151
|
Wu J, Wang Q, Liu S, Huang S, Mu J, Zeng Q, Huang L, Han D, Kang Z. Saturation Mapping of a Major Effect QTL for Stripe Rust Resistance on Wheat Chromosome 2B in Cultivar Napo 63 Using SNP Genotyping Arrays. FRONTIERS IN PLANT SCIENCE 2017; 8:653. [PMID: 28491075 PMCID: PMC5405077 DOI: 10.3389/fpls.2017.00653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat (Triticum aestivum L.). Widespread deployment of resistant cultivars is the best means of achieving durable disease control. The red grain, spring wheat cultivar Napo 63 produced by CIMMYT in the 1960s shows a high level of adult-plant resistance to stripe rust in the field. To elucidate the genetic basis of resistance in this cultivar we evaluated 224 F2:3 lines and 175 F2:6 recombinant inbred lines (RILs) derived from a cross between Napo 63 and the Pst-susceptible line Avocet S. The maximum disease severity (MDS) data of F2:3 lines and the relative area under the disease progress curve (rAUDPC) data of RILs were collected during the 2014-2015 and 2015-2016 wheat growing seasons, respectively. Combined bulked segregant analysis and 90K single nucleotide polymorphism (SNP) arrays placed 275 of 511 polymorphic SNPs on chromosome 2B. Sixty four KASP markers selected from the 275 SNPs and 76 SSR markers on 2B were used to identify a chromosome region associated with rust response. A major effect QTL, named Qyrnap.nwafu-2BS, was identified by inclusive composite interval mapping and was preliminarily mapped to a 5.46 cM interval flanked by KASP markers 90K-AN34 and 90K-AN36 in chromosome 2BS. Fourteen KASP markers more closely linked to the locus were developed following a 660K SNP array analysis. The QTL region was finally narrowed to a 0.9 cM interval flanked by KASP markers 660K-AN21 and 660K-AN57 in bin region 2BS-1-0.53. The resistance of Napo 63 was stable across all environments, and as a QTL, explained an average 66.1% of the phenotypic variance in MDS of F2:3 lines and 55.7% of the phenotypic variance in rAUDPC of F5:6 RILs. The short genetic interval and flanking KASP markers developed in the study will facilitate marker-assisted selection, gene pyramiding, and eventual positional cloning of Qyrnap.nwafu-2BS.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| |
Collapse
|
152
|
High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS One 2017; 12:e0175285. [PMID: 28399136 PMCID: PMC5388483 DOI: 10.1371/journal.pone.0175285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species.
Collapse
|
153
|
Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:189-203. [PMID: 28090692 DOI: 10.1111/tpj.13478] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 05/21/2023]
Abstract
Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Betty Pelgas
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanç Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John Mackay
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, 0X1 3RB, UK
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
154
|
Liu W, Maccaferri M, Bulli P, Rynearson S, Tuberosa R, Chen X, Pumphrey M. Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:649-667. [PMID: 28039515 DOI: 10.1007/s00122-016-2841-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 05/06/2023]
Abstract
Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide. Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| | - Marco Maccaferri
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sheri Rynearson
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164-6430, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
155
|
Ren J, Chen L, Jin X, Zhang M, You FM, Wang J, Frenkel V, Yin X, Nevo E, Sun D, Luo MC, Peng J. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides. FRONTIERS IN PLANT SCIENCE 2017; 8:258. [PMID: 28352272 PMCID: PMC5348526 DOI: 10.3389/fpls.2017.00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 05/06/2023]
Abstract
Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ FST ≤ 0.15) or high genetic differentiation (FST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different FST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.
Collapse
Affiliation(s)
- Jing Ren
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou UniversityDezhou, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of SciencesWuhan, China
| | - Xiaoli Jin
- Department of Agronomy and the Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang UniversityHangzhou, China
| | - Miaomiao Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of SciencesWuhan, China
| | - Frank M. You
- Cereal Research Centre, Agriculture and Agri-Food CanadaWinnipeg, MB, Canada
| | - Jirui Wang
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Vladimir Frenkel
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Xuegui Yin
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of HaifaHaifa, Israel
| | - Dongfa Sun
- Department of Agronomy, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of CaliforniaDavis, CA, USA
| | - Junhua Peng
- Department of Biotechnology, College of Agriculture, Guangdong Ocean UniversityZhanjiang, China
- The State Key Lab of Crop Breeding Technology Innovation and Integration, China National Seed Group Co. Ltd.Wuhan, China
| |
Collapse
|
156
|
Abstract
Understanding the genomic complexity of bread wheat is important for unraveling domestication processes, environmental adaptation, and for future of... Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing effect from the nonreference parents.
Collapse
|
157
|
Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K, Simeone R, Gadaleta A, Blanco A. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 2017; 18:122. [PMID: 28143400 PMCID: PMC5286776 DOI: 10.1186/s12864-016-3395-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. RESULTS Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. CONCLUSIONS The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari 'Aldo Moro', Via G. Amendola 165/A, 70126, Bari, Italy
| | - Maria Luisa Lozito
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via G. Amendola 165/A, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari 'Aldo Moro', Via G. Amendola 165/A, 70126, Bari, Italy
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via G. Amendola 165/A, Bari, Italy
| | - Angelica Giancaspro
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via G. Amendola 165/A, Bari, Italy
| | - Giacomo Mangini
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via G. Amendola 165/A, Bari, Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics - Cereal Research Centre, 71122, Foggia, Italy
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics - Cereal Research Centre, 71122, Foggia, Italy
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics - Cereal Research Centre, 71122, Foggia, Italy
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via G. Amendola 165/A, Bari, Italy
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari 'Aldo Moro', Via G. Amendola 165/A, 70126, Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', Via G. Amendola 165/A, Bari, Italy.
| |
Collapse
|
158
|
N’Diaye A, Haile JK, Cory AT, Clarke FR, Clarke JM, Knox RE, Pozniak CJ. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map. PLoS One 2017; 12:e0170941. [PMID: 28135299 PMCID: PMC5279799 DOI: 10.1371/journal.pone.0170941] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/12/2017] [Indexed: 12/30/2022] Open
Abstract
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
Collapse
Affiliation(s)
- Amidou N’Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jemanesh K. Haile
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aron T. Cory
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Fran R. Clarke
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - John M. Clarke
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ron E. Knox
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Curtis J. Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
159
|
Balcárková B, Frenkel Z, Škopová M, Abrouk M, Kumar A, Chao S, Kianian SF, Akhunov E, Korol AB, Doležel J, Valárik M. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. FRONTIERS IN PLANT SCIENCE 2017; 7:2063. [PMID: 28119729 PMCID: PMC5222868 DOI: 10.3389/fpls.2016.02063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/26/2016] [Indexed: 05/18/2023]
Abstract
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers.
Collapse
Affiliation(s)
- Barbora Balcárková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Zeev Frenkel
- Institute of Evolution, University of HaifaHaifa, Israel
| | - Monika Škopová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, FargoND, USA
| | - Shiaoman Chao
- Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service, FargoND, USA
| | - Shahryar F. Kianian
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, University of Minnesota, St. PaulMN, USA
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, ManhattanKS, USA
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| | - Miroslav Valárik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc, Czechia
| |
Collapse
|
160
|
Kidane YG, Mancini C, Mengistu DK, Frascaroli E, Fadda C, Pè ME, Dell'Acqua M. Genome Wide Association Study to Identify the Genetic Base of Smallholder Farmer Preferences of Durum Wheat Traits. FRONTIERS IN PLANT SCIENCE 2017; 8:1230. [PMID: 28769945 PMCID: PMC5511852 DOI: 10.3389/fpls.2017.01230] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 05/22/2023]
Abstract
Smallholder agriculture involves millions of farmers worldwide. A methodical utilization of their traditional knowledge in modern breeding efforts may help the production of locally adapted varieties better addressing their needs. In this study, a combination of participatory approaches, genomics, and quantitative genetics is used to trace the genetic basis of smallholder farmer preferences of durum wheat traits. Two smallholder communities evaluated 400 Ethiopian wheat varieties, mostly landraces, for traits of local interest in two locations in the Ethiopian highlands. For each wheat variety, farmers provided quantitative evaluations of their preference for flowering time, spike morphology, tillering capacity, and overall quality. Ten agronomic and phenology traits were simultaneously measured on the same varieties, providing the means to compare them with farmer traits. The analysis of farmer traits showed that they were partially influenced by gender and location but were repeatable and heritable, in some cases more than metric traits. The durum wheat varieties were genotyped for more than 80,000 SNP markers, and the resulting data was used in a genome wide association (GWA) study providing the molecular dissection of smallholder farmers' choice criteria. We found 124 putative quantitative trait loci (QTL) controlling farmer traits and 30 putative QTL controlling metric traits. Twenty of such QTL were jointly identified by farmer and metric traits. QTL derived from farmer traits were in some cases dependent on gender and location, but were consistent throughout. The results of the GWA study show that smallholder farmers' traditional knowledge can yield QTL eluding metric measurements of phenotypes. We discuss the potential of including farmer evaluations based on traditional knowledge in crop breeding, arguing for the utilization of this untapped resource to develop better adapted genetic materials for local agriculture.
Collapse
Affiliation(s)
- Yosef G. Kidane
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Sirinka Agricultural Research CenterWoldia, Ethiopia
- Bioversity InternationalAddis Ababa, Ethiopia
| | - Chiara Mancini
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Dejene K. Mengistu
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Department of Dryland Crop and Horticultural Sciences, Mekelle UniversityMekelle, Ethiopia
| | | | - Carlo Fadda
- Bioversity InternationalAddis Ababa, Ethiopia
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- *Correspondence: Matteo Dell'Acqua
| |
Collapse
|
161
|
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2017; 8:1389. [PMID: 28848588 PMCID: PMC5552701 DOI: 10.3389/fpls.2017.01389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/04/2023]
Abstract
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding.
Collapse
Affiliation(s)
- Weie Wen
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT)Beijing, China
| | - Fengmei Gao
- Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hui Jin
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| |
Collapse
|
162
|
Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y, Zhang X, Cheng S, Guo P, Guo J. A Combined Association Mapping and Linkage Analysis of Kernel Number Per Spike in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1412. [PMID: 28868056 PMCID: PMC5563363 DOI: 10.3389/fpls.2017.01412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Kernel number per spike (KNPS) in wheat is a key factor that limits yield improvement. In this study, we genotyped a set of 264 cultivars, and a RIL population derived from the cross Yangmai 13/C615 using the 90 K wheat iSelect SNP array. We detected 62 significantly associated signals for KNPS at 47 single nucleotide polymorphism (SNP) loci through genome-wide association analysis of data obtained from multiple environments. These loci were on 19 chromosomes, and the phenotypic variation attributable to each one ranged from 1.53 to 39.52%. Twelve (25.53%) of the loci were also significantly associated with KNPS in the RIL population grown in multiple environments. For example, BS00022896_51-2ATT , BobWhite_c10539_201-2DAA , Excalibur_c73633_120-3BGG , and Kukri_c35508_426-7DTT were significantly associated with KNPS in all environments. Our findings demonstrate the effective integration of association mapping and linkage analysis for KNPS, and underpin KNPS as a target trait for marker-assisted selection and genetic fine mapping.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Jingye Cheng
- College of Agronomy, Yangzhou UniversityYangzhou, China
| | - Zheng Zhang
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Jian Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Xin Yi
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Xiaoming Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain Industry and College of Agriculture, Yangtze UniversityJingzhou, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shunhe Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
- Shunhe Cheng
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
- Pingyi Guo
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
- *Correspondence: Jie Guo
| |
Collapse
|
163
|
Genetic Diversity and Association Mapping for Agromorphological and Grain Quality Traits of a Structured Collection of Durum Wheat Landraces Including subsp. durum, turgidum and diccocon. PLoS One 2016; 11:e0166577. [PMID: 27846306 PMCID: PMC5113043 DOI: 10.1371/journal.pone.0166577] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Association mapping was performed for 18 agromorphological and grain quality traits in a set of 183 Spanish landraces, including subspecies durum, turgidum and dicoccon, genotyped with 749 DArT (Diversity Array Technology) markers. Large genetic and phenotypic variability was detected, being the level of diversity among the chromosomes and genomes heterogeneous, and sometimes complementary, among subspecies. Overall, 356 were monomorphic in at least one subspecies, mainly in dicoccon, and some of them coincidental between subspecies, especially between turgidum and dicoccon. Several of those fixed markers were associated to plant responses to environmental stresses or linked to genes subjected to selection during tetraploid wheat domestication process. A total of 85 stable MTAs (marker–trait associations) have been identified for the agromorphological and quality parameters, some of them common among subspecies and others subspecies-specific. For all the traits, we have found MTAs explaining more than 10% of the phenotypic variation in any of the three subspecies. The number of MTAs on the B genome exceeded that on the A genome in subsp. durum, equalled in turgidum and was below in dicoccon. The validation of several adaptive and quality trait MTAs by combining the association mapping with an analysis of the signature of selection, identifying the putative gene function of the marker, or by coincidences with previous reports, showed that our approach was successful for the detection of MTAs and the high potential of the collection to identify marker–trait associations. Novel MTAs not previously reported, some of them subspecies specific, have been described and provide new information about the genetic control of complex traits.
Collapse
|
164
|
Perrotte J, Gaston A, Potier A, Petit A, Rothan C, Denoyes B. Narrowing down the single homoeologous FaPFRU locus controlling flowering in cultivated octoploid strawberry using a selective mapping strategy. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2176-2189. [PMID: 27168086 PMCID: PMC5095798 DOI: 10.1111/pbi.12574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 05/04/2023]
Abstract
Extending the period of fruit production is a way to substantially increase crop yield in many fruit or ornamental species. In the cultivated octoploid strawberry (Fragaria × ananassa), the most consumed small fruit worldwide, fruit production season can be extended by selecting the perpetual flowering (PF) cultivars. This trait is of considerable interest to growers and to the food industry. Four homoeologous loci controlling a single trait can be expected in such a complex octoploid species. However, we recently showed that the PF trait is under the control of the single dominant FaPFRU locus (J. Exp. Bot., 2013, 64, 1837), making it potentially amenable to marker-assisted selection (MAS). Here, we report the successful use of a strategy, based on a selective mapping using a reduced sample of individuals, to identify nine markers in close linkage to the FaPFRU allelic variant. Thus, this strategy can be used to fine map the target homoeologous loci in other complex polyploid crop species. Recombinant analysis further enabled us to reduce the locus to a region flanked by two markers, Bx083_206 and Bx215_131, corresponding to a 1.1 Mb region in the diploid F. vesca reference genome. This region comprises 234 genes, including 15 flowering associated genes. Among these, the FLOWERING LOCUS T (FT) is known to be a key activator of flowering. The close association between the PF trait and the FaPFRU flanking markers was validated using an additional segregating population and genetic resources. This study lays the foundation for effective and rapid breeding of PF strawberry cultivars by MAS.
Collapse
Affiliation(s)
- Justine Perrotte
- INRA, UMR 1332 BFP, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d'Ornon, France
- Ciref Création Variétale Fraises Fruits Rouges, Douville, France
| | - Amèlia Gaston
- INRA, UMR 1332 BFP, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d'Ornon, France
| | - Aline Potier
- INRA, UMR 1332 BFP, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d'Ornon, France
| | - Aurélie Petit
- Ciref Création Variétale Fraises Fruits Rouges, Douville, France
| | - Christophe Rothan
- INRA, UMR 1332 BFP, Villenave d'Ornon, France
- Université de Bordeaux, UMR 1332 BFP, Villenave d'Ornon, France
| | - Béatrice Denoyes
- INRA, UMR 1332 BFP, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 BFP, Villenave d'Ornon, France.
| |
Collapse
|
165
|
Aoun M, Breiland M, Kathryn Turner M, Loladze A, Chao S, Xu SS, Ammar K, Anderson JA, Kolmer JA, Acevedo M. Genome-Wide Association Mapping of Leaf Rust Response in a Durum Wheat Worldwide Germplasm Collection. THE PLANT GENOME 2016; 9. [PMID: 27902791 DOI: 10.3835/plantgenome2016.01.0008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf rust (caused by Erikss. []) is increasingly impacting durum wheat ( L. var. ) production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent race on durum wheat was recently detected in Kansas. This race may spread to the northern Great Plains, where most of the US durum wheat is produced. The objective of this study was to identify sources of resistance to several races from the United States and Mexico at seedling stage in the greenhouse and at adult stage in field experiments. Genome-wide association study (GWAS) was used to identify single-nucleotide polymorphism (SNP) markers associated with leaf rust response in a worldwide durum wheat collection of 496 accessions. Thirteen accessions were resistant across all experiments. Association mapping revealed 88 significant SNPs associated with leaf rust response. Of these, 33 SNPs were located on chromosomes 2A and 2B, and 55 SNPs were distributed across all other chromosomes except for 1B and 7B. Twenty markers were associated with leaf rust response at seedling stage, while 68 markers were associated with leaf rust response at adult plant stage. The current study identified a total of 14 previously uncharacterized loci associated with leaf rust response in durum wheat. The discovery of these loci through association mapping (AM) is a significant step in identifying useful sources of resistance that can be used to broaden the relatively narrow leaf rust resistance spectrum in durum wheat germplasm.
Collapse
|
166
|
Merchuk-Ovnat L, Fahima T, Krugman T, Saranga Y. Ancestral QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across enviroinments in modern wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:23-34. [PMID: 27593460 DOI: 10.1016/j.plantsci.2016.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 05/18/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving drought resistance in domesticated wheat. Nevertheless, wild germplasm has not been widely used in wheat breeding for abiotic stress resilience. In the current study, a near isogenic line NIL-7A-B-2, introgressed with a drought-related QTL from wild emmer wheat on chromosome 7A, and its recurrent parent, bread wheat cv. BarNir, were investigated under four environments across 2 years-water-limited and well-watered conditions in a rain-protected screen-house (Year 1) and two commercial open field plots under ample precipitation (Year 2). NIL-7A-B-2 exhibited an advantage over BarNir in grain yield and biomass production under most environments. Further physiological analyses suggested that enhanced photosynthetic capacity and photochemistry combined with higher flag leaf area are among the factors underlying the improved productivity of NIL-7A-B-2. These were coupled with improved sink capacity in NIL-7A-B-2, manifested by greater yield components than its parental line. This study provides further support for our previous findings that introgression of wild emmer QTL alleles, using marker assisted selection, can enhance grain yield and biomass production across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of yield and drought resistance.
Collapse
Affiliation(s)
- Lianne Merchuk-Ovnat
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
167
|
Mengistu DK, Kidane YG, Catellani M, Frascaroli E, Fadda C, Pè ME, Dell'Acqua M. High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1800-12. [PMID: 26853077 PMCID: PMC5067613 DOI: 10.1111/pbi.12538] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 05/18/2023]
Abstract
Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report the extensive molecular and phenotypic characterization of hundreds of Ethiopian durum wheat landraces and several Ethiopian improved lines. We test 81 587 markers scoring 30 155 single nucleotide polymorphisms and use them to survey the diversity, structure, and genome-specific variation in the panel. We show the uniqueness of Ethiopian germplasm using a siding collection of Mediterranean durum wheat accessions. We phenotype the Ethiopian panel for ten agronomic traits in two highly diversified Ethiopian environments for two consecutive years and use this information to conduct a genome-wide association study. We identify several loci underpinning agronomic traits of interest, both confirming loci already reported and describing new promising genomic regions. These loci may be efficiently targeted with molecular markers already available to conduct marker-assisted selection in Ethiopian and international wheat. We show that Ethiopian durum wheat represents an important and mostly unexplored source of durum wheat diversity. The panel analysed in this study allows the accumulation of QTL mapping experiments, providing the initial step for a quantitative, methodical exploitation of untapped diversity in producing a better wheat.
Collapse
Affiliation(s)
- Dejene Kassahun Mengistu
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Dryland Crop and Horticultural Sciences, Mekelle University, Mekelle, Ethiopia
| | - Yosef Gebrehawaryat Kidane
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Sirinka Agricultural Research Center, Sirinka, Woldia, Ethiopia
| | | | | | - Carlo Fadda
- Bioversity International, C/O International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
168
|
Chen Y, Shan F, Nelson MN, Siddique KH, Rengel Z. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3683-97. [PMID: 27049020 PMCID: PMC4896361 DOI: 10.1093/jxb/erw127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions.
Collapse
Affiliation(s)
- Yinglong Chen
- School of Earth and Environment, The University of Western Australia, Perth, WA 6009, Australia The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia The State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, and Chinese Academy of Sciences, Yangling, Shaanxi 712100, China
| | - Fucheng Shan
- The Department of Agriculture and Food, Western Australia, Locked Bag 4, Bentley, WA 6983, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia Current address: Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK
| | - Kadambot Hm Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Zed Rengel
- School of Earth and Environment, The University of Western Australia, Perth, WA 6009, Australia The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
169
|
Gardner KA, Wittern LM, Mackay IJ. A highly recombined, high-density, eight-founder wheat MAGIC map reveals extensive segregation distortion and genomic locations of introgression segments. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1406-17. [PMID: 26801965 PMCID: PMC4985697 DOI: 10.1111/pbi.12504] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/13/2015] [Accepted: 10/24/2015] [Indexed: 05/18/2023]
Abstract
Multiparent Advanced Generation Intercross (MAGIC) mapping populations offer unique opportunities and challenges for marker and QTL mapping in crop species. We have constructed the first eight-parent MAGIC genetic map for wheat, comprising 18 601 SNP markers. We validated the accuracy of our map against the wheat genome sequence and found an improvement in accuracy compared to published genetic maps. Our map shows a notable increase in precision resulting from the three generations of intercrossing required to create the population. This is most pronounced in the pericentromeric regions of the chromosomes. Sixteen percent of mapped markers exhibited segregation distortion (SD) with many occurring in long (>20 cM) blocks. Some of the longest and most distorted blocks were collinear with noncentromeric high-marker-density regions of the genome, suggesting they were candidates for introgression fragments introduced into the bread wheat gene pool from other grass species. We investigated two of these linkage blocks in detail and found strong evidence that one on chromosome 4AL, showing SD against the founder Robigus, is an interspecific introgression fragment. The completed map is available from http://www.niab.com/pages/id/326/Resources.
Collapse
Affiliation(s)
- Keith A Gardner
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | - Lukas M Wittern
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ian J Mackay
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Cambridge, UK
| |
Collapse
|
170
|
Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat. PLoS One 2016; 11:e0154609. [PMID: 27171472 PMCID: PMC4865223 DOI: 10.1371/journal.pone.0154609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/15/2016] [Indexed: 11/19/2022] Open
Abstract
Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.
Collapse
|
171
|
Milczarski P, Hanek M, Tyrka M, Stojałowski S. The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J Appl Genet 2016; 57:439-451. [PMID: 27085345 PMCID: PMC5061839 DOI: 10.1007/s13353-016-0347-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 11/28/2022]
Abstract
Genotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.), chromosomal localization of GBS markers has not yet been reported. In this paper, the application of GBS markers generated by the DArTseq platform for extending the high-density map of rye is presented. Additionally, their application is used for the localization of the Rfc1 gene that restores male fertility in plants with the C source of sterility-inducing cytoplasm. The total number of markers anchored on the current version of the map is 19,081, of which 18,132 were obtained from the DArTseq platform. Numerous markers co-segregated within the studied mapping population, so, finally, only 3397 unique positions were located on the map of all seven rye chromosomes. The total length of the map is 1593 cM and the average distance between markers is 0.47 cM. In spite of the resolution of the map being not very high, it should be a useful tool for further studies of the Secale cereale genome because of the presence on this map of numerous GBS markers anchored for the first time on rye chromosomes. The Rfc1 gene was located on high-density maps of the long arm of the 4R chromosome obtained for two mapping populations. Genetic maps were composed of DArT, DArTseq, and PCR-based markers. Consistent mapping results were obtained and DArTs tightly linked to the Rfc1 gene were successfully applied for the development of six new PCR-based markers useful in marker-assisted selection.
Collapse
Affiliation(s)
- Paweł Milczarski
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - Monika Hanek
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland
| | - Mirosław Tyrka
- Department of Biochemistry and Biotechnology, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959, Rzeszów, Poland
| | - Stefan Stojałowski
- Department of Plant Genetics, Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434, Szczecin, Poland.
| |
Collapse
|
172
|
Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:452. [PMID: 27148287 PMCID: PMC4832586 DOI: 10.3389/fpls.2016.00452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/22/2016] [Indexed: 05/21/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690-710 mm) and water-limited (290-320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass-specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.
Collapse
Affiliation(s)
- Lianne Merchuk-Ovnat
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Vered Barak
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Tzion Fahima
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Institute for Resistance Research and Stress ToleranceQuedlinburg, Germany
| | - Gabriel A. Lidzbarsky
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Tamar Krugman
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
173
|
Marcotuli I, Houston K, Schwerdt JG, Waugh R, Fincher GB, Burton RA, Blanco A, Gadaleta A. Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains. PLoS One 2016; 11:e0152590. [PMID: 27045166 PMCID: PMC4821454 DOI: 10.1371/journal.pone.0152590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/20/2022] Open
Abstract
Non-starch polysaccharides (NSPs) have many health benefits, including immunomodulatory activity, lowering serum cholesterol, a faecal bulking effect, enhanced absorption of certain minerals, prebiotic effects and the amelioration of type II diabetes. The principal components of the NSP in cereal grains are (1,3;1,4)-β-glucans and arabinoxylans. Although (1,3;1,4)-β-glucan (hereafter called β-glucan) is not the most representative component of wheat cell walls, it is one of the most important types of soluble fibre in terms of its proven beneficial effects on human health. In the present work we explored the genetic variability of β-glucan content in grains from a tetraploid wheat collection that had been genotyped with a 90k-iSelect array, and combined this data to carry out an association analysis. The β-glucan content, expressed as a percentage w/w of grain dry weight, ranged from 0.18% to 0.89% across the collection. Our analysis identified seven genomic regions associated with β-glucan, located on chromosomes 1A, 2A (two), 2B, 5B and 7A (two), confirming the quantitative nature of this trait. Analysis of marker trait associations (MTAs) in syntenic regions of several grass species revealed putative candidate genes that might influence β-glucan levels in the endosperm, possibly via their participation in carbon partitioning. These include the glycosyl hydrolases endo-β-(1,4)-glucanase (cellulase), β-amylase, (1,4)-β-xylan endohydrolase, xylanase inhibitor protein I, isoamylase and the glycosyl transferase starch synthase II.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland
| | - Julian G. Schwerdt
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Rachel A. Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetics and Plant Breeding, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Agata Gadaleta
- Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126, Bari, Italy
- * E-mail:
| |
Collapse
|
174
|
Fowler DB, N'Diaye A, Laudencia-Chingcuanco D, Pozniak CJ. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS One 2016; 11:e0152185. [PMID: 27019468 PMCID: PMC4809511 DOI: 10.1371/journal.pone.0152185] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant maturity in spring and winter wheat (Triticum aestivum L.) genotypes adapted to western Canada. Three doubled haploid populations with the winter cultivar ‘Norstar’ as a common parent were developed and genotyped with a 90K Illumina iSelect SNP assay and a 2,998.9 cM consensus map with 17,541 markers constructed. High heritability’s reflected large differences among the parents and relatively low genotype by environment interactions for all characters considered. Significant QTL were detected for the 15 traits examined. However, different QTL for days to heading in controlled environments and the field provided a strong reminder that growth and development are being orchestrated by environmental cues and caution should be exercised when extrapolating conclusions from different experiments. A QTL on chromosome 6A for minimum final leaf number, which determines the rate of phenological development in the seedling stage, was closely linked to QTL for low-temperature tolerance, grain quality, and agronomic characters expressed up to the time of maturity. This suggests phenological development plays a critical role in programming subsequent outcomes for many traits. Transgressive segregation was observed for the lines in each population and QTL with additive effects were identified suggesting that genes for desirable traits could be stacked using Marker Assisted Selection. QTL were identified for characters that could be transferred between the largely isolated western Canadian spring and winter wheat gene pools demonstrating the opportunities offered by Marker Assisted Selection to act as bridges in the identification and transfer of useful genes among related genetic islands while minimizing the drag created by less desirable genes.
Collapse
Affiliation(s)
- D B Fowler
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - A N'Diaye
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| | - D Laudencia-Chingcuanco
- Crop Improvement and Genetics Research Unit, USDA-ARS WRRC, 800 Buchanan St. Albany, CA, United States of America, 94710
| | - C J Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
| |
Collapse
|
175
|
Milner SG, Maccaferri M, Huang BE, Mantovani P, Massi A, Frascaroli E, Tuberosa R, Salvi S. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:735-48. [PMID: 26132599 PMCID: PMC11388855 DOI: 10.1111/pbi.12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 05/02/2023]
Abstract
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi-allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd-B1, while the latter overlapped with the vernalization locus VRN-A3. Additionally, 21 QTL with environment-specific effects were found. Our results indicated a prevalence of environment-specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.
Collapse
Affiliation(s)
- Sara Giulia Milner
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Bevan Emma Huang
- Digital Productivity Flagship and Agriculture Flagship, CSIRO, St Lucia, Qld, Australia
| | - Paola Mantovani
- Società Produttori Sementi Bologna, Argelato, Bologna, Italy
| | - Andrea Massi
- Società Produttori Sementi Bologna, Argelato, Bologna, Italy
| | | | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
176
|
Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1161-78. [PMID: 26880749 PMCID: PMC4753857 DOI: 10.1093/jxb/erw039] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy
| | - Walid El-Feki
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy Department of Crop Sciences, Faculty of Agriculture, Alexandria University, 23714 Alexandria, Egypt
| | - Ghasemali Nazemi
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy Department of Agriculture, Hajiabad Branch, Islamic Azad University, 21100 Hajiabad, Iran
| | - Silvio Salvi
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy
| | - Maria Angela Canè
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy
| | - Maria Chiara Colalongo
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy
| | - Sandra Stefanelli
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural Sciences (DipSA), University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
177
|
Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA. Identification of new heading date determinants in wheat 5B chromosome. BMC PLANT BIOLOGY 2016; 16 Suppl 1:8. [PMID: 26821813 PMCID: PMC4895781 DOI: 10.1186/s12870-015-0688-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Variability of heading date may assist in wheat adaptation to local environments. Thereafter, discovery of new heading date determinants is important for cereal improvement. In this study we used common wheat cultivar Chinese Spring (CS) and the substitution line of CS with 5B chromosome from T. dicoccoides (CS-5Bdic), different in their heading date by two weeks, to detect determinants of heading date on 5B chromosome. RESULTS The possible influence of the VRN-B1 gene, the most powerful regulator of flowering, located on 5B chromosome, to differences in heading time between CS and CS-5Bdic was studied. The sequencing of this gene from CS-5Bdic showed that an insertion of a nucleotide triplet produced an additional amino acid in the corresponding protein. No changes in the transcription levels of each homoeologous VRN-1 loci were found in CS-5Bdic by comparison with CS. To ascertain the loci determining heading date difference, a set of 116 recombinant inbred 5В chromosomal lines as a result of hybridization of CS with CS-5Bdic were developed and their heading dates were estimated. Using the Illumina Infinium 15 k Wheat platform, 379 5B-specific polymorphic markers were detected and a genetic map with 82 skeletal markers was constructed. Phenotype (heading date) - genotype association analysis revealed seventy eight markers in pericentromeric region of 5B chromosome significantly associated with heading date variation. Based on this estimation and synteny with model crop genomes we identified the three best candidate genes: WRKY, ERF/AP2 and FHY3/FAR1. CONCLUSIONS We supposed that the difference in activity of WRKY, ERF/AP2 and/or FHY3/FAR1 transcription factors between CS and CS-5Bdic to be a probable reason for the observed difference in heading dates. Data obtained in this study provide a good basis for the subsequent investigation of heading time pathways in wheat.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Irina N Leonova
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
178
|
Shavrukov Y. Comparison of SNP and CAPS markers application in genetic research in wheat and barley. BMC PLANT BIOLOGY 2016; 16 Suppl 1:11. [PMID: 26821936 PMCID: PMC4895257 DOI: 10.1186/s12870-015-0689-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND Barley and bread wheat show large differences in frequencies of Single Nucleotide Polymorphism (SNP) as determined from genome-wide studies. These frequencies have been estimated as 2.4-3 times higher in the entire barley genome than within each diploid genomes of wheat (A, B or D). However, barley SNPs within individual genes occur significantly more frequently than quoted. Differences between wheat and barley are based on the origin and evolutionary history of the species. Bread wheat contains rarer SNPs due to the double genetic 'bottle-neck' created by natural hybridisation and spontaneous polyploidisation. Furthermore, wheat has the lowest level of useful SNP-derived markers while barley is estimated to have the highest level of polymorphism. RESULTS Different strategies are required for the development of suitable molecular markers in these cereal species. For example, SNP markers based on high-throughput technology (Infinium or KASP) are very effective and useful in both barley and bread wheat. In contrast, Cleaved Amplified Polymorphic Sequences (CAPS) are more widely and successfully employed in small-scale experiments with highly polymorphic genetic regions containing multiple SNPs in barley, but not in wheat. However, preliminary 'in silico' search databases for assessing the potential value of SNPs have yet to be developed. CONCLUSIONS This mini-review summarises results supporting the development of different strategies for the application of effective SNP and CAPS markers in wheat and barley.
Collapse
Affiliation(s)
- Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia.
- Department of Biological Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
179
|
Jin H, Wen W, Liu J, Zhai S, Zhang Y, Yan J, Liu Z, Xia X, He Z. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population. FRONTIERS IN PLANT SCIENCE 2016; 7:1032. [PMID: 27486464 PMCID: PMC4949415 DOI: 10.3389/fpls.2016.01032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/30/2016] [Indexed: 05/18/2023]
Abstract
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat.
Collapse
Affiliation(s)
- Hui Jin
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Weie Wen
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yan Zhang
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Yan
- Wheat and Maize Research Center, Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Zhiyong Liu
- Department of Plant Genetics & Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural UniversityBeijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China officeBeijing, China
- *Correspondence: Zhonghu He
| |
Collapse
|
180
|
Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-van Putten HJJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G, Tartarini S, Letschka T, Lozano Luis L, Garkava-Gustavsson L, Micheletti D, Bink MCAM, Voorrips RE, Aziz E, Velasco R, Laurens F, van de Weg WE. A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. HORTICULTURE RESEARCH 2016; 3:16057. [PMID: 27917289 PMCID: PMC5120355 DOI: 10.1038/hortres.2016.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.
Collapse
Affiliation(s)
| | | | - Mario Di Guardo
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | | | | | - Sara Longhi
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Michela Troggio
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Luca Bianco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Hélène Muranty
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - Giulia Pagliarani
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna 40127, Italy
| | - Thomas Letschka
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | - Lidia Lozano Luis
- Department of Molecular Biology, Laimburg Research Centre for Agriculture and Forestry, Ora 39040, Italy
| | | | - Diego Micheletti
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - Marco CAM Bink
- Biometris, Wageningen University and Research, Wageningen 6700AA, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Ebrahimi Aziz
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
| | - Riccardo Velasco
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige 38010, Italy
| | - François Laurens
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, Beaucouzé 49071, France
| | - W Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen 6700AJ, The Netherlands
- ()
| |
Collapse
|
181
|
Zhao J, Zhang X, Li W, Chen K, Zhang D, Zhu X. SNP discovery and Characterization from transcriptomes of Asian yellow pond turtle, Mauremys mutica. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-015-0514-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
182
|
Wang T, Wang M, Hu S, Xiao Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC PLANT BIOLOGY 2015; 15:288. [PMID: 26654531 PMCID: PMC4676831 DOI: 10.1186/s12870-015-0675-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/03/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Starch from maize kernels has diverse applications in human and animal diets and in industry and manufacturing. To meet the demands of these applications, starch quantity and quality need improvement, which requires a clear understanding of the functional mechanisms involved in starch biosynthesis and accumulation. In this study, a recombinant inbred line (RIL) population was developed from a cross between inbred lines CI7 and K22. The RIL population, along with both parents, was grown in three environments, and then genotyped using the MaizeSNP50 BeadChip and phenotyped to dissect the genetic architecture of starch content in maize kernels. RESULTS Based on the genetic linkage map constructed using 2,386 bins as markers, six quantitative trait loci (QTLs) for starch content in maize kernels were detected in the CI7/K22 RIL population. Each QTL accounted for 4.7% (qSTA9-1) to 10.6% (qSTA4-1) of the starch variation. The QTL interval was further reduced using the bin-map method, with the physical distance of a single bin at the QTL peak ranging from 81.7 kb to 2.2 Mb. Based on the functional annotations and prior knowledge of the genes in the top bin, seven genes were considered as potential candidate genes for the identified QTLs. Three of the genes encode enzymes in non-starch metabolism but may indirectly affect starch biosynthesis, and four genes may act as regulators of starch biosynthesis. CONCLUSIONS A few large-effect QTLs, together with a certain number of minor-effect QTLs, mainly contribute to the genetic architecture of kernel starch content in our maize biparental linkage population. All of the identified QTLs, especially the large-effect QTL, qSTA4-1, with a small QTL interval, will be useful for improving the maize kernel starch content through molecular breeding.
Collapse
Affiliation(s)
- Tingting Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Min Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shuting Hu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Yingni Xiao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Hao Tong
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Qingchun Pan
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiquan Xue
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jiansheng Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genomics and Genetic Improvement, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
183
|
Laidò G, Panio G, Marone D, Russo MA, Ficco DBM, Giovanniello V, Cattivelli L, Steffenson B, de Vita P, Mastrangelo AM. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping. FRONTIERS IN PLANT SCIENCE 2015; 6:1033. [PMID: 26697025 PMCID: PMC4673868 DOI: 10.3389/fpls.2015.01033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/06/2015] [Indexed: 05/22/2023]
Abstract
Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.
Collapse
Affiliation(s)
- Giovanni Laidò
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Giosuè Panio
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Daniela Marone
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Maria A. Russo
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Donatella B. M. Ficco
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | | | - Luigi Cattivelli
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
- Genomics Research Centre, Council for Agricultural Research and EconomicsFiorenzuola d'Arda, Italy
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota Twin CitiesMinneapolis, MN, USA
| | - Pasquale de Vita
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| | - Anna M. Mastrangelo
- Cereal Research Centre, Council for Agricultural Research and EconomicsFoggia, Italy
| |
Collapse
|
184
|
Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (BETHESDA, MD.) 2015; 5:449-65. [PMID: 25609748 PMCID: PMC4349098 DOI: 10.1534/g3.114.014563] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/17/2015] [Indexed: 02/01/2023]
Abstract
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Plant Sciences, University of California, Davis, California 95616 Department of Agricultural Sciences (DipSA), University of Bologna, Bologna 40127, Italy
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Zewdie Abate
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Shiaoman Chao
- USDA-ARS, 1605 Albrecht Blvd, Fargo, North Dakota 58105
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Eligio Bossolini
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xianming Chen
- USDA-ARS, Wheat Genetics, Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California 95616 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
185
|
Canè MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R. Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 34:1629-1645. [PMID: 25506257 PMCID: PMC4257993 DOI: 10.1007/s11032-014-0177-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
Association mapping provides useful insights on the genetic architecture of quantitative traits across a large number of unrelated genotypes, which in turn allows an informed choice of the lines to be crossed for a more accurate characterization of major QTLs in a biparental genetic background. In this study, seedlings of 183 durum wheat elite accessions were evaluated in order to identify QTLs for root system architecture (RSA). The QTLs identified were compared with QTLs detected for grain yield and its component traits, plant height and peduncle length measured in a previous study where the same accessions were evaluated in 15 field trials with a broad range of soil moisture availability and productivity (Maccaferri et al. in J Exp Bot 62:409-438, 2011). The following RSA features were investigated in seedlings at the four-leaf stage: seminal root angle, primary root length, total root length, average root length, root number and shoot length. Highly significant differences among accessions were detected for all traits. The highest repeatability (h2 = 0.72) was observed for seminal root angle. Out of the 48 QTLs detected for RSA, 15 overlapped with QTLs for agronomic traits and/or grain yield in two or more environments. The congruency of the effects of RSA traits and agronomic traits was evaluated. Seminal root angle and root number appear the most promising traits for further studies on the adaptive role of RSA plasticity on field performance in environments differing for water availability. Our results provide novel insights on the genetic control of RSA and its implications on field performance of durum wheat.
Collapse
Affiliation(s)
- Maria Angela Canè
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Ghasemali Nazemi
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
- Department of Plant Production, I.A.U. Haji abad Branch, Haji abad, Iran
| | - Silvio Salvi
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Rossella Francia
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Chiara Colalongo
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural Sciences (DipSA), University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| |
Collapse
|