. The heights of the bubbles are well controlled from 75 μm to 400 μm just by changing the mass concentrations of polymer casting solution from 30 wt% to 10 wt%. The drug-loaded bubble MNs show reliable mechanical properties and successful insertion into the skins. For the MNs prepared from 15 wt% PVA solution, bubble MNs achieve over 80% of drug delivery efficiency in 20 seconds, which is only 10% for the traditional solid MNs. Additionally, the bubble microstructures in the MNs are also demonstrated to be consistent and identical regardless the extension of MN arrays. These scalable bubble MNs may be a promising carrier for the transdermal delivery of various pharmaceuticals.
Collapse
Affiliation(s)
- Qi Lei Wang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Dan Dan Zhu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xu Bo Liu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
190
|
Thakur RRS, Tekko IA, Al-Shammari F, Ali AA, McCarthy H, Donnelly RF. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res 2016; 6:800-815. [PMID: 27709355 PMCID: PMC5097091 DOI: 10.1007/s13346-016-0332-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, dissolving microneedles (MNs) were used to enhance ocular drug delivery of macromolecules. MNs were fabricated using polyvinylpyrrolidone (PVP) polymer of various molecular weights (MWs) containing three model molecules of increasing MW, namely fluorescein sodium and fluorescein isothiocyanate-dextrans (with MW of 70 k and 150 k Da). Arrays (3 × 3) of PVP MNs with conical shape measuring about 800 μm in height with a 300 μm base diameter, containing the model drugs, were fabricated and characterized for their fracture forces, insertion forces (in the sclera and cornea), depth of penetration (using OCT and confocal imaging), dissolution time and in vitro permeation. The average drug content of the MNs (only in MN shafts) ranged from 0.96 to 9.91 μg, and the average moisture content was below 11 %. High MW PVP produced MNs that can withstand higher forces with minimal reduction in needle height. PVP MNs showed rapid dissolution that ranged from 10 to 180 s, which was dependent upon PVP's MW. In vitro studies showed significant enhancement of macromolecule permeation when MNs were used, across both the corneal and scleral tissues, in comparison to topically applied aqueous solutions. Confocal images showed that the macromolecules formed depots within the tissues, which led to sustained permeation. However, use of MNs did not significantly benefit the permeation of small molecules; nevertheless, MN application has the potential for drug retention within the selected ocular tissues unlike topical application for small molecules. The material used in the fabrication of the MNs was found to be biocompatible with retinal cells (i.e. ARPE-19). Overall, this study reported the design and fabrication of minimally invasive rapidly dissolving polymeric MN arrays which were able to deliver high MW molecules to the eye via the intrastromal or intrascleral route. Thus, dissolving MNs have potential applications in enhancing ocular delivery of both small and macromolecules.
Collapse
Affiliation(s)
- Raghu Raj Singh Thakur
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Ismaiel A Tekko
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
- Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Farhan Al-Shammari
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Ahlam A Ali
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Helen McCarthy
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
191
|
The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs. Pharmaceutics 2016; 8:pharmaceutics8040033. [PMID: 27854292 PMCID: PMC5198017 DOI: 10.3390/pharmaceutics8040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/22/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this project was to examine the effect of microneedle rollers on the percutaneous penetration of tiagabine hydrochloride and carbamazepine across porcine skin in vitro. Liquid chromatography-mass spectrometric analysis was carried out using an Agilent 1200 Series HPLC system coupled to an Agilent G1969A TOF-MS system. Transdermal flux values of the drugs were determined from the steady-state portion of the cumulative amount versus time curves. Following twelve hours of microneedle roller application, there was a 6.74-fold increase in the percutaneous penetration of tiagabine hydrochloride (86.42 ± 25.66 µg/cm2/h) compared to passive delivery (12.83 ± 6.30 µg/cm2/h). For carbamazepine in 20% ethanol, passive transdermal flux of 7.85 ± 0.60 µg/cm2/h was observed compared to 10.85 ± 0.11 µg/cm2/h after microneedle treatment. Carbamazepine reconstituted in 30% ethanol resulted in only a 1.19-fold increase in drug permeation across porcine skin (36.73 ± 1.83 µg/cm2/h versus 30.74 ± 1.32 µg/cm2/h). Differences in flux values of untreated and microneedle-treated porcine skin using solid microneedles for the transdermal delivery of tiagabine were statistically significant. Although there were 1.38- and 1.19-fold increases in transdermal flux values of carbamazepine when applied as 20% and 30% ethanol solutions across microneedle-treated porcine skin, respectively, the increases were not statistically significant.
Collapse
|
192
|
Yu W, Jiang G, Liu D, Li L, Chen H, Liu Y, Huang Q, Tong Z, Yao J, Kong X. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:725-734. [PMID: 27987766 DOI: 10.1016/j.msec.2016.10.063] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
Abstract
To reduce the inconvenience and pain of subcutaneous needle injection, the calcium sulfate and gelatin biodegradable composite microneedle patches with high aspect-ratio microneedles (MNs) and a flexible substrate have been developed. The microneedles with an aspect-ratio approximate 6:1 exhibit excellent mechanical property which can achieve 0.4N for each needle. The cross-section views show the inside of microneedles that have abundant pores and channels which offer potential for different drug-release profiles. The preparation procedures, degradable property for the biodegradable composite microneedle patches are described in the paper. Insulin, the drug to control blood glucose levels in diabetic patients, has been embedded into the biodegradable composite MNs. The hypoglycemic effect for transdermal delivery of insulin is studied using diabetic Sprague-Dawley (SD) rats as models in vivo. After transdermal administration to the diabetic rats, the released insulin from biodegradable composite MNs exhibit an obvious and effective hypoglycemic effect for longer time compared with that of subcutaneous injection route. This work suggests that biodegradable composite MNs containing of insulin have a potential application in diabetes treatment via transdermal ingestion.
Collapse
Affiliation(s)
- Weijiang Yu
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China; National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China.
| | - Depeng Liu
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Lei Li
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Hua Chen
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Yongkun Liu
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Qin Huang
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China
| | - Zaizai Tong
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China; National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China
| | - Juming Yao
- Department of Materials Engineering, Zhejiang Sci Tech University, Hangzhou 310018, China; National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China
| | - Xiangdong Kong
- College of Life Science, Zhejiang Sci Tech University, Hangzhou 310018, China
| |
Collapse
|
193
|
Planz V, Lehr CM, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release 2016; 242:89-104. [PMID: 27612408 DOI: 10.1016/j.jconrel.2016.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
For preclinical testing of novel therapeutics, predictive in vitro models of the human skin are required to assess efficacy, absorption and safety. Simple as well as more sophisticated three-dimensional organotypic models of the human skin emerged as versatile and powerful tools simulating healthy as well as diseased skin states. Besides addressing the demands of research and industry, such models serve as valid alternative to animal testing. Recently, the acceptance of several models by regulatory authorities corroborates their role as important building block for preclinical development. However, valid assessment of readout parameters derived from these models requires suitable analytical techniques. Standard analytical methods are mostly destructive and limited regarding in-depth investigation on molecular level. The combination of adequate in vitro models with modern non-invasive analytical modalities bears a great potential to address important skin drug delivery related questions. Topics of interest are for instance the assessment of repeated dosing effects and xenobiotic biotransformation, which cannot be analyzed by destructive techniques. This review provides a comprehensive overview of current in vitro skin models differing in functional complexity and mimicking healthy as well as diseased skin states. Further, benefits and limitations regarding analytical evaluation of efficacy, absorption and safety of novel drug carrier systems applied to such models are discussed along with a prospective view of anticipated future directions. In addition, emerging non-invasive imaging modalities are introduced and their significance and potential to advance current knowledge in the field of skin drug delivery is explored.
Collapse
Affiliation(s)
- Viktoria Planz
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Maike Windbergs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany.
| |
Collapse
|
194
|
Abstract
Microneedling is a very simple, safe, effective, and minimally invasive therapeutic technique. It was initially introduced for skin rejuvenation, however, now it is being used for a very wide range of indications including acne scar, acne, post-traumatic/burn scar, alopecia, skin rejuvenation, drug delivery, hyperhidrosis, stretch marks, and many more. Moreover, during the last 10 years, many new innovations have been made to the initial instrument, which was used for microneedling. This technique can be combined with other surgical techniques to provide better results. In particular, it is a very safe technique for dark skin types, where risk of postinflammatory pigmentation is very high with other techniques that damage the epidermis. In this review article, we are updating on the different instruments now available for this procedure, and its efficacy when performed alone or in combination with other techniques for various indications.
Collapse
Affiliation(s)
- Aashim Singh
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| | - Savita Yadav
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| |
Collapse
|
195
|
A fabrication method of microneedle molds with controlled microstructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:135-42. [DOI: 10.1016/j.msec.2016.03.097] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/26/2016] [Indexed: 01/01/2023]
|
196
|
Bragazzi NL, Orsi A, Ansaldi F, Gasparini R, Icardi G. Fluzone® intra-dermal (Intanza®/Istivac® Intra-dermal): An updated overview. Hum Vaccin Immunother 2016; 12:2616-2627. [PMID: 27246556 DOI: 10.1080/21645515.2016.1187343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Influenza is a highly contagious respiratory acute viral disease which imposes a very heavy burden both in terms of epidemiology and costs, in the developed countries as well as in the developing ones. It represents a serious public health concern and vaccination constitutes an important tool to reduce or at least mitigate its burden. Despite the existence of a broad armamentarium against influenza and despite all the efforts and recommendations of international organisms to broaden immunization, influenza vaccination coverage is still far from being optimal. This, taken together with logistic and technical difficulties that can result into vaccine shortage, makes intra-dermal (ID) vaccines, such as Fluzone® ID and Intanza®, particularly attractive. ID vaccines are comparable and, in some cases, superior to intra-muscular/sub-cutaneous vaccines in terms of immunogenicity, safety, reactogenicity, tolerability and cross-protection profiles, as well as in terms of patient preference, acceptance and vaccine selection. Further advances, such as Fluzone® ID with alternative B strains and Quadrivalent Fluzone® ID or the possibility of self-administering the vaccines, make influenza ID vaccines even more valuable.
Collapse
Affiliation(s)
| | - Andrea Orsi
- a Department of Health Sciences (DISSAL) , University of Genoa , Genoa , Italy.,b Hygiene Unit, IRCCS AOU San Martino - IST of Genoa , Genoa , Italy
| | - Filippo Ansaldi
- a Department of Health Sciences (DISSAL) , University of Genoa , Genoa , Italy.,b Hygiene Unit, IRCCS AOU San Martino - IST of Genoa , Genoa , Italy
| | - Roberto Gasparini
- a Department of Health Sciences (DISSAL) , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- a Department of Health Sciences (DISSAL) , University of Genoa , Genoa , Italy.,b Hygiene Unit, IRCCS AOU San Martino - IST of Genoa , Genoa , Italy
| |
Collapse
|
197
|
Tawde SA, Chablani L, Akalkotkar A, D'Souza MJ. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J Control Release 2016; 235:147-154. [PMID: 27238440 DOI: 10.1016/j.jconrel.2016.05.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/25/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022]
Abstract
Ovarian cancer is the fifth most commonly occurring malignancy in women, with the highest mortality rate among all the gynecological tumors. Microparticulate vaccine can serve as an immunotherapeutic approach with a promising antigenic delivery system without a need for conventional adjuvants. In this study, a microparticulate vaccine using whole cell lysate of a murine ovarian cancer cell line, ID8 was prepared by spray drying. Further, the effect of interleukins (ILs) such as IL-2 and IL-12 was evaluated in a separate study group by administering them with vaccine particles to enhance the immune response. The vaccine microparticles were administered to C57BL/6 female mice via transdermal alone and in combination with the oral route. The transdermal vaccine was delivered using a metallic microneedle device, AdminPen™. Orally administered microparticles also included an M-cell targeting ligand, Aleuria aurantia lectin, to enhance the targeted uptake from microfold cells (M-cells) in Peyer's patches of small intestine. In case of combination of routes, mice were given 5 transdermal doses and 5 oral doses administered alternatively, beginning with transdermal dose. At the end of vaccination, mice were challenged with live tumor cells. Vaccine alone resulted in around 1.5 times tumor suppression in case of transdermal and combination of routes at the end of 15th week when compared to controls. Inclusion of interleukins resulted in 3 times tumor suppression when administered with transdermal vaccine and around 9 times tumor suppression for the combination route of delivery in comparison to controls. These results were further potentiated by serum IgG, IgG1 and IgG2a titers. Moreover, CD8+ T-cell, CD4+ T-cell and NK (natural killer) cell populations in splenocytes were elevated in case of vaccinated mice. Thus, vaccine microparticles could trigger humoral as well as cellular immune response when administered transdermally and via combination of route of delivery. However overall, vaccine administered with interleukins, via combination of route, was found to be the most efficacious to suppress the tumor growth and lead to a protective immune response.
Collapse
Affiliation(s)
- Suprita A Tawde
- Akorn Pharmaceuticals, Research and Development, 50 Lakeview Parkway, Suite 112, Vernon Hills, IL 60060, USA.
| | - Lipika Chablani
- Department of Pharmaceutical Sciences, St. John Fisher College, 3690 East Ave, Rochester, NY 14618, USA
| | | | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy and Health Sciences, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| |
Collapse
|
198
|
Abstract
The advent of microneedle (MN) technology has provided a revolutionary platform for the delivery of therapeutic agents, particularly in the field of gene therapy. For over 20 years, the area of gene therapy has undergone intense innovation and progression which has seen advancement of the technology from an experimental concept to a widely acknowledged strategy for the treatment and prevention of numerous disease states. However, the true potential of gene therapy has yet to be achieved due to limitations in formulation and delivery technologies beyond parenteral injection of the DNA. Microneedle-mediated delivery provides a unique platform for the delivery of DNA therapeutics clinically. It provides a means to overcome the skin barriers to gene delivery and deposit the DNA directly into the dermal layers, a key site for delivery of therapeutics to treat a wide range of skin and cutaneous diseases. Additionally, the skin is a tissue rich in immune sentinels, an ideal target for the delivery of a DNA vaccine directly to the desired target cell populations. This review details the advancement of MN-mediated DNA delivery from proof-of-concept to the delivery of DNA encoding clinically relevant proteins and antigens and examines the key considerations for the improvement of the technology and progress into a clinically applicable delivery system.
Collapse
|
199
|
Xie F, Chai JK, Hu Q, Yu YH, Ma L, Liu LY, Zhang XL, Li BL, Zhang DH. Transdermal permeation of drugs with differing lipophilicity: Effect of penetration enhancer camphor. Int J Pharm 2016; 507:90-101. [PMID: 27154251 DOI: 10.1016/j.ijpharm.2016.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/17/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to investigate the potential application of (+)-camphor as a penetration enhancer for the transdermal delivery of drugs with differing lipophilicity. The skin irritation of camphor was evaluated by in vitro cytotoxicity assays and in vivo transdermal water loss (TEWL) measurements. A series of model drugs with a wide span of lipophilicity (logP value ranging from 3.80 to -0.95), namely indometacin, lidocaine, aspirin, antipyrine, tegafur and 5-fluorouracil, were tested using in vitro transdermal permeation experiments to assess the penetration-enhancing profile of camphor. Meanwhile, the in vivo skin microdialysis was carried out to further investigate the enhancing effect of camphor on the lipophilic and hydrophilic model drugs (i.e. lidocaine and tegafur). SC (stratum corneum)/vehicle partition coefficient and Fourier transform infrared spectroscopy (FTIR) were performed to probe the regulation action of camphor in the skin permeability barrier. It was found that camphor produced a relatively low skin irritation, compared with the frequently-used and standard penetration enhancer laurocapram. In vitro skin permeation studies showed that camphor could significantly facilitate the transdermal absorption of model drugs with differing lipophilicity, and the penetration-enhancing activities were in a parabola curve going downwards with the drug logP values, which displayed the optimal penetration-enhancing efficiency for the weak lipophilic or hydrophilic drugs (an estimated logP value of 0). In vivo skin microdialysis showed that camphor had a similar penetration behavior on transdermal absorption of model drugs. Meanwhile, the partition of lipophilic drugs into SC was increased after treatment with camphor, and camphor also produced a shift of CH2 vibration of SC lipid to higher wavenumbers and decreased the peak area of the CH2 vibration, probably resulting in the alteration of the skin permeability barrier. This suggests that camphor might be a safe and effective penetration enhancer for transdermal drug delivery.
Collapse
Affiliation(s)
- Feng Xie
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China; Henan provincial people's hospital, Zhengzhou 450003,China
| | - Jia-Ke Chai
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China.
| | - Quan Hu
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Yong-Hui Yu
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Li Ma
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Ling-Ying Liu
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Xu-Long Zhang
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Bai-Ling Li
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| | - Dong-Hai Zhang
- Research Institute, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100037, China
| |
Collapse
|
200
|
ZHANG JENNIFER, WANG YAN, JIN JANEY, DEGAN SIMONE, HALL RUSSELLP, BOEHM RYAND, JAIPAN PANUPONG, NARAYAN ROGERJ. Use of Drawing Lithography-Fabricated Polyglycolic Acid Microneedles for Transdermal Delivery of Itraconazole to a Human Basal Cell Carcinoma Model Regenerated on Mice. JOM (WARRENDALE, PA. : 1989) 2016; 68:1128-1133. [PMID: 33597793 PMCID: PMC7886388 DOI: 10.1007/s11837-016-1841-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642-μm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800-μm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.
Collapse
Affiliation(s)
- JENNIFER ZHANG
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - YAN WANG
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - JANE Y. JIN
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - SIMONE DEGAN
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, NC 27708-0354, USA
| | - RUSSELL P. HALL
- Department of Dermatology, Duke University Medical Center, DUMC 3135, Durham, NC 27710, USA
| | - RYAN D. BOEHM
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| | - PANUPONG JAIPAN
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| | - ROGER J. NARAYAN
- UNC/NCSU Joint Department of Biomedical Engineering, Box 7115, Raleigh, NC 27695-7115, USA
| |
Collapse
|