151
|
Abstract
Macrophages have a key functional role in the pathogenesis of various cardiovascular diseases, such as atherosclerosis and aortic aneurysms. Their accumulation within the vessel wall leads to sustained local inflammatory responses characterized by secretion of chemokines, cytokines, and matrix protein degrading enzymes. Here, we summarize some recent findings on macrophage contribution to cardiovascular disease. We focus on the origin, survival/death, and phenotypic switching of macrophages within vessel walls.
Collapse
Affiliation(s)
- Mitri K Khoury
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Wisconsin, Madison
| | - Huan Yang
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Wisconsin, Madison
| | - Bo Liu
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of Wisconsin, Madison
| |
Collapse
|
152
|
Karunakaran D, Turner AW, Duchez AC, Soubeyrand S, Rasheed A, Smyth D, Cook DP, Nikpay M, Kandiah JW, Pan C, Geoffrion M, Lee R, Boytard L, Wyatt H, Nguyen MA, Lau P, Laakso M, Ramkhelawon B, Alvarez M, Pietiläinen KH, Pajukanta P, Vanderhyden BC, Liu P, Berger SB, Gough PJ, Bertin J, Harper ME, Lusis AJ, McPherson R, Rayner KJ. RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nat Metab 2020; 2:1113-1125. [PMID: 32989316 PMCID: PMC8362891 DOI: 10.1038/s42255-020-00279-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health burden worldwide and is characterized by chronic low-grade inflammation driven by the cooperation of the innate immune system and dysregulated metabolism in adipose tissue and other metabolic organs. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a central regulator of inflammatory cell function that coordinates inflammation, apoptosis and necroptosis in response to inflammatory stimuli. Here we show that genetic polymorphisms near the human RIPK1 locus associate with increased RIPK1 gene expression and obesity. We show that one of these single nucleotide polymorphisms is within a binding site for E4BP4 and increases RIPK1 promoter activity and RIPK1 gene expression in adipose tissue. Therapeutic silencing of RIPK1 in vivo in a mouse model of diet-induced obesity dramatically reduces fat mass, total body weight and improves insulin sensitivity, while simultaneously reducing macrophage and promoting invariant natural killer T cell accumulation in adipose tissue. These findings demonstrate that RIPK1 is genetically associated with obesity, and reducing RIPK1 expression is a potential therapeutic approach to target obesity and related diseases.
Collapse
Affiliation(s)
- Denuja Karunakaran
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia.
| | - Adam W Turner
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anne-Claire Duchez
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Sebastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Adil Rasheed
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David Smyth
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David P Cook
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Joshua W Kandiah
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Calvin Pan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michele Geoffrion
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Ludovic Boytard
- New York University Langone Medical Center, New York, NY, USA
| | - Hailey Wyatt
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - My-Anh Nguyen
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Marcus Alvarez
- Department of Human Genetics, and Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism and Obesity Center, Endocrinology, Abdominal Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, and Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barbara C Vanderhyden
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Peter Liu
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Scott B Berger
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter J Gough
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, PA, USA
| | - John Bertin
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, PA, USA
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Aldons J Lusis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
153
|
XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis 2020; 11:629. [PMID: 32796819 PMCID: PMC7429848 DOI: 10.1038/s41419-020-02871-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Regulated necrosis has been reported to exert an important role in the pathogenesis of various diseases, including renal ischemia-reperfusion (I/R) injury. Damage to renal tubular epithelial cells and subsequent cell death initiate the progression of acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). We found that ferroptosis appeared in tubular epithelial cells (TECs) of various human kidney diseases and the upregulation of tubular proferroptotic gene ACSL4 was correlated with renal function in patients with acute kidney tubular injury. XJB-5-131, which showed high affinity for TECs, attenuated I/R-induced renal injury and inflammation in mice by specifically inhibiting ferroptosis rather than necroptosis and pyroptosis. Single-cell RNA sequencing (scRNA-seq) indicated that ferroptosis-related genes were mainly expressed in tubular epithelial cells after I/R injury, while few necroptosis- and pyroptosis-associated genes were identified to express in this cluster of cell. Taken together, ferroptosis plays an important role in renal tubular injury and the inhibition of ferroptosis by XJB-5-131 is a promising therapeutic strategy for protection against renal tubular cell injury in kidney diseases.
Collapse
|
154
|
Nogieć A, Bzowska M, Demczuk A, Varol C, Guzik K. Phenotype and Response to PAMPs of Human Monocyte-Derived Foam Cells Obtained by Long-Term Culture in the Presence of oxLDLs. Front Immunol 2020; 11:1592. [PMID: 32849539 PMCID: PMC7417357 DOI: 10.3389/fimmu.2020.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cholesterol-laden, foam macrophages constitute the most characteristic component of human atherosclerotic plaques. Persistent uptake of oxLDLs results in accumulation of lipid bodies inside the cells and determines their phenotype and subsequent functions. In this work, we describe the phenotype of human monocyte-derived foam cells obtained by differentiation in the constant presence of oxLDLs for 30 days (prolonged-hMDFCs). Although neither the total cellular nor the cell surface expression of Toll-like receptors (TLR) was regulated by oxLDLs, the prolonged-hMDFCs changed dramatically their responsiveness to TLR ligands and inactivated bacteria. Using multiplex technology, we observed an acute decline in cytokine and chemokine production after surface and endosomal TLR stimulation with the exception of TLR2/6 triggering with agonists Pam2CSK4 and MALP-2. We also noted significant reduction of some surface receptors which can have accessory function in recognition of particulate antigens (CD47, CD81, and CD11b). In contrast, the prolonged-hMDFCs responded to inflammasome activation by LPS/nigericin with extensive, necrotic type cell death, which was partially independent of caspase-1. This pyroptosis-like cell death was aggravated by necrostatin-1 and rapamycin. These findings identify a potential contribution of mature foam cells to inflammatory status by increasing the immunogenic cell death burden. The observed cross-talk between foam cell death pathways may lead to recognition of a potential new marker for atherosclerosis disease severity. Overall, our study demonstrates that, in contrast to other cellular models of foam cells, the prolonged-hMDFCs acquire a functional phenotype which may help understanding the role of foam cells in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Anna Nogieć
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Demczuk
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Chen Varol
- The Research Center for Digestive Tract & Liver Diseases, The Tel Aviv Souraski Medical Center, Tel Aviv, Israel
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
155
|
Murphy JM. The Killer Pseudokinase Mixed Lineage Kinase Domain-Like Protein (MLKL). Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036376. [PMID: 31712266 DOI: 10.1101/cshperspect.a036376] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whereas the apoptosis cell death pathway typically enables cells to undergo death in an immunologically silent manner, cell death by necroptosis induces cell lysis and release of cellular constituents known to elicit an immune response. Consequently, the origins of necroptosis likely originated in host defense against pathogens, although recently it has emerged that dysregulation of the pathway underlies many human pathologies. The past decade has seen a rapid advance in our understanding of the molecular mechanisms underlying necroptotic cell death, including the implication of the pseudokinase, mixed lineage kinase domain-like protein (MLKL), as the terminal effector in the pathway. Here, I review our current understanding of how MLKL is activated by the upstream receptor interacting protein kinase (RIPK)3, the proposed mechanism(s) by which MLKL kills cells, and recently described layers of regulation that tune MLKL's killing activity.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
156
|
The carotid plaque as paradigmatic case of site-specific acceleration of aging process: The microRNAs and the inflammaging contribution. Ageing Res Rev 2020; 61:101090. [PMID: 32474155 DOI: 10.1016/j.arr.2020.101090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered a chronic inflammatory disease of arteries associated with the aging process. Many risk factors have been identified and they are mainly related to life-styles, gene-environment interactions and socioeconomic status. Carotid and coronary artery diseases are the two major atherosclerotic conditions, being the primary cause of stroke and heart attack, respectively. Nevertheless, carotid plaque assumes particular aspects not only for the specific molecular mechanisms, but also for the types of atheroma which may be associated with a better or a worst prognosis. The identification of circulating blood biomarkers able to distinguish carotid plaque types (stable or vulnerable) is a crucial step for the improvement of adequate therapeutic approaches avoiding or delaying endarterectomy in the oldest old individuals (> 80 years), a population predicted to growth in the next years. The review highlights the most recent knowledge on carotid plaque molecular mechanisms, focusing on microRNAs (miRs), as a site-specific accelerated aging within the conceptual framework of Geroscience for new affordable therapies.
Collapse
|
157
|
MLKL Aggravates Ox-LDL-Induced Cell Pyroptosis via Activation of NLRP3 Inflammasome in Human Umbilical Vein Endothelial Cells. Inflammation 2020; 43:2222-2231. [DOI: 10.1007/s10753-020-01289-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
158
|
Yang B, Qin Q, Xu L, Lv X, Liu Z, Song E, Song Y. Polychlorinated Biphenyl Quinone Promotes Atherosclerosis through Lipid Accumulation and Endoplasmic Reticulum Stress via CD36. Chem Res Toxicol 2020; 33:1497-1507. [PMID: 32434321 DOI: 10.1021/acs.chemrestox.0c00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic environmental pollutants. According to previous epidemiological reports, PCBs exposure is highly related to atherosclerosis. However, studies of PCBs metabolites and atherosclerosis and corresponding mechanism studies are scarce. In this study, we evaluated the effect of 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ), a presumptive PCB metabolite, on atherosclerosis. Aortic plaques were increased in PCB29-pQ-treated ApoE-/- mice [intraperitoneally (i.p.) injection of 5 mg/kg body weight of PCB29-pQ once a week for 12 continuous weeks, high-fat feeding]. We observed lipids accumulation and the release of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in ApoE-/- mice. In addition, we found that PCB29-pQ promoted the levels of total cholesterol, free cholesterol, triglyceride, and cholesteryl ester. Mechanism investigation indicated that PCB29-pQ induces the activation of three branches of endoplasmic reticulum (ER) stress response, that is, phosphorylated protein kinase R-like ER kinase (p-PERK), eukaryotic translation initiation factor 2α (eIF2α) and transcription factor 6 (ATF6), which is responsible for downstream necrosis. More importantly, we found the silence of CD36 is able to reverse PCB29-pQ-induced adverse effects completely. Overall, PCB29-pQ exposure resulted in lipid accumulation, ER stress response, apoptosis, and pro-inflammatory cytokines release via CD36, ultimately leading to atherosclerosis.
Collapse
Affiliation(s)
- Bingwei Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Qi Qin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Lei Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xuying Lv
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Zixuan Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
159
|
Chi ZC. Relationship between non-alcoholic fatty liver disease and cardiovascular disease. Shijie Huaren Xiaohua Zazhi 2020; 28:313-329. [DOI: 10.11569/wcjd.v28.i9.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the in-depth study of non-alcoholic fatty liver disease (NAFLD), it has been found in recent years that NAFLD is closely related to cardiovascular disease (CVD). It has been proved that NAFLD is not only an important risk factor for CVD, but it is also an important mechanism of atherosclerosis, coronary heart disease, and hypertension in young people. This article reviews the recent progress in the understanding of the relationship between NAFLD and CVD, with an aim to improve the knowledge of CVD physicians on liver disease and provide reference for prevention and treatment of these conditions.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
160
|
Faergeman SL, Evans H, Attfield KE, Desel C, Kuttikkatte SB, Sommerlund M, Jensen LT, Frokiaer J, Friese MA, Matthews PM, Luchtenborg C, Brügger B, Oturai AB, Dendrou CA, Fugger L. A novel neurodegenerative spectrum disorder in patients with MLKL deficiency. Cell Death Dis 2020; 11:303. [PMID: 32358523 PMCID: PMC7195448 DOI: 10.1038/s41419-020-2494-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Mixed lineage kinase domain-like (MLKL) is the main executor of necroptosis, an inflammatory form of programmed cell death. Necroptosis is implicated in combating infections, but also in contributing to numerous other clinical conditions, including cardiovascular diseases and neurodegenerative disorders. Inhibition of necroptosis is therefore of therapeutic interest. Here we report two siblings both of whom over the course of 35 years developed a similar progressive, neurodegenerative spectrum disorder characterized by paresis, ataxia and dysarthria. Magnetic resonance imaging of their central nervous system (CNS) revealed severe global cerebral volume loss and atrophy of the cerebellum and brainstem. These brothers are homozygous for a rare haplotype identified by whole genome sequencing carrying a frameshift variant in MLKL, as well as an in-frame deletion of one amino acid in the adjacent fatty acid 2-hydroxylase (FA2H) gene. Functional studies of patient-derived primary cells demonstrated that the variant in MLKL leads to a deficiency of MLKL protein resulting in impairment of necroptosis. Conversely, shotgun lipidomic analysis of the variant in FA2H shows no impact on either the abundance or the enzymatic activity of the encoded hydroxylase. To our knowledge, this is the first report of complete necroptosis deficiency in humans. The findings may suggest that impaired necroptosis is a novel mechanism of neurodegeneration, promoting a disorder that shares some clinical features with primary progressive multiple sclerosis (PPMS) and other neurodegenerative diseases. Importantly, the necroptotic deficiency does not cause symptoms outside the nervous system, nor does it confer susceptibility to infections. Given the current interest in pharmacological inhibition of necroptosis by targeting MLKL and its associated pathways, this strategy should be developed with caution, with careful consideration of the possible development of adverse neurological effects.
Collapse
Affiliation(s)
- Soren L Faergeman
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, DK-8200, Denmark
| | - Hayley Evans
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Christiane Desel
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Subita Balaram Kuttikkatte
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Mette Sommerlund
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, DK-8200, Denmark
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, DK-8200, Denmark
| | - Jorgen Frokiaer
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, DK-8200, Denmark
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, UK Dementia Research Institute, Imperial College London, London, SW7 2AZ, UK
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, D-69120, Germany
| | - Annette Bang Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, 2100, Denmark
| | - Calliope A Dendrou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
161
|
Ferroptosis as an emerging target in inflammatory diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 155:20-28. [PMID: 32311424 DOI: 10.1016/j.pbiomolbio.2020.04.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
Cell survival or death is one critical issue in inflammatory responses. Ferroptosis, which is characterized by iron-dependent lethal lipid peroxidation, has been found to participate in the development of cancers, degenerative brain diseases and ischemia-reperfusion injuries. Incorporation of polyunsaturated fatty acids (PUFAs) into cellular membranes represents a vulnerability to invasion of microbials and sterile stimuli. In addition, the competition for iron in the battle between microbials and host cells underlies infection development. Although host cells have been equipped with complex antioxidant systems to combat lethal accumulation of lipid peroxidation, emerging evidence suggests several pathogens may target PUFAs in the cell membrane, and manipulate ferroptosis as a way for pathogen propagation. Moreover, ferroptosis takes part in the progression of sterile inflammations, such as cigarette smoke-induced chronic obstructive pulmonary disease, stroke and ischemia-reperfusion injuries. As iron-dependent oxidative stress and lipid peroxidation are common features for ferroptosis and inflammatory diseases, underlying mechanisms linking such pathological conditions will be discussed in this review. Progress in the research of ferroptosis may shed more light on the etiology and treatment of inflammatory diseases.
Collapse
|
162
|
Rasheed A, Robichaud S, Nguyen MA, Geoffrion M, Wyatt H, Cottee ML, Dennison T, Pietrangelo A, Lee R, Lagace TA, Ouimet M, Rayner KJ. Loss of MLKL (Mixed Lineage Kinase Domain-Like Protein) Decreases Necrotic Core but Increases Macrophage Lipid Accumulation in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:1155-1167. [PMID: 32212851 DOI: 10.1161/atvbaha.119.313640] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES During the advancement of atherosclerosis, plaque cellularity is governed by the influx of monocyte-derived macrophages and their turnover via apoptotic and nonapoptotic forms of cell death. Previous reports have demonstrated that programmed necrosis, or necroptosis, of plaque macrophages contribute to necrotic core formation. Knockdown or inhibition of the necrosome components RIPK1 (receptor-interacting protein kinase 1) and RIPK3 (receptor-interacting protein kinase 3) slow atherogenesis, and activation of the terminal step of necroptosis, MLKL (mixed lineage kinase domain-like protein), has been demonstrated in advanced human atherosclerotic plaques. However, whether MLKL directly contributes to lesion development and necrotic core formation has not been investigated. Approaches and Results: MLKL expression was knocked down in atherogenic Apoe-knockout mice via the administration of antisense oligonucleotides. During atherogenesis, Mlkl knockdown decreased both programmed cell death and the necrotic core in the plaque. However, total lesion area remained unchanged. Furthermore, treatment with the MLKL antisense oligonucleotide unexpectedly reduced circulating cholesterol levels compared with control antisense oligonucleotide but increased the accumulation of lipids within the plaque and in vitro in macrophage foam cells. MLKL colocalized with the late endosome and multivesicular bodies in peritoneal macrophages incubated with atherogenic lipoproteins. Transfection with MLKL antisense oligonucleotide increased lipid localization with the multivesicular bodies, suggesting that upon Mlkl knockdown, lipid trafficking becomes defective leading to enhanced lipid accumulation in macrophages. CONCLUSIONS These studies confirm the requirement for MLKL as the executioner of necroptosis, and as such a significant contributor to the necrotic core during atherogenesis. We also identified a previously unknown role for MLKL in regulating endosomal trafficking to facilitate lipid handling in macrophages during atherogenesis.
Collapse
Affiliation(s)
- Adil Rasheed
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Sabrina Robichaud
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - My-Anh Nguyen
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Michele Geoffrion
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Hailey Wyatt
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Mary Lynn Cottee
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Taylor Dennison
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Antonietta Pietrangelo
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.)
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Ionis Pharmaceuticals, Carlsbad, CA (R.L.)
| | - Thomas A Lagace
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Mireille Ouimet
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| | - Katey J Rayner
- From the University of Ottawa Heart Institute, ON, Canada (A.R., S.R., M.-A.N., M.G., H.W., M.L.C., T.D., A.P., T.A.L., M.O., K.J.R.).,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (S.R., M.-A.N., M.L.C., T.A.L., M.O., K.J.R.)
| |
Collapse
|
163
|
Ding HR, Tang ZT, Tang N, Zhu ZY, Liu HY, Pan CY, Hu AY, Lin YZ, Gou P, Yuan XW, Cai JH, Dong CL, Wang JL, Ren HZ. Protective Properties of FOXO1 Inhibition in a Murine Model of Non-alcoholic Fatty Liver Disease Are Associated With Attenuation of ER Stress and Necroptosis. Front Physiol 2020; 11:177. [PMID: 32218743 PMCID: PMC7078343 DOI: 10.3389/fphys.2020.00177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
AIM The pathogenesis of non-alcoholic fatty liver disease is currently unclear, however, lipid accumulation leading to endoplasmic reticulum stress appears to be pivotal in the process. At present, FOXO1 is known to be involved in NAFLD progression. The relationship between necroptosis and non-alcoholic steatohepatitis has been of great research interest more recently. However, whether FOXO1 regulates ER stress and necroptosis in mice fed with a high fat diet is not clear. Therefore, in this study we analyzed the relationship between non-alcoholic steatohepatitis, ER stress, and necroptosis. MAIN METHODS Male C57BL/6J mice were fed with an HFD for 14 weeks to induce non-alcoholic steatohepatitis. ER stress and activation of necroptosis in AML12 cells were evaluated after inhibition of FOXO1 in AML12 cells. In addition, mice were fed with AS1842856 for 14 weeks. Liver function and lipid accumulation were measured, and further, ER stress and necroptosis were evaluated by Western Blot and Transmission Electron Microscopy. KEY FINDINGS Mice fed with a high fat diet showed high levels of FOXO1, accompanying activation of endoplasmic reticulum stress and necroptosis. Further, sustained PA stimulation caused ER stress and necroptosis in AML12 cells. At the same time, protein levels of FOXO1 increased significantly. Inhibition of FOXO1 with AS1842856 alleviated ER stress and necroptosis. Additionally, treatment of mice with a FOXO1 inhibitor ameliorated liver function after they were fed with a high fat diet, displaying better liver condition and lighter necroptosis. SIGNIFICANCE Inhibition of FOXO1 attenuates ER stress and necroptosis in a mouse model of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hao-ran Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen-ting Tang
- Department of Pediatrics, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ning Tang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zheng-yi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Han-yi Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen-yan Pan
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - An-yin Hu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun-zhen Lin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peng Gou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xian-wen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jia-hui Cai
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chun-long Dong
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-lin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
164
|
Clarke JRD, Duarte Lau F, Zarich SW. Determining the Significance of Coronary Plaque Lesions: Physiological Stenosis Severity and Plaque Characteristics. J Clin Med 2020; 9:jcm9030665. [PMID: 32131474 PMCID: PMC7141262 DOI: 10.3390/jcm9030665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
The evaluation of coronary lesions has evolved in recent years. Physiologic-guided revascularization (particularly with pressure-derived fractional flow reserve (FFR)) has led to superior outcomes compared to traditional angiographic assessment. A greater importance, therefore, has been placed on the functional significance of an epicardial lesion. Despite the improvements in the limitations of angiography, insights into the relationship between hemodynamic significance and plaque morphology at the lesion level has shown that determining the implications of epicardial lesions is rather complex. Investigators have sought greater understanding by correlating ischemia quantified by FFR with plaque characteristics determined on invasive and non-invasive modalities. We review the background of the use of these diagnostic tools in coronary artery disease and discuss the implications of analyzing physiological stenosis severity and plaque characteristics concurrently.
Collapse
Affiliation(s)
- John-Ross D. Clarke
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
- Correspondence: or ; Tel.: +1-203-260-4510
| | - Freddy Duarte Lau
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
| | - Stuart W. Zarich
- The Heart and Vascular Institute, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT 06610, USA;
| |
Collapse
|
165
|
Newton K. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036368. [PMID: 31427374 DOI: 10.1101/cshperspect.a036368] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor-interacting serine threonine kinase 1 (RIPK1) is a widely expressed kinase that is essential for limiting inflammation in both mice and humans. Mice lacking RIPK1 die at birth from multiorgan inflammation and aberrant cell death, whereas humans lacking RIPK1 are immunodeficient and develop very early-onset inflammatory bowel disease. In contrast to complete loss of RIPK1, inhibiting the kinase activity of RIPK1 genetically or pharmacologically prevents cell death and inflammation in several mouse disease models. Indeed, small molecule inhibitors of RIPK1 are in phase I clinical trials for amyotrophic lateral sclerosis, and phase II clinical trials for psoriasis, rheumatoid arthritis, and ulcerative colitis. This review focuses on which signaling pathways use RIPK1, how activation of RIPK1 is regulated, and when activation of RIPK1 appears to be an important driver of inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
166
|
Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC, Sahebkar A. The role of nuclear factors as “Find-Me”/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol 2020; 80:106134. [DOI: 10.1016/j.intimp.2019.106134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
167
|
Ariana A, Alturki NA, Hajjar S, Stumpo DJ, Tiedje C, Alnemri ES, Gaestel M, Blackshear PJ, Sad S. Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. J Biol Chem 2020; 295:4661-4672. [PMID: 32094226 DOI: 10.1074/jbc.ra119.011633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
The necrosome is a protein complex required for signaling in cells that results in necroptosis, which is also dependent on tumor necrosis factor receptor (TNF-R) signaling. TNFα promotes necroptosis, and its expression is facilitated by mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MK2) but is inhibited by the RNA-binding protein tristetraprolin (TTP, encoded by the Zfp36 gene). We have stimulated murine macrophages from WT, MyD88 -/-, Trif -/-, MyD88 -/- Trif -/-, MK2 -/-, and Zfp36 -/- mice with graded doses of lipopolysaccharide (LPS) and various inhibitors to evaluate the role of various genes in Toll-like receptor 4 (TLR4)-induced necroptosis. Necrosome signaling, cytokine production, and cell death were evaluated by immunoblotting, ELISA, and cell death assays, respectively. We observed that during TLR4 signaling, necrosome activation is mediated through the adaptor proteins MyD88 and TRIF, and this is inhibited by MK2. In the absence of MK2-mediated necrosome activation, lipopolysaccharide-induced TNFα expression was drastically reduced, but MK2-deficient cells became highly sensitive to necroptosis even at low TNFα levels. In contrast, during tonic TLR4 signaling, WT cells did not undergo necroptosis, even when MK2 was disabled. Of note, necroptosis occurred only in the absence of TTP and was mediated by the expression of TNFα and activation of JUN N-terminal kinase (JNK). These results reveal that TTP plays an important role in inhibiting TNFα/JNK-induced necrosome signaling and resultant cytotoxicity.
Collapse
Affiliation(s)
- Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Norah A Alturki
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Stephanie Hajjar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher Tiedje
- Department of Cellular and Molecular Medicine, University of Copenhagen, The Maersk Tower, 7.3, Blegdamsvej 3B, Copenhagen DK-2200, Denmark.,Institute of Cell Biochemistry, Hannover Medical School, Germany, 30623
| | - Emad S Alnemri
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Germany, 30623
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada .,University of Ottawa, Ottawa Centre for Infection, Immunity and Inflammation, Ontario K1H 8M5, Canada
| |
Collapse
|
168
|
Colijn S, Muthukumar V, Xie J, Gao S, Griffin CT. Cell-specific and athero-protective roles for RIPK3 in a murine model of atherosclerosis. Dis Model Mech 2020; 13:dmm041962. [PMID: 31953345 PMCID: PMC6994951 DOI: 10.1242/dmm.041962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) was recently implicated in promoting atherosclerosis progression through a proposed role in macrophage necroptosis. However, RIPK3 has been connected to numerous other cellular pathways, which raises questions about its actual role in atherosclerosis. Furthermore, RIPK3 is expressed in a multitude of cell types, suggesting that it may be physiologically relevant to more than just macrophages in atherosclerosis. In this study, Ripk3 was deleted in macrophages, endothelial cells, vascular smooth muscle cells or globally on the Apoe-/- background using Cre-lox technology. To induce atherosclerosis progression, male and female mice were fed a Western diet for three months before tissue collection and analysis. Surprisingly, necroptosis markers were nearly undetectable in atherosclerotic aortas. Furthermore, en face lesion area was increased in macrophage- and endothelial-specific deletions of Ripk3 in the descending and abdominal regions of the aorta. Analysis of bone-marrow-derived macrophages and cultured endothelial cells revealed that Ripk3 deletion promotes expression of monocyte chemoattractant protein 1 (MCP-1) and E-selectin in these cell types, respectively. Western blot analysis showed upregulation of MCP-1 in aortas with Ripk3-deficient macrophages. Altogether, these data suggest that RIPK3 in macrophages and endothelial cells protects against atherosclerosis through a mechanism that likely does not involve necroptosis. This protection may be due to RIPK3-mediated suppression of pro-inflammatory MCP-1 expression in macrophages and E-selectin expression in endothelial cells. These findings suggest a novel and unexpected cell-type specific and athero-protective function for RIPK3.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jun Xie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| |
Collapse
|
169
|
Bäck M, Yurdagul A, Tabas I, Öörni K, Kovanen PT. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 2020; 16:389-406. [PMID: 30846875 DOI: 10.1038/s41569-019-0169-2] [Citation(s) in RCA: 629] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of the arterial intima in which the balance of pro-inflammatory and inflammation-resolving mechanisms dictates the final clinical outcome. Intimal infiltration and modification of plasma-derived lipoproteins and their uptake mainly by macrophages, with ensuing formation of lipid-filled foam cells, initiate atherosclerotic lesion formation, and deficient efferocytotic removal of apoptotic cells and foam cells sustains lesion progression. Defective efferocytosis, as a sign of inadequate inflammation resolution, leads to accumulation of secondarily necrotic macrophages and foam cells and the formation of an advanced lesion with a necrotic lipid core, indicative of plaque vulnerability. Resolution of inflammation is mediated by specialized pro-resolving lipid mediators derived from omega-3 fatty acids or arachidonic acid and by relevant proteins and signalling gaseous molecules. One of the major effects of inflammation resolution mediators is phenotypic conversion of pro-inflammatory macrophages into macrophages that suppress inflammation and promote healing. In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids (in particular leukotrienes) is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions. In this Review, we discuss the mechanisms of the formation of clinically dangerous atherosclerotic lesions and the potential of pro-resolving mediator therapy to inhibit this process.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Arif Yurdagul
- Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Columbia University Irving Medical Center, New York, NY, USA
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland.
| |
Collapse
|
170
|
Zhou T, Liu B. A Novel Class of RIP1/RIP3 Dual Inhibitors. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:15-17. [PMID: 32095786 PMCID: PMC7039617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ting Zhou
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA,Correspondence should be addressed to Bo Liu;
| |
Collapse
|
171
|
Molecular Insights into the Mechanism of Necroptosis: The Necrosome As a Potential Therapeutic Target. Cells 2019; 8:cells8121486. [PMID: 31766571 PMCID: PMC6952807 DOI: 10.3390/cells8121486] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Necroptosis, or regulated necrosis, is an important type of programmed cell death in addition to apoptosis. Necroptosis induction leads to cell membrane disruption, inflammation and vascularization. It plays important roles in various pathological processes, including neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. The molecular regulation of necroptotic pathway has been intensively studied in recent years. Necroptosis can be triggered by multiple stimuli and this pathway is regulated through activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like (MLKL). A better understanding of the mechanism of regulation of necroptosis will further aid to the development of novel drugs for necroptosis-associated human diseases. In this review, we focus on new insights in the regulatory machinery of necroptosis. We further discuss the role of necroptosis in different pathologies, its potential as a therapeutic target and the current status of clinical development of drugs interfering in the necroptotic pathway.
Collapse
|
172
|
Abstract
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Collapse
Affiliation(s)
- Tessa J. Barrett
- From the Division of Cardiology, Department of Medicine, New York University
| |
Collapse
|
173
|
Yang B, Wang Y, Qin Q, Xia X, Liu Z, Song E, Song Y. Polychlorinated Biphenyl Quinone Promotes Macrophage-Derived Foam Cell Formation. Chem Res Toxicol 2019; 32:2422-2432. [PMID: 31680514 DOI: 10.1021/acs.chemrestox.9b00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polychlorinated biphenyls (PCBs) are organic environmental pollutants that are accused of various toxic effects. PCB exposure is widely believed to be associated with atherosclerosis, but the underlying mechanisms are unclear. Although PCBs are easily metabolized, there is rarely information on the effects of their metabolites on atherosclerosis. Currently, we evaluate the effect of 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ) on the critical phase of atherosclerosis development, that is, the formation of macrophage-derived foam cells. We exposed Ox-LDL-induced RAW264.7 cells to 2.5 μM and 5 μM PCB29-pQ. Varieties of evidence have demonstrated that PCB29-pQ promotes foam cell formation and develops proinflammatory cascade and cell necroptosis. In detail, we observed that PCB29-pQ increased levels of total cholesterol (TC), free cholesterol (FC), triglyceride (TG), and cholesteryl ester (CE) by increasing the cholesterol influx and reducing the cholesterol efflux. Moreover, we found that PCB29-pQ induced inflammatory cytokines, such as tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and IL-1β, released by activating the mitogen-activated protein kinase (MAPK)-nuclear factor kappa B (NF-κB) inflammatory pathway. In addition, we demonstrated that PCB29-pQ induced cell necroptosis via receptor interacting protein kinases 1 and 3 (RIPK1/3) and a mixed-lineage kinase domain-like (MLKL) pathway. Finally, the overproduction of reactive oxygen species (ROS) by PCB29-pQ played significant roles in these processes, which could be reversed with an antioxidant. Overall, our results indicated that PCB29-pQ promoted the macrophage formation of foam cells, inflammation, and cell necroptosis.
Collapse
Affiliation(s)
- Bingwei Yang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Qi Qin
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Zixuan Liu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , People's Republic of China , 400715
| |
Collapse
|
174
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
175
|
Cysteamine inhibits lysosomal oxidation of low density lipoprotein in human macrophages and reduces atherosclerosis in mice. Atherosclerosis 2019; 291:9-18. [PMID: 31629988 PMCID: PMC6912160 DOI: 10.1016/j.atherosclerosis.2019.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Background and aims We have shown previously that low density lipoprotein (LDL) aggregated by vortexing is internalised by macrophages and oxidised by iron in lysosomes to form the advanced lipid/protein oxidation product ceroid. We have now used sphingomyelinase-aggregated LDL, a more pathophysiological form of aggregated LDL, to study lysosomal oxidation of LDL and its inhibition by antioxidants, including cysteamine (2-aminoethanethiol), which concentrates in lysosomes by several orders of magnitude. We have also investigated the effect of cysteamine on atherosclerosis in mice. Methods LDL was incubated with sphingomyelinase, which increased its average particle diameter from 26 to 170 nm, and was then incubated for up to 7 days with human monocyte-derived macrophages. LDL receptor-deficient mice were fed a Western diet (19–22 per group) and some given cysteamine in their drinking water at a dose equivalent to that used in cystinosis patients. The extent of atherosclerosis in the aortic root and the rest of the aorta was measured. Results Confocal microscopy revealed lipid accumulation in lysosomes in the cultured macrophages. Large amounts of ceroid were produced, which colocalised with the lysosomal marker LAMP2. The antioxidants cysteamine, butylated hydroxytoluene, amifostine and its active metabolite WR-1065, inhibited the production of ceroid. Cysteamine at concentrations well below those expected to be present in lysosomes inhibited the oxidation of LDL by iron ions at lysosomal pH (pH 4.5) for prolonged periods. Finally, we showed that the extent of atherosclerotic lesions in the aortic root and arch of mice was significantly reduced by cysteamine. Conclusions These results support our hypothesis that lysosomal oxidation of LDL is important in atherosclerosis and hence antioxidant drugs that concentrate in lysosomes might provide a novel therapy for this disease. The drug cysteamine, which accumulates in lysosomes, inhibited the oxidation of LDL by iron at pH 4.5 (the pH of lysosomes). Cysteamine inhibited the lysosomal oxidation of LDL inside cultured macrophages. Cysteamine reduced atherosclerosis in LDL receptor knockout mice. These results support our hypothesis that lysosomal oxidation of LDL is important in atherosclerosis. Antioxidant drugs that concentrate in lysosomes might provide a novel therapy for this disease.
Collapse
|
176
|
Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC, Kovacic JC. Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol 2019; 72:2181-2197. [PMID: 30360827 DOI: 10.1016/j.jacc.2018.08.2147] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is characterized by the retention of modified lipoproteins in the arterial wall. These modified lipoproteins activate resident macrophages and the recruitment of monocyte-derived cells, which differentiate into mononuclear phagocytes that ingest the deposited lipoproteins to become "foam cells": a hallmark of this disease. In this Part 2 of a 4-part review series covering the macrophage in cardiovascular disease, we critically review the contributions and relevant pathobiology of monocytes, macrophages, and foam cells as relevant to atherosclerosis. We also review evidence that via various pathways, a failure of the resolution of inflammation is an additional key aspect of this disease process. Finally, we consider the likely role played by genomics and biological networks in controlling the macrophage phenotype in atherosclerosis. Collectively, these data provide substantial insights on the atherosclerotic process, while concurrently offering numerous molecular and genomic candidates that appear to hold great promise for selective targeting as clinical therapies.
Collapse
Affiliation(s)
- Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University, New York, New York; Department of Physiology, Columbia University, New York, New York
| | - Johan L M Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
177
|
An J, Naruse TK, Hinohara K, Soejima Y, Sawabe M, Nakagawa Y, Kuwahara K, Kimura A. MRTF-A regulates proliferation and survival properties of pro-atherogenic macrophages. J Mol Cell Cardiol 2019; 133:26-35. [DOI: 10.1016/j.yjmcc.2019.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
|
178
|
Implications of Necroptosis for Cardiovascular Diseases. Curr Med Sci 2019; 39:513-522. [PMID: 31346984 DOI: 10.1007/s11596-019-2067-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 03/01/2019] [Indexed: 02/08/2023]
Abstract
Necroptosis is a non-apoptotic programmed cell death pathway, which causes necrosis-like morphologic changes and triggers inflammation in the surrounding tissues. Accumulating evidence has demonstrated that necroptosis is involved in a number of pathological processes that lead to cardiovascular diseases. However, the exact molecular pathways linking them remain unknown. Herein, this review summarizes the necroptosis-related pathways involved in the development of various cardiovascular diseases, including atherosclerosis, cardiac ischemia-reperfusion injury, cardiac hypertrophy, dilated cardiomyopathy and myocardial infarction, and may shed light on the diagnosis and treatment of these diseases.
Collapse
|
179
|
Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2019; 114:622-634. [PMID: 29360955 DOI: 10.1093/cvr/cvy007] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
In the present review, we describe the causes and consequences of loss of vascular smooth muscle cells (VSMCs) or their function in advanced atherosclerotic plaques and discuss possible mechanisms such as cell death or senescence, and induction of autophagy to promote cell survival. We also highlight the potential use of pharmacological modulators of these processes to limit plaque progression and/or improve plaque stability. VSMCs play a pivotal role in atherogenesis. Loss of VSMCs via initiation of cell death leads to fibrous cap thinning and promotes necrotic core formation and calcification. VSMC apoptosis is induced by pro-inflammatory cytokines, oxidized low density lipoprotein, high levels of nitric oxide and mechanical injury. Apoptotic VSMCs are characterized by a thickened basal lamina surrounding the cytoplasmic remnants of the VSMC. Inefficient clearance of apoptotic VSMCs results in secondary necrosis and subsequent inflammation. A critical determinant in the VSMC stress response and phenotypic switching is autophagy, which is activated by various stimuli, including reactive oxygen and lipid species, cytokines, growth factors and metabolic stress. Successful autophagy stimulates VSMC survival, whereas reduced autophagy promotes age-related changes in the vasculature. Recently, an interesting link between autophagy and VSMC senescence has been uncovered. Defective VSMC autophagy accelerates not only the development of stress-induced premature senescence but also atherogenesis, albeit without worsening plaque stability. VSMC senescence in atherosclerosis is likely a result of replicative senescence and/or stress-induced premature senescence in response to DNA damaging and/or oxidative stress-inducing stimuli. The finding that VSMC senescence can promote atherosclerosis further illustrates that normal, adequate VSMC function is crucial in protecting the vessel wall against atherosclerosis.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Manon Moulis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Cécile Vindis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
180
|
Leeper NJ, Maegdefessel L. Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res 2019; 114:611-621. [PMID: 29300828 DOI: 10.1093/cvr/cvx249] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/28/2017] [Indexed: 01/02/2023] Open
Abstract
The vascular smooth muscle cell (SMC) is one of the most plastic cells in the body. Understanding how non-coding RNAs (ncRNAs) regulate SMC cell-fate decision making in the vasculature has significantly enhanced our understanding of disease development, and opened up exciting new avenues for potential therapeutic applications. Recent studies on SMC physiology have in addition challenged our traditional view on their role and contribution to vascular disease, mainly in the setting of atherosclerosis as well as aneurysm disease, and restenosis after angioplasties. The impact of SMC behaviour on vascular disease is now recognized to be context dependent; SMC proliferation and migration can be harmful or beneficial, whereas their apoptosis, senescence, and switching into a more macrophage-like phenotype can promote inflammation and disease progression. This is in particular true for atherosclerosis-related diseases, where proliferation of SMCs was believed to promote lesion formation, but may also prevent plaque rupture by stabilizing the fibrous cap. Based on newer findings of genetic lineage tracing studies, it was revealed that SMC phenotypic switching can result in less-differentiated forms that lack classical SMC markers while exhibiting functions more related to macrophage-like cells. This switching can directly promote atherogenesis. The aim of this current review is to summarize and discuss how ncRNAs (mainly microRNAs and long ncRNAs) are involved in SMC plasticity, and how they directly affect vascular disease development and progression. Finally, we want to critically assess where potential future therapies could be useful to influence the burden of vascular diseases.
Collapse
Affiliation(s)
- Nicholas J Leeper
- Division of Vascular Surgery, Stanford University, Stanford, CA, USA
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, and German Center for Cardiovascular Research Center (DZHK) Partner Site Munich, 81675 Munich, Germany.,Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
181
|
Nguyen MA, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez AC, Cottee ML, Afolayan E, Farah E, Kahiel Z, Côté M, Gadde S, Rayner KJ. Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo. ACS NANO 2019; 13:6491-6505. [PMID: 31125197 DOI: 10.1021/acsnano.8b09679] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The prevention and treatment of cardiovascular diseases (CVD) has largely focused on lowering circulating LDL cholesterol, yet a significant burden of atherosclerotic disease remains even when LDL is low. Recently, microRNAs (miRNAs) have emerged as exciting therapeutic targets for cardiovascular disease. miRNAs are small noncoding RNAs that post-transcriptionally regulate gene expression by degradation or translational inhibition of target mRNAs. A number of miRNAs have been found to modulate all stages of atherosclerosis, particularly those that promote the efflux of excess cholesterol from lipid-laden macrophages in the vessel wall to the liver. However, one of the major challenges of miRNA-based therapy is to achieve tissue-specific, efficient, and safe delivery of miRNAs in vivo. We sought to develop chitosan nanoparticles (chNPs) that can deliver functional miRNA mimics to macrophages and to determine if these nanoparticles can alter cholesterol efflux and reverse cholesterol transport in vivo. We developed chNPs with a size range of 150-200 nm via the ionic gelation method using tripolyphosphate (TPP) as a cross-linker. In this method, negatively charged miRNAs were encapsulated in the nanoparticles by ionic interactions with polymeric components. We then optimized the efficiency of intracellular delivery of different formulations of chitosan/TPP/miRNA to mouse macrophages. Using a well-defined miRNA with roles in macrophage cholesterol metabolism, we tested whether chNPs could deliver functional miRNAs to macrophages. We find chNPs can transfer exogenous miR-33 to naïve macrophages and reduce the expression of ABCA1, a potent miR-33 target gene, both in vitro and in vivo, confirming that miRNAs delivered via nanoparticles can escape the endosomal system and function in the RISC complex. Because miR-33 and ABCA1 play a key role in regulating the efflux of cholesterol from macrophages, we also confirmed that macrophages treated with miR-33-loaded chNPs exhibited reduced cholesterol efflux to apolipoprotein A1, further confirming functional delivery of the miRNA. In vivo, mice treated with miR33-chNPs showed decreased reverse cholesterol transport (RCT) to the plasma, liver, and feces. In contrast, when efflux-promoting miRNAs were delivered via chNPs, ABCA1 expression and cholesterol efflux into the RCT pathway were improved. Over all, miRNAs can be efficiently delivered to macrophages via nanoparticles, where they can function to regulate ABCA1 expression and cholesterol efflux, suggesting that these miRNA nanoparticles can be used in vivo to target atherosclerotic lesions.
Collapse
Affiliation(s)
- My-Anh Nguyen
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Hailey Wyatt
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Leah Susser
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Michele Geoffrion
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Adil Rasheed
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Anne-Claire Duchez
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Mary Lynn Cottee
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
| | - Esther Afolayan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Eliya Farah
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Zaina Kahiel
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Suresh Gadde
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute , Ottawa , Ontario K1Y 4W7 , Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| |
Collapse
|
182
|
Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ 2019; 27:525-539. [PMID: 31222041 DOI: 10.1038/s41418-019-0370-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammation-resolution is a protective response that is mediated by specialized pro-resolving mediators (SPMs). The clearance of dead cells or efferocytosis is a critical cellular program of inflammation-resolution. Impaired efferocytosis can lead to tissue damage in prevalent human diseases, like atherosclerosis. Therefore understanding mechanisms associated with swift clearance of dead cells is of utmost clinical importance. Recently, the accumulation of necroptotic cells (NCs) was observed in human plaques and we postulated that this is due to defective clearance programs. Here we present evidence that NCs are inefficiently taken up by macrophages because they have increased surface expression of a well-known "don't eat me" signal called CD47. High levels of CD47 on NCs stimulated RhoA-pMLC signaling in macrophages that promoted "nibbling", rather than whole-cell engulfment of NCs. Anti-CD47 blocking antibodies limited RhoA-p-MLC signaling and promoted whole-cell NC engulfment. Treatment with anti-CD47 blocking antibodies to Ldlr-/- mice with established atherosclerosis decreased necrotic cores, limited the accumulation of plaque NCs and increased lesional SPMs, including Resolvin D1 (RvD1) compared with IgG controls. Mechanistically, RvD1 promoted whole-cell engulfment of NCs by decreasing RhoA signaling and activating CDC42. RvD1 specifically targeted NCs for engulfment by facilitating the release of the well-known "eat me signal" called calreticulin from macrophages in a CDC42 dependent manner. Lastly, RvD1 enhanced the clearance of NCs in advanced murine plaques. Together, these results suggest new molecules and signaling associated with the clearance of NCs, provide a new paradigm for the regulation of inflammation-resolution, and offer a potential treatment strategy for diseases where NCs underpin the pathology.
Collapse
|
183
|
Hu XM, Chen X, Pang HY, Liu HH, Chen PP, Shi JL, Tang S, Wu ZH, Zhang SY. Plasma levels of receptor interacting protein kinase-3 correlated with coronary artery disease. Chin Med J (Engl) 2019; 132:1400-1405. [PMID: 31205096 PMCID: PMC6629337 DOI: 10.1097/cm9.0000000000000225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Necroptosis plays an important role in human atherosclerosis and atheroma development. Since receptor interacting protein kinase-3 (RIP3) acts as a key mediator of necroptosis, this study aimed to explore its relationship between plasma RIP3 levels and coronary artery disease (CAD) and discover a potential new biomarker for screening CAD subtypes and severity. METHODS A total of 318 patients with CAD who had coronary angiography and 166 controls in Peking Union Medical College Hospital from September 2017 to January 2018 were enrolled in this study. Patients with CAD were divided into three subgroups: patients with stable coronary artery disease (SCAD), patients with unstable angina (UA), and patients with myocardial infarction (MI). The severity of atherosclerosis was determined by Gensini score (GSS). Logistic regression was used to determine the relationship between plasma RIP3 levels and CAD. The correlation between plasma RIP3 and GSS was calculated using multiple linear regression models. RESULTS Overall, plasma RIP3 levels were significantly higher than serum RIP3 levels. Plasma RIP3 levels in patients with CAD were significantly higher than those in controls. Plasma RIP3 levels were strongly associated with CAD (odds ratio: 6.00, 95% confidence interval 3.04-11.81; P < 0.001). Plasma RIP3 levels increased linearly from controls to patients with SCAD, then patients with UA, and finally to patients with MI. We found a significantly positive correlation between proportion of cases of acute coronary syndrome in subjects and their plasma RIP3 level quartile. Plasma RIP3 levels were also associated with GSS (B 0.027; standard error 0.012; P < 0.05). CONCLUSIONS Plasma RIP3 levels were independently associated with CAD. Plasma RIP3 levels could potentially supplement clinical assessment to screen CAD and determine CAD severity.
Collapse
Affiliation(s)
- Xiao-Min Hu
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xi Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hai-Yu Pang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hong-Hong Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Pei-Pei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing-Lin Shi
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Si Tang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhi-Hong Wu
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
184
|
Affiliation(s)
- Katey J Rayner
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Canada; and University of Ottawa Heart Institute, Canada.
| |
Collapse
|
185
|
Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol 2019; 26:101239. [PMID: 31212216 PMCID: PMC6582207 DOI: 10.1016/j.redox.2019.101239] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are highly plastic cells of the innate immune system. Macrophages play central roles in immunity against microbes and contribute to a wide array of pathologies. The processes of macrophage activation and their functions have attracted considerable attention from life scientists. Although macrophages are highly resistant to many toxic stimuli, including oxidative stress, macrophage death has been reported in certain diseases, such as viral infections, tuberculosis, atherosclerotic plaque development, inflammation, and sepsis. While most studies on macrophage death focused on apoptosis, a significant body of data indicates that programmed necrotic cell death forms may be equally important modes of macrophage death. Three such regulated necrotic cell death modalities in macrophages contribute to different pathologies, including necroptosis, pyroptosis, and parthanatos. Various reactive oxygen and nitrogen species, such as superoxide, hydrogen peroxide, and peroxynitrite have been shown to act as triggers, mediators, or modulators in regulated necrotic cell death pathways. Here we discuss recent advances in necroptosis, pyroptosis, and parthanatos, with a strong focus on the role of redox homeostasis in the regulation of these events.
Collapse
Affiliation(s)
- Nirmal Robinson
- Inflammation and Human Ailments Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia.
| | - Raja Ganesan
- Inflammation and Human Ailments Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Kovács
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
| | - Thomas A Kufer
- University of Hohenheim, Institute of Nutritional Medicine, Department of Immunology, Stuttgart, Germany.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
186
|
Pastore M, Grimaudo S, Pipitone RM, Lori G, Raggi C, Petta S, Marra F. Role of Myeloid-Epithelial-Reproductive Tyrosine Kinase and Macrophage Polarization in the Progression of Atherosclerotic Lesions Associated With Nonalcoholic Fatty Liver Disease. Front Pharmacol 2019; 10:604. [PMID: 31191323 PMCID: PMC6548874 DOI: 10.3389/fphar.2019.00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Recent lines of evidence highlight the involvement of myeloid-epithelial-reproductive tyrosine kinase (MerTK) in metabolic disease associated with liver damage. MerTK is mainly expressed in anti-inflammatory M2 macrophages where it mediates transcriptional changes including suppression of proinflammatory cytokines and enhancement of inflammatory repressors. MerTK is regulated by metabolic pathways through nuclear sensors including LXRs, PPARs, and RXRs, in response to apoptotic bodies or to other sources of cholesterol. Nonalcoholic fatty liver disease (NAFLD) is one of the most serious public health problems worldwide. It is a clinicopathological syndrome closely related to obesity, insulin resistance, and oxidative stress. It includes a spectrum of conditions ranging from simple steatosis, characterized by hepatic fat accumulation with or without inflammation, to nonalcoholic steatohepatitis (NASH), defined by hepatic fat deposition with hepatocellular damage, inflammation, and accumulating fibrosis. Several studies support an association between NAFLD and the incidence of cardiovascular diseases including atherosclerosis, a major cause of death worldwide. This pathological condition consists in a chronic and progressive inflammatory process in the intimal layer of large- and medium-sized arteries. The complications of advanced atherosclerosis include chronic or acute ischemic damage in the tissue perfused by the affected artery, leading to cellular death. By identifying specific targets influencing lipid metabolism and cardiovascular-related diseases, the present review highlights the role of MerTK in NAFLD-associated atherosclerotic lesions as a potential innovative therapeutic target. Therapeutic advantages might derive from the use of compounds selective for nuclear receptors targeting PPARs rather than LXRs regulating macrophage lipid metabolism and macrophage mediated inflammation, by favoring the expression of MerTK, which mediates an immunoregulatory action with a reduction in inflammation and in atherosclerosis.
Collapse
Affiliation(s)
- Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
187
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
188
|
Wang SF, Liu X, Ding MY, Ma S, Zhao J, Wang Y, Li S. 2-O-β-d-glucopyranosyl- l-ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress. Redox Biol 2019; 24:101173. [PMID: 30903981 PMCID: PMC6430735 DOI: 10.1016/j.redox.2019.101173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 01/26/2023] Open
Abstract
Reducing agents are crucial for the management of maladaptive inflammation-induced macrophage death and hematopoietic toxicity of chemotherapy. 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), a unique AA (or vitamin C) derivative identified in Lycium barbarum, exhibited enhanced free radical scavenging activity compared with AA and its synthetic derivative AA-2αG. AA-2βG protected hydrogen peroxide-induced cell death in murine macrophage RAW264.7 cells. Treatment with AA-2βG eliminated oxidative stress and the ratio of cellular glutathione to glutathione disulfide more effectively than AA and AA-2αG. AA-2βG also significantly reduced the fluorescent intensity of DCFH-DA triggered by chemotherapeutic agent camptotehcin-11 but not fluorouracil. AA, AA-2αG, and AA-2βG significantly decreased Keap-1expression, and increased the expression levels of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1. All compounds triggered the nuclear translocation of Nrf2, while the ability of AA-2βG to enhance the Nrf2-DNA binding affinity was approximately two fold as those of AA and AA-2αG. Sodium ascorbate cotransporters (SVCT) inhibitors, sulfinpyrazone, phloretin, and 3-O-methyglucose, potently abrogated the free radical scavenging activities of AA, AA-2αG, and AA-2βG. The cellular uptake efficacy of AA-2αG and AA-2βG was less than 10% of AA, while the inhibition of SVCT with sulfinpyrazone considerably diminished the uptake efficacy of these compounds. AA-2αG and AA-2βG are more stable in the Fenton reagents than AA. In summary, AA-2βG from L. barbarum with excellent free radical scavenging activity is a promising natural AA derivative for further pharmacological evaluation.
Collapse
Affiliation(s)
- Shen-Fei Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Xin Liu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Mo-Yu Ding
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Shuangcheng Ma
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China; National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jing Zhao
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| | - Ying Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| | - Shaoping Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| |
Collapse
|
189
|
Zhou T, Wang Q, Phan N, Ren J, Yang H, Feldman CC, Feltenberger JB, Ye Z, Wildman SA, Tang W, Liu B. Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death Dis 2019; 10:226. [PMID: 30842407 PMCID: PMC6403222 DOI: 10.1038/s41419-019-1468-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022]
Abstract
Receptor interacting protein kinase-1 and -3 (RIP1 and RIP3) are essential mediators of cell death processes and participate in inflammatory responses. Our group recently demonstrated that gene deletion of Rip3 or pharmacological inhibition of RIP1 attenuated pathogenesis of abdominal aortic aneurysm (AAA), a life-threatening degenerative vascular disease characterized by depletion of smooth muscle cells (SMCs), inflammation, negative extracellular matrix remodeling, and progressive expansion of aorta. The goal of this study was to develop drug candidates for AAA and other disease conditions involving cell death and inflammation. We screened 1141 kinase inhibitors for their ability to block necroptosis using the RIP1 inhibitor Necrostatin-1s (Nec-1s) as a selection baseline. Positive compounds were further screened for cytotoxicity and virtual binding to RIP3. A cluster of top hits, represented by GSK2593074A (GSK'074), displayed structural similarity to the established RIP3 inhibitor GSK'843. In multiple cell types including mouse SMCs, fibroblasts (L929), bone marrow derived macrophages (BMDM), and human colon epithelial cells (HT29), GSK'074 inhibited necroptosis with an IC50 of ~3 nM. Furthermore, GSK'074, but not Nec-1s, blocked cytokine production by SMCs. Biochemical analyses identified both RIP1 and RIP3 as the biological targets of GSK'074. Unlike GSK'843 which causes profound apoptosis at high doses (>3 µM), GSK'074 showed no detectable cytotoxicity even at 20 µM. Daily intraperitoneal injection of GSK'074 at 0.93 mg/kg significantly attenuated aortic expansion in two mouse models of AAA (calcium phosphate: DMSO 66.06 ± 9.17% vs GSK'074 27.36 ± 8.25%, P < 0.05; Angiotensin II: DMSO 85.39 ± 15.76% vs GSK'074 36.28 ± 5.76%, P < 0.05). Histologically, GSK'074 treatment diminished cell death and macrophage infiltration in aneurysm-prone aortae. Together, our data suggest that GSK'074 represents a new class of necroptosis inhibitors with dual targeting ability to both RIP1 and RIP3. The high potency and minimum cytotoxicity make GSK'074 a desirable drug candidate of pharmacological therapies to attenuate AAA progression and other necroptosis related diseases.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Qiwei Wang
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Noel Phan
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Jun Ren
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Huan Yang
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Conner C Feldman
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - John B Feltenberger
- School of Pharmacy, Medicinal Chemistry Center, University of Wisconsin, Madison, WI, 53705, USA
| | - Zhengqing Ye
- School of Pharmacy, Medicinal Chemistry Center, University of Wisconsin, Madison, WI, 53705, USA
| | - Scott A Wildman
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Weiping Tang
- School of Pharmacy, Medicinal Chemistry Center, University of Wisconsin, Madison, WI, 53705, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA.
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
190
|
Hedin U, Matic LP. Recent advances in therapeutic targeting of inflammation in atherosclerosis. J Vasc Surg 2018; 69:944-951. [PMID: 30591299 DOI: 10.1016/j.jvs.2018.10.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Current prevention of peripheral vascular disease (PVD) focuses on blood pressure control, lipid lowering, and platelet inhibition with statins and aspirin. A critical role for inflammation in the pathophysiology of atherosclerosis has been established for decades and, although both statins and aspirin have anti-inflammatory properties, the management of inflammation is becoming increasingly recognized. Here, we summarize recent clinical and translational discoveries that outline how inflammation may become targeted in PVD in the future. METHODS A PubMed search using a combination of the following MeSH terms-inflammation, pathophysiology, atherosclerosis, cancer, auto immune disease, therapy, and clinical trial-was performed and literature selected with a focus on basic pathophysiology of inflammation and clinical investigations targeting inflammation in cardiovascular disease, cancer, and autoimmune diseases. RESULTS Based on this literature overview, we summarized the common features of inflammation in these different diseases and how inflammation may also translate into common therapeutic strategies. Finally, the results of recent clinical and translational investigations highlighting inflammation in cardiovascular disease are reviewed with a focus on hematopoietic mutations that generate more active immune cells and increase cardiovascular risk, treatment with anti-inflammatory biological pharmaceuticals that reduce cardiovascular risk, and translational studies demonstrating how the treatment of defective immune-mediated clearance of dying cells in lesions may prevent disease progression. CONCLUSIONS Progress in clinical and translational atherosclerosis research has now brought inflammation in clinical focus, because recent discoveries with respect to cardiovascular risk prediction and pharmacotherapy targeting inflammation have shown the potential to improve future care of patients with PVD.
Collapse
Affiliation(s)
- Ulf Hedin
- Departments of Vascular Surgery and Molecular Medicine and Surgery, Karolinska University Hospital and the Karolinska Institute, Stockholm, Sweden.
| | - Ljubica Perisic Matic
- Departments of Vascular Surgery and Molecular Medicine and Surgery, Karolinska University Hospital and the Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
191
|
Identification and Characterization of NTB451 as a Potential Inhibitor of Necroptosis. Molecules 2018; 23:molecules23112884. [PMID: 30400632 PMCID: PMC6278304 DOI: 10.3390/molecules23112884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022] Open
Abstract
Necroptosis, or caspase-independent programmed cell death, is known to be involved in various pathological conditions, such as ischemia/reperfusion injury, myocardial infarction, atherosclerosis, and inflammatory bowel diseases. Although several inhibitors of necroptosis have been identified, none of them are currently in clinical use. In the present study, we identified a new compound, 4-({[5-(4-aminophenyl)-4-ethyl-4H-1,2,4-triazol-3-yl]sulfanyl}methyl)-N-(1,3-thiazol-2-yl) benzamide (NTB451), with significant inhibitory activity on the necroptosis induced by various triggers, such as tumor necrosis factor-α (TNF-α) and toll-like receptor (TLR) agonists. Mechanistic studies revealed that NTB451 inhibited phosphorylation and oligomerization of mixed lineage kinase domain like (MLKL), and this activity was linked to its inhibitory effect on the formation of the receptor interacting serine/threonine-protein kinase 1 (RIPK1)-RIPK3 complex. Small interfering RNA (siRNA)-mediated RIPK1 knockdown, drug affinity responsive target stability assay, and molecular dynamics (MD) simulation study illustrated that RIPK1 is a specific target of NTB451. Moreover, MD simulation showed a direct interaction of NTB451 and RIPK1. Further experiments to ensure that the inhibitory effect of NTB451 was restricted to necroptosis and NTB451 had no effect on nuclear factor-κB (NF-κB) activation or apoptotic cell death upon triggering with TNF-α were also performed. Considering the data obtained, our study confirmed the potential of NTB451 as a new necroptosis inhibitor, suggesting its therapeutic implications for pathological conditions induced by necroptotic cell death.
Collapse
|
192
|
Yu P, Qian AS, Chathely KM, Trigatti BL. PDZK1 in leukocytes protects against cellular apoptosis and necrotic core development in atherosclerotic plaques in high fat diet fed ldl receptor deficient mice. Atherosclerosis 2018; 276:171-181. [DOI: 10.1016/j.atherosclerosis.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 02/09/2023]
|
193
|
Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276:98-108. [DOI: 10.1016/j.atherosclerosis.2018.07.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
194
|
Karunakaran D. Beyond cholesterol homeostasis: A novel role for PDZK1 in macrophage apoptosis and atherosclerosis. Atherosclerosis 2018; 276:168-170. [PMID: 30031591 DOI: 10.1016/j.atherosclerosis.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Denuja Karunakaran
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Canada; Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Australia.
| |
Collapse
|
195
|
Zhe-Wei S, Li-Sha G, Yue-Chun L. The Role of Necroptosis in Cardiovascular Disease. Front Pharmacol 2018; 9:721. [PMID: 30034339 PMCID: PMC6043645 DOI: 10.3389/fphar.2018.00721] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/13/2018] [Indexed: 01/14/2023] Open
Abstract
A newly discovered mechanism of cell death, programmed necrosis (necroptosis), combines features of both necrosis and apoptosis. Necroptosis is tightly modulated by a series of characteristic signaling pathways. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting protein 1 (RIP1), which mediates the activation of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) two critical downstream mediators of necroptosis. Recently, different cytokines have been found participating in this mechanism of cell death. Necroptosis has been proposed as an important component to the pathophysiology of heart disease such as vascular atherosclerosis, ischemia-reperfusion injury, myocardial infarction and cardiac remodeling. Targeting necroptosis signaling pathways may provide therapeutic benefit in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shi Zhe-Wei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Li-Sha
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
196
|
Yu P, Qian AS, Chathely KM, Trigatti BL. Data on leukocyte PDZK1 deficiency affecting macrophage apoptosis but not monocyte recruitment, cell proliferation, macrophage abundance or ER stress in atherosclerotic plaques of LDLR deficient mice. Data Brief 2018; 19:1148-1161. [PMID: 30246067 PMCID: PMC6141767 DOI: 10.1016/j.dib.2018.05.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 11/24/2022] Open
Abstract
PDZK1 (Post-synaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1) is an adaptor protein that binds to the HDL receptor, Scavenger receptor class B type I. Leukocyte PDZK1 deficiency in high fat-diet fed LDL receptor knockout mice has been found to increase atherosclerotic necrotic core formation and apoptosis of cells within atherosclerotic plaques. To explore mechanisms that may be involved, we examined the effects of leukocyte PDZK1 deficiency in mice on a number of processes that may impact macrophage abundance within atherosclerotic plaques. We found that leukocyte PDZK1 deficiency in high fat diet fed LDL receptor knockout mice did not affect the abundance of circulating red blood cells, myeloid cells or B- or T-lymphocytes. Leukocyte selective PDZK1 deficiency did not affect the levels of the ER chaperone proteins, detected with an antibody against the KDEL peptide, in macrophages or macrophage abundance, cellular proliferation or monocyte recruitment in atherosclerotic plaques. Leukocyte PDZK1 deficiency in otherwise wild type mice did result in increased sensitivity of macrophages to tunicamycin-induced apoptosis in a peritonitis model. HDL protected wild type macrophages from apoptosis induced by a variety of agents, including the ER stressor tunicamycin, oxidized LDL and exposure to UV irradiation. However, this protection afforded by HDL was lost when macrophages were deficient in PDZK1. HDL did not affect the level of ER stress induction by tunicamycin. Finally, PDZK1 deficiency in macrophages did not affect lipopolysaccharide-mediated induction of markers of M1 polarization. These data, utilizing mouse and cellular models, help to demonstrate that leukocyte PDZK1 plays a role in atherosclerosis by affecting macrophage apoptosis within atherosclerotic plaques.
Collapse
Affiliation(s)
- Pei Yu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4L8.,Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada L8S 4L8
| | - Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada L8S 4L8.,Medical Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | - Kevin M Chathely
- Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada L8S 4L8.,Medical Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4L8.,Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada L8S 4L8
| |
Collapse
|
197
|
Rahman K, Fisher EA. Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Front Cardiovasc Med 2018; 5:32. [PMID: 29868610 PMCID: PMC5958627 DOI: 10.3389/fcvm.2018.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the underlying cause of coronary artery (CAD) and other cardiovascular diseases, is initiated by macrophage-mediated immune responses to lipoprotein and cholesterol accumulation in artery walls, which result in the formation of plaques. Unlike at other sites of inflammation, the immune response becomes maladaptive and inflammation fails to resolve. The most common treatment for reducing the risk from atherosclerosis is low density lipoprotein cholesterol (LDL-C) lowering. Studies have shown, however, that while significant lowering of LDL-C reduces the risk of heart attacks to some degree, there is still residual risk for the majority of the population. We and others have observed “residual inflammatory risk” of atherosclerosis after plasma cholesterol lowering in pre-clinical studies, and that this phenomenon is clinically relevant has been dramatically reinforced by the recent Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial. This review will summarize the role of the innate immune system, specifically macrophages, in atherosclerosis progression and regression, as well as the pre-clinical and clinical models that have provided significant insights into molecular pathways involved in the resolution of plaque inflammation and plaque regression. Partnered with clinical studies that can be envisioned in the post-CANTOS period, including progress in developing targeted plaque therapies, we expect that pre-clinical studies advancing on the path summarized in this review, already revealing key mechanisms, will continue to be essential contributors to achieve the goals of dampening plaque inflammation and inducing its resolution in order to maximize the therapeutic benefits of conventional risk factor modifications, such as LDL-C lowering.
Collapse
Affiliation(s)
- Karishma Rahman
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
198
|
Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul Pharmacol 2018; 107:S1537-1891(17)30464-0. [PMID: 29684642 DOI: 10.1016/j.vph.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/03/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder of the large and medium-size arteries characterized by the subendothelial accumulation of cholesterol, immune cells, and extracellular matrix. At the early onset of atherogenesis, endothelial dysfunction takes place. Atherogenesis is further triggered by the accumulation of cholesterol-carrying low-density lipoproteins, which acquire properties of damage-associated molecular patterns and thereby trigger an inflammatory response. Following activation of the innate immune response, mainly governed by monocytes and macrophages, the adaptive immune response is started which further promotes atherosclerotic plaque formation. In this review, an overview is given describing the role of damage-associated molecular patterns, NLRP3 inflammasome activation, and innate and adaptive immune cells in the atherogenesis process.
Collapse
Affiliation(s)
- Kapka Miteva
- Department of Biomedical Sciences, Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milano, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
199
|
Abstract
PURPOSE OF REVIEW Regression, or reversal, of atherosclerosis has become an important clinical objective. The development of consistent models of murine atherosclerosis regression has accelerated this field of research. The purpose of this review is to highlight recent mouse studies that reveal molecular mechanisms as well as therapeutics targeted for regression. RECENT FINDINGS Atherosclerosis regression does not involve the same mechanisms as progression in reverse order. Distinct molecular processes within the plaque characterize regression. These processes remained elusive until the advent of murine regression models including aortic transplant, the Reversa mouse, gene complementation and dietary intervention. Studies revealed that depletion of plaque macrophages is a quintessential characteristic of regression, driven by reduced monocyte recruitment into plaques, increased egress of macrophages from plaques and reduced macrophage proliferation. In addition, regression results in polarization of remaining plaque macrophages towards an anti-inflammatory phenotype, smaller necrotic cores and promotion of an organized fibrous cap. Furthermore, type 1 diabetes hinders plaque regression, and several therapeutic interventions show promise in slowing plaque progression or inducing regression. SUMMARY Mouse models of atherosclerosis regression have accelerated our understanding of the molecular mechanisms governing lesion resolution. These insights will be valuable in identifying therapeutic targets aimed at atherosclerosis regression.
Collapse
|
200
|
Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GRY, Martinet W. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov 2018; 13:477-488. [PMID: 29598451 DOI: 10.1080/17460441.2018.1457644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Formation and enlargement of a necrotic core play a pivotal role in atherogenesis. Since the discovery of necroptosis, which is a regulated form of necrosis, prevention of necrotic cell death has become an attractive therapeutic goal to reduce plaque formation. Areas covered: This review highlights the triggers and consequences of (unregulated) necrosis and necroptosis in atherosclerosis. The authors discuss different pharmacological strategies to inhibit necrotic cell death in advanced atherosclerotic plaques. Expert opinion: Addition of a necrosis or necroptosis inhibitor to standard statin therapy could be a promising strategy for primary prevention of cardiovascular disease. However, a necrosis inhibitor cannot block all necrosis stimuli in atherosclerotic plaques. A necroptosis inhibitor could be more effective, because necroptosis is mediated by specific proteins, termed receptor-interacting serine/threonine-protein kinases (RIPK) and mixed lineage kinase domain-like pseudokinase (MLKL). Currently, only RIPK1 inhibitors have been successfully used in atherosclerotic mouse models to inhibit necroptosis. However, because RIPK1 is involved in both necroptosis and apoptosis, and also RIPK1-independent necroptosis can occur, we feel that targeting RIPK3 and MLKL could be a more attractive therapeutic approach to inhibit necroptosis. Therefore, future challenges will consist of developing RIPK3 and MLKL inhibitors applicable in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Isabelle Coornaert
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Sam Hofmans
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Lars Devisscher
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Koen Augustyns
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | | | - Guido R Y De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| |
Collapse
|