151
|
McMahon GE, Morse CI, Burden A, Winwood K, Onambélé-Pearson GL. The manipulation of strain, when stress is controlled, modulates in vivo tendon mechanical properties but not systemic TGF-β1 levels. Physiol Rep 2013; 1:e00091. [PMID: 24303165 PMCID: PMC3841029 DOI: 10.1002/phy2.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/11/2022] Open
Abstract
Modulators of loading-induced in vivo adaptations in muscle–tendon complex (MTC) mechanical properties remain unclear. Similarly contentious, is whether changes in MTC characteristics are associated with growth factor levels. Four groups were subjected to varying magnitudes of stress/strain: Group 1 trained with the MTC at a shortened position (MTCS; n = 10); Group 2 at a lengthened position (MTCL; n = 11; stress levels matched to MTCS); Group 3 over a wide range of motion (MTCX; n = 11); and Group 4 (n = 10) was the control population (no training). Patella tendon Stiffness (P < 0.001), Young's modulus, and quadriceps torque (P < 0.05) increments (only seen in the training groups), showed MTCL and MTCX groups responses to be superior to those of MTCS (P < 0.05). In addition, MTCL and MTCX better maintained adaptations compared to MTCS (P < 0.05) following detraining, with a pattern of slower loss of improvements at the early phase of detraining in all training groups. There were no significant changes (P > 0.05) in antagonist cocontraction, patella tendon dimensions or circulating transforming growth factor beta (TGF-β1) levels following training or detraining in any of the groups. We conclude that chronically loading the MTC in a relatively lengthened position (which involves greater strains) enhances its mechanical properties, more so than loading in a shortened position. This is true even after normalizing for internal stress. The underlying endocrine mechanisms do not appear to be mediated via TGF-β1, at least not at the systemic level. Our findings have implications with regard to the effectiveness of eccentric loading on improved tendon structural and mechanical properties.
Collapse
Affiliation(s)
- Gerard E McMahon
- Department of Exercise and Sport Science, Institute for Performance Research, Centre for Lifespan and Wellbeing, Manchester Metropolitan University Crewe Green Road, Crewe, CW1 5DU, United Kingdom ; Sports Institute Northern Ireland, University of Ulster Shore Rd, Newtownabbey, BT37 0QB, United Kingdom
| | | | | | | | | |
Collapse
|
152
|
Li R, Narici MV, Erskine RM, Seynnes OR, Rittweger J, Pišot R, Šimunič B, Flück M. Costamere remodeling with muscle loading and unloading in healthy young men. J Anat 2013; 223:525-36. [PMID: 24010829 PMCID: PMC3916893 DOI: 10.1111/joa.12101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 11/28/2022] Open
Abstract
Costameres are mechano-sensory sites of focal adhesion in the sarcolemma that provide a structural anchor for myofibrils. Their turnover is regulated by integrin-associated focal adhesion kinase (FAK). We hypothesized that changes in content of costamere components (beta 1 integrin, FAK, meta-vinculin, gamma-vinculin) with increased and reduced loading of human anti-gravity muscle would: (i) relate to changes in muscle size and molecular parameters of muscle size regulation [p70S6K, myosin heavy chain (MHC)1 and MHCIIA]; (ii) correspond to adjustments in activity and expression of FAK, and its negative regulator, FRNK; and (iii) reflect the temporal response to reduced and increased loading. Unloading induced a progressive decline in thickness of human vastus lateralis muscle after 8 and 34 days of bedrest (−4% and −14%, respectively; n = 9), contrasting the increase in muscle thickness after 10 and 27 days of resistance training (+5% and +13%; n = 6). Changes in muscle thickness were correlated with changes in cross-sectional area of type I muscle fibers (r = 0.66) and beta 1 integrin content (r = 0.76) at the mid-point of altered loading. Changes in meta-vinculin and FAK-pY397 content were correlated (r = 0.85) and differed, together with the changes of beta 1 integrin, MHCI, MHCII and p70S6K, between the mid- and end-point of resistance training. By contrast, costamere protein level changes did not differ between time points of bedrest. The findings emphasize the role of FAK-regulated costamere turnover in the load-dependent addition and removal of myofibrils, and argue for two phases of muscle remodeling with resistance training, which do not manifest at the macroscopic level.
Collapse
Affiliation(s)
- Ruowei Li
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Gordon BS, Kelleher AR, Kimball SR. Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell Biol 2013; 45:2147-57. [PMID: 23769967 DOI: 10.1016/j.biocel.2013.05.039] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
Protein synthesis and degradation are dynamically regulated processes that act in concert to control the accretion or loss of muscle mass. The present article focuses on the mechanisms involved in the impairment of protein synthesis that are associated with skeletal muscle atrophy. The vast majority of mechanisms known to regulate protein synthesis involve modulation of the initiation phase of mRNA translation, which comprises a series of reactions that result in the binding of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. The function of the proteins involved in both events has been shown to be repressed under atrophic conditions such as sepsis, cachexia, chronic kidney disease, sarcopenia, and disuse atrophy. The basis for the inhibition of protein synthesis under such conditions is likely to be multifactorial and includes insulin/insulin-like growth factor 1 resistance, pro-inflammatory cytokine expression, malnutrition, corticosteroids, and/or physical inactivity. The present article provides an overview of the existing literature regarding mechanisms and signaling pathways involved in the regulation of mRNA translation as they apply to skeletal muscle wasting, as well as the efficacy of potential clinical interventions such as nutrition and exercise in the maintenance of skeletal muscle protein synthesis under atrophic conditions. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Bradley S Gordon
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
154
|
Hussain AW, Onambele GL, Williams AG, Morse CI. Passive stiffness of the gastrocnemius muscle in athletes with spastic hemiplegic cerebral palsy. Eur J Appl Physiol 2013; 113:2291-9. [PMID: 23689294 DOI: 10.1007/s00421-013-2659-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/06/2013] [Indexed: 11/27/2022]
Abstract
The passive properties of the muscle-tendon unit are regularly assessed in individuals with cerebral palsy (CP). However, no information is available on the passive properties of adult muscle, and whether any differences exist between the paretic and control muscles. Eleven ambulant male athletes with spastic hemiplegic CP (21.2 ± 3.0 years) and controls without neurological impairment (age = 21.8 ± 2.2 years) completed two and one passive stretch session, respectively. During each session, the ankle was passively dorsiflexed until end range of motion (ROM), whilst recording passive ankle angle, torque and gastrocnemius medialis (GM) myotendinous junction (MTJ) displacement. In addition, GM cross-sectional area (CSA) and length were measured. Subsequently, in vivo stress and strain were determined to calculate elastic modulus. Passive stiffness, MTJ displacement and ROM of the paretic GM were not different from the control muscles. However, the elastic modulus of the paretic GM was two times stiffer than the control GM muscles. In conclusion, athletes with CP exhibit absolute passive muscle stiffness similar to the controls; however, the elastic modulus of the CP muscle was significantly greater. Therefore, throughout the same ROM a smaller GM CSA in CP athletes has to dissipate larger relative torque compared to the control muscles, consequently causing the muscle to elongate to the same extent as the non-paretic muscle under stretch.
Collapse
Affiliation(s)
- A W Hussain
- Department of Exercise and Sport Science, Institute for Performance Research, Manchester Metropolitan University Cheshire, Crewe Green Road, Crewe, Cheshire, CW1 5DU, UK.
| | | | | | | |
Collapse
|
155
|
Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology 2013; 14:247-59. [DOI: 10.1007/s10522-013-9427-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
156
|
Dideriksen K, Reitelseder S, Holm L. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients 2013; 5:852-76. [PMID: 23486194 PMCID: PMC3705323 DOI: 10.3390/nu5030852] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 12/14/2022] Open
Abstract
Ingestion of protein is crucial for maintenance of a variety of body functions and within the scope of this review we will specifically focus on the regulation of skeletal muscle mass. A quantitative limitation exists as to how much muscle protein the body can synthesize in response to protein intake. Ingestion of excess protein exerts an unwanted load to the body and therefore, it is important to find the least amount of protein that provides the maximal hypertrophic stimulus. Hence, research has focused on revealing the relationship between protein intake (dose) and its resulting stimulation of muscle protein synthesis (response). In addition to the protein amount, the protein digestibility and, hence, the availability of its constituent amino acids is decisive for the response. In this regard, recent studies have provided in-depth knowledge about the time-course of the muscle protein synthetic response dependent on the characteristics of the protein ingested. The effect of protein intake on muscle protein accretion can further be stimulated by prior exercise training. In the ageing population, physical training may counteract the development of “anabolic resistance” and restore the beneficial effect of protein feeding. Presently, our knowledge is based on measures obtained in standardized experimental settings or during long-term intervention periods. However, to improve coherence between these types of data and to further improve our knowledge of the effects of protein ingestion, other investigative approaches than those presently used are requested.
Collapse
Affiliation(s)
- Kasper Dideriksen
- Institute of Sports Medicine, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark; E-Mails: (S.R.); (L.H.)
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-3531-3948; Fax: +45-3531-2733
| | - Søren Reitelseder
- Institute of Sports Medicine, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark; E-Mails: (S.R.); (L.H.)
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Lars Holm
- Institute of Sports Medicine, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark; E-Mails: (S.R.); (L.H.)
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
157
|
Wall BT, van Loon LJC. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 2013; 71:195-208. [PMID: 23550781 DOI: 10.1111/nure.12019] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Situations such as recovery from injury or illness require otherwise healthy humans to undergo periods of disuse, which lead to considerable losses of skeletal muscle mass and, subsequently, numerous negative health consequences. It has been established that prolonged disuse (>10 days) leads to a decline in basal and postprandial rates of muscle protein synthesis, without an apparent change in muscle protein breakdown. It also seems, however, that an early and transient (1-5 days) increase in basal muscle protein breakdown may also contribute to disuse atrophy. A period of disuse reduces energy requirements and appetite. Consequently, food intake generally declines, resulting in an inadequate dietary protein consumption to allow proper muscle mass maintenance. Evidence suggests that maintaining protein intake during a period of disuse attenuates disuse atrophy. Furthermore, supplementation with dietary protein and/or essential amino acids can be applied to further aid in muscle mass preservation during disuse. Such strategies are of particular relevance to the older patient at risk of developing sarcopenia. More work is required to elucidate the impact of disuse on basal and postprandial rates of muscle protein synthesis and breakdown. Such information will provide novel targets for nutritional interventions to further attenuate muscle disuse atrophy and, as such, support healthy aging.
Collapse
Affiliation(s)
- Benjamin T Wall
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht 6200 MD, The Netherlands
| | | |
Collapse
|
158
|
Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Exp Gerontol 2013; 48:154-61. [DOI: 10.1016/j.exger.2012.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 12/17/2022]
|
159
|
Kelleher AR, Kimball SR, Dennis MD, Schilder RJ, Jefferson LS. The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb. Am J Physiol Endocrinol Metab 2013; 304. [PMID: 23193052 PMCID: PMC3543567 DOI: 10.1152/ajpendo.00409.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limb immobilization, limb suspension, and bed rest cause substantial loss of skeletal muscle mass, a phenomenon termed disuse atrophy. To acquire new knowledge that will assist in the development of therapeutic strategies for minimizing disuse atrophy, the present study was undertaken with the aim of identifying molecular mechanisms that mediate control of protein synthesis and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Male Sprague-Dawley rats were subjected to unilateral hindlimb immobilization for 1, 2, 3, or 7 days or served as nonimmobilized controls. Following an overnight fast, rats received either saline or L-leucine by oral gavage as a nutrient stimulus. Hindlimb skeletal muscles were extracted 30 min postgavage and analyzed for the rate of protein synthesis, mRNA expression, phosphorylation state of key proteins in the mTORC1 signaling pathway, and mTORC1 signaling repressors. In the basal state, mTORC1 signaling and protein synthesis were repressed within 24 h in the soleus of an immobilized compared with a nonimmobilized hindlimb. These responses were accompanied by a concomitant induction in expression of the mTORC1 repressors regulated in development and DNA damage responses (REDD) 1/2. The nutrient stimulus produced an elevation of similar magnitude in mTORC1 signaling in both the immobilized and nonimmobilized muscle. In contrast, phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) on Thr(229) and Thr(389) in response to the nutrient stimulus was severely blunted. Phosphorylation of Thr(229) by PDK1 is a prerequisite for phosphorylation of Thr(389) by mTORC1, suggesting that signaling through PDK1 is impaired in response to immobilization. In conclusion, the results show an immobilization-induced attenuation of mTORC1 signaling mediated by induction of REDD1/2 and defective p70S6K1 phosphorylation.
Collapse
Affiliation(s)
- Andrew R Kelleher
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
160
|
Bampouras TM, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Is maximum stimulation intensity required in the assessment of muscle activation capacity? J Electromyogr Kinesiol 2012; 22:873-7. [DOI: 10.1016/j.jelekin.2012.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 12/27/2011] [Accepted: 02/22/2012] [Indexed: 10/28/2022] Open
|
161
|
Couppé C, Suetta C, Kongsgaard M, Justesen L, Hvid LG, Aagaard P, Kjær M, Magnusson SP. The effects of immobilization on the mechanical properties of the patellar tendon in younger and older men. Clin Biomech (Bristol, Avon) 2012; 27:949-54. [PMID: 22770908 DOI: 10.1016/j.clinbiomech.2012.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND It remains unknown if inactivity changes the mechanical properties of the human patellar tendon in younger and older healthy persons. The purpose was to examine the effects of short-term unilateral immobilization on the structural and mechanical properties of the patellar tendon in older men and younger men, in vivo. METHODS Eight older men and eight younger men underwent 14 days of unilateral immobilization. All individuals were assessed on both sides before and after the intervention. MRI was used to assess whole patellar tendon dimensions. The mechanical properties of the patellar tendon were assessed using simultaneous force and ultrasonographic measurements during isometric ramp contractions. FINDINGS In older men, tendon stiffness [Pre: mean 2949 (SD 799) vs. Post: mean 2366 (SD 774) N mm(-1), P<0.01] and Young's Modulus [Pre: mean 1.2 (SD 0.3) vs. Post: mean 1.0 (SD 0.3) GPa, P<0.05] declined with immobilization on the immobilized side. On the control side, tendon stiffness [Pre: mean 3340 (SD 1209) vs. Post: mean 2230 (SD 503), P<0.01] and Young's Modulus [Pre: mean 1.5 (SD 0.4) vs. Post: mean 0.9 (SD 0.3) GPa, P<0.05] also decreased with immobilization. In younger men, tendon stiffness [Pre: 3622 (SD 1760) vs. Post: mean 2910 (SD 1528) N mm(-1), P<0.01] and Young's Modulus [Pre: mean 1.7 (SD 1.1) vs. Post: mean 1.4 (SD 0.8) GPa, P<0.05] decreased only on the immobilized side. INTERPRETATION Short-term immobilization led to impaired mechanical properties of the patellar tendon on the immobilized side in both younger men and older men, which can influence the function of the muscle-tendon complex.
Collapse
Affiliation(s)
- C Couppé
- Institute of Sports Medicine, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Physical Therapy, Bispebjerg Hospital, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Brunner A, Stäuber F, Göhler S, Czepa D, Krüger S, Wendel M, Seuser A, Hilberg T. Quadriceps strength, inter-extremity difference (IED) and joint status in adult persons with severe haemophilia in different age stages. Haemophilia 2012; 19:267-74. [DOI: 10.1111/hae.12034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2012] [Indexed: 12/01/2022]
Affiliation(s)
- A. Brunner
- Department of Sports Medicine; University of Wuppertal; Wuppertal; Germany
| | - F. Stäuber
- Department of Sports Medicine; University of Wuppertal; Wuppertal; Germany
| | - S. Göhler
- Department of Sports Medicine; University of Wuppertal; Wuppertal; Germany
| | - D. Czepa
- Department of Sports Medicine; University of Wuppertal; Wuppertal; Germany
| | - S. Krüger
- Department of Sports Medicine; University of Wuppertal; Wuppertal; Germany
| | - M. Wendel
- Institute of Motion Analysis and Quality Control of the Locomotive System; Bonn; Germany
| | - A. Seuser
- Institute of Motion Analysis and Quality Control of the Locomotive System; Bonn; Germany
| | - T. Hilberg
- Department of Sports Medicine; University of Wuppertal; Wuppertal; Germany
| |
Collapse
|
163
|
Miokovic T, Armbrecht G, Felsenberg D, Belavý DL. Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. J Appl Physiol (1985) 2012; 113:1545-59. [PMID: 22984243 DOI: 10.1152/japplphysiol.00611.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To better understand disuse muscle atrophy, via magnetic resonance imaging, we sequentially measured muscle cross-sectional area along the entire length of all individual muscles from the hip to ankle in nine male subjects participating in 60-day head-down tilt bed rest (2nd Berlin BedRest Study; BBR2-2). We hypothesized that individual muscles would not atrophy uniformly along their length such that different regions of an individual muscle would atrophy to different extents. This hypothesis was confirmed for the adductor magnus, vasti, lateral hamstrings, medial hamstrings, rectus femoris, medial gastrocnemius, lateral gastrocnemius, tibialis posterior, flexor hallucis longus, flexor digitorum longus, peroneals, and tibialis anterior muscles (P ≤ 0.004). In contrast, the hypothesis was not confirmed in the soleus, adductor brevis, gracilis, pectineus, and extensor digitorum longus muscles (P ≥ 0.20). The extent of atrophy only weakly correlated (r = -0.30, P < 0.001) with the location of greatest cross-sectional area. The rate of atrophy during bed rest also differed between muscles (P < 0.0001) and between some synergists. Most muscles recovered to their baseline size between 14 and 90 days after bed rest, but flexor hallucis longus, flexor digitorum longus, and lateral gastrocnemius required longer than 90 days before recovery occurred. On the basis of findings of differential atrophy between muscles and evidence in the literature, we interpret our findings of intramuscular atrophy to reflect differential disuse of functionally different muscle regions. The current work represents the first lower-limb wide survey of intramuscular differences in disuse atrophy. We conclude that intramuscular differential atrophy occurs in most, but not all, of the muscles of the lower limb during prolonged bed rest.
Collapse
Affiliation(s)
- Tanja Miokovic
- Centre for Muscle and Bone Research, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | |
Collapse
|
164
|
Cronin NJ, Barrett RS, Carty CP. Long-term use of high-heeled shoes alters the neuromechanics of human walking. J Appl Physiol (1985) 2012; 112:1054-8. [PMID: 22241055 DOI: 10.1152/japplphysiol.01402.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human movement requires an ongoing, finely tuned interaction between muscular and tendinous tissues, so changes in the properties of either tissue could have important functional consequences. One condition that alters the functional demands placed on lower limb muscle-tendon units is the use of high-heeled shoes (HH), which force the foot into a plantarflexed position. Long-term HH use has been found to shorten medial gastrocnemius muscle fascicles and increase Achilles tendon stiffness, but the consequences of these changes for locomotor muscle-tendon function are unknown. This study examined the effects of habitual HH use on the neuromechanical behavior of triceps surae muscles during walking. The study population consisted of 9 habitual high heel wearers who had worn shoes with a minimum heel height of 5 cm at least 40 h/wk for a minimum of 2 yr, and 10 control participants who habitually wore heels for less than 10 h/wk. Participants walked at a self-selected speed over level ground while ground reaction forces, ankle and knee joint kinematics, lower limb muscle activity, and gastrocnemius fascicle length data were acquired. In long-term HH wearers, walking in HH resulted in substantial increases in muscle fascicle strains and muscle activation during the stance phase compared with barefoot walking. The results suggest that long-term high heel use may compromise muscle efficiency in walking and are consistent with reports that HH wearers often experience discomfort and muscle fatigue. Long-term HH use may also increase the risk of strain injuries.
Collapse
Affiliation(s)
- Neil J. Cronin
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Finland; and
| | - Rod S. Barrett
- Musculoskeletal Research Program, Griffith Health Institute, Griffith University, Queensland, Australia
| | - Christopher P. Carty
- Musculoskeletal Research Program, Griffith Health Institute, Griffith University, Queensland, Australia
| |
Collapse
|
165
|
Abstract
PURPOSE : Precise measures of muscle size are useful when investigating weakness in children with cerebral palsy (CP). Therefore, the purpose of the study was to determine agreement between 2 muscle thickness measurements of the rectus femoris (RF) in CP. METHODS : Measures of RF thickness in 13 youth with CP who were ambulatory (mean age: 14.4 ± 3.6 years) were obtained bilaterally using ultrasound imaging. Three measures were obtained at 50% thigh length and averaged (MT50). Maximum muscle thickness (MaxMT) was also determined through repeated measurements toward the proximal insertion of the RF. RESULTS : The Bland-Altman plot showed that all values, except for one outlier, fell within 95% limits of agreement (-0.11 to 0.28 cm), showing excellent agreement. However, a constant bias toward higher values with MaxMT method was observed. CONCLUSION : Given the time-consuming nature of obtaining MaxMT, the MT50 measurement may be a more feasible alternative when estimating maximum muscle thickness of the RF.
Collapse
|
166
|
Kubo K, Ikebukuro T, Maki A, Yata H, Tsunoda N. Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. Eur J Appl Physiol 2011; 112:2679-91. [DOI: 10.1007/s00421-011-2248-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/11/2011] [Indexed: 01/27/2023]
|
167
|
Clark BC. In vivo alterations in skeletal muscle form and function after disuse atrophy. Med Sci Sports Exerc 2011; 41:1869-75. [PMID: 19727027 DOI: 10.1249/mss.0b013e3181a645a6] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Prolonged reductions in muscle activity and mechanical loading (e.g., bed rest, cast immobilization) result in alterations in skeletal muscle form and function. The purpose of this review article was to synthesize recent findings from several studies on the dramatic effects of disuse on skeletal muscle morphology and muscle performance in humans. Specifically, the following are discussed: 1) how the antigravity muscles are most susceptible to atrophy and how the degree of atrophy varies between muscle groups; 2) how disuse alters muscle composition by increasing intermuscular adipose tissue; 3) the influence of different disuse models on regulating the loss of muscle mass and strength, with immobilization causing greater reductions than bed rest and limb suspension do; 4) the observation that disuse decreases strength to a greater extent than muscle mass and the role of adaptations in both neural and contractile properties that influences this excessive loss of strength; 5) the equivocal findings on the effect of disuse on muscle fatigue resistance; and 6) the reduction in motor control after prolonged disuse. Lastly, emerging data warranting further inquiry into the modulating role of biological sex on disuse-induced adaptations are also discussed.
Collapse
Affiliation(s)
- Brian C Clark
- Institute for Neuromusculoskeletal Research, Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH 45701, USA.
| |
Collapse
|
168
|
Etheridge T, Atherton PJ, Wilkinson D, Selby A, Rankin D, Webborn N, Smith K, Watt PW. Effects of hypoxia on muscle protein synthesis and anabolic signaling at rest and in response to acute resistance exercise. Am J Physiol Endocrinol Metab 2011; 301:E697-702. [PMID: 21750270 PMCID: PMC3191550 DOI: 10.1152/ajpendo.00276.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic reductions in tissue O(2) tension (hypoxia) are associated with muscle atrophy and blunted hypertrophic responses to resistance exercise (RE) training. However, the effect of hypoxia on muscle protein synthesis (MPS) at rest and after RE is unknown. In a crossover study, seven healthy men (21.4 ± 0.7 yr) performed unilateral leg RE (6 × 8 repetitions at 70% 1-repetition maximum) under normoxic (20.9% inspired O(2)) and normobaric hypoxic (12% inspired O(2) for 3.5 h) postabsorptive conditions. Immediately after RE the rested leg was biopsied, and a primed continuous infusion of [1,2-(13)C(2)]leucine was maintained for 2.5 h before final biopsies from both legs to measure tracer incorporation and signaling responses (i.e., ribosomal S6 kinase 1). After 3.5 h of hypoxia, MPS was not different from normoxia in the rested leg (normoxia 0.033 ± 0.016 vs. hypoxia 0.043 ± 0.016%/h). MPS increased significantly from baseline 2.5 h after RE in normoxia (0.033 ± 0.016 vs. 0.104 ± 0.038%/h) but not hypoxia (0.043 ± 0.016 vs. 0.060 ± 0.063%/h). A significant linear relationship existed between MPS 2.5 h after RE in hypoxia and mean arterial blood O(2) saturation during hypoxia (r(2) = 0.49, P = 0.04). Phosphorylation of p70S6K(Thr389) remained unchanged in hypoxia at rest but increased after RE in both normoxia and hypoxia (2.6 ± 1.2-fold and 3.4 ± 1.1-fold, respectively). Concentrations of the hypoxia-responsive mTOR inhibitor regulated in development and DNA damage-1 were unaltered by hypoxia or RE. We conclude that normobaric hypoxia does not reduce MPS over 3.5 h at rest but blunts the increased MPS response to acute RE to a degree dependent on extant SpO(2).
Collapse
Affiliation(s)
- Timothy Etheridge
- University of Nottingham, School of Graduate Entry Medicine and Health, Derby, UK.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Pearson SJ, Onambélé GL. Computation methods affect the reported values of in vivo human tendon stiffness. J Mech Behav Biomed Mater 2011; 5:291-7. [PMID: 22100104 DOI: 10.1016/j.jmbbm.2011.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022]
Abstract
PURPOSE Scientific validity is questionable when findings from studies cannot be used to make sense of physiological and/or biomechanical data. In particular, is the case of in vivo determination of tendon stiffness (K). Here, approaches range from taking the gradient (a) throughout the data range of resting to Maximal Voluntary Contraction (MVC), (b) tangents at individual data points, (c) linear regressions at discrete force levels ((b) and (c) being 'reference standard' as they utilise a number of distinct regions of the Force-Elongation Relationship (FER)). STUDY DESIGN A mathematical model approach is used to develop simple curvilinear FERs as seen when determining tendon mechanical properties, to allow variable calculations of K. OBJECTIVES To compare variability in K estimates using the various approaches currently seen in the literature. METHODS Three FER models were developed, representing low, medium and high K. Values of K were determined and compared using the approaches reported in the literature to estimate the magnitude of the difference between values attained of K. RESULTS Through mathematical modelling, we demonstrate that the impact on the recorded value of K is substantial: relative to the reference standard methods, computation methods published range from underestimating K by 26% to overestimating it by 51%. CONCLUSION This modelling helps by providing a 'scaling factor' through which the between studies variability associated with computational methods differences is minimised. This is especially important where researchers or clinicians require values which are consistent in the context of establishing the 'true' tendon mechanical properties to inform models or materials based on the biological properties of the human tendon.
Collapse
Affiliation(s)
- Stephen J Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Manchester, M6 6PU, United Kingdom.
| | | |
Collapse
|
170
|
Hotta N, Ishida K, Sato K, Koike T, Katayama K, Akima H. The effect of intense interval cycle-training on unloading-induced dysfunction and atrophy in the human calf muscle. J Physiol Anthropol 2011; 30:29-35. [PMID: 21307618 DOI: 10.2114/jpa2.30.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated whether intense interval training on a cycle ergometer would prevent loss of muscle strength and atrophy in the human calf during unilateral lower limb suspension (ULLS). The present study involved 11 healthy men. We defined unloading leg and contralateral leg as ULLS-leg and CONT-leg, respectively. The subjects were divided into 2 groups: one with single-leg cycling training (Tr-UL, n=6); the other as a control (UL, n=5). The Tr-UL group performed an intense 25-min interval cycling training up to 80% of peak oxygen uptake on alternate days during 20-d ULLS. It was found that: 1) in maximal voluntary contraction (MVC) and the cross-sectional area of the planter flexor, there was a significant time- (pre-ULLS and post-ULLS) by-leg (ULLS-leg and CONT-leg) interaction; 2) in voluntary activation during MVC evaluated by the twitch interpolation technique, no significant time-by-leg interaction was detected but the trend of change from before to after ULLS tended to be different between ULLS-leg and CONT-leg; and 3) regarding ULLS-leg, the change in any parameters was not significantly different between the Tr-UL and UL groups. These results suggest that unloading induces dysfunction and atrophy in the human calf and that high-intensity interval training on a cycle ergometer cannot significantly prevent unloading-induced deconditioning in the human calf.
Collapse
Affiliation(s)
- Norio Hotta
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
171
|
Unilateral lower limb suspension: integrative physiological knowledge from the past 20 years (1991-2011). Eur J Appl Physiol 2011; 112:9-22. [PMID: 21533809 DOI: 10.1007/s00421-011-1971-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
In 1991, Hans Berg and colleagues published the first research investigation using unilateral lower limb suspension (ULLS) as a human model to study the influence of unloading on skeletal muscle. ULLS requires a participant to perform all activities with axillary crutches while wearing one thick-soled shoe. The elevated shoe eliminates ground contact with the adjacent foot, thereby unloading the lower limb. Today, ULLS is a well-known ground-based analog for microgravity. The present review will synthesize the physiological findings from investigations using ULLS to study the deleterious effects of unloading. Compromised human performance and the neuromuscular, musculoskeletal and circulatory mechanisms leading to altered function will be a major emphasis of the work. Results from prolonged bed rest will also be included in order for general comparisons to be made between analogs. Finally, the efficacy of exercise to mitigate the negative consequences of unloading is presented.
Collapse
|
172
|
Changes in muscle contractile characteristics and jump height following 24 days of unilateral lower limb suspension. Eur J Appl Physiol 2011; 112:135-44. [PMID: 21505844 PMCID: PMC3253280 DOI: 10.1007/s00421-011-1958-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/01/2011] [Indexed: 11/16/2022]
Abstract
We measured changes in maximal voluntary and electrically evoked torque and rate of torque development because of limb unloading. We investigated whether these changes during single joint isometric muscle contractions were related to changes in jump performance involving dynamic muscle contractions and several joints. Six healthy male subjects (21 ± 1 years) underwent 3 weeks of unilateral lower limb suspension (ULLS) of the right limb. Plantar flexor and knee extensor maximal voluntary contraction (MVC) torque and maximal rate of torque development (MRTD), voluntary activation, and maximal triplet torque (thigh; 3 pulses at 300 Hz) were measured next to squat jump height before and after ULLS. MVC of plantar flexors and knee extensors (MVCke) and triplet torque decreased by 12% (P = 0.012), 21% (P = 0.001) and 11% (P = 0.016), respectively. Voluntary activation did not change (P = 0.192). Absolute MRTD during voluntary contractions decreased for plantar flexors (by 17%, P = 0.027) but not for knee extensors (P = 0.154). Absolute triplet MRTD decreased by 17% (P = 0.048). The reduction in MRTD disappeared following normalization to MVC. Jump height with the previously unloaded leg decreased significantly by 28%. No significant relationships were found between any muscle variable and jump height (r < 0.48), but decreases in torque were (triplet, r = 0.83, P = 0.04) or tended to be (MVCke r = 0.71, P = 0.11) related to decreases in jump height. Thus, reductions in isometric muscle torque following 3 weeks of limb unloading were significantly related to decreases in the more complex jump task, although torque in itself (without intervention) was not related to jump performance.
Collapse
|
173
|
Tipton KD. Nutrition for acute exercise-induced injuries. ANNALS OF NUTRITION AND METABOLISM 2011; 57 Suppl 2:43-53. [PMID: 21346336 DOI: 10.1159/000322703] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Injuries are an unavoidable aspect of participation in physical activity. Little information about nutritional support for injuries exists. REVIEW Immediately following injury, wound healing begins with an inflammatory response. Excessive anti-inflammatory measures may impair recovery. Many injuries result in limb immobilization. Immobilization results in muscle loss due to increased periods of negative muscle protein balance. Oxidative capacity of muscle is also decreased. Nutrient and energy deficiencies should be avoided. Energy expenditure may be reduced during immobilization, but inflammation, wound healing and the energy cost of ambulation limit the reduction of energy expenditure. There is little rationale for increasing protein intake during immobilization. There is a theoretical rationale for leucine and omega-3 fatty acid supplementation to help reduce muscle atrophy. During rehabilitation and recovery from immobilization, increased activity, in particular resistance exercise will increase muscle protein synthesis and restore sensitivity to anabolic stimuli. Ample, but not excessive, protein and energy must be consumed to support muscle growth. During rehabilitation and recovery, nutritional needs are very much like those for any athlete desiring muscle growth. CONCLUSION Nutrition is important for optimal wound healing. The most important consideration is to avoid malnutrition and to apply a risk/benefit approach.
Collapse
Affiliation(s)
- Kevin D Tipton
- Sports, Health and Exercise Sciences Research Group, University of Stirling, Stirling, UK.
| |
Collapse
|
174
|
Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R. Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol 2011; 589:2147-60. [PMID: 21320887 DOI: 10.1113/jphysiol.2010.203232] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A pivotal role has been ascribed to oxidative stress in determining the imbalance between protein synthesis and degradation leading to muscle atrophy in many pathological conditions and in disuse. However, a large variability in disuse-induced alteration of redox homeostasis through muscles, models and species emerges from the literature. Whereas the causal role of oxidative stress appears well established in the mechanical ventilation model, findings are less compelling in the hindlimb unloaded mice and very limited in humans. The mere coexistence of muscle atrophy, indirect indexes of increased reactive oxygen species (ROS) production and impairment of antioxidant defence systems, in fact, does not unequivocally support a causal role of oxidative stress in the phenomenon. We hypothesise that in some muscles, models and species only, due to a large redox imbalance, the leading phenomena are activation of proteolysis and massive oxidation of proteins, which would become more susceptible to degradation. In other conditions, due to a lower extent and variable time course of ROS production, different ROS-dependent, but also -independent intracellular pathways might dominate determining the variable extent of atrophy and even dispensable protein oxidation. The ROS production and removal are complex and finely tuned phenomena. They are indeed important intracellular signals and redox balance maintains normal muscle homeostasis and can underlie either positive or negative adaptations to exercise. A precise approach to determine the levels of ROS in living cells in various conditions appears to be of paramount importance to define and support such hypotheses.
Collapse
|
175
|
Murphy KT, Cobani V, Ryall JG, Ibebunjo C, Lynch GS. Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. J Appl Physiol (1985) 2011; 110:1065-72. [PMID: 21270350 DOI: 10.1152/japplphysiol.01183.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Dept. of Physiology, The Univ. of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
176
|
Agostini F, Dalla Libera L, Rittweger J, Mazzucco S, Jurdana M, Mekjavic IB, Pisot R, Gorza L, Narici M, Biolo G. Effects of inactivity on human muscle glutathione synthesis by a double-tracer and single-biopsy approach. J Physiol 2010; 588:5089-104. [PMID: 20962001 PMCID: PMC3036199 DOI: 10.1113/jphysiol.2010.198283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress is often associated to inactivity-mediated skeletal muscle atrophy. Glutathione is one of the major antioxidant systems stimulated, both at muscular and systemic level, by activation of oxidative processes. We measured changes in glutathione availability, oxidative stress induction and the extent of atrophy mediated by 35 days of experimental bed rest in vastus lateralis muscle of healthy human volunteers. To assess muscle glutathione synthesis, we applied a novel single-biopsy and double-tracer ([(2)H(2)]glycine and [(15)N]glycine) approach based on evaluation of steady-state precursor incorporation in product. The correlations between the traditional (multiple-samples, one-tracer) and new (one-sample, double-tracer infusion) methods were analysed in erythrocytes by Passing-Bablok and Altman-Bland tests. Muscle glutathione absolute synthesis rate increased following bed rest from 5.5 ± 1.1 to 11.0 ± 1.5 mmol (kg wet tissue)(-1) day(-1) (mean ± S.E.M.; n = 9; P = 0.02) while glutathione concentration failed to change significantly. Bed rest induced vastus lateralis muscle atrophy, as assessed by pennation angle changes measured by ultrasonography (from 18.6 ± 1.0 to 15.3 ± 0.9 deg; P = 0.01) and thickness changes (from 2.3 ± 0.2 to 1.9 ± 0.1 cm; P < 0.001). Moreover, bed rest increased protein oxidative stress, as measured by muscle protein carbonylation changes (from 0.6 ± 0.1 to 1.00 ± 0.1 Oxydized-to-total protein ratio; P < 0.04). In conclusion, we developed in erythrocytes a new minimally invasive method to determine peptide synthesis rate in human tissues. Application of the new method to skeletal muscle suggests that disuse atrophy is associated to oxidative stress induction as well as to compensatory activation of the glutathione system.
Collapse
Affiliation(s)
- Francesco Agostini
- Clinica Medica, Ospedale di Cattinara, Strada di Fiume 447, Trieste 34149, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Concurrent measurement of isokinetic muscle strength of the trunk, knees, and ankles in patients with lumbar disc herniation with sciatica. Spine (Phila Pa 1976) 2010; 35:E1612-8. [PMID: 20671590 DOI: 10.1097/brs.0b013e3181d12642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional study comparing normal subjects and patients with lumbar disc herniation (LDH) with sciatica. OBJECTIVE To simultaneously measure the isokinetic muscle strength of the trunk, knees, and ankles in both groups. SUMMARY OF BACKGROUND DATA Coordination between the trunk and lower extremity muscles is important for normal physical activity. Reduced trunk and knee muscle strength have been reported in patients with lower level LDH; however, ankle performance in these patients is still unknown. METHODS We recruited 43 normal subjects as controls and 33 patients with lower level LDH with sciatica. The isokinetic strength of the trunk, knees, and ankles was measured at 2 velocities in random order: 60°/s and 120°/s, and 60°/s and 180°/s for trunk and ankle strength and for knee strength, respectively. RESULTS The isokinetic trunk strength was significantly lower in the LDH group irrespective of test modes or velocity. Despite unilateral sciatica or test modes and velocity, the unilateral knee strength was significantly lower in the LDH group than that in the control group. Knee extension torque was also found to be significantly lower in the limbs with sciatica than in those without sciatica at the testing velocity of 180°/s (80.25 ± 24.88 vs. 95.42 ± 26.29 Nm, P < 0.05). Irrespective of unilateral sciatica or test velocity, ankle plantar flexion torque revealed to be significantly lower in the LDH group than the control group; however, dorsiflexion torque was not different. Significant correlations were demonstrated among the total muscle strength of the trunk, knees, and ankles in both groups. CONCLUSION Besides the lower trunk strength, concurrent lower unilateral knee and ankle plantar flexion but not dorsiflexion strength was demonstrated in the LDH subjects with unilateral sciatica, regardless of its location. As compared to the limbs without sciatica, an additional 14% reduction of knee extension torque at 180°/s was found in the limbs with sciatica in the LDH patients.
Collapse
|
178
|
Nielsen J, Suetta C, Hvid LG, Schrøder HD, Aagaard P, Ortenblad N. Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men. Am J Physiol Endocrinol Metab 2010; 299:E1053-60. [PMID: 20858747 DOI: 10.1152/ajpendo.00324.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that skeletal muscle glycogen and mitochondria are distributed in distinct subcellular localizations, but the role and regulation of these subcellular localizations are unclear. In the present study, we used transmission electron microscopy to investigate the effect of disuse and aging on human skeletal muscle glycogen and mitochondria content in subsarcolemmal (SS), intermyofibrillar (IMF), and intramyofibrillar (intra) localizations. Five young (∼23 yr) and five old (∼66 yr) recreationally active men had their quadriceps muscle immobilized for 2 wk by whole leg casting. Biopsies were obtained from m. vastus lateralis before and after the immobilization period. Immobilization induced a decrement of intra glycogen content by 54% (P < 0.001) in both age groups and in two ultrastructurally distinct fiber types, whereas the content of IMF and SS glycogen remained unchanged. A localization-dependent decrease (P = 0.03) in mitochondria content following immobilization was found in both age groups, where SS mitochondria decreased by 33% (P = 0.02), superficial IMF mitochondria decreased by 20% (P = 0.05), and central IMF mitochondria remained unchanged. In conclusion, our findings demonstrate a localization-dependent adaptation to immobilization in glycogen and mitochondria content of skeletal muscles of both young and old individuals. Specifically, this suggests that short-term disuse preferentially affects glycogen particles located inside the myofibrils and that mitochondria volume plasticity can be dependent on the distance to the fiber border.
Collapse
|
179
|
Abstract
Growing evidence supports the conclusion that consumption of protein in close temporal proximity to the performance of resistance exercise promotes greater muscular hypertrophy. We can also state with good certainty that merely consuming energy, as carbohydrate for example, is also not sufficient to maximise muscle protein synthesis leading to anabolism and net new muscle protein accretion. Recent work also indicates that certain types of proteins, particular those that are rapidly digested and high in leucine content (i.e. whey protein), appear to be more efficient at stimulating muscle protein synthesis. Continued practice of consumption of these types or proteins after exercise should lead to greater hypertrophy. Reviews of numerous training studies indicate that studies in which milk proteins and principally whey protein show an advantage of these proteins over and above isoenergetic carbohydrate and soya protein in promoting hypertrophy. Thus, the combined evidence suggests a strategic advantage of practising early post-exercise consumption of whey protein or dairy-based protein to promote muscle protein synthesis, net muscle protein accretion and ultimately hypertrophy.
Collapse
|
180
|
Seynnes OR, Maffiuletti NA, Horstman AM, Narici MV. Increased H-reflex excitability is not accompanied by changes in neural drive following 24 days of unilateral lower limb suspension. Muscle Nerve 2010; 42:749-55. [PMID: 19229968 DOI: 10.1002/mus.21228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to determine whether the gain in soleus H-reflex excitability induced by unilateral lower limb suspension (ULLS) is associated with changes in neural drive to the plantar flexor muscles. Six male subjects (23 ± 2 years, 187 ± 7 cm, 79 ± 9 kg) underwent 24 days of ULLS of the dominant limb. Plantar flexor maximal voluntary contraction (MVC) torque, activation capacity (twitch interpolation), soleus maximal electromyographic (EMG) activity, Hoffman (H)-reflex, and the first volitional (V) wave normalized to the compound muscle action potential (M-wave) were quantified before and after ULLS. Following ULLS, MVC torque decreased by 15% (P < 0.05). However, neither activation capacity nor EMG activity was significantly altered after the suspension. The V-wave remained unchanged consistently after ULLS, whereas the H-reflex increased significantly (+20%). Furthermore, there was no significant relationship between changes in H-reflex and V-wave over the ULLS period. These findings indicate that 24 days of ULLS can result in a substantial reduction of muscle strength without any apparent change in voluntary activation capacity. H-reflex and V-wave findings suggest that the spinal adaptations that underlie the unloading-induced increase in resting soleus H-reflex excitability did not significantly affect the efferent motor output to the plantar flexor muscles.
Collapse
Affiliation(s)
- Olivier R Seynnes
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Alsager, UK.
| | | | | | | |
Collapse
|
181
|
Abstract
BACKGROUND Muscle architecture is known to be predictive of muscle function. However, it is unknown whether this relationship is similar in children and adolescents with and without cerebral palsy (CP). OBJECTIVE The objective of this study was to determine whether the architecture of the rectus femoris (RF) and vastus lateralis (VL) muscles was predictive of maximum voluntary knee extensor torque in children and adolescents with and without CP and whether these measures were related to activity and participation levels. DESIGN A case-control design was used. METHODS Eighteen participants with CP (mean age=12.0 years, SD=3.2) at Gross Motor Function Classification System (GMFCS) levels I through IV and 12 age-matched peers with typical development (mean age=12.3 years, SD=3.9) were evaluated. Muscle thickness, fascicle length, and fascicle angle of the RF and VL muscles were measured with 2-dimensional, B-mode ultrasound imaging. The activity and participation measures used for participants with CP were the Pediatric OUTCOMES Data Collection Instrument (PODCI) and the Activities Scale for Kids, Performance Version (ASKp). RESULTS When age and GMFCS level were controlled for, VL muscle thickness was the best predictor of knee extensor isometric torque in the group with CP (R(2)=.85). This prediction was similar to the prediction from VL muscle thickness and age in participants with typical development (R(2)=.91). Rectus femoris muscle fascicle length was significantly correlated with the Sports and Physical Functioning Scale of the PODCI (ρ=.49), and VL muscle fascicle angle was correlated with the Transfers and Basic Mobility Scale of the PODCI (r=.47) and with ASKp Locomotion subdomain (r=.50). LIMITATIONS A limitation of this study was the small sample size. CONCLUSIONS Ultrasound measures of VL muscle thickness, adjusted for age and GMFCS level, were highly predictive of maximum torque and have the potential to serve as surrogate measures of voluntary strength (force-generating capacity) in children and adolescents with and without CP.
Collapse
|
182
|
Glover EI, Phillips SM. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Curr Opin Clin Nutr Metab Care 2010; 13:630-4. [PMID: 20829685 DOI: 10.1097/mco.0b013e32833f1ae5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Loss of skeletal muscle mass is a common feature of a number of clinical scenarios including limb casting, bed rest, and various disorders such as HIV-AIDS, sepsis, cancer cachexia, heart failure, and uremia. Commonly, muscle disuse (hypodynamia) is the sole reason, or a large part, of why muscle mass is lost. The reduction in strength, or dynapenia, that accompanies these conditions is also a function of the degree of hypodynamia and is related to muscle loss. RECENT FINDINGS The major and consistent finding in a number of human-based models of muscle wasting is a decline in the synthesis of new muscle proteins both in the postabsorptive and fed states. Thus, countermeasures are best suited to those that augment muscle protein synthesis and not those that attempt to counteract proteolysis. Our main thesis is that retention of muscle mass in wasting conditions will be achieved to the greatest extent by focussing on increased muscle use with moderate-to-high resistance loads as the primary countermeasure with a secondary countermeasure being to provide adequate nutritional support. Either intervention alone will alleviate some part of hypodynamia-induced muscle mass loss and dynapenia; however, together nutrition and muscular contraction will result in greater mitigation of muscle loss. SUMMARY Advances in our understanding of hypodynamia-induced muscle loss, a condition common to almost all syndromes of muscle wasting, has led to a focus on reduced basal and feeding-induced elevations in protein synthesis. Countermeasures for wasting should focus on stimulating anabolism rather than alleviating catabolism.
Collapse
Affiliation(s)
- Elisa I Glover
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
183
|
Baroni BM, Galvão AQ, Ritzel CH, Diefenthaeler F, Vaz MA. Adaptações neuromusculares de flexores dorsais e plantares a duas semanas de imobilização após entorse de tornozelo. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000500008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: A entorse de tornozelo é uma lesão de alta incidência comumente tratada com períodos de imobilização, levando a adaptações estruturais e funcionais dos músculos atuantes nesta articulação. OBJETIVO: Identificar as adaptações dos músculos flexores dorsais e flexores plantares após duas semanas de imobilização em sujeitos que sofreram entorse de tornozelo. MÉTODOS: Onze indivíduos (seis mulheres e cinco homens) acometidos por entorse de tornozelo grau II foram submetidos a 14 dias de imobilização por tala gessada. Após a retirada da imobilização, foram realizadas avaliações bilaterais de (1) perimetria da perna, (2) amplitude de movimento (ADM) do tornozelo, (3) torque isométrico máximo de flexores dorsais e flexores plantares em sete ângulos do tornozelo e (4) ativação eletromiográfica dos músculos tibial anterior (TA), sóleo (SO) e gastrocnêmio medial (GM). Os resultados obtidos no segmento imobilizado foram comparados com os do segmento saudável contralateral através de um teste t de Student pareado (p < 0,05). RESULTADOS: O segmento imobilizado apresentou redução (1) da circunferência nas regiões proximais da perna, (2) da ADM de flexão dorsal e plantar, (3) do torque isométrico máximo de flexores dorsais e plantares e (4) do sinal eletromiográfico do TA em todos os ângulos articulares e do SO nos maiores comprimentos musculares. Não houve diferença no sinal eletromiográfico do músculo GM. CONCLUSÃO: Um período relativamente curto de imobilização (duas semanas) prejudica a funcionalidade dos músculos flexores dorsais e flexores plantares do tornozelo.
Collapse
Affiliation(s)
| | | | | | - Fernando Diefenthaeler
- Universidade Federal do Rio Grande do Sul, Brasil; Universidade Federal de Santa Catarina, Brasil
| | | |
Collapse
|
184
|
Dudley-Javoroski S, McMullen T, Borgwardt MR, Peranich LM, Shields RK. Reliability and responsiveness of musculoskeletal ultrasound in subjects with and without spinal cord injury. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1594-1607. [PMID: 20800961 PMCID: PMC2948870 DOI: 10.1016/j.ultrasmedbio.2010.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Rehabilitation after spinal cord injury (SCI) aims to preserve the integrity of the paralyzed musculoskeletal system. The suitability of ultrasound (US) for delineating training-related muscle/tendon adaptations after SCI is unknown. The purpose of this study was to quantify within- and between-operator reliability for US and to determine its responsiveness to post-training muscle/tendon adaptations in SCI subjects. Two novice operators and one experienced operator obtained sonographic images of the vastus lateralis, patellar tendon, soleus, and Achilles tendon from seven SCI subjects and 16 controls. For control subjects, within-operator concordance (ICC [3,1]) ranged from 0.58 to 0.95 for novice operators and exceeded 0.86 for the experienced operator. Between-operator concordance (ICC [2,1]) ranged from 0.62 to 0.74. Ultrasound detected muscle hypertrophy (p < 0.05) following electrical stimulation training in subjects with SCI (responsiveness) but did not detect differences in tendon thickness. These error estimates support the utility of US in future post-SCI training studies.
Collapse
Affiliation(s)
- Shauna Dudley-Javoroski
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City Iowa
| | - Tara McMullen
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City Iowa
| | | | - Lauren M. Peranich
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City Iowa
| | - Richard K. Shields
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City Iowa
| |
Collapse
|
185
|
Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, Kjaer M, Suetta C. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol (1985) 2010; 109:1628-34. [PMID: 20864557 DOI: 10.1152/japplphysiol.00637.2010] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity (i.e., rate of force development, impulse) than YM (∼ 20-37 vs. ∼ 13-16%; P < 0.05). In contrast, muscle fiber area decreased in YM for type I, IIA, and IIx fibers (∼ 15-30%; P < 0.05), whereas only type IIa area decreased in OM (13.2%; P < 0.05). Subsequent retraining fully restored muscle mechanical function and muscle fiber area in YM, whereas OM showed an attenuated recovery in muscle fiber area and rapid force capacity (tendency). Changes in maximal isometric and dynamic muscle strength were similar between OM and YM. In conclusion, the present data reveal that OM may be more susceptible to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.
Collapse
Affiliation(s)
- Lars Hvid
- Institute of Sports Medicine, Bispebjerg Hospital and Center of Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Arampatzis A, Peper A, Bierbaum S, Albracht K. Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J Biomech 2010; 43:3073-9. [PMID: 20863501 DOI: 10.1016/j.jbiomech.2010.08.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/13/2010] [Accepted: 08/13/2010] [Indexed: 11/27/2022]
Abstract
The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9 ± 2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97 ± 0.47%), and the other leg at high tendon strain magnitude (4.72 ± 1.08%) of similar frequency (0.5 Hz, 1s loading, 1s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3s loading, 3s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon-aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon-aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P > 0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.
Collapse
Affiliation(s)
- Adamantios Arampatzis
- Humboldt-University Berlin, Department of Training and Movement Sciences, Berlin, Germany.
| | | | | | | |
Collapse
|
187
|
Clark BC, Taylor JL, Hoffman RL, Dearth DJ, Thomas JS. Cast immobilization increases long-interval intracortical inhibition. Muscle Nerve 2010; 42:363-72. [PMID: 20544941 DOI: 10.1002/mus.21694] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immobilization reduces muscle performance, and despite these performance losses being associated with neural impairments little is known regarding adaptations in cortical properties. We utilized transcranial magnetic stimulation to assess changes in flexor carpi radialis (FCR) intracortical facilitation (ICF), and short- and long-interval intracortical inhibition (SICI and LICI) in healthy humans undergoing 3 weeks of immobilization. Measurements were obtained at rest and during contraction (15% intensity). Central activation and the Hoffman reflex (H-reflex) were also assessed. Strength decreased 43.2% +/- 6.1% following immobilization, and central activation also decreased (97.5% +/- 2.4% to 73.2% +/- 8.3%). No changes in ICF, SICI, or LICI were observed at rest; however, LICI was increased during contraction (67.5% +/- 6.9% to 53.1% +/- 6.7% of unconditioned response). The increase in LICI correlated with the loss of strength (r = -0.63). The H-reflex increased following immobilization. These findings suggest that immobilization increases intracortical inhibition during contraction, and this increase is primarily mediated by GABA(B) receptors.
Collapse
Affiliation(s)
- Brian C Clark
- Institute for Neuromusculoskeletal Research, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | |
Collapse
|
188
|
Gustafsson T, Osterlund T, Flanagan JN, von Waldén F, Trappe TA, Linnehan RM, Tesch PA. Effects of 3 days unloading on molecular regulators of muscle size in humans. J Appl Physiol (1985) 2010; 109:721-7. [DOI: 10.1152/japplphysiol.00110.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Changes in skeletal muscle mass are controlled by mechanisms that dictate protein synthesis or degradation. The current human study explored whether changes in activation of the phosphoinositide 3-kinase (PI3K)-Akt1, p38, myostatin, and mRNA expression of markers of protein degradation and synthesis occur soon after withdrawal of weight bearing. Biopsies of the vastus lateralis muscle (VL) and soleus muscle (Sol) were obtained from eight healthy men before and following 3 days of unilateral lower limb suspension (ULLS). Akt1, Forkhead box class O (FOXO)-1A, FOXO-3A, p38, and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) phosphorylation and protein levels and myostatin protein level were analyzed by Western blot. Levels of mRNA of IGF1, FOXO-1A, FOXO-3A, atrogin-1, MuRF-1, caspase-3, calpain-2, calpain-3, 4E-BP1, and myostatin were measured using real-time PCR. The amounts of phosphorylated Akt1, FOXO-1A, FOXO-3A, and p38 were unaltered ( P > 0.05) after ULLS. Similarly, mRNA levels of IGF1, FOXO-1A, FOXO-3A, caspase-3, calpain-2, and calpain-3 showed no changes ( P > 0.05). The mRNA levels of atrogin-1 and MuRF-1, as well as the mRNA and protein phosphorylation of 4E-BP1, increased ( P < 0.05) in VL but not in Sol. Both muscles showed increased ( P < 0.05) myostatin mRNA and protein following ULLS. These results suggest that pathways other than PI3K-Akt stimulate atrogin-1 and MuRF-1 expression within 3 days of ULLS. Alternatively, transient changes in these pathways occurred in the early phase of ULLS. The increased myostatin mRNA and protein expression also indicate that multiple processes are involved in the early phase of muscle wasting. Further, the reported difference in gene expression pattern across muscles suggests that mechanisms regulating protein content in human skeletal muscle are influenced by phenotype and/or function.
Collapse
Affiliation(s)
- T. Gustafsson
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, Karolinska University Hospital
| | - T. Osterlund
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, Karolinska University Hospital
| | - J. N. Flanagan
- Andrology and Molecular Endocrinology Units, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - F. von Waldén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and
| | - T. A. Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - R. M. Linnehan
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - P. A. Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
189
|
Reich KA, Chen YW, Thompson PD, Hoffman EP, Clarkson PM. Forty-eight hours of unloading and 24 h of reloading lead to changes in global gene expression patterns related to ubiquitination and oxidative stress in humans. J Appl Physiol (1985) 2010; 109:1404-15. [PMID: 20798274 DOI: 10.1152/japplphysiol.00444.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although short-term disuse does not result in measurable muscle atrophy, studies suggest that molecular changes associated with protein degradation may be initiated within days of the onset of a disuse stimulus. We examined the global gene expression patterns in sedentary men (n = 7, mean age ± SD = 22.1 ± 3.7 yr) following 48 h unloading (UL) via unilateral lower limb suspension and 24 h reloading (RL). Biopsy samples of the left vastus lateralis muscle were collected at baseline, 48 h UL, and 24 h RL. Expression changes were measured by microarray and gene clustering; identification of enriched functions and canonical pathways were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). Four genes were validated with quantitative RT-PCR (qRT-PCR), and protein levels were measured with Western blot. Of the upregulated genes after UL, the most enriched functional group and highest ranked canonical pathway were related to protein ubiquitination. The oxidative stress response pathway was the second highest ranked canonical pathway. Of the downregulated genes, functions related to mitochondrial metabolism were the most highly enriched. In general, gene expression patterns following UL persisted following RL. qRT-PCR confirmed increases in mRNA for ubiquitin proteasome pathway-related E3 ligase Atrogin1 (but not accompanying increases in protein products) and stress response gene heme oxygenase-1 (HMOX, which showed a trend toward increases in protein products at 48 h UL) as well as extracellular matrix (ECM) component COL4A3. The gene expression patterns were not reversed on RL, suggesting that molecular responses to short-term periods of skeletal muscle inactivity may persist after activity resumes.
Collapse
Affiliation(s)
- Kimberly A Reich
- Muscle Biology and Imaging Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
190
|
Disuse of the musculo-skeletal system in space and on earth. Eur J Appl Physiol 2010; 111:403-20. [PMID: 20617334 DOI: 10.1007/s00421-010-1556-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
Muscle mass and strength are well known to decline in response to actual and simulated microgravity exposure. However, despite the considerable knowledge gained on the physiological changes induced by spaceflight, the mechanisms of muscle atrophy and the effectiveness of in-flight countermeasures still need to be fully elucidated. The present review examines the effects and mechanisms of actual and simulated microgravity on single fibre and whole muscle structural and functional properties, protein metabolism, tendon mechanical properties, neural drive and reflex excitability. The effects of inflight countermeasures are also discussed in the light of recent advances in resistive loading techniques, in combined physical, pharmacological and nutritional interventions as well as in the development of artificial gravity systems. Emphasis has been given to the pioneering work of Pietro Enrico di Prampero in the development of artificial gravity systems and in the progress of knowledge on the limits of human muscular performance in space.
Collapse
|
191
|
Kinugasa R, Hodgson JA, Edgerton VR, Shin DD, Sinha S. Reduction in tendon elasticity from unloading is unrelated to its hypertrophy. J Appl Physiol (1985) 2010; 109:870-7. [PMID: 20616227 DOI: 10.1152/japplphysiol.00384.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tendinous tissues respond to chronic unloading with adaptive changes in mechanical, elastic, and morphological properties. However, little is known about the changes in the detailed structures of the entire tendinous tissue and whether the change in tendon stiffness is related to morphology. We investigated changes in dimensional (volume, cross-sectional area, segmented lengths) and elastic (Young's modulus) properties of the Achilles tendon and distal aponeurosis in response to chronic unilateral lower limb suspension (ULLS) using velocity encoded phase contrast (VE-PC) and three-dimensional morphometric magnetic resonance imaging (MRI). Five healthy subjects underwent ULLS for 4 wk. Axial morphometric MRI was acquired along the entire length from the calcaneous to the medial gastrocnemius insertion. An oblique sagittal VE-PC MRI was also acquired. The Young's modulus could be calculated from this cine dynamic sequence of velocity encoded images from the slope of the stress-strain curve during the submaximal isometric plantar flexion. After 4 wk of ULLS, we found significant (46.7%) decrease in maximum plantar flexion torque. The total volumes of entire tendinous tissue (determined as the sum of the Achilles tendon and distal aponeurosis) increased significantly by 6.4% (11.9 vs. 12.7 ml) after ULLS. In contrast, Young's modulus decreased significantly by 10.4% (211.7 vs. 189.6 MPa) for the Achilles tendon and 29.0% for the distal aponeurosis (158.8 vs. 113.0 MPa) following ULLS. There was no significant correlation between relative change in volume and Young's modulus with 4 wk of ULLS. It is suggested that, although tendon hypertrophy can be expected to adversely affect tendon stiffness, the absence of any significant correlation between the magnitude of tendon hypertrophy and reduced Young's modulus indicates that dimensional factors were not critical to the elastic properties.
Collapse
Affiliation(s)
- Ryuta Kinugasa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | | | | | | |
Collapse
|
192
|
Thorlund JB, Jakobsen O, Madsen T, Christensen PA, Nedergaard A, Andersen JL, Suetta C, Aagaard P. Changes in muscle strength and morphology after muscle unloading in Special Forces missions. Scand J Med Sci Sports 2010; 21:e56-63. [DOI: 10.1111/j.1600-0838.2010.01149.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
193
|
Murton AJ, Greenhaff PL. Physiological control of muscle mass in humans during resistance exercise, disuse and rehabilitation. Curr Opin Clin Nutr Metab Care 2010; 13:249-54. [PMID: 20110809 DOI: 10.1097/mco.0b013e3283374d19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The preservation of skeletal muscle mass is central to maintaining mobility and quality of life with aging and also impacts on our capacity to recover from illness. However, our understanding of the processes that regulate muscle mass in humans during exercise, chronic disuse and rehabilitation remains unclear. This brief review aims to highlight some of the more recent and important findings concerning these physiological stimuli. RECENT FINDINGS Although several studies have detailed the molecular events that occur following an acute bout of resistance exercise, a paucity of data appears to remain concerning the molecular and signaling events that underpin resistance exercise training. Reports of increased transcripts for inflammatory proteins following eccentric but not concentric exercise could represent the stimulus for the instigation of structural adaptations that occur following intense muscle lengthening contractions. Studies investigating processes underlying disuse-induced muscle atrophy provide initial evidence to support the notion that transient increases in muscle protein degradation occur following the onset of muscle disuse in humans. SUMMARY The need for further studies to improve our basic understanding of muscle-associated processes in humans remains, particularly in relation to the temporal changes in muscle processes that occur during resistance training.
Collapse
Affiliation(s)
- Andrew J Murton
- School of Biomedical Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | |
Collapse
|
194
|
Kubo K, Ikebukuro T, Yata H, Tsunoda N, Kanehisa H. Time Course of Changes in Muscle and Tendon Properties During Strength Training and Detraining. J Strength Cond Res 2010; 24:322-31. [DOI: 10.1519/jsc.0b013e3181c865e2] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
195
|
Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 2010; 19:500-10. [PMID: 19706001 DOI: 10.1111/j.1600-0838.2009.00986.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptive response of connective tissue to loading requires increased synthesis and turnover of matrix proteins, with special emphasis on collagen. Collagen formation and degradation in the tendon increases with both acute and chronic loading, and data suggest that a gender difference exists, in that females respond less than males with regard to an increase in collagen formation after exercise. It is suggested that estrogen may contribute toward a diminished collagen synthesis response in females. Conversely, the stimulation of collagen synthesis by other growth factors can be shown in both animal and human models where insulin-like growth factor 1 (IGF-I) and transforming growth factor-beta-1 (TGF-beta-1) expression increases to accompany or precede an increase in procollagen expression and collagen synthesis. In humans, it can be demonstrated that an increase in the interstitial concentration of TGF-beta, PGE2, IGF-I plus its binding proteins and interleukin-6 takes place after exercise. The increase in IGF-I expression in tendon includes the isoform that has so far been thought only to exist in skeletal muscle (mechano growth factor). The increase in IGF-I and procollagen expression showed a similar response whether the tendon was stimulated by concentric, isometric or eccentric muscle contraction, suggesting that strain rather that stress/torque determines the collagen-synthesis stimulating response seen with exercise. The adaptation time to chronic loading is longer in tendon tissue compared with contractile elements of skeletal muscle or the heart, and only with very prolonged loading are significant changes in gross dimensions of the tendon observed, suggesting that habitual loading is associated with a robust change in the size and mechanical properties of human tendons. An intimate interplay between mechanical signalling and biochemical changes in the matrix is needed in tendon, such that chemical changes can be converted into adaptations in the morphology, structure and material properties.
Collapse
Affiliation(s)
- M Kjaer
- Department of Orthopaedics, Institute of Sports Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Sarcopenia reflects a progressive withdrawal of anabolism and an increased catabolism, along with a reduced muscle regeneration capacity. Muscle force and power decline more than muscle dimensions: older muscle is intrinsically weak. Sarcopenic obesity (SO) among the elderly corroborates to the loss of muscle mass increasing the risk of metabolic syndrome development. Recent studies on the musculoskeletal adaptations with ageing and key papers on the mechanisms of muscle wasting, its functional repercussions and on SO are included. Neuropathic, hormonal, immunological, nutritional and physical activity factors contribute to sarcopenia. Selective fast fibre atrophy, loss of motor units and an increase in hybrid fibres are typical findings of ageing. Satellite cell number decreases reducing muscle regeneration capacity. SO promotes further muscle wasting and increases risk of metabolic syndrome development. The proportion of fast to slow fibres seems maintained in old age. In elderly humans, nuclear domain is maintained constant. Basal protein synthesis and breakdown show little changes in old age. Instead, blunting of the anabolic response to feeding and exercise and of the antiproteolytic effect of insulin is observed. Further understanding of the mechanisms of sarcopenia requires disentangling of the effects of ageing alone from those of disuse and disease. The causes of the greater anabolic resistance to feeding and exercise of elderly women need elucidating. The enhancement of muscle regeneration via satellite cell activation via the MAPK/notch molecular pathways seems particularly promising.
Collapse
Affiliation(s)
- Marco V Narici
- Faculty of Science and Engineering, Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, UK.
| | | |
Collapse
|
197
|
Wakahara T, Takeshita K, Kato E, Miyatani M, Tanaka NI, Kanehisa H, Kawakami Y, Fukunaga T. Variability of limb muscle size in young men. Am J Hum Biol 2010; 22:55-9. [DOI: 10.1002/ajhb.20951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
198
|
Abstract
PURPOSE OF REVIEW Recent reports exploring the mechanisms thought to be responsible for the determination of muscle mass during health, ageing and immobilization in humans have presented findings that have wide ranging implications. This brief review highlights some of the more important findings. RECENT FINDINGS Contrary to expectations, recent findings suggest an apparent dissociation between muscle signalling pathways and their associated events in humans, particularly in relation to muscle protein synthesis. Although debate concerning the relative importance of muscle protein synthesis and degradation to muscle mass loss during immobilization continues, and the mechanisms responsible for this loss and its restoration during rehabilitation remain unclear, new evidence has emerged showing that anabolic resistance to protein nutrition develops during immobilization. This latter observation is in agreement with earlier evidence pointing to anabolic resistance of muscle to protein nutrition existing in the elderly, which is of clinical importance. Recent observations also suggest that a sex difference exists in the rate of muscle protein synthesis under postabsorptive conditions in the elderly and may explain why women lose muscle mass at a slower rate with age than men. SUMMARY These recent findings highlight our current lack of understanding of the mechanisms that regulate muscle mass in humans.
Collapse
Affiliation(s)
- Andrew J Murton
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, The University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
199
|
MOREAU NOELLEG, TEEFEY SHARLENEA, DAMIANO DIANEL. In vivo muscle architecture and size of the rectus femoris and vastus lateralis in children and adolescents with cerebral palsy. Dev Med Child Neurol 2009; 51:800-6. [PMID: 19459913 PMCID: PMC2771733 DOI: 10.1111/j.1469-8749.2009.03307.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Our aim was to investigate muscle architecture and size of the rectus femoris (RF) and vastus lateralis (VL) in children and adolescents with cerebral palsy (CP) compared with age-matched typically developing participants. METHOD Muscle architecture and size were measured with ultrasound imaging in 18 participants with spastic CP (9 females, 9 males; age range 7.5-19 y; mean age 12 y [SD 3 y 2 mo]) within Gross Motor Function Classification System levels I (n=4), II (n=2), III (n=9), and IV (n=3) and 12 typically developing participants (10 females, 2 males; age range 7-20 y; mean age 12 y 4 mo [SD 3 y 11 mo]). Exclusion criteria were orthopedic surgery or neurosurgery within 6 months before testing or botulinum toxin injections to the quadriceps within 3 months before testing. RESULTS RF cross-sectional area was significantly lower (48%), RF and VL muscle thickness 30% lower, RF fascicle length 27% lower, and VL fascicle angle 3 degrees less in participants with CP compared to the typically developing participants (p<0.05). Intraclass correlation coefficients were >or=0.93 (CP) and >or= 0.88 (typical development), indicating excellent reliability. INTERPRETATION These results provide the first evidence of altered muscle architecture and size of the RF and VL in CP, similar to patterns observed with disuse and aging. These alterations may play a significant role in the decreased capacity for force generation as well as decreased shortening velocity and range of motion over which the quadriceps can act.
Collapse
Affiliation(s)
- NOELLE G MOREAU
- Department of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - SHARLENE A TEEFEY
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - DIANE L DAMIANO
- Department of Rehabilitation Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
200
|
Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, Ortenblad N, Magnusson SP, Kjaer M, Aagaard P. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol (1985) 2009; 107:1172-80. [PMID: 19661454 DOI: 10.1152/japplphysiol.00290.2009] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inactivity is a recognized compounding factor in sarcopenia and muscle weakness in old age. However, while the negative effects of unloading on skeletal muscle in young individuals are well elucidated, only little is known about the consequence of immobilization and the regenerative capacity in elderly individuals. Thus the aim of this study was to examine the effect of aging on changes in muscle contractile properties, specific force, and muscle mass characteristics in 9 old (61-74 yr) and 11 young men (21-27 yr) after 2 wk of immobilization and 4 wk of retraining. Both young and old experienced decreases in maximal muscle strength, resting twitch peak torque and twitch rate of force development, quadriceps muscle volume, pennation angle, and specific force after 2 wk of immobilization (P < 0.05). The decline in quadriceps volume and pennation angle was smaller in old compared with young (P < 0.05). In contrast, only old men experienced a decrease in quadriceps activation. After retraining, both young and old regained their initial muscle strength, but old had smaller gains in quadriceps volume compared with young, and pennation angle increased in young only (P < 0.05). The present study is the first to demonstrate that aging alters the neuromuscular response to short-term disuse and recovery in humans. Notably, immobilization had a greater impact on neuronal motor function in old individuals, while young individuals were more affected at the muscle level. In addition, old individuals showed an attenuated response to retraining after immobilization compared with young individuals.
Collapse
Affiliation(s)
- C Suetta
- Institute of Sports Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, 2400 NV Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|