151
|
Blaser A, Sutherland HS, Tong AST, Choi PJ, Conole D, Franzblau SG, Cooper CB, Upton AM, Lotlikar M, Denny WA, Palmer BD. Structure-activity relationships for unit C pyridyl analogues of the tuberculosis drug bedaquiline. Bioorg Med Chem 2019; 27:1283-1291. [PMID: 30792104 PMCID: PMC6467542 DOI: 10.1016/j.bmc.2019.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
The ATP-synthase inhibitor bedaquiline is effective against drug-resistant tuberculosis but is extremely lipophilic (clogP 7.25) with a very long plasma half-life. Additionally, inhibition of potassium current through the cardiac hERG channel by bedaquiline, is associated with prolongation of the QT interval, necessitating cardiovascular monitoring. Analogues were prepared where the naphthalene C-unit was replaced with substituted pyridines to produce compounds with reduced lipophilicity, anticipating a reduction in half-life. While there was a direct correlation between in vitro inhibitory activity against M. tuberculosis (MIC90) and compound lipophilicity, potency only fell off sharply below a clogP of about 4.0, providing a useful lower bound for analogue design. The bulk of the compounds remained potent inhibitors of the hERG potassium channel, with notable exceptions where IC50 values were at least 5-fold higher than that of bedaquiline. Many of the compounds had desirably higher rates of clearance than bedaquiline, but this was associated with lower plasma exposures in mice, and similar or higher MICs resulted in lower AUC/MIC ratios than bedaquiline for most compounds. The two compounds with lower potency against hERG exhibited similar clearance to bedaquiline and excellent efficacy in vivo, suggesting further exploration of C-ring pyridyls is worthwhile.
Collapse
Affiliation(s)
- Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hamish S Sutherland
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Amy S T Tong
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel Conole
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | - Anna M Upton
- Global Alliance for TB Drug Development, 40 Wall Street, NY 10005, USA
| | - Manisha Lotlikar
- Global Alliance for TB Drug Development, 40 Wall Street, NY 10005, USA
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
152
|
Abstract
F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany;
| |
Collapse
|
153
|
Bogdanović N, Trifunović D, Sielaff H, Westphal L, Bhushan S, Müller V, Grüber G. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na + translocation and ATP synthesis. FEBS J 2019; 286:1894-1907. [PMID: 30791207 DOI: 10.1111/febs.14793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
The Na+ translocating F1 FO ATP synthase from Acetobacterium woodii shows a subunit stoichiometry of α3 :β3 :γ:δ:ε:a:b2 :(c2/3 )9 :c1 and reveals an evolutionary path between synthases and pumps involving adaptations in the rotor c-ring, which is composed of F- and vacuolar-type c subunits in a stoichiometry of 9 : 1. This hybrid turbine couples rotation with Na+ translocation in the FO part and rotation of the central stalk subunits γ-ε to drive ATP synthesis in the catalytic α3 :β3 headpiece. Here, we isolated a highly pure recombinant A. woodii F-ATP synthase and present the first projected structure of this hybrid engine as determined by negative-stain electron microscopy and single-particle analysis. The uniqueness of the A. woodii F-ATP synthase is also reflected by an extra 17 amino acid residues loop (195 TSGKVKITEETKEEKSK211 ) in subunit γ. Deleting the loop-encoding DNA sequence (γΔ195-211 ) and purifying the recombinant F-ATP synthase γΔ195-211 mutant provided a platform to study its effect in enzyme stability and activity. The recombinant F-ATP synthase γΔ195-211 mutant revealed the same subunit composition as the wild-type enzyme and a minor reduction in ATP hydrolysis. When reconstituted into proteoliposomes ATP synthesis and Na+ transport were diminished, demonstrating the importance of the γ195-211 loop in both enzymatic processes. Based on a structural model, a coupling mechanism for this enzyme is proposed, highlighting the role of the γ-loop. Finally, the γ195-211 loop of A. woodii is discussed in comparison with the extra γ-loops of mycobacterial and chloroplasts F-ATP synthases described to be involved in species-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Nebojša Bogdanović
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore
| | - Dragan Trifunović
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | - Hendrik Sielaff
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore
| | - Lars Westphal
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | - Shashi Bhushan
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore City, Singapore
| |
Collapse
|
154
|
Duncan TM. Turbine enzyme's structure in the crosshairs to target tuberculosis. Proc Natl Acad Sci U S A 2019; 116:3956-3958. [PMID: 30782825 PMCID: PMC6410854 DOI: 10.1073/pnas.1900798116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Thomas M Duncan
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
155
|
Wang X, Zeng Y, Sheng L, Larson P, Liu X, Zou X, Wang S, Guo K, Ma C, Zhang G, Cui H, Ferguson DM, Li Y, Zhang J, Aldrich CC. A Cinchona Alkaloid Antibiotic That Appears To Target ATP Synthase in Streptococcus pneumoniae. J Med Chem 2019; 62:2305-2332. [PMID: 30779564 DOI: 10.1021/acs.jmedchem.8b01353] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Optochin, a cinchona alkaloid derivative discovered over 100 years ago, possesses highly selective antibacterial activity toward Streptococcus pneumoniae. Pneumococcal disease remains the leading source of bacterial pneumonia and meningitis worldwide. The structure-activity relationships of optochin were examined through modification to both the quinoline and quinuclidine subunits, which led to the identification of analogue 48 with substantially improved activity. Resistance and molecular modeling studies indicate that 48 likely binds to the c-ring of ATP synthase near the conserved glutamate 52 ion-binding site, while mechanistic studies demonstrated that 48 causes cytoplasmic acidification. Initial pharmacokinetic and drug metabolism analyses of optochin and 48 revealed limitations of these quinine analogues, which were rapidly cleared, resulting in poor in vivo exposure through hydroxylation pendants to the quinuclidine and O-dealkylation of the quinoline. Collectively, the results provide a foundation to advance 48 and highlight ATP synthase as a promising target for antibiotic development.
Collapse
Affiliation(s)
| | - Yuna Zeng
- Center for Infectious Disease Research, School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | | | - Peter Larson
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Xue Liu
- Center for Infectious Disease Research, School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | | | | | | | | | | | | | - David M Ferguson
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - Jingren Zhang
- Center for Infectious Disease Research, School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Courtney C Aldrich
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
156
|
Lu X, Williams Z, Hards K, Tang J, Cheung CY, Aung HL, Wang B, Liu Z, Hu X, Lenaerts A, Woolhiser L, Hastings C, Zhang X, Wang Z, Rhee K, Ding K, Zhang T, Cook GM. Pyrazolo[1,5- a]pyridine Inhibitor of the Respiratory Cytochrome bcc Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infect Dis 2019; 5:239-249. [PMID: 30485737 DOI: 10.1021/acsinfecdis.8b00225] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Respiration is a promising target for the development of new antimycobacterial agents, with a growing number of compounds in clinical development entering this target space. However, more candidate inhibitors are needed to expand the therapeutic options available for drug-resistant Mycobacterium tuberculosis infection. Here, we characterize a putative respiratory complex III (QcrB) inhibitor, TB47: a pyrazolo[1,5- a]pyridine-3-carboxamide. TB47 is active (MIC between 0.016 and 0.500 μg/mL) against a panel of 56 M. tuberculosis clinical isolates, including 37 multi-drug-resistant and two extensively drug-resistant strains. Pharmacokinetic and toxicity studies showed promising profiles, including negligible CYP450 interactions, cytotoxicity, and hERG channel inhibition. Consistent with other reported QcrB inhibitors, TB47 inhibits oxygen consumption only when the alternative oxidase, cytochrome bd, is deleted. A point mutation in the qcrB cd2-loop (H190Y, M. smegmatis numbering) rescues the inhibitory effects of TB47. Metabolomic profiling of TB47-treated M. tuberculosis H37Rv cultures revealed accumulation of steps in the TCA cycle and pentose phosphate pathway that are linked to reducing equivalents, suggesting that TB47 causes metabolic redox stress. In mouse infection models, a TB47 monotherapy was not bactericidal. However, TB47 was strongly synergistic with pyrazinamide and rifampicin, suggesting a promising role in combination therapies. We propose that TB47 is an effective lead compound for the development of novel tuberculosis chemotherapies.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zoe Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Jian Tang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Bangxing Wang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei 230009, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xianglong Hu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Anne Lenaerts
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Lisa Woolhiser
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Courtney Hastings
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Xiantao Zhang
- Guangzhou Eggbio Co., Ltd., 3 Ju Quan Road, Science Park, Guangzhou 510663, China
| | - Zhe Wang
- Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Kyu Rhee
- Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
157
|
Guo H, Suzuki T, Rubinstein JL. Structure of a bacterial ATP synthase. eLife 2019; 8:43128. [PMID: 30724163 PMCID: PMC6377231 DOI: 10.7554/elife.43128] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/02/2019] [Indexed: 01/20/2023] Open
Abstract
ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit ε shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.
Collapse
Affiliation(s)
- Hui Guo
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Molecular Bioscience, Kyoto-Sangyo University, Kyoto, Japan
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada
| |
Collapse
|
158
|
Sielaff H, Yanagisawa S, Frasch WD, Junge W, Börsch M. Structural Asymmetry and Kinetic Limping of Single Rotary F-ATP Synthases. Molecules 2019; 24:E504. [PMID: 30704145 PMCID: PMC6384691 DOI: 10.3390/molecules24030504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
F-ATP synthases use proton flow through the FO domain to synthesize ATP in the F₁ domain. In Escherichia coli, the enzyme consists of rotor subunits γεc10 and stator subunits (αβ)₃δab₂. Subunits c10 or (αβ)₃ alone are rotationally symmetric. However, symmetry is broken by the b₂ homodimer, which together with subunit δa, forms a single eccentric stalk connecting the membrane embedded FO domain with the soluble F₁ domain, and the central rotating and curved stalk composed of subunit γε. Although each of the three catalytic binding sites in (αβ)₃ catalyzes the same set of partial reactions in the time average, they might not be fully equivalent at any moment, because the structural symmetry is broken by contact with b₂δ in F₁ and with b₂a in FO. We monitored the enzyme's rotary progression during ATP hydrolysis by three single-molecule techniques: fluorescence video-microscopy with attached actin filaments, Förster resonance energy transfer between pairs of fluorescence probes, and a polarization assay using gold nanorods. We found that one dwell in the three-stepped rotary progression lasting longer than the other two by a factor of up to 1.6. This effect of the structural asymmetry is small due to the internal elastic coupling.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| | - Seiga Yanagisawa
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona, AZ 85287, USA.
| | - Wolfgang Junge
- Department of Biology & Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
159
|
The structure of the catalytic domain of the ATP synthase from Mycobacterium smegmatis is a target for developing antitubercular drugs. Proc Natl Acad Sci U S A 2019; 116:4206-4211. [PMID: 30683723 DOI: 10.1073/pnas.1817615116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from Mycobacterium smegmatis which hydrolyzes ATP very poorly. The structure of the α3β3-component of the catalytic domain is similar to those in active F1-ATPases in Escherichia coli and Geobacillus stearothermophilus However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. In E. coli and G. stearothermophilus, the α-helices adopt an "up" state where the α-helices enter the α3β3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase from Caldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The βE-subunits in both enzymes are in the usual "open" conformation but appear to be occupied uniquely by the combination of an adenosine 5'-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1 domain in Mycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.
Collapse
|
160
|
Nath S. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis. Bioeng Transl Med 2019; 4:164-170. [PMID: 30680327 PMCID: PMC6336660 DOI: 10.1002/btm2.10106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) claims the lives of 1.3 million people each year, more than any other bacterial infection. Hence great interest was generated in health communities upon the recent introduction of the new diarylquinoline anti-TB drug, bedaquiline. Bedaquiline acts by binding to the c-subunit in the membrane-bound FO portion of the F1FO-adenosine triphosphate (ATP) synthase, the universal enzyme that produces the ATP needed by cells. However, the mechanism of killing by bedaquiline is not fully understood. Recent observations related to the bactericidal effects of bedaquiline, which show that it is a potent uncoupler of respiration-driven ATP synthesis in Mycobacterium smegmatis are summarized. These observations are then interpreted from the standpoint of Nath's two-ion theory of energy coupling in ATP synthesis (Nath, Biophys. Chem. 2017; 230:45-52). Especial importance is given to the interpretation of biochemical fluorescence quenching data, and the differences between the uncoupling induced by bedaquiline from that by the classical anionic uncouplers of oxidative phosphorylation are highlighted. Suggestions for new experiments that could lead to a better understanding of the uncoupling mechanism are made. A model of uncoupling action by the drug is presented, and the biochemical basis underlying uncoupling of ATP synthesis and lethality in mycobacteria is elucidated. The major biological implications arising from these novel insights are discussed. It is hoped that the analysis will lead to a more fundamental understanding of biological energy coupling, uncoupling and transduction, and to an integrated view for the design of novel antimicrobials by future research in the field.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiHauz KhasNew DelhiIndia
| |
Collapse
|
161
|
Gahura O, Panicucci B, Váchová H, Walker JE, Zíková A. Inhibition of F 1 -ATPase from Trypanosoma brucei by its regulatory protein inhibitor TbIF 1. FEBS J 2018; 285:4413-4423. [PMID: 30288927 DOI: 10.1111/febs.14672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/30/2022]
Abstract
Hydrolysis of ATP by the mitochondrial F-ATPase is inhibited by a protein called IF1 . In the parasitic flagellate, Trypanosoma brucei, this protein, known as TbIF1 , is expressed exclusively in the procyclic stage, where the F-ATPase is synthesizing ATP. In the bloodstream stage, where TbIF1 is absent, the F-ATPase hydrolyzes ATP made by glycolysis and compensates for the absence of a proton pumping respiratory chain by translocating protons into the intermembrane space, thereby maintaining the essential mitochondrial membrane potential. We have defined regions and amino acid residues of TbIF1 that are required for its inhibitory activity by analyzing the binding of several modified recombinant inhibitors to F1 -ATPase isolated from the procyclic stage of T. brucei. Kinetic measurements revealed that the C-terminal portion of TbIF1 facilitates homodimerization, but it is not required for the inhibitory activity, similar to the bovine and yeast orthologs. However, in contrast to bovine IF1 , the inhibitory capacity of the C-terminally truncated TbIF1 diminishes with decreasing pH, similar to full length TbIF1 . This effect does not involve the dimerization of active dimers to form inactive tetramers. Over a wide pH range, the full length and C-terminally truncated TbIF1 form dimers and monomers, respectively. TbIF1 has no effect on bovine F1 -ATPase, and this difference in the mechanism of regulation of the F-ATPase between the host and the parasite could be exploited in the design of drugs to combat human and animal African trypanosomiases.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
162
|
Abstract
Tuberculosis (TB) is one of the oldest infections afflicting humans yet remains the number one infectious disease killer worldwide. Despite decades of experience treating this disease, TB regimens require months of multidrug therapy, even for latent infections. There have been important recent advances in treatment options across the spectrum of TB, from latent infection to extensively drug-resistant (XDR) TB disease. In addition, new, potent drugs are emerging out of the development pipeline and are being tested in novel regimens in multiple currently enrolling trials. Shorter, safer regimens for many forms of TB are now available or are in our near-term vision. We review recent advances in TB therapeutics and provide an overview of the upcoming clinical trials landscape that will help define the future of worldwide TB treatment.
Collapse
Affiliation(s)
- Jeffrey A Tornheim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;
| | - Kelly E Dooley
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA; .,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
163
|
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:200-214. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) infection caused by Mycobacterium tuberculosis (Mtb) is still a persistent global health problem, particularly in developing countries. The World Health Organization (WHO) reported a mortality rate of about 1.8 million worldwide due to TB complications in 2015. The Bacillus Calmette-Guérin (BCG) vaccine was introduced in 1921 and is still widely used to prevent TB development. This vaccine offers up to 80% protection against various forms of TB; however its efficacy against lung infection varies among different geographical settings. Devastatingly, the development of various forms of drug-resistant TB strains has significantly impaired the discovery of effective and safe anti-bacterial agents. Consequently, this necessitated discovery of new drug targets and novel anti-TB therapeutics to counter infection caused by various Mtb strains. Importantly, various factors that contribute to TB development have been identified and include bacterial resuscitation factors, host factors, environmental factors and genetics. Furthermore, Mtb-induced epigenetic changes also play a crucial role in evading the host immune response and leads to bacterial persistence and dissemination. Recently, the application of GeneXpert MTB/RIF® to rapidly diagnose and identify drug-resistant strains and discovery of different molecular markers that distinguish between latent and active TB infection has motivated and energised TB research. Therefore, this review article will briefly discuss the current TB state, highlight various mechanisms employed by Mtb to evade the host immune response as well as to discuss some modern molecular techniques that may potentially target and inhibit Mtb replication.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa.
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
164
|
Bogdanović N, Sundararaman L, Kamariah N, Tyagi A, Bhushan S, Ragunathan P, Shin J, Dick T, Grüber G. Structure and function of Mycobacterium-specific components of F-ATP synthase subunits α and ε. J Struct Biol 2018; 204:420-434. [PMID: 30342092 DOI: 10.1016/j.jsb.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 01/21/2023]
Abstract
The Mycobacterium tuberculosis (Mtb) F1FO-ATP synthase (α3:β3:γ:δ:ε:a:b:b':c9) is an essential enzyme that supplies energy for both the aerobic growing and the hypoxic dormant stage of the mycobacterial life cycle. Employing the heterologous F-ATP synthase model system αchi3:β3:γ we showed previously, that transfer of the C-terminal domain (CTD) of Mtb subunit α (Mtα514-549) to a standard F-ATP synthase α subunit suppresses ATPase activity. Here we determined the 3D reconstruction from electron micrographs of the αchi3:β3:γ complex reconstituted with the Mtb subunit ε (Mtε), which has been shown to crosstalk with the CTD of Mtα. Together with the first solution shape of Mtb subunit α (Mtα), derived from solution X-ray scattering, the structural data visualize the extended C-terminal stretch of the mycobacterial subunit α. In addition, Mtε mutants MtεR62L, MtεE87A, Mtε6-121, and Mtε1-120, reconstituted with αchi3:β3:γ provided insight into their role in coupling and in trapping inhibiting MgADP. NMR solution studies of MtεE87A gave insights into how this residue contributes to stability and crosstalk between the N-terminal domain (NTD) and the CTD of Mtε. Analyses of the N-terminal mutant Mtε6-121 highlight the differences of the NTD of mycobacterial subunit ε to the well described Geobacillus stearothermophilus or Escherichia coli counterparts. These data are discussed in context of a crosstalk between the very N-terminal amino acids of Mtε and the loop region of one c subunit of the c-ring turbine for coupling of proton-translocation and ATP synthesis activity.
Collapse
Affiliation(s)
- Nebojša Bogdanović
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lavanya Sundararaman
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Neelagandan Kamariah
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Anu Tyagi
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Shashi Bhushan
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Republic of Singapore
| | - Priya Ragunathan
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Joon Shin
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
165
|
|
166
|
Abstract
Bedaquiline (BDQ), an inhibitor of the mycobacterial F1Fo-ATP synthase, has revolutionized the antitubercular drug discovery program by defining energy metabolism as a potent new target space. Several studies have recently suggested that BDQ ultimately causes mycobacterial cell death through a phenomenon known as uncoupling. The biochemical basis underlying this, in BDQ, is unresolved and may represent a new pathway to the development of effective therapeutics. In this communication, we demonstrate that BDQ can inhibit ATP synthesis in Escherichia coli by functioning as a H+/K+ ionophore, causing transmembrane pH and potassium gradients to be equilibrated. Despite the apparent lack of a BDQ-binding site, incorporating the E. coli Fo subunit into liposomes enhanced the ionophoric activity of BDQ. We discuss the possibility that localization of BDQ at F1Fo-ATP synthases enables BDQ to create an uncoupled microenvironment, by antiporting H+/K+ Ionophoric properties may be desirable in high-affinity antimicrobials targeting integral membrane proteins.
Collapse
|
167
|
A uniform cloning platform for mycobacterial genetics and protein production. Sci Rep 2018; 8:9539. [PMID: 29934571 PMCID: PMC6015033 DOI: 10.1038/s41598-018-27687-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular research on mycobacteria relies on a multitude of tools for the genetic manipulation of these clinically important bacteria. However, a uniform set of vectors allowing for standardized cloning procedures is not available. Here, we developed a versatile series of mycobacterial vectors for gene deletion, complementation and protein production and purification. The vectors are compatible with fragment exchange (FX) cloning, a recently developed high-throughput cloning principle taking advantage of the type IIS restriction enzyme SapI and its capacity to generate sticky trinucleotide ends outside of its recognition sequence. FX cloning allows for the efficient cloning into an entry vector and the facile transfer of the sequenced insert into a variety of destination vectors. We generated a set of mycobacterial expression vectors spanning a wide range of expression strengths, tagging variants and selection markers to rapidly screen for the optimal expression construct in order to purify membrane proteins from the model organism Mycobacterium smegmatis. Further, we generated a series of suicide vectors containing two counterselection markers and used them to delete twenty genes encoding for potential drug efflux pumps in M. smegmatis. The vectors will further facilitate genetic and biochemical research on various mycobacterial species.
Collapse
|
168
|
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C. Antimicrob Agents Chemother 2018; 62:AAC.02197-17. [PMID: 29610201 DOI: 10.1128/aac.02197-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti-Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro-generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >105-fold for FC04-100.
Collapse
|
169
|
Sutherland HS, Tong AST, Choi PJ, Conole D, Blaser A, Franzblau SG, Cooper CB, Upton AM, Lotlikar MU, Denny WA, Palmer BD. Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles. Bioorg Med Chem 2018; 26:1797-1809. [PMID: 29482950 PMCID: PMC5933462 DOI: 10.1016/j.bmc.2018.02.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022]
Abstract
Replacing the naphthalene C-unit of the anti-tuberculosis drug bedaquiline with a range of bicyclic heterocycles of widely differing lipophilicity gave analogs with a 4.5-fold range in clogP values. The biological results for these compounds indicate on average a lower clogP limit of about 5.0 in this series for retention of potent inhibitory activity (MIC90s) against M.tb in culture. Some of the compounds also showed a significant reduction in inhibition of hERG channel potassium current compared with bedaquiline, but there was no common structural feature that distinguished these.
Collapse
Affiliation(s)
- Hamish S Sutherland
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Amy S T Tong
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel Conole
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | - Anna M Upton
- Global Alliance for TB Drug Development, 40 Wall St, New York, NY 10005, USA
| | - Manisha U Lotlikar
- Global Alliance for TB Drug Development, 40 Wall St, New York, NY 10005, USA
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Brian D Palmer
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
170
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
171
|
Zhou W, Faraldo-Gómez JD. Membrane plasticity facilitates recognition of the inhibitor oligomycin by the mitochondrial ATP synthase rotor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:789-796. [PMID: 29630891 DOI: 10.1016/j.bbabio.2018.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Enzymes in the respiratory chain are increasingly seen as potential targets against multi-drug resistance of human pathogens and cancerous cells. However, a detailed understanding of the mechanism and specificity determinants of known inhibitors is still lacking. Oligomycin, for example, has been known to be an inhibitor of the membrane motor of the mitochondrial ATP synthase for over five decades, and yet little is known about its mode of action at the molecular level. In a recent breakthrough, a crystal structure of the S. cerevisiae c-subunit ring with bound oligomycin revealed the inhibitor docked on the outer face of the proton-binding sites, deep into the transmembrane region. However, the structure of the complex was obtained in an organic solvent rather than detergent or a lipid bilayer, and therefore it has been unclear whether this mode of recognition is physiologically relevant. Here, we use molecular dynamics simulations to address this question and gain insights into the mechanism of oligomycin inhibition. Our findings lead us to propose that oligomycin naturally partitions into the lipid/water interface, and that in this environment the inhibitor can indeed bind to any of the c-ring proton-carrying sites that are exposed to the membrane, thereby becoming an integral component of the proton-coordinating network. As the c-ring rotates within the membrane, driven either by downhill proton permeation or ATP hydrolysis, one of the protonated, oligomycin-bound sites eventually reaches the subunit-a interface and halts the rotary mechanism of the enzyme.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 5N307A, Bethesda, MD 20892, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 5N307A, Bethesda, MD 20892, United States.
| |
Collapse
|
172
|
Iqbal IK, Bajeli S, Akela AK, Kumar A. Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery. Pathogens 2018; 7:E24. [PMID: 29473841 PMCID: PMC5874750 DOI: 10.3390/pathogens7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail.
Collapse
Affiliation(s)
- Iram Khan Iqbal
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Sapna Bajeli
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ajit Kumar Akela
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| |
Collapse
|
173
|
Joon S, Ragunathan P, Sundararaman L, Nartey W, Kundu S, Manimekalai MSS, Bogdanović N, Dick T, Grüber G. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine. FEBS J 2018; 285:1111-1128. [PMID: 29360236 DOI: 10.1111/febs.14392] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/30/2017] [Accepted: 01/18/2018] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis (Mt) F1 F0 ATP synthase (α3 :β3 :γ:δ:ε:a:b:b':c9 ) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N-terminal β-barrel domain (NTD) and a C-terminal domain (CTD) composed of a helix-loop-helix with helix 1 and -2 being shorter compared to their counterparts in other bacteria. The C-terminal amino acids are oriented toward the NTD, forming a domain-domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c-ring- and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α3 β3 -headpiece. To test our model, genome site-directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline. DATABASE Structural data are available in the PDB under the accession number 5YIO.
Collapse
Affiliation(s)
- Shin Joon
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Priya Ragunathan
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Lavanya Sundararaman
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Wilson Nartey
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Subhashri Kundu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Nebojša Bogdanović
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| |
Collapse
|
174
|
Ismail NA, Omar SV, Joseph L, Govender N, Blows L, Ismail F, Koornhof H, Dreyer AW, Kaniga K, Ndjeka N. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine 2018; 28:136-142. [PMID: 29337135 PMCID: PMC5835552 DOI: 10.1016/j.ebiom.2018.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Bedaquiline (BDQ) is a novel agent approved for use in combination treatment of multi-drug resistant tuberculosis (MDR-TB). We sought to determine BDQ epidemiological cut-off values (ECVs), define and assess interpretive criteria against putative resistance associated variants (RAVs), microbiological outcomes and cross resistance with clofazimine (CFZ). METHODS A retrospective cohort study was conducted. Minimal inhibitory concentrations (MIC) to BDQ were determined using 7H9 broth microdilution (BMD) and MGIT960. RAVs were genetically characterised using whole genome sequencing. BDQ ECVs were determined using ECOFFinder and compared with 6-month culture conversion status and CFZ MICs. FINDINGS A total of 391 isolates were analysed. Susceptible and intermediate categories were determined to have MICs of ≤0.125μg/ml and 0.25μg/ml using BMD and ≤1μg/ml and 2μg/ml using MGIT960 respectively. Microbiological failures occurred among BDQ exposed patients with a non-susceptible BDQ MIC, an Rv0678 mutation and ≤2 active drug classes. The Rv0678 RAVs were not the dominant mechanism of CFZ resistance and cross resistance was limited to isolates with an Rv0678 mutation. INTERPRETATION Criteria for BDQ susceptibility are defined and will facilitate improved early detection of resistance. Cross- resistance between BDQ and CFZ is an emerging concern but in this study was primarily among those with an Rv0678 mutation.
Collapse
Affiliation(s)
- Nazir A Ismail
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa; Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Shaheed V Omar
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa
| | - Lavania Joseph
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa
| | - Netricia Govender
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa
| | - Linsay Blows
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa
| | - Farzana Ismail
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa; Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Hendrik Koornhof
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa
| | - Andries W Dreyer
- National Institute for Communicable Diseases, Centre for Tuberculosis, Johannesburg, South Africa
| | - Koné Kaniga
- Janssen Research & Development, Titusville, NJ, United States
| | - Norbert Ndjeka
- National Department of Health, Tuberculosis Control and Management Cluster, Pretoria, South Africa
| |
Collapse
|
175
|
Hards K, Cook GM. Targeting bacterial energetics to produce new antimicrobials. Drug Resist Updat 2018; 36:1-12. [DOI: 10.1016/j.drup.2017.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
|
176
|
Abstract
Mitochondria are the power stations of the eukaryotic cell, using the energy released by the oxidation of glucose and other sugars to produce ATP. Electrons are transferred from NADH, produced in the citric acid cycle in the mitochondrial matrix, to oxygen by a series of large protein complexes in the inner mitochondrial membrane, which create a transmembrane electrochemical gradient by pumping protons across the membrane. The flow of protons back into the matrix via a proton channel in the ATP synthase leads to conformational changes in the nucleotide binding pockets and the formation of ATP. The three proton pumping complexes of the electron transfer chain are NADH-ubiquinone oxidoreductase or complex I, ubiquinone-cytochrome c oxidoreductase or complex III, and cytochrome c oxidase or complex IV. Succinate dehydrogenase or complex II does not pump protons, but contributes reduced ubiquinone. The structures of complex II, III and IV were determined by x-ray crystallography several decades ago, but complex I and ATP synthase have only recently started to reveal their secrets by advances in x-ray crystallography and cryo-electron microscopy. The complexes I, III and IV occur to a certain extent as supercomplexes in the membrane, the so-called respirasomes. Several hypotheses exist about their function. Recent cryo-electron microscopy structures show the architecture of the respirasome with near-atomic detail. ATP synthase occurs as dimers in the inner mitochondrial membrane, which by their curvature are responsible for the folding of the membrane into cristae and thus for the huge increase in available surface that makes mitochondria the efficient energy plants of the eukaryotic cell.
Collapse
Affiliation(s)
- Joana S Sousa
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
177
|
Kang SJ, Todokoro Y, Bak S, Suzuki T, Yoshida M, Fujiwara T, Akutsu H. Direct assignment of 13C solid-state NMR signals of TF oF 1 ATP synthase subunit c-ring in lipid membranes and its implication for the ring structure. JOURNAL OF BIOMOLECULAR NMR 2018; 70:53-65. [PMID: 29197977 DOI: 10.1007/s10858-017-0158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
FoF1-ATP synthase catalyzes ATP hydrolysis/synthesis coupled with a transmembrane H+ translocation in membranes. The Fo c-subunit ring plays a major role in this reaction. We have developed an assignment strategy for solid-state 13C NMR (ssNMR) signals of the Fo c-subunit ring of thermophilic Bacillus PS3 (TFo c-ring, 72 residues), carrying one of the basic folds of membrane proteins. In a ssNMR spectrum of uniformly 13C-labeled sample, the signal overlap has been a major bottleneck because most amino acid residues are hydrophobic. To overcome signal overlapping, we developed a method designated as COmplementary Sequential assignment with MInimum Labeling Ensemble (COSMILE). According to this method, we generated three kinds of reverse-labeled samples to suppress signal overlapping. To assign the carbon signals sequentially, two-dimensional Cα(i+1)-C'Cα(i) correlation and dipolar assisted rotational resonance (DARR) experiments were performed under magic-angle sample spinning. On the basis of inter- and intra-residue 13C-13C chemical shift correlations, 97% of Cα, 97% of Cβ and 92% of C' signals were assigned directly from the spectra. Secondary structure analysis predicted a hairpin fold of two helices with a central loop. The effects of saturated and unsaturated phosphatidylcholines on TFo c-ring structure were examined. The DARR spectra at 15 ms mixing time are essentially similar to each other in saturated and unsaturated lipid membranes, suggesting that TFo c-rings have similar structures under the different environments. The spectrum of the sample in saturated lipid membranes showed better resolution and structural stability in the gel state. The C-terminal helix was suggested to locate in the outer layer of the c-ring.
Collapse
Affiliation(s)
- Su-Jin Kang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
- Department of Biophysics and Chemical Biology, Seoul National University, Kwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Yasuto Todokoro
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Suyeon Bak
- Department of Biophysics and Chemical Biology, Seoul National University, Kwanak-Gu, Seoul, 151-742, Republic of Korea
| | - Toshiharu Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masasuke Yoshida
- Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, 603-8555, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan.
- Department of Biophysics and Chemical Biology, Seoul National University, Kwanak-Gu, Seoul, 151-742, Republic of Korea.
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
178
|
Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiol Spectr 2017; 5. [PMID: 28597820 DOI: 10.1128/microbiolspec.tbtb2-0014-2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The Mycobacterium tuberculosis complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. M. tuberculosis is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.
Collapse
|
179
|
Li L, Jin Y, Wang B, Yang Z, Liu M, Guo H, Zhang J, Lu Y. A structure-based strategy toward the development of novel candidates for antimycobacterial activity: Synthesis, biological evaluation, and docking study. Chem Biol Drug Des 2017; 91:769-780. [DOI: 10.1111/cbdd.13142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Linhu Li
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research; Department of Pharmacology; Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital; Capital Medical University; Beijing China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Huiyuan Guo
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Jun Zhang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Zhejiang Starry Pharmaceutical Co. Ltd.; Xianju China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research; Department of Pharmacology; Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital; Capital Medical University; Beijing China
| |
Collapse
|
180
|
Fiorillo M, Lamb R, Tanowitz HB, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging (Albany NY) 2017; 8:1593-607. [PMID: 27344270 PMCID: PMC5032685 DOI: 10.18632/aging.100983] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
Bedaquiline (a.k.a., Sirturo) is an anti-microbial agent, which is approved by the FDA for the treatment of multi-drug resistant pulmonary tuberculosis (TB). Bedaquiline is a first-in-class diaryl-quinoline compound, that mechanistically inhibits the bacterial ATP-synthase, and shows potent activity against both drug-sensitive and drug-resistant TB. Interestingly, eukaryotic mitochondria originally evolved from engulfed aerobic bacteria. Thus, we hypothesized that, in mammalian cells, bedaquiline might also target the mitochondrial ATP-synthase, leading to mitochondrial dysfunction and ATP depletion. Here, we show that bedaquiline has anti-cancer activity, directed against Cancer Stem-like Cells (CSCs). More specifically, we demonstrate that bedaquiline treatment of MCF7 breast cancer cells inhibits mitochondrial oxygen-consumption, as well as glycolysis, but induces oxidative stress. Importantly, bedaquiline significantly blocks the propagation and expansion of MCF7-derived CSCs, with an IC-50 of approx. 1-μM, as determined using the mammosphere assay. Similarly, bedaquiline also reduces both the CD44+/CD24low/− CSC and ALDH+ CSC populations, under anchorage-independent growth conditions. In striking contrast, bedaquiline significantly increases oxygen consumption in normal human fibroblasts, consistent with the fact that it is well-tolerated in patients treated for TB infections. As such, future pre-clinical studies and human clinical trials in cancer patients may be warranted. Interestingly, we also highlight that bedaquiline shares certain structural similarities with trans-piceatannol and trans-resveratrol, which are known natural flavonoid inhibitors of the mitochondrial ATP-synthase (complex V) and show anti-aging properties.
Collapse
Affiliation(s)
- Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Herbert B Tanowitz
- Departments of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | | | - Federica Sotgia
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
181
|
Bown L, Srivastava SK, Piercey BM, McIsaac CK, Tahlan K. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. J Membr Biol 2017; 251:105-117. [DOI: 10.1007/s00232-017-9997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
|
182
|
Wu X, Li F, Wang X, Li C, Meng Q, Wang C, Huang J, Chen S, Zhu Z. Antibiotic bedaquiline effectively targets growth, survival and tumor angiogenesis of lung cancer through suppressing energy metabolism. Biochem Biophys Res Commun 2017; 495:267-272. [PMID: 29107691 DOI: 10.1016/j.bbrc.2017.10.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Tumor angiogenesis plays essential roles during lung cancer progression and metastasis. Therapeutic agent that targets both tumor cell and vascular endothelial cell may achieve additional anti-tumor efficacy. We demonstrate that bedaquiline, a FDA-approved antibiotic drug, effectively targets lung cancer cells and angiogenesis. Bedaquiline dose-dependently inhibits proliferation and induces apoptosis of a panel of lung cancer cell lines regardless of subtypes and molecular heterogeneity. Bedaquiline also inhibits capillary network formation of human lung tumor associated-endothelial cell (HLT-EC) on Matrigel and its multiple functions, such as spreading, proliferation and apoptosis, even in the presence of vascular endothelial growth factor (VEGF). We further demonstrate that bedaquiline acts on lung cancer cells and HLT-EC via inhibiting mitochondrial respiration and glycolysis, leading to ATP reduction and oxidative stress. Consistently, oxidative damage on DNA, protein and lipid were detected in cells exposed to bedaquiline. Importantly, the results obtained in in vitro cell culture are reproducible in in vivo xenograft lung cancer mouse model, confirming that bedaquiline suppresses lug tumor growth and angiogenesis, and increases oxidative stress. Our findings demonstrating that energy depletion is effectively against lung tumor cells and angiogenesis. Our work also provide pre-clinical evidence to repurpose antibiotic bedaquiline for lung cancer treatment.
Collapse
Affiliation(s)
- Xiaomu Wu
- Department of Neurology, The Central Hospital of Wuhan, Wuhan, People's Republic of China
| | - Fajiu Li
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Xiaojiang Wang
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Chenghong Li
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Qinghua Meng
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Chuanhai Wang
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Jie Huang
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Shi Chen
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China
| | - Ziyang Zhu
- Department of Respiratory Medicine, Wuhan No. 6 Hospital, Affiliated Hospital to Jianghan University, Wuhan, People's Republic of China.
| |
Collapse
|
183
|
Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017. [PMID: 29523328 DOI: 10.1016/j.tube.2017.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A limited number of anti-tuberculosis drug candidates with novel mode of action have entered clinical trials in recent years. ATP synthase is one such validated drug target which has yielded a drug recently. The aim of this study was to identify the novel chemical scaffolds targeting the Mycobacterium tuberculosis (M. tuberculosis) ATP synthase. In this study, inverted membrane vesicles of Mycobacterium smegmatis were prepared to establish luciferin based ATP estimation assay. This assay was used to screen 700 compounds which were earlier found to be active on the whole cell of M. tuberculosis. Antibacterial activity of hits against various susceptible and drug-resistant strains of M. tuberculosis was evaluated using the microplate alamar blue assay and their cytotoxicity was also determined to select the safe compounds for further study. Screening of 700 compounds resulted in the identification of two compounds (5228485 and 5220632) exhibiting an IC50 of 0.32 and 4.0 μg/ml respectively. Both compounds showed excellent anti-TB activity (MIC of 0.5-2.0 μg/ml against Mtb H37Rv) and low cytotoxicity in human cell line and sub-mitochondrial particles. The three-dimensional structure of M. tuberculosis ATPase was predicted using in-silico approach and docking studies were performed with the active compounds. The interaction between compounds and bacterial ATP synthase was confirmed by molecular docking analysis. In conclusion screening of compound library has resulted in the identification of two novel chemical scaffolds targeting mycobacterial ATP synthase.
Collapse
|
184
|
Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrob Agents Chemother 2017; 61:AAC.01225-17. [PMID: 28807917 DOI: 10.1128/aac.01225-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
Pulmonary infections caused by Mycobacterium abscessus are emerging as a global threat, especially in cystic fibrosis patients. Further intensifying the concern of M. abscessus infection is the recent evidence of human-to-human transmission of the infection. M. abscessus is a naturally multidrug-resistant fast-growing pathogen for which pharmacological options are limited. Repurposing antitubercular drugs represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. Bedaquiline (BDQ), an ATP synthase inhibitor, has recently been approved for the treatment of multidrug-resistant tuberculosis. Herein, we show that BDQ has a very low MIC against a vast panel of clinical isolates. Despite being bacteriostatic in vitro, BDQ was highly efficacious in a zebrafish model of M. abscessus infection. Remarkably, a very short period of treatment was sufficient to protect the infected larvae from M. abscessus-induced killing. This was corroborated with reduced numbers of abscesses and cords, considered to be major pathophysiological signs in infected zebrafish. Mode-of-action studies revealed that BDQ triggered a rapid depletion of ATP in M. abscessusin vitro, consistent with the drug targeting the FoF1 ATP synthase. Importantly, despite a failure to select in vitro for spontaneous mutants that are highly resistant to BDQ, the transfer of single nucleotide polymorphisms leading to D29V or A64P substitutions in atpE conferred high resistance, thus resolving the target of BDQ in M. abscessus Overall, this study indicates that BDQ is active against M. abscessusin vitro and in vivo and should be considered for clinical use against the difficult-to-manage M. abscessus pulmonary infections.
Collapse
|
185
|
Tong AST, Choi PJ, Blaser A, Sutherland HS, Tsang SKY, Guillemont J, Motte M, Cooper CB, Andries K, Van den Broeck W, Franzblau SG, Upton AM, Denny WA, Palmer BD, Conole D. 6-Cyano Analogues of Bedaquiline as Less Lipophilic and Potentially Safer Diarylquinolines for Tuberculosis. ACS Med Chem Lett 2017; 8:1019-1024. [PMID: 29057044 PMCID: PMC5642017 DOI: 10.1021/acsmedchemlett.7b00196] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
![]()
Bedaquiline (1) is a
new drug for tuberculosis and the first of the diarylquinoline class.
It demonstrates excellent efficacy against TB but induces phospholipidosis
at high doses, has a long terminal elimination half-life (due to its
high lipophilicity), and exhibits potent hERG channel inhibition,
resulting in clinical QTc interval prolongation. A number of structural
ring A analogues of bedaquiline have been prepared and evaluated for
their anti-M.tb activity (MIC90), with
a view to their possible application as less lipophilic second generation
compounds. It was previously observed that a range of 6-substituted
analogues of 1 demonstrated a positive correlation between
potency (MIC90) toward M.tb and drug lipophilicity.
Contrary to this trend, we discovered, by virtue of a clogP/M.tb score, that a 6-cyano (CN) substituent provides a substantial
reduction in lipophilicity with only modest effects on MIC values,
suggesting this substituent as a useful tool in the search for effective
and safer analogues of 1.
Collapse
Affiliation(s)
- Amy S. T. Tong
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adrian Blaser
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hamish S. Sutherland
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sophia K. Y. Tsang
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jerome Guillemont
- Medicinal Chemistry
Department (Infectious Diseases), Janssen Pharmaceuticals, Campus
de Maigremont, BP315, 27106 Val de Reuil Cedex, France
| | - Magali Motte
- Medicinal Chemistry
Department (Infectious Diseases), Janssen Pharmaceuticals, Campus
de Maigremont, BP315, 27106 Val de Reuil Cedex, France
| | - Christopher B. Cooper
- Global Alliance for TB Drug Development, 40 Wall Street, New York, New York 10005, United States
| | - Koen Andries
- Infectious Diseases BVBA, Janssen Pharmaceuticals, Beerse, Belgium
| | | | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Anna M. Upton
- Global Alliance for TB Drug Development, 40 Wall Street, New York, New York 10005, United States
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Brian D. Palmer
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel Conole
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
186
|
Nesci S, Trombetti F, Ventrella V, Pagliarani A. Post-translational modifications of the mitochondrial F 1F O-ATPase. Biochim Biophys Acta Gen Subj 2017; 1861:2902-2912. [PMID: 28782624 DOI: 10.1016/j.bbagen.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The mitochondrial F1FO-ATPase has the main role in synthesizing most of ATP, thus providing energy to living cells, but it also works in reverse and hydrolyzes ATP, depending on the transmembrane electrochemical gradient. Within the same complex the vital role of the enzyme of life coexists with that of molecular switch to trigger programmed cell death. The two-faced vital/lethal role makes the enzyme complex an intriguing biochemical target to fight pathogens resistant to traditional therapies and diseases linked to mitochondrial dysfunctions. A variety of post-translational modifications (PTMs) of selected F1FO-ATPase aminoacids have been reported to affect the enzyme function. SCOPE OF REVIEW By reviewing the known PTMs of aminoacid side chains of both F1 and FO sectors according to the most recent advances, the main aim is to highlight how local chemical changes may constitute the molecular key leading to pathological or physiological events. MAJOR CONCLUSIONS PTMs represent the chemical tool to modulate the F1FO-ATPase activity in response to different stimuli. Some PTMs are required to ensure the enzyme catalysis or, conversely, to inactivate the enzyme function. Each covalent modification of the F1FO-ATPase, which occur in response to local changes, is the result of a selective molecular mechanism which, by translating a chemical modification into a biochemical effect, guarantees the enzyme tuning under changing conditions. GENERAL SIGNIFICANCE Once highlighted how the molecular mechanism works, some PTMs may be exploited to modulate the effect of drugs targeting the enzyme complex or constitute promising tools for F1FO-ATPase-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
187
|
Ragunathan P, Sielaff H, Sundararaman L, Biuković G, Subramanian Manimekalai MS, Singh D, Kundu S, Wohland T, Frasch W, Dick T, Grüber G. The uniqueness of subunit α of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation. J Biol Chem 2017; 292:11262-11279. [PMID: 28495884 PMCID: PMC5500794 DOI: 10.1074/jbc.m117.784959] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/11/2017] [Indexed: 01/30/2023] Open
Abstract
The F1F0 -ATP (F-ATP) synthase is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). In addition to their synthase function most F-ATP synthases possess an ATP-hydrolase activity, which is coupled to proton-pumping activity. However, the mycobacterial enzyme lacks this reverse activity, but the reason for this deficiency is unclear. Here, we report that a Mycobacterium-specific, 36-amino acid long C-terminal domain in the nucleotide-binding subunit α (Mtα) of F-ATP synthase suppresses its ATPase activity and determined the mechanism of suppression. First, we employed vesicles to show that in intact membrane-embedded mycobacterial F-ATP synthases deletion of the C-terminal domain enabled ATPase and proton-pumping activity. We then generated a heterologous F-ATP synthase model system, which demonstrated that transfer of the mycobacterial C-terminal domain to a standard F-ATP synthase α subunit suppresses ATPase activity. Single-molecule rotation assays indicated that the introduction of this Mycobacterium-specific domain decreased the angular velocity of the power-stroke after ATP binding. Solution X-ray scattering data and NMR results revealed the solution shape of Mtα and the 3D structure of the subunit α C-terminal peptide 521PDEHVEALDEDKLAKEAVKV540 of M. tubercolosis (Mtα(521-540)), respectively. Together with cross-linking studies, the solution structural data lead to a model, in which Mtα(521-540) comes in close proximity with subunit γ residues 104-109, whose interaction may influence the rotation of the camshaft-like subunit γ. Finally, we propose that the unique segment Mtα(514-549), which is accessible at the C terminus of mycobacterial subunit α, is a promising drug epitope.
Collapse
Affiliation(s)
- Priya Ragunathan
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Hendrik Sielaff
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lavanya Sundararaman
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Goran Biuković
- the Department of Microbiology and Immunology, National University of Singapore, Yong Loo Lin School of Medicine, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | | | - Dhirendra Singh
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Subhashri Kundu
- the Department of Microbiology and Immunology, National University of Singapore, Yong Loo Lin School of Medicine, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | - Thorsten Wohland
- the Departments of Biological Sciences and Chemistry and NUS Centre for Bioimaging Sciences (CBIS), National University of Singapore, 14 Science Drive 4, Singapore 117557, Republic of Singapore, and
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Thomas Dick
- the Department of Microbiology and Immunology, National University of Singapore, Yong Loo Lin School of Medicine, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | - Gerhard Grüber
- From the Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore,
| |
Collapse
|
188
|
Antimicrobial Activity of Quinazolin Derivatives of 1,2-Di(quinazolin-4-yl)diselane against Mycobacteria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5791781. [PMID: 28612027 PMCID: PMC5458374 DOI: 10.1155/2017/5791781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is one of the leading causes of morbidity and mortality. Currently, the emergence of drug resistance has an urgent need for new drugs. In previous study, we found that 1,2-di(quinazolin-4-yl)diselane (DQYD), a quinazoline derivative, has anticancer activities against many cancers. However, whether DQYD has the activity of antimycobacterium is still little known. Here our results show that DQYD has a similar value of the minimum inhibitory concentration with clinical drugs against mycobacteria and also has the ability of bacteriostatic activity with dose-dependent and time-dependent manner. Furthermore, the activities of DQYD against M. tuberculosis are associated with intracellular ATP homeostasis. Meanwhile, mycobacterium DNA damage level was increased after DQYD treatment. But there was no correlation between survival of mycobacteria in the presence of DQYD and intercellular reactive oxygen species. This study enlightens the possible benefits of quinazoline derivatives as potential antimycobacterium compounds and furtherly suggests a new strategy to develop new methods for searching antituberculosis drugs.
Collapse
|
189
|
AlMatar M, AlMandeal H, Var I, Kayar B, Köksal F. New drugs for the treatment of Mycobacterium tuberculosis infection. Biomed Pharmacother 2017; 91:546-558. [PMID: 28482292 DOI: 10.1016/j.biopha.2017.04.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/29/2017] [Accepted: 04/23/2017] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis presents a grave challenge to health, globally instigating 1.5 million mortalities each year. Following the breakthrough of first-line anti-TB medication, the number of mortalities reduced greatly; nonetheless, the swift appearance of tuberculosis which was drug-resistant, as well as the capability of the bacterium to survive and stay dormant are a considerable problem for public health. In order to address this issue, several novel possible candidates for tuberculosis therapy have been subjected to clinical trials of late. The novel antimycobacterial agents are acquired from different categories of medications, operate through a range of action systems, and are at various phases of advancement. We therefore talk about the present methods of treating tuberculosis and novel anti-TB agents with their action method, in order to advance awareness of these new compounds and medications.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü), Cukurova University, Adana, Turkey.
| | - Husam AlMandeal
- Universitätsklinikum des Saarlandes, Gebäude 90, Kirrberger Straße, D-66421, Homburg, Germany
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
190
|
Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery. mBio 2017; 8:mBio.00272-17. [PMID: 28400527 PMCID: PMC5388804 DOI: 10.1128/mbio.00272-17] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant mycobacterial infections are a serious global health challenge, leading to high mortality and socioeconomic burdens in developing countries worldwide. New innovative approaches, from identification of new targets to discovery of novel chemical scaffolds, are urgently needed. Recently, energy metabolism in mycobacteria, in particular the oxidative phosphorylation pathway, has emerged as an object of intense microbiological investigation and as a novel target pathway in drug discovery. New classes of antibacterials interfering with elements of the oxidative phosphorylation pathway are highly active in combating dormant or latent mycobacterial infections, with a promise of shortening tuberculosis chemotherapy. The regulatory approval of the ATP synthase inhibitor bedaquiline and the discovery of Q203, a candidate drug targeting the cytochrome bc1 complex, have highlighted the central importance of this new target pathway. In this review, we discuss key features and potential applications of inhibiting energy metabolism in our quest for discovering potent novel and sterilizing drug combinations for combating tuberculosis. We believe that the combination of drugs targeting elements of the oxidative phosphorylation pathway can lead to a completely new regimen for drug-susceptible and multidrug-resistant tuberculosis.
Collapse
|
191
|
Schulz S, Wilkes M, Mills DJ, Kühlbrandt W, Meier T. Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei. EMBO Rep 2017; 18:526-535. [PMID: 28283532 PMCID: PMC5376962 DOI: 10.15252/embr.201643374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N‐type rotary ATPase, in addition to an operon for a regular F‐type rotary ATPase. The molecular architecture of N‐type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N1No‐type ATPase and investigated the structure and ion specificity of its membrane‐embedded c‐ring rotor by single‐particle electron cryo‐microscopy. Of several amphiphilic compounds tested for solubilizing the complex, the choice of the low‐density, low‐CMC detergent LDAO was optimal in terms of map quality and resolution. The cryoEM map of the c‐ring at 6.1 Å resolution reveals a heptadecameric oligomer with a molecular mass of ~141 kDa. Biochemical measurements indicate that the c17 ring is H+ specific, demonstrating that the ATPase is proton‐coupled. The c17 ring stoichiometry results in a very high ion‐to‐ATP ratio of 5.7. We propose that this N‐ATPase is a highly efficient proton pump that helps these melioidosis‐causing bacteria to survive in the hostile, acidic environment of phagosomes.
Collapse
Affiliation(s)
- Sarah Schulz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martin Wilkes
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
192
|
Tantry SJ, Markad SD, Shinde V, Bhat J, Balakrishnan G, Gupta AK, Ambady A, Raichurkar A, Kedari C, Sharma S, Mudugal NV, Narayan A, Naveen Kumar CN, Nanduri R, Bharath S, Reddy J, Panduga V, Prabhakar KR, Kandaswamy K, Saralaya R, Kaur P, Dinesh N, Guptha S, Rich K, Murray D, Plant H, Preston M, Ashton H, Plant D, Walsh J, Alcock P, Naylor K, Collier M, Whiteaker J, McLaughlin RE, Mallya M, Panda M, Rudrapatna S, Ramachandran V, Shandil R, Sambandamurthy VK, Mdluli K, Cooper CB, Rubin H, Yano T, Iyer P, Narayanan S, Kavanagh S, Mukherjee K, Balasubramanian V, Hosagrahara VP, Solapure S, Ravishankar S, Hameed P S. Discovery of Imidazo[1,2-a]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis. J Med Chem 2017; 60:1379-1399. [PMID: 28075132 DOI: 10.1021/acs.jmedchem.6b01358] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo[1,2-a]pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure-activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection.
Collapse
Affiliation(s)
- Subramanyam J Tantry
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Shankar D Markad
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vikas Shinde
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Jyothi Bhat
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Gayathri Balakrishnan
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Amit K Gupta
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Anisha Ambady
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Anandkumar Raichurkar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Chaitanyakumar Kedari
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Sreevalli Sharma
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Naina V Mudugal
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Ashwini Narayan
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - C N Naveen Kumar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Robert Nanduri
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Sowmya Bharath
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Jitendar Reddy
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vijender Panduga
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - K R Prabhakar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Karthikeyan Kandaswamy
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Ramanatha Saralaya
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Parvinder Kaur
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Neela Dinesh
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Supreeth Guptha
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Kirsty Rich
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - David Murray
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Helen Plant
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Marian Preston
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Helen Ashton
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Darren Plant
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Jarrod Walsh
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Peter Alcock
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Kathryn Naylor
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Matthew Collier
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - James Whiteaker
- Infection Innovative Medicines, AstraZeneca , 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Robert E McLaughlin
- Infection Innovative Medicines, AstraZeneca , 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Meenakshi Mallya
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Manoranjan Panda
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Suresh Rudrapatna
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vasanthi Ramachandran
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Radha Shandil
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vasan K Sambandamurthy
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Khisi Mdluli
- Global Alliance for TB Drug Development , 40 Wall Street, 24th Floor, New York, New York 10005, United States
| | - Christopher B Cooper
- Global Alliance for TB Drug Development , 40 Wall Street, 24th Floor, New York, New York 10005, United States
| | - Harvey Rubin
- University of Pennsylvania , 111 Clinical Research Building, 415 Curie Boulevard, Philadelphia Pennsylvania 19104, United States
| | - Takahiro Yano
- University of Pennsylvania , 111 Clinical Research Building, 415 Curie Boulevard, Philadelphia Pennsylvania 19104, United States
| | - Pravin Iyer
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Shridhar Narayanan
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Stefan Kavanagh
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Kakoli Mukherjee
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - V Balasubramanian
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vinayak P Hosagrahara
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Suresh Solapure
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Sudha Ravishankar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Shahul Hameed P
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
193
|
Analysis of an N-terminal deletion in subunit a of the Escherichia coli ATP synthase. J Bioenerg Biomembr 2017; 49:171-181. [PMID: 28078625 DOI: 10.1007/s10863-017-9694-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6-20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.
Collapse
|
194
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
195
|
Emergence of mmpT5 Variants during Bedaquiline Treatment of Mycobacterium intracellulare Lung Disease. J Clin Microbiol 2016; 55:574-584. [PMID: 27927925 DOI: 10.1128/jcm.02087-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline (BDQ), a diarylquinoline antibiotic that targets ATP synthase, is effective for the treatment of Mycobacterium tuberculosis infections that no longer respond to conventional drugs. While investigating the off-label use of BDQ as salvage therapy, seven of 13 patients with Mycobacterium intracellulare lung disease had an initial microbiological response and then relapsed. Whole-genome comparison of pretreatment and relapse isolates of M. intracellulare uncovered mutations in a previously uncharacterized locus, mmpT5 Preliminary analysis suggested similarities between mmpT5 and the mmpR5 locus, which is associated with low-level BDQ resistance in M. tuberculosis Both genes encode transcriptional regulators and are adjacent to orthologs of the mmpS5-mmpL5 drug efflux operon. However, MmpT5 belongs to the TetR superfamily, whereas MmpR5 is a MarR family protein. Targeted sequencing uncovered nonsynonymous mmpT5 mutations in isolates from all seven relapse cases, including two pretreatment isolates. In contrast, only two relapse patient isolates had nonsynonymous changes in ATP synthase subunit c (atpE), the primary target of BDQ. Susceptibility testing indicated that mmpT5 mutations are associated with modest 2- to 8-fold increases in MICs for BDQ and clofazimine, whereas one atpE mutant exhibited a 50-fold increase in MIC for BDQ. Bedaquiline shows potential for the treatment of M. intracellulare lung disease, but optimization of treatment regimens is required to prevent the emergence of mmpT5 variants and microbiological relapse.
Collapse
|
196
|
Leone V, Faraldo-Gómez JD. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling. J Gen Physiol 2016; 148:441-457. [PMID: 27821609 PMCID: PMC5129741 DOI: 10.1085/jgp.201611679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/13/2016] [Indexed: 01/31/2023] Open
Abstract
The ATP synthase is a molecular rotor that recycles ADP into ATP. Leone and Faraldo-Gómez use structural modeling to reinterpret and reconcile recent cryo-EM data for its membrane domain with other experimental evidence, gaining insights into its mechanism and the mode of inhibition by oligomycin. Two subunits within the transmembrane domain of the ATP synthase—the c-ring and subunit a—energize the production of 90% of cellular ATP by transducing an electrochemical gradient of H+ or Na+ into rotational motion. The nature of this turbine-like energy conversion mechanism has been elusive for decades, owing to the lack of definitive structural information on subunit a or its c-ring interface. In a recent breakthrough, several structures of this complex were resolved by cryo–electron microscopy (cryo-EM), but the modest resolution of the data has led to divergent interpretations. Moreover, the unexpected architecture of the complex has cast doubts on a wealth of earlier biochemical analyses conducted to probe this structure. Here, we use quantitative molecular-modeling methods to derive a structure of the a–c complex that is not only objectively consistent with the cryo-EM data, but also with correlated mutation analyses of both subunits and with prior cross-linking and cysteine accessibility measurements. This systematic, integrative approach reveals unambiguously the topology of subunit a and its relationship with the c-ring. Mapping of known Cd2+ block sites and conserved protonatable residues onto the structure delineates two noncontiguous pathways across the complex, connecting two adjacent proton-binding sites in the c-ring to the space on either side of the membrane. The location of these binding sites and of a strictly conserved arginine on subunit a, which serves to prevent protons from hopping between them, explains the directionality of the rotary mechanism and its strict coupling to the proton-motive force. Additionally, mapping of mutations conferring resistance to oligomycin unexpectedly reveals that this prototypical inhibitor may bind to two distinct sites at the a–c interface, explaining its ability to block the mechanism of the enzyme irrespective of the direction of rotation of the c-ring. In summary, this study is a stepping stone toward establishing the mechanism of the ATP synthase at the atomic level.
Collapse
Affiliation(s)
- Vanessa Leone
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
197
|
He C, Preiss L, Wang B, Fu L, Wen H, Zhang X, Cui H, Meier T, Yin D. Structural Simplification of Bedaquiline: the Discovery of 3-(4-(N,N-Dimethylaminomethyl)phenyl)quinoline-Derived Antitubercular Lead Compounds. ChemMedChem 2016; 12:106-119. [PMID: 27792278 PMCID: PMC5298006 DOI: 10.1002/cmdc.201600441] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 01/03/2023]
Abstract
Bedaquiline (BDQ) is a novel and highly potent last-line antituberculosis drug that was approved by the US FDA in 2013. Owing to its stereo-structural complexity, chemical synthesis and compound optimization are rather difficult and expensive. This study describes the structural simplification of bedaquiline while preserving antitubercular activity. The compound's structure was split into fragments and reassembled in various combinations while replacing the two chiral carbon atoms with an achiral linkage instead. Four series of analogues were designed; these candidates retained their potent antitubercular activity at sub-microgram per mL concentrations against both sensitive and multidrug-resistant (MDR) Mycobacterium tuberculosis strains. Six out of the top nine MIC-ranked candidates were found to inhibit mycobacterial ATP synthesis activity with IC50 values between 20 and 40 μm, one had IC50 >66 μm, and two showed no inhibition, despite their antitubercular activity. These results provide a basis for the development of chemically less complex, lower-cost bedaquiline derivatives and describe the identification of two derivatives with antitubercular activity against non-ATP synthase related targets.
Collapse
Affiliation(s)
- Chunxian He
- State Key Laboratory of Bioactive Substances and Function ofNatural Medicine, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China.,Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Bin Wang
- Department of Pharmacology, Beijing Tuberculosis and Thoracic TumorResearch Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, China
| | - Lei Fu
- Department of Pharmacology, Beijing Tuberculosis and Thoracic TumorResearch Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiang Zhang
- Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.,Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function ofNatural Medicine, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| |
Collapse
|
198
|
Zhou W, Leone V, Krah A, Faraldo-Gómez JD. Predicted Structures of the Proton-Bound Membrane-Embedded Rotor Rings of the Saccharomyces cerevisiae and Escherichia coli ATP Synthases. J Phys Chem B 2016; 121:3297-3307. [PMID: 27715045 DOI: 10.1021/acs.jpcb.6b08051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent years have witnessed a renewed interest in the ATP synthase as a drug target against human pathogens. Indeed, clinical, biochemical, and structural data indicate that hydrophobic inhibitors targeting the membrane-embedded proton-binding sites of the c-subunit ring could serve as last-resort antibiotics against multidrug resistant strains. However, because inhibition of the mitochondrial ATP synthase in humans is lethal, it is essential that these inhibitors be not only potent but also highly selective for the bacterial enzyme. To this end, a detailed understanding of the structure of this protein target is arguably instrumental. Here, we use computational methods to predict the atomic structures of the proton-binding sites in two prototypical c-rings: that of the ATP synthase from Saccharomyces cerevisiae, which is a model system for mitochondrial enzymes, and that from Escherichia coli, which can be pathogenic for humans. Our study reveals the structure of these binding sites loaded with protons and in the context of the membrane, that is, in the state that would mediate the recognition of a potential inhibitor. Both structures reflect a mode of proton coordination unlike those previously observed in other c-ring structures, whether experimental or modeled.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Vanessa Leone
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Alexander Krah
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics , 60438 Frankfurt am Main, Germany
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Section, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892, United States.,Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics , 60438 Frankfurt am Main, Germany
| |
Collapse
|
199
|
Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase. Antimicrob Agents Chemother 2016; 60:6977-6979. [PMID: 27620476 PMCID: PMC5075122 DOI: 10.1128/aac.01291-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/04/2016] [Indexed: 12/24/2022] Open
Abstract
The tuberculosis drug bedaquiline inhibits mycobacterial F-ATP synthase by binding to its c subunit. Using the purified ε subunit of the synthase and spectroscopy, we previously demonstrated that the drug interacts with this protein near its unique tryptophan residue. Here, we show that replacement of ε's tryptophan with alanine resulted in bedaquiline hypersusceptibility of the bacteria. Overexpression of the wild-type ε subunit caused resistance. These results suggest that the drug also targets the ε subunit.
Collapse
|
200
|
Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 2016; 72:338-353. [PMID: 27798208 DOI: 10.1093/jac/dkw426] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant (DR)-TB is the major challenge confronting the global TB control programme, necessitating treatment with second-line anti-TB drugs, often with limited therapeutic efficacy. This scenario has resulted in the inclusion of Group 5 antibiotics in various therapeutic regimens, two of which promise to impact significantly on the outcome of the therapy of DR-TB. These are the 're-purposed' riminophenazine, clofazimine, and the recently approved diarylquinoline, bedaquiline. Although they differ structurally, both of these lipophilic agents possess cationic amphiphilic properties that enable them to target and inactivate essential ion transporters in the outer membrane of Mycobacterium tuberculosis. In the case of bedaquiline, the primary target is the key respiratory chain enzyme F1/F0-ATPase, whereas clofazimine is less selective, apparently inhibiting several targets, which may underpin the extremely low level of resistance to this agent. This review is focused on similarities and differences between clofazimine and bedaquiline, specifically in respect of molecular mechanisms of antimycobacterial action, targeting of quiescent and metabolically active organisms, therapeutic efficacy in the clinical setting of DR-TB, resistance mechanisms, pharmacodynamics, pharmacokinetics and adverse events.
Collapse
Affiliation(s)
- Moloko C Cholo
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Maborwa T Mothiba
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ronald Anderson
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|