151
|
Shahnawaz Khan M, Tabrez S, Rehman MT, Alokail MS. Al (III) metal augment thermal aggregation and fibrillation in protein: Role of metal toxicity in neurological diseases. Saudi J Biol Sci 2020; 27:2221-2226. [PMID: 32874119 PMCID: PMC7451595 DOI: 10.1016/j.sjbs.2020.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/17/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Protein fibrillation is a leading cause of innumerable neurodegenerative diseases. The exact underlying mechanism associated with the formation of fibrils is yet to be known. Recently, the role of metal ions resulting into fibrillation of proteins has gained attention of the scientific community. In this piece of work, we have investigated the effect of the aluminum (Al) metal ion on the kinetics of aggregation of bovine serum albumin (BSA) protein under physiological conditions by employing several biophysical and microscopic techniques. Quenching of tryptophan fluorescence was observed along with 9 nm blue shift, demonstrating BSA becomes more hydrophobic during unfolding pathway of thermal denaturation. Moreover, ANS (8-Anilino-1-naphthalene sulfonic acid) binding shows quenching in fluorescence intensity with increasing time of incubation at 65 °C, suggesting unfolding leading to the disruption of hydrophobic patches in BSA. Besides, Thioflavin T intensity indicated a significant acceleration in BSA fibrillation at a ratio of 1:1 and 1:2 of BSA and Al (III) metal ion respectively. In addition, circular dichroism (CD) spectroscopy study revealed the transition of BSA from α-helical conformation to the β-sheet rich structure. Molecular docking analysis demonstrated significant binding affinity (-1.2 kcal/mol) of Al (III) with BSA involving Phe501, Phe506, Val575, Thr578, Gln579, Leu531 residues. Transmission electron microscopy (TEM) reaffirm augmentation of thermal-induced BSA fibril formation in the presence of Al (III) metal ions. This study highlights the metal chelating potency as the possible therapeutic target for neurological diseases.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King, Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Majed S. Alokail
- Protein Research Chair, Department of Biochemistry, College of Sciences, King, Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
152
|
Hasan S, Isar M, Naeem A. Macromolecular crowding stabilises native structure of α-chymotrypsinogen-A against hexafluoropropanol-induced aggregates. Int J Biol Macromol 2020; 164:3780-3788. [PMID: 32835802 DOI: 10.1016/j.ijbiomac.2020.08.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Cell interior is extremely congested with tightly packed biological macromolecules that exerts macromolecular crowding effect, influencing biophysical properties of proteins. To have a deeper insight into it we studied consequences of crowding on aggregation susceptibility and structural stability of α-chymotrypsinogen-A, pro-enzyme of serine protease family, upon addition of co-solvent reported to exert stress on polypeptides crafting favourable conditions for aggregation. Hexafluoropropan-2-ol (HFIP), a fluorinated alcohol caused structural disruption at 5% v/v unveiled by reduced intrinsic intensity and blue shifted ANS spectra. Significantly enhanced, red-shifted ThT and Congo red spectra sustained conformational changes concomitant with aggregation. FTIR and CD results confirmed transition of native structure to non-native extended, cross-linked beta-sheets. Transmission electron micrographs visibly exhibited incidence of amorphous aggregates. Macromolecular crowding, typically mimicked by concentrated solutions of dextran 70, was noticeably witnessed to defend conformational stability under denaturing condition. The native structure was retained maximally in presence of 100 mg/ml followed by 200 and 300 mg/ml dextran indicating concentration dependent deceleration of aggregate formation. It can be established that explicit consideration of crowding effects using relevant range of inert crowding agents must be a requisite for presumptions on intracellular conformational behaviour of proteins deduced from in vitro experiments.
Collapse
Affiliation(s)
- Samra Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Mohd Isar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
153
|
Pal S, Maity S, Sardar S, Begum S, Dalui R, Parvej H, Bera K, Pradhan A, Sepay N, Paul S, Halder UC. Antioxidant ferulic acid prevents the aggregation of bovine β-lactoglobulin in vitro. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01796-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
154
|
Nikolenko VN, Oganesyan MV, Rizaeva NA, Kudryashova VA, Nikitina AT, Pavliv MP, Shchedrina MA, Giller DB, Bulygin KV, Sinelnikov MY. Amygdala: Neuroanatomical and Morphophysiological Features in Terms of Neurological and Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10080502. [PMID: 32751957 PMCID: PMC7465610 DOI: 10.3390/brainsci10080502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 01/07/2023] Open
Abstract
The amygdala is one of the most discussed structures of the brain. Correlations between its level of activity, size, biochemical organization, and various pathologies are the subject of many studies, and can serve as a marker of existing or future disease. It is hypothesized that the amygdala is not just a structural unit, but includes many other regions in the brain. In this review, we present the updated neuroanatomical and physiological aspects of the amygdala, discussing its involvement in neurodegenerative and neurological diseases. The amygdala plays an important role in the processing of input signals and behavioral synthesis. Lesions in the amygdala have been shown to cause neurological disfunction of ranging severity. Abnormality in the amygdala leads to conditions such as depression, anxiety, autism, and also promotes biochemical and physiological imbalance. The amygdala collects pathological proteins, and this fact can be considered to play a big role in the progression and diagnosis of many degenerative diseases, such as Alzheimer’s disease, chronic traumatic encephalopathy, Lewy body diseases, and hippocampal sclerosis. The amygdala has shown to play a crucial role as a central communication system in the brain, therefore understanding its neuroanatomical and physiological features can open a channel for targeted therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vladimir N. Nikolenko
- Department of Human Anatomy, Sechenov University, 119991 Moscow, Russia; (V.N.N.); (M.V.O.); (N.A.R.); (V.A.K.); (D.B.G.); (K.V.B.)
- Department of Human Anatomy, Moscow State University, 119991 Moscow, Russia
| | - Marine V. Oganesyan
- Department of Human Anatomy, Sechenov University, 119991 Moscow, Russia; (V.N.N.); (M.V.O.); (N.A.R.); (V.A.K.); (D.B.G.); (K.V.B.)
| | - Negoriya A. Rizaeva
- Department of Human Anatomy, Sechenov University, 119991 Moscow, Russia; (V.N.N.); (M.V.O.); (N.A.R.); (V.A.K.); (D.B.G.); (K.V.B.)
| | - Valentina A. Kudryashova
- Department of Human Anatomy, Sechenov University, 119991 Moscow, Russia; (V.N.N.); (M.V.O.); (N.A.R.); (V.A.K.); (D.B.G.); (K.V.B.)
| | - Arina T. Nikitina
- International School “Medicine of Future”, Sechenov University, 119991 Moscow, Russia; (A.T.N.); (M.P.P.)
| | - Maria P. Pavliv
- International School “Medicine of Future”, Sechenov University, 119991 Moscow, Russia; (A.T.N.); (M.P.P.)
| | - Marina A. Shchedrina
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia;
| | - Dmitry B. Giller
- Department of Human Anatomy, Sechenov University, 119991 Moscow, Russia; (V.N.N.); (M.V.O.); (N.A.R.); (V.A.K.); (D.B.G.); (K.V.B.)
| | - Kirill V. Bulygin
- Department of Human Anatomy, Sechenov University, 119991 Moscow, Russia; (V.N.N.); (M.V.O.); (N.A.R.); (V.A.K.); (D.B.G.); (K.V.B.)
- Department of Human Anatomy, Moscow State University, 119991 Moscow, Russia
| | - Mikhail Y. Sinelnikov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia;
- Correspondence: ; Tel.: +7-89199688587
| |
Collapse
|
155
|
Dietary Gluten and Neurodegeneration: A Case for Preclinical Studies. Int J Mol Sci 2020; 21:ijms21155407. [PMID: 32751379 PMCID: PMC7432597 DOI: 10.3390/ijms21155407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Although celiac disease (CD) is an autoimmune disease that primarily involves the intestinal tract, mounting evidence suggests that a sizeable number of patients exhibit neurological deficits. About 40% of the celiac patients with neurological manifestations have circulating antibodies against neural tissue transglutaminase-6 (tTG6). While early diagnosis and strict adherence to a gluten-free diet (GFD) have been recommended to prevent neurological dysfunction, better therapeutic strategies are needed to improve the overall quality of life. Dysregulation of the microbiota-gut-brain axis, presence of anti-tTG6 antibodies, and epigenetic mechanisms have been implicated in the pathogenesis. It is also possible that circulating or gut-derived extracellular structures and including biomolecular condensates and extracellular vesicles contribute to disease pathogenesis. There are several avenues for shaping the dysregulated gut homeostasis in individuals with CD, non-celiac gluten sensitivity (NCGS) and/or neurodegeneration. In addition to GFD and probiotics, nutraceuticals, such as phyto and synthetic cannabinoids, represent a new approach that could shape the host microbiome towards better prognostic outcomes. Finally, we provide a data-driven rationale for potential future pre-clinical research involving non-human primates (NHPs) to investigate the effect of nutraceuticals, such as phyto and synthetic cannabinoids, either alone or in combination with GFD to prevent/mitigate dietary gluten-induced neurodegeneration.
Collapse
|
156
|
Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life (Basel) 2020; 10:life10070118. [PMID: 32698429 PMCID: PMC7400086 DOI: 10.3390/life10070118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is a severe disorder that affects millions of people worldwide. It is a very debilitating disease with no cure at the moment. The necessity of finding an effective treatment is very demanding, and the entire scientific community is putting in a lot of effort to address this issue. The major hallmark of Alzheimer's disease is the presence of toxic aggregated species in the brain, impaired metal homeostasis, and high levels of oxidative stress. Rosmarinic acid is a well-known potent antioxidant molecule, the efficacy of which has been proved both in vitro and in vivo. In this study, we investigated the possible role played by rosmarinic acid as a mediator of the copper(II)-induced neurotoxicity. Several spectroscopic techniques and biological assays were applied to characterize the metal complexes and to evaluate the cytotoxicity and the mutagenicity of rosmarinic acid and its Cu(II) complex. Our data indicate that rosmarinic acid is able to interfere with the interaction between amyloid β and Cu(II) by forming an original ternary association.
Collapse
|
157
|
Verheijen BM, Lussier C, Müller-Hübers C, Garruto RM, Oyanagi K, Braun RJ, van Leeuwen FW. Activation of the Unfolded Protein Response and Proteostasis Disturbance in Parkinsonism-Dementia of Guam. J Neuropathol Exp Neurol 2020; 79:34-45. [PMID: 31750913 DOI: 10.1093/jnen/nlz110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Celina Lussier
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Cora Müller-Hübers
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralph M Garruto
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Kiyomitsu Oyanagi
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralf J Braun
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Fred W van Leeuwen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| |
Collapse
|
158
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
159
|
Revealing the Proteome of Motor Cortex Derived Extracellular Vesicles Isolated from Amyotrophic Lateral Sclerosis Human Postmortem Tissues. Cells 2020; 9:cells9071709. [PMID: 32708779 PMCID: PMC7407138 DOI: 10.3390/cells9071709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the deposition of misfolded proteins in the motor cortex and motor neurons. Although a multitude of ALS-associated mutated proteins have been identified, several have been linked to small extracellular vesicles such as exosomes involved in cell-cell communication. This study aims to determine the proteome of extracellular vesicles isolated from the motor cortex of ALS subjects and to identify novel ALS-associated deregulated proteins. Motor cortex extracellular vesicles (MCEVs) were isolated from human postmortem ALS (n = 10) and neurological control (NC, n = 5) motor cortex brain tissues and the MCEVs protein content subsequently underwent mass spectrometry analysis, allowing for a panel of ALS-associated proteins to be identified. This panel consists of 16 statistically significant differentially packaged proteins identified in the ALS MCEVs. This includes several upregulated RNA-binding proteins which were determined through pathway analysis to be associated with stress granule dynamics. The identification of these RNA-binding proteins in the ALS MCEVs suggests there may be a relationship between ALS-associated stress granules and ALS MCEV packaging, highlighting a potential role for small extracellular vesicles such as exosomes in the pathogenesis of ALS and as potential peripheral biomarkers for ALS.
Collapse
|
160
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
161
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
162
|
Chang Y, Kim J, Park H, Choi H, Kim J. Modelling neurodegenerative diseases with 3D brain organoids. Biol Rev Camb Philos Soc 2020; 95:1497-1509. [PMID: 32568450 DOI: 10.1111/brv.12626] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are incurable and debilitating conditions characterized by the deterioration of brain function. Most brain disease models rely on human post-mortem brain tissue, non-human primate tissue, or in vitro two-dimensional (2D) experiments. Resource limitations and the complexity of the human brain are some of the reasons that make suitable human neurodegenerative disease models inaccessible. However, recently developed three-dimensional (3D) brain organoids derived from pluripotent stem cells (PSCs), including embryonic stem cells and induced PSCs, may provide suitable models for the study of the pathological features of neurodegenerative diseases. In this review, we provide an overview of existing 3D brain organoid models and discuss recent advances in organoid technology that have increased our understanding of brain development. Moreover, we explain how 3D organoid models recapitulate aspects of specific neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, and explore the utility of these models, for therapeutic applications.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Junyeop Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hanseul Park
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hwan Choi
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.,Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
163
|
Rahman AA, Soto-Avellaneda A, Yong Jin H, Stojkovska I, Lai NK, Albright JE, Webb AR, Oe E, Valarde JP, Oxford AE, Urquhart PE, Wagner B, Brown C, Amado I, Vasquez P, Lehning N, Grozdanov V, Pu X, Danzer KM, Morrison BE. Enhanced Hyaluronan Signaling and Autophagy Dysfunction by VPS35 D620N. Neuroscience 2020; 441:33-45. [PMID: 32540366 DOI: 10.1016/j.neuroscience.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
The motor features of Parkinson's disease (PD) result from the loss of dopaminergic (DA) neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. A PD-causing familial mutation in VPS35 (D620N) has been reported to inhibit autophagy. In order to identify signaling pathways responsible for this autophagy defect, we performed an unbiased screen using RNA sequencing (RNA-Seq) of wild-type or VPS35 D620N-expressing retinoic acid-differentiated SH-SY5Y cells. We report that VPS35 D620N-expressing cells exhibit transcriptome changes indicative of alterations in extracellular matrix (ECM)-receptor interaction as well as PI3K-AKT signaling, a pathway known to regulate autophagy. Hyaluronan (HA) is a major component of brain ECM and signals via the ECM receptors CD44, a top RNA-Seq hit, and HA-mediated motility receptor (HMMR) to the autophagy-regulating PI3K-AKT pathway. We find that high (>950 kDa), but not low (15-40 kDa), molecular weight HA treatment inhibits autophagy. In addition, VPS35 D620N facilitated enhanced HA-AKT signaling. Transcriptomic assessment and validation of protein levels identified the differential expression of CD44 and HMMR isoforms in VPS35 D620N mutant cells. We report that knockdown of HMMR or CD44 results in upregulated autophagy in cells expressing wild-type VPS35. However, only HMMR knockdown resulted in rescue of autophagy dysfunction by VPS35 D620N indicating a potential pathogenic role for this receptor and HA signaling in Parkinson's disease.
Collapse
Affiliation(s)
- Abir A Rahman
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA
| | - Alejandro Soto-Avellaneda
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA
| | - Hyun Yong Jin
- Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Iva Stojkovska
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Nathan K Lai
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Joshua E Albright
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Abby R Webb
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Emily Oe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob P Valarde
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Alexandra E Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Paige E Urquhart
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Brandon Wagner
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Connor Brown
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Isabella Amado
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Peyton Vasquez
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Nicholas Lehning
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA
| | | | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA
| | | | - Brad E Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
164
|
Sun DE, Chen X. Raman Imaging Shines a Light on Neurodegenerative Disorders. ACS CENTRAL SCIENCE 2020; 6:459-460. [PMID: 32341993 PMCID: PMC7181325 DOI: 10.1021/acscentsci.0c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- De-en Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
165
|
Roy M, Pal I, Nath AK, Dey SG. Peroxidase activity of heme bound amyloid β peptides associated with Alzheimer's disease. Chem Commun (Camb) 2020; 56:4505-4518. [PMID: 32297620 DOI: 10.1039/c9cc09758a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The amyloid cascade hypothesis attributes the neurodegeneration observed in Alzheimer's disease (AD) to the deposition of the amyloid β (Aβ) peptide into plaques and fibrils in the AD brain. The metal ion hypothesis which implicates several metal ions, viz. Zn2+, Cu2+ and Fe3+, in the AD pathology on account of their abnormal accumulation in the Aβ plaques along with an overall dyshomeostasis of these metals in the AD brain was proposed a while back. Metal ion chelators and ionophores, put forward as possible drug candidates for AD, are yet to succeed in clinical trials. Heme, which is widely distributed in the mammalian body as the prosthetic group of several important proteins and enzymes, has been thought to be associated with AD by virtue of its colocalization in the Aβ plaques along with the similarity of several heme deficiency symptoms with those of AD and most importantly, due to its ability to bind Aβ. This feature article illustrates the active site environment of heme-Aβ which resembles those of peroxidases. It also discusses the peroxidase activity of heme-Aβ, its ability to effect oxidative degradation of neurotransmitters like serotonin and also the identification of the highly reactive high-valent intermediate, compound I. The effect of second sphere residues on the formation and peroxidase activity of heme-Aβ along with the generation and decay of compound I is highlighted throughout the article. The reactivities of heme bound Aβ peptides give an alternative theory to understand the possible cause of this disease.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | | | |
Collapse
|
166
|
Luh LM, Bertolotti A. Potential benefit of manipulating protein quality control systems in neurodegenerative diseases. Curr Opin Neurobiol 2020; 61:125-132. [PMID: 32199101 DOI: 10.1016/j.conb.2020.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The deposition of proteins of abnormal conformation is one of the major hallmarks of the common neurodegenerative diseases including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, frontotemporal dementia, and prion diseases. Protein quality control systems have evolved to protect cells and organisms against the harmful consequences of abnormally folded proteins that are constantly produced in small amounts. Mutations in rare inherited forms of neurodegenerative diseases have provided compelling evidence that failure of protein quality control systems can drive neurodegeneration. With extensive knowledge of these systems, and the notion that protein quality control may decline with age, many laboratories are now focussing on manipulating these evolutionarily optimized defence mechanisms to reduce the protein misfolding burden for therapeutic benefit.
Collapse
Affiliation(s)
- Laura M Luh
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
167
|
Bai B, Wang X, Li Y, Chen PC, Yu K, Dey KK, Yarbro JM, Han X, Lutz BM, Rao S, Jiao Y, Sifford JM, Han J, Wang M, Tan H, Shaw TI, Cho JH, Zhou S, Wang H, Niu M, Mancieri A, Messler KA, Sun X, Wu Z, Pagala V, High AA, Bi W, Zhang H, Chi H, Haroutunian V, Zhang B, Beach TG, Yu G, Peng J. Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression. Neuron 2020; 105:975-991.e7. [PMID: 31926610 PMCID: PMC7318843 DOI: 10.1016/j.neuron.2019.12.015] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aβ-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-β and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aβ-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.
Collapse
Affiliation(s)
- Bing Bai
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ping-Chung Chen
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaushik Kumar Dey
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay M Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Xian Han
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Brianna M Lutz
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shuquan Rao
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey M Sifford
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonghee Han
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Minghui Wang
- Departments of Psychiatry and Neuroscience, The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ariana Mancieri
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaitlynn A Messler
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaojun Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenjian Bi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hui Zhang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Gang Yu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
168
|
Functional Connectivity in Neurodegenerative Disorders: Alzheimer's Disease and Frontotemporal Dementia. Top Magn Reson Imaging 2020; 28:317-324. [PMID: 31794504 DOI: 10.1097/rmr.0000000000000223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders are a growing cause of morbidity and mortality worldwide. Onset is typically insidious and clinical symptoms of behavioral change, memory loss, or cognitive dysfunction may not be evident early in the disease process. Efforts have been made to discover biomarkers that allow for earlier diagnosis of neurodegenerative disorders, to initiate treatment that may slow the course of clinical deterioration. Neuronal dysfunction occurs earlier than clinical symptoms manifest. Thus, assessment of neuronal function using functional brain imaging has been examined as a potential biomarker. While most early studies used task-functional magnetic resonance imaging (fMRI), with the more recent technique of resting-state fMRI, "intrinsic" relationships between brain regions or brain networks have been studied in greater detail in neurodegenerative disorders. In Alzheimer's disease, the most common neurodegenerative disorder, and frontotemporal dementia, another of the common dementias, specific brain networks may be particularly susceptible to dysfunction. In this review, we highlight the major findings of functional connectivity assessed by resting state fMRI in Alzheimer's disease and frontotemporal dementia.
Collapse
|
169
|
Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation. Proc Natl Acad Sci U S A 2020; 117:6741-6751. [PMID: 32152117 DOI: 10.1073/pnas.1906466117] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection of Rag knockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 in Rag knockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.
Collapse
|
170
|
Zhang Z, Zhang C, Yao J, Gao F, Gong T, Jiang S, Chen W, Zhou J, Wang G. Amide proton transfer-weighted magnetic resonance imaging of human brain aging at 3 Tesla. Quant Imaging Med Surg 2020; 10:727-742. [PMID: 32269932 DOI: 10.21037/qims.2020.02.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Amide proton transfer-weighted (APTw) imaging has been revealed to hold great potential in the diagnosis of several brain diseases. The purpose of this proof-of-concept study was to evaluate the feasibility and value of APTw magnetic resonance imaging (MRI) in characterizing normal brain aging. Methods A total of 106 healthy subjects were recruited and scanned at 3.0 Tesla, with APTw and conventional magnetization transfer (MT) sequences. Quantitative image analyses were performed in 12 regions of interest (ROIs) for each subject. The APTw or MT ratio (MTR) signal differences among five age groups (young, mature, middle-aged, young-old, and middle-old) were assessed using the one-way analysis of variance, with the Benjamini-Hochberg correction for multiple comparisons. The relationship between APTw and MTR signals and the age dependencies of APTw and MTR signals were assessed using the Pearson correlation and non-linear regression. Results There were no significant differences between the APTw or MTR values for males and females in any of the 12 ROIs analyzed. Among the five age groups, there were significant differences in the three white matter regions in the temporal, occipital, and frontal lobes. Overall, the mean APTw values in the older group were higher than those in the younger group. Positive correlations were observed in relation to age in most brain regions, including four with significant positive correlations (r=0.2065-0.4182) and five with increasing trends. As a comparison, the mean MTR values did not appear to be significantly different among the five age groups. In addition, the mean APTw and MTR values revealed significant positive correlations in 10 ROIs (r=0.2214-0.7269) and a significant negative correlation in one ROI (entorhinal cortex, r=-0.2141). Conclusions Our early results show that the APTw signal can be used as a promising and complementary imaging biomarker with which normal brain aging can be evaluated at the molecular level.
Collapse
Affiliation(s)
- Zewen Zhang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China.,Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Caiqing Zhang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Jian Yao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Fei Gao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Tao Gong
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Guangbin Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| |
Collapse
|
171
|
Gao H, Liu M, Zhao Z, Yang C, Zhu L, Cai Y, Yang Y, Hu Z. Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease by the Plasma and Serum Amyloid-beta 42 Assay through Highly Sensitive Peptoid Nanosheet Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9693-9700. [PMID: 32013375 DOI: 10.1021/acsami.0c00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with a continuous pathophysiological process starting from the preclinical and mild cognitive impairment (MCI) phases to the dementia phase. Early diagnosis is prerequisite for the early intervention of AD but meanwhile challenging. Amyloid-beta 1-42 (Aβ42) plays a crucial part in AD pathology. Positron-emission tomography (PET) imaging of Aβ42 in the brain and the measurement of Aβ42 in the cerebrospinal fluid (CSF) have been adopted for the auxiliary diagnosis of AD, but their widespread clinical application has been limited due to the radiation and the high-cost of PET and the invasive lumbar puncture for collecting CSF. Noninvasive and cost-effective blood-based assay is desirable for the early diagnosis of AD. Here, a label-free assay for the quantification of blood Aβ42 was developed using the high-throughput surface plasmon resonance imaging method with the aid of an antibody-mimetic peptoid nanosheet equipping Aβ42-recognizing loops. We demonstrated that this nanosheet-based sensor system could distinguish the plasma and sera from normal individuals and patients suffering AD and amnestic MCI with high sensitivity and specificity, preceding the diagnostic performance of the Aβ42-recognizing molecule and the antibody specific to Aβ42. This work provides a label-free, cost-effective, highly sensitive, and high-throughput blood-based assay for early detection of AD.
Collapse
Affiliation(s)
- Houqian Gao
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , 11 Beiyitiao , Haidian District, Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Mingzhu Liu
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , 11 Beiyitiao , Haidian District, Beijing 100190 , China
- Center for Neuroscience Research, School of Basic Medical Sciences , Fujian Medical University , Fuzhou 350108 , Fujian Province , China
| | - Zijian Zhao
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , 11 Beiyitiao , Haidian District, Beijing 100190 , China
- Department of Neurology and Neurobiology , Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education , 45 Changchun Street , Beijing 100053 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Caixia Yang
- Department of Neurology and Neurobiology , Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education , 45 Changchun Street , Beijing 100053 , China
| | - Ling Zhu
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , 11 Beiyitiao , Haidian District, Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Yanning Cai
- Department of Neurology and Neurobiology , Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education , 45 Changchun Street , Beijing 100053 , China
| | - Yanlian Yang
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , 11 Beiyitiao , Haidian District, Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Zhiyuan Hu
- Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , 11 Beiyitiao , Haidian District, Beijing 100190 , China
- University of Chinese Academy of Sciences , 19 A Yuquan Road , Shijingshan District, Beijing 100049 , China
- Center for Neuroscience Research, School of Basic Medical Sciences , Fujian Medical University , Fuzhou 350108 , Fujian Province , China
| |
Collapse
|
172
|
Safety and Neuroprotective Efficacy of Palm Oil and Tocotrienol-Rich Fraction from Palm Oil: A Systematic Review. Nutrients 2020; 12:nu12020521. [PMID: 32085610 PMCID: PMC7071496 DOI: 10.3390/nu12020521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Several natural products have been reported to elicit beneficial effects against neurodegenerative disorders due to their vitamin E contents. However, the neuroprotective efficacy of palm oil or its tocotrienol-rich fraction (TRF) from the pre-clinical cell and animal studies have not been systematically reviewed. Methods: The protocol for this systematic review was registered in “PROSPERO” (CRD42019150408). This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The Medical Subject Heading (MeSH) descriptors of PubMed with Boolean operators were used to construct keywords, including (“Palm Oil”[Mesh]) AND “Nervous System”[Mesh], (“Palm Oil”[Mesh]) AND “Neurodegenerative Diseases”[Mesh], (“Palm Oil”[Mesh]) AND “Brain”[Mesh], and (“Palm Oil”[Mesh]) AND “Cognition”[Mesh], to retrieve the pertinent records from PubMed, Scopus, Web of Science and ScienceDirect from 1990 to 2019, while bibliographies, ProQuest and Google Scholar were searched to ensure a comprehensive identification of relevant articles. Two independent investigators were involved at every stage of the systematic review, while discrepancies were resolved through discussion with a third investigator. Results: All of the 18 included studies in this review (10 animal and eight cell studies) showed that palm oil and TRF enhanced the cognitive performance of healthy animals. In diabetes-induced rats, TRF and α-tocotrienol enhanced cognitive function and exerted antioxidant, anti-apoptotic and anti-inflammatory activities, while in a transgenic Alzheimer’s disease (AD) animal model, TRF enhanced the cognitive function and reduced the deposition of β-amyloid by altering the expression of several genes related to AD and neuroprotection. In cell studies, simultaneous treatment with α-tocotrienols and neurotoxins improved the redox status in neuronal cells better than γ- and δ-tocotrienols. Both pre-treatment and post-treatment with α-tocotrienol relative to oxidative insults were able to enhance the survival of neuronal cells via increased antioxidant responses. Conclusions: Palm oil and its TRF enhanced the cognitive functions of healthy animals, while TRF and α-tocotrienol enhanced the cognitive performance with attenuation of oxidative stress, neuroinflammation and apoptosis in diabetes-induced or transgenic AD animal models. In cell studies, TRF and α-tocotrienol exerted prophylactic neuroprotective effects, while α-tocotrienol exerted therapeutic neuroprotective effects that were superior to those of γ- and δ-tocotrienol isomers.
Collapse
|
173
|
The N-terminal of NBPF15 causes multiple types of aggregates and mediates phase transition. Biochem J 2020; 477:445-458. [DOI: 10.1042/bcj20190566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
The neuroblastoma breakpoint family (NBPF) consists of 24 members that play an important role in neuroblastoma and other cancers. NBPF is an evolutionarily recent gene family that encodes several repeats of Olduvai domain and an abundant N-terminal region. The function and biochemical properties of both Olduvai domain and the N-terminal region remain enigmatic. Human NBPF15 encodes a 670 AA protein consisting of six clades of Olduvai domains. In this study, we synthesized and expressed full-length NBPF15, and purified a range of NBPF15 truncations which were analyzed using dynamic light scattering (DLS), superdex200 (S200), small-angle X-ray scattering (SAXS), far-UV circular dichroism (CD) spectroscopy, transmission electron microscope (TEM), and crystallography. We found that proteins containing both the N-terminal region and Olduvai domain are heterogeneous with multiple types of aggregates, and some of them underwent a liquid-to-solid phase transition, probably because of the entanglement within the N-terminal coiled-coil. Proteins that contain only the Olduvai domain are homogeneous extended monomers, and those with the conserved clade 1 (CON1) have manifested a tendency to crystallize. We suggest that the entanglements between the mosaic disorder-ordered segments in NBPF15 N terminus have triggered the multiple types of aggregates and phase transition of NBPF15 proteins, which could be associated with Olduvai-related cognitive dysfunction diseases.
Collapse
|
174
|
Kobayashi S, Yoshii K, Phongphaew W, Muto M, Hirano M, Orba Y, Sawa H, Kariwa H. West Nile virus capsid protein inhibits autophagy by AMP-activated protein kinase degradation in neurological disease development. PLoS Pathog 2020; 16:e1008238. [PMID: 31971978 PMCID: PMC6977728 DOI: 10.1371/journal.ppat.1008238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) belongs to the Flaviviridae family and has emerged as a significant cause of viral encephalitis in birds and animals including humans. WNV replication directly induces neuronal injury, followed by neuronal cell death. We previously showed that accumulation of ubiquitinated protein aggregates was involved in neuronal cell death in the WNV-infected mouse brain. In this study, we attempted to elucidate the mechanisms of the accumulation of protein aggregates in the WNV-infected cells. To identify the viral factor inducing the accumulation of ubiquitinated proteins, intracellular accumulation of ubiquitinated proteins was examined in the cells expressing the viral protein. Expression of capsid (C) protein induced the accumulation, while mutations at residues L51 and A52 in C protein abrogated the accumulation. Wild-type (WT) or mutant WNV in which mutations were introduced into the residues was inoculated into human neuroblastoma cells. The expression levels of LC3-II, an autophagy-related protein, and AMP-activated protein kinase (AMPK), an autophagy inducer, were reduced in the cells infected with WT WNV, while the reduction was not observed in the cells infected with WNV with the mutations in C protein. Similarly, ubiquitination and degradation of AMPK were only observed in the cells infected with WT WNV. In the cells expressing C protein, AMPK was co-precipitated with C protein and mutations in L51 and A52 reduced the interaction. Although the viral replication was not affected, the accumulation of ubiquitinated proteins in brain and neurological symptoms were attenuated in the mouse inoculated with WNV with the mutations in C protein as compared with that with WT WNV. Taken together, ubiquitination and degradation of AMPK by C protein resulted in the inhibition of autophagy and the accumulation of protein aggregates, which contributes to the development of neurological disease.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Memi Muto
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Minato Hirano
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
175
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
176
|
Bali NR, Shinde MP, Rathod SB, Salve PS. Enhanced transdermal permeation of rasagiline mesylate nanoparticles: design, optimization, and effect of binary combinations of solvent systems across biological membrane. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nikhil R. Bali
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mahesh P. Shinde
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Shahadev B. Rathod
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Pramod S. Salve
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
177
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
178
|
Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv Ther 2020; 37:113-139. [PMID: 31782132 PMCID: PMC6979458 DOI: 10.1007/s12325-019-01148-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Introduction Neurodegeneration is the term describing the death of neurons both in the central nervous system and periphery. When affecting the central nervous system, it is responsible for diseases like Alzheimer’s disease, Parkinson’s disease, Huntington’s disorders, amyotrophic lateral sclerosis, and other less frequent pathologies. There are several common pathophysiological elements that are shared in the neurodegenerative diseases. The common denominators are oxidative stress (OS) and inflammatory responses. Unluckily, these conditions are difficult to treat. Because of the burden caused by the progression of these diseases and the simultaneous lack of efficacious treatment, therapeutic approaches that could target the interception of development of the neurodegeneration are being widely investigated. This review aims to highlight the most recent proposed novelties, as most of the previous approaches have failed. Therefore, older approaches may currently be used by healthcare professionals and are not being presented. Methods This review was based on an electronic search of existing literature, using PubMed as primary source for important review articles, and important randomized clinical trials, published in the last 5 years. Reference lists from the most recent reviews, as well as additional sources of primary literature and references cited by relevant articles, were used. Results Eighteen natural pharmaceutical substances and 24 extracted or recombinant products, and artificial agents that can be used against OS, inflammation, and neurodegeneration were identified. After presenting the most common neurodegenerative diseases and mentioning some of the basic mechanisms that lead to neuronal loss, this paper presents up to date information that could encourage the development of better therapeutic strategies. Conclusions This review shares the new potential pharmaceutical and not pharmaceutical options that have been recently introduced regarding OS and inflammatory responses in neurodegenerative diseases.
Collapse
|
179
|
Yan B, Wang H, Tan Y, Fu W. microRNAs in Cardiovascular Disease: Small Molecules but Big Roles. Curr Top Med Chem 2019; 19:1918-1947. [PMID: 31393249 DOI: 10.2174/1568026619666190808160241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Abstract
microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.
Collapse
Affiliation(s)
- Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
180
|
Haghighi-Poodeh S, Navidpour L, Yaghmaei P, Ebrahim-Habibi A. Monocyclic phenolic compounds stabilize human insulin and suppress its amorphous aggregation: In vitro and in vivo study. Biochem Biophys Res Commun 2019; 518:362-367. [PMID: 31431258 DOI: 10.1016/j.bbrc.2019.08.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 01/08/2023]
Abstract
Insulin is a small protein with 51 residues that mediates glucose uptake, and an interesting model for studying protein misfolding and aggregation. The aggregated forms of insulin undergo loss of activity and can provoke unwanted immune responses. Use of small molecules is considered to be an affordable method to counteract this aggregation process and stabilize insulin. In this study, aggregated forms of human recombinant insulin have been produced following exposure to high temperature. Aggregation process was followed over time by checking absorbance with spectrophotometry in presence and absence of various concentrations of small phenolic compounds including eugenol and epinephrine. Effects of these compounds on the structure and function of incubated insulin were evaluated by spectrofluorimetry, melting temperature (Tm) measurement and insulin tolerance test on Wistar rats. Formation of heat-induced insulin aggregation can be effectively inhibited by 1 mM eugenol and epinephrine and both compounds were found to preserve insulin activity to a considerable extent. In conclusion, simple aromatic compounds could be tailored to act as potent anti-aggregation compounds for insulin.
Collapse
Affiliation(s)
- Sepideh Haghighi-Poodeh
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Latifeh Navidpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14174, Iran.
| | - Parichehreh Yaghmaei
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
181
|
Bunzarova NZ, Pesheva NC, Brankov JG. One-dimensional discrete aggregation-fragmentation model. Phys Rev E 2019; 100:022145. [PMID: 31574637 DOI: 10.1103/physreve.100.022145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 11/07/2022]
Abstract
We study here one-dimensional model of aggregation and fragmentation of clusters of particles obeying the stochastic discrete-time kinetics of the generalized totally asymmetric simple exclusion process (gTASEP) on open chains. The gTASEP is essentially the ordinary TASEP with backward-ordered sequential update (BSU), however, equipped with two hopping probabilities: p and p_{m}. The second modified probability p_{m} models a special kinematic interaction between the particles of a cluster in addition to the simple hard-core exclusion interaction, existing in the ordinary TASEP. We focus on the nonequilibrium stationary properties of the gTASEP in the generic case of attraction between the particles of a cluster. In this case the particles of a cluster have higher chance to stay together than to split, thus producing higher throughput in the system. We explain how the topology of the phase diagram in the case of irreversible aggregation, occurring when the modified probability equals unity, changes sharply to the one, corresponding to the ordinary TASEP with BSU, as soon as the modified probability becomes less than unity and aggregation-fragmentation of clusters appears. We estimate various physical quantities in the system and determine the parameter-dependent injection and ejection critical values by extensive computer simulations. With the aid of random walk theory, supported by the Monte Carlo simulations, the properties of the phase transitions between the three stationary phases are assessed.
Collapse
Affiliation(s)
- N Zh Bunzarova
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.,Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - N C Pesheva
- Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - J G Brankov
- Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.,Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
182
|
Duggan M, Torkzaban B, Ahooyi TM, Khalili K, Gordon J. Age-related neurodegenerative diseases. J Cell Physiol 2019; 235:3131-3141. [PMID: 31556109 DOI: 10.1002/jcp.29248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Converging evidence indicates the dysregulation of unique cytosolic compartments called stress granules (SGs) might facilitate the accumulation of toxic protein aggregates that underlie many age-related neurodegenerative pathologies (ANPs). SG dynamics are particularly susceptible to the cellular conditions that are commonly induced by aging, including the elevation in reactive oxygen species and increased concentration of aggregate-prone proteins. In turn, the persistent formation of these compartments is hypothesized to serve as a seed for subsequent protein aggregation. Notably, the protein quality control (PQC) machinery responsible for inhibiting persistent SGs (e.g., Hsc70-BAG3) can become compromised with age, suggesting that the modulation of such PQC mechanisms could reliably inhibit pathological processes of ANPs. As exemplified in the context of accelerated aging syndromes (i.e., Hutchinson-Gilford progeria), PQC enhancement is emerging as a potential therapeutic strategy, indicating similar techniques might be applied to ANPs. Collectively, these recent findings advance our understanding of how the processes that might facilitate protein aggregation are particularly susceptible to aging conditions, and present investigators with an opportunity to develop novel targets for ANPs.
Collapse
Affiliation(s)
- Michael Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
183
|
Mroczko B, Groblewska M, Litman-Zawadzka A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer's Disease (AD). Int J Mol Sci 2019; 20:E4661. [PMID: 31547024 PMCID: PMC6802364 DOI: 10.3390/ijms20194661] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Although the causative role of the accumulation of amyloid β 1-42 (Aβ42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AβOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.
Collapse
Affiliation(s)
- Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
| |
Collapse
|
184
|
Greco V, Longone P, Spalloni A, Pieroni L, Urbani A. Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:71-82. [PMID: 31452136 DOI: 10.1007/978-981-13-8367-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins oxidation by reactive species is implicated in the aetiology or progression of a panoply of disorders and diseases such as neurodegenerative disorders. It is becoming increasingly evident that redox imbalance in the brain mediates neurodegeneration. Free radicals, as reactive species of oxygen (ROS) but also reactive nitrogen species (RNS) and reactive sulfur species (RSS), are generated in vivo from several sources. Within the cell the mitochondria represent the main source of ROS and mitochondrial dysfunction is both the major contributor to oxidative stress (OS) as well its major consequence.To date there are no doubts that a condition of OS added to other factors as mitochondrial damage in mtDNA or mitochondrial respiratory chain, may contribute to trigger or amplify mechanisms leading to neurodegenerative disorders.In this chapter, we aim at illustrate the molecular interplay occurring between mitochondria and OS focusing on Amyotrophic Lateral Sclerosis, describing a phenotypic reprogramming mechanism of mitochondria in complex neurological disorder.
Collapse
Affiliation(s)
- Viviana Greco
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Patrizia Longone
- Molecular Neurobiology Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, Rome, Italy. .,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy.
| |
Collapse
|
185
|
Freeman S, Mateo Sánchez S, Pouyo R, Van Lerberghe P, Hanon K, Thelen N, Thiry M, Morelli G, Van Hees L, Laguesse S, Chariot A, Nguyen L, Delacroix L, Malgrange B. Proteostasis is essential during cochlear development for neuron survival and hair cell polarity. EMBO Rep 2019; 20:e47097. [PMID: 31321879 PMCID: PMC6726910 DOI: 10.15252/embr.201847097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/13/2019] [Accepted: 06/22/2019] [Indexed: 01/23/2023] Open
Abstract
Protein homeostasis is essential to cell function, and a compromised ability to reduce the load of misfolded and aggregated proteins is linked to numerous age-related diseases, including hearing loss. Here, we show that altered proteostasis consequent to Elongator complex deficiency also impacts the proper development of the cochlea and results in deafness. In the absence of the catalytic subunit Elp3, differentiating spiral ganglion neurons display large aggresome-like structures and undergo apoptosis before birth. The cochlear mechanosensory cells are able to survive proteostasis disruption but suffer defects in polarity and stereociliary bundle morphogenesis. We demonstrate that protein aggregates accumulate at the apical surface of hair cells, where they cause a local slowdown of microtubular trafficking, altering the distribution of intrinsic polarity proteins and affecting kinocilium position and length. Alleviation of protein misfolding using the chemical chaperone 4-phenylbutyric acid during embryonic development ameliorates hair cell polarity in Elp3-deficient animals. Our study highlights the importance of developmental proteostasis in the cochlea and unveils an unexpected link between proteome integrity and polarized organization of cellular components.
Collapse
Affiliation(s)
- Stephen Freeman
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Susana Mateo Sánchez
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Ronald Pouyo
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Pierre‐Bernard Van Lerberghe
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Kevin Hanon
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Nicolas Thelen
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Marc Thiry
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Giovanni Morelli
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
- UHasseltBIOMEDHasseltBelgium
| | - Laura Van Hees
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Sophie Laguesse
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Alain Chariot
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
- GIGA‐Molecular Biology of DiseasesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)WavreBelgium
| | - Laurent Nguyen
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Laurence Delacroix
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Brigitte Malgrange
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| |
Collapse
|
186
|
Mondal S, Kumar V, Roy Chowdhury S, Shah M, Gaur A, Kumar S, Iyer PK. Template-Mediated Detoxification of Low-Molecular-Weight Amyloid Oligomers and Regulation of Their Nucleation Pathway. ACS APPLIED BIO MATERIALS 2019; 2:5306-5312. [DOI: 10.1021/acsabm.9b00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
187
|
Feng Z, Chen X, Wu X, Zhang M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J Biol Chem 2019; 294:14823-14835. [PMID: 31444270 DOI: 10.1074/jbc.rev119.007895] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of condensed biological assemblies with well-delineated physical boundaries, but without lipid membrane barriers. LLPS is increasingly recognized as a common mechanism for cells to organize and maintain different cellular compartments in addition to classical membrane-delimited organelles. Membraneless condensates have many distinct features that are not present in membrane-delimited organelles and that are likely indispensable for the viability and function of living cells. Malformation of membraneless condensates is increasingly linked to human diseases. In this review, we summarize commonly used methods to investigate various forms of LLPS occurring both in 3D aqueous solution and on 2D membrane bilayers, such as LLPS condensates arising from intrinsically disordered proteins or structured modular protein domains. We then discuss, in the context of comparisons with membrane-delimited organelles, the potential functional implications of membraneless condensate formation in cells. We close by highlighting some challenges in the field devoted to studying LLPS-mediated membraneless condensate formation.
Collapse
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiandeng Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China .,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
188
|
Abstract
We have made rapid progress in recent years in identifying the genetic causes of many human diseases. However, despite this recent progress, our mechanistic understanding of these diseases is often incomplete. This is a problem because it limits our ability to develop effective disease treatments. To overcome this limitation, we need new concepts to describe and comprehend the complex mechanisms underlying human diseases. Condensate formation by phase separation emerges as a new principle to explain the organization of living cells. In this review, we present emerging evidence that aberrant forms of condensates are associated with many human diseases, including cancer, neurodegeneration, and infectious diseases. We examine disease mechanisms driven by aberrant condensates, and we point out opportunities for therapeutic interventions. We conclude that phase separation provides a useful new framework to understand and fight some of the most severe human diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany; .,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; .,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
189
|
Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson's disease. Neurosci Biobehav Rev 2019; 103:305-315. [PMID: 31132378 PMCID: PMC6692229 DOI: 10.1016/j.neubiorev.2019.05.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
Recent evidence has advanced our understanding of the function of sleep to include removal of neurotoxic protein aggregates via the glymphatic system. However, most research on the glymphatic system utilizes animal models, and the function of waste clearance processes in humans remains unclear. Understanding glymphatic function offers new insight into the development of neurodegenerative diseases that result from toxic protein inclusions, particularly those characterized by neuropathological sleep dysfunction, like Parkinson's disease (PD). In PD, we propose that glymphatic flow may be compromised due to the combined neurotoxic effects of alpha-synuclein protein aggregates and deteriorated dopaminergic neurons that are linked to altered REM sleep, circadian rhythms, and clock gene dysfunction. This review highlights the importance of understanding the functional role of glymphatic system disturbance in neurodegenerative disorders and the subsequent clinical and neuropathological effects on disease progression. Future research initiatives utilizing noninvasive brain imaging methods in human subjects with PD are warranted, as in vivo identification of functional biomarkers in glymphatic system functioning may improve clinical diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Saranya Sundaram
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA; Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| | - Rachel L Hughes
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Eric Peterson
- Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| | - Eva M Müller-Oehring
- Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Helen M Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Afik Faerman
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Chloe Bhowmick
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Tilman Schulte
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA; Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
190
|
Pinto M, Fernandes C, Martins E, Silva R, Benfeito S, Cagide F, Mendes RF, Almeida Paz FA, Garrido J, Remião F, Borges F. Boosting Drug Discovery for Parkinson's: Enhancement of the Delivery of a Monoamine Oxidase-B Inhibitor by Brain-Targeted PEGylated Polycaprolactone-Based Nanoparticles. Pharmaceutics 2019; 11:E331. [PMID: 31336891 PMCID: PMC6681091 DOI: 10.3390/pharmaceutics11070331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023] Open
Abstract
The current pharmacological treatments for Parkinson's disease only offer symptomatic relief to the patients and are based on the administration of levodopa and catechol-O-methyltransferase or monoamine oxidase-B inhibitors (IMAO-B). Since the majority of drug candidates fail in pre- and clinical trials, due largely to bioavailability pitfalls, the use of polymeric nanoparticles (NPs) as drug delivery systems has been reported as an interesting tool to increase the stealth capacity of drugs or help drug candidates to surpass biological barriers, among other benefits. Thus, a novel potent, selective, and reversible IMAO-B (chromone C27, IC50 = 670 ± 130 pM) was encapsulated in poly(caprolactone) (PCL) NPs by a nanoprecipitation process. The resulting C27-loaded PEGylated PCL NPs (~213 nm) showed high stability and no cytotoxic effects in neuronal (SH-SY5Y), epithelial (Caco-2), and endothelial (hCMEC/D3) cells. An accumulation of PEGylated PCL NPs in the cytoplasm of SH-SY5Y and hCMEC/D3 cells was also observed, and their permeation across Caco-2 and hCMEC/D3 cell monolayers, used as in vitro models of the human intestine and blood-brain barrier, respectively, was demonstrated. PEGylated PCL NPs delivered C27 at concentrations higher than the MAO-B IC50 value, which provides evidence of their relevance to solving the drug discovery pitfalls.
Collapse
Affiliation(s)
- Miguel Pinto
- CIQUP, Departmento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos Fernandes
- CIQUP, Departmento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Eva Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sofia Benfeito
- CIQUP, Departmento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fernando Cagide
- CIQUP, Departmento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Ricardo F Mendes
- Departamento de Química, CICECO-Instituto de Materiais de Aveiro, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- Departamento de Química, CICECO-Instituto de Materiais de Aveiro, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge Garrido
- Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fernanda Borges
- CIQUP, Departmento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
191
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
192
|
Upregulation of miR-34a by Inhibition of IRE1 α Has Protective Effect against A β-Induced Injury in SH-SY5Y Cells by Targeting Caspase-2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2140427. [PMID: 31281568 PMCID: PMC6589233 DOI: 10.1155/2019/2140427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/21/2019] [Indexed: 11/17/2022]
Abstract
Background Neurotoxicity induced by the amyloid-β (Aβ) peptide is one of the most important pathological mechanisms of Alzheimer's disease (AD). Based on accumulating evidence in AD research, both endoplasmic reticulum stress (ER stress) and alterations in the microRNA (miRNA) network contribute to the pathogenesis of the disease, making them potential therapeutic targets for AD. The present study was performed to investigate whether miR-34a and the inositol-requiring enzyme 1 (IRE1) are involved in the regulation of Aβ-induced cytotoxicity. Methods Human neuroblastoma SH-SY5Y cells were treated with Aβ1-40. Cell viability was assessed by the MTT assay. The integrity of the plasma membrane was assessed by LDH release. The expression levels of XBP1s, IRE1α, p-IRE1α, and Caspase-2 were detected by Western blot analysis. Spliced-XBP1 mRNA and miR-34a were detected by reverse transcription- (RT-) PCR and quantitative real-time PCR, respectively. Caspase-2 activity was measured using the Caspase-2 cellular activity assay kit. The IRE1 inhibitor (STF-083010) was used to determine the role of IRE1α on miR-34a expression. SH-SY5Y cells were transfected with miR-34a mimics to assess the role of miR-34a on the activation of Caspase-2 and the viability of Aβ-exposed SH-SY5Y cells. Results We showed that Aβ caused concentration- and duration-dependent death of SH-SY5Y cells. The expression levels of XBP1s, p-IRE1α, and Caspase-2 were increased, along with a corresponding decrease in the miR-34a levels in Aβ-exposed SH-SY5Y cells. The IRE1 inhibitor (STF-083010) upregulated the expression of miR-34a and suppressed the activation of Caspase-2, effectively alleviating the Aβ-induced death of SH-SY5Y cells. Transfection studies show that miR-34a mimics inhibit the expression of Caspase-2 and restore the viability of Aβ-exposed SH-SY5Y cells. Conclusion Aβ peptide induced downregulation of miR-34a through the activation of IRE1α, which may induce cytotoxicity by targeting Caspase-2. Upregulation of miR-34a by inhibition of IRE1α has protective effects against Aβ-induced injury in SH-SY5Y cells.
Collapse
|
193
|
Pitchai A, Rajaretinam RK, Freeman JL. Zebrafish as an Emerging Model for Bioassay-Guided Natural Product Drug Discovery for Neurological Disorders. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E61. [PMID: 31151179 PMCID: PMC6631710 DOI: 10.3390/medicines6020061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Most neurodegenerative diseases are currently incurable, with large social and economic impacts. Recently, there has been renewed interest in investigating natural products in the modern drug discovery paradigm as novel, bioactive small molecules. Moreover, the discovery of potential therapies for neurological disorders is challenging and involves developing optimized animal models for drug screening. In contemporary biomedicine, the growing need to develop experimental models to obtain a detailed understanding of malady conditions and to portray pioneering treatments has resulted in the application of zebrafish to close the gap between in vitro and in vivo assays. Zebrafish in pharmacogenetics and neuropharmacology are rapidly becoming a widely used organism. Brain function, dysfunction, genetic, and pharmacological modulation considerations are enhanced by both larval and adult zebrafish. Bioassay-guided identification of natural products using zebrafish presents as an attractive strategy for generating new lead compounds. Here, we see evidence that the zebrafish's central nervous system is suitable for modeling human neurological disease and we review and evaluate natural product research using zebrafish as a vertebrate model platform to systematically identify bioactive natural products. Finally, we review recently developed zebrafish models of neurological disorders that have the potential to be applied in this field of research.
Collapse
Affiliation(s)
- Arjun Pitchai
- Molecular and Nanomedicine Research Unit (MNRU), Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Rajesh Kannan Rajaretinam
- Molecular and Nanomedicine Research Unit (MNRU), Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
194
|
Bar-Yosef T, Damri O, Agam G. Dual Role of Autophagy in Diseases of the Central Nervous System. Front Cell Neurosci 2019; 13:196. [PMID: 31191249 PMCID: PMC6548059 DOI: 10.3389/fncel.2019.00196] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital lysosomal degradation and recycling pathway in the eukaryotic cell, responsible for maintaining an intricate balance between cell survival and cell death, necessary for neuronal survival and function. This dual role played by autophagy raises the question whether this process is a protective or a destructive pathway, the contributor of neuronal cell death or a failed attempt to repair aberrant processes? Deregulated autophagy at different steps of the pathway, whether excessive or downregulated, has been proposed to be associated with neurodegenerative disorders such as Alzheimer's-, Huntington's-, and Parkinson's-disease, known for their intracellular accumulation of protein aggregates. Recent observations of impaired autophagy also appeared in psychiatric disorders such as schizophrenia and bipolar disorder suggesting an additional contribution to the pathophysiology of mental illness. Here we review the current understanding of autophagy's role in various neuropsychiatric disorders and, hitherto, the prevailing new potential autophagy-related therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| |
Collapse
|
195
|
Trigo D, Nadais A, da Cruz e Silva OA. Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Res Rev 2019; 51:67-77. [PMID: 30763619 DOI: 10.1016/j.arr.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Protein aggregation is normally associated with amyloidosis, namely motor neurone, Alzheimer's, Parkinson's or prion diseases. However, recent results have unveiled a concept of gradual increase of protein aggregation associated with the ageing process, apparently not necessarily associated with pathological conditions. Given that protein aggregation is sufficient to activate stress-response and inflammation, impairing protein synthesis and quality control mechanisms, the former is assumed to negatively affect cellular metabolism and behaviour. In this review the state of the art in protein aggregation research is discussed, namely the relationship between pathology and proteostasis. The role of pathology and ageing in overriding protein quality-control mechanisms, and consequently, the effect of these faulty cellular processes on pathological and healthy ageing, are also addressed.
Collapse
|
196
|
Shacham T, Sharma N, Lederkremer GZ. Protein Misfolding and ER Stress in Huntington's Disease. Front Mol Biosci 2019; 6:20. [PMID: 31001537 PMCID: PMC6456712 DOI: 10.3389/fmolb.2019.00020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence in recent years indicates that protein misfolding and aggregation, leading to ER stress, are central factors of pathogenicity in neurodegenerative diseases. This is particularly true in Huntington's disease (HD), where in contrast with other disorders, the cause is monogenic. Mutant huntingtin interferes with many cellular processes, but the fact that modulation of ER stress and of the unfolded response pathways reduces the toxicity, places these mechanisms at the core and gives hope for potential therapeutic approaches. There is currently no effective treatment for HD and it has a fatal outcome a few years after the start of symptoms of cognitive and motor impairment. Here we will discuss recent findings that shed light on the mechanisms of protein misfolding and aggregation that give origin to ER stress in neurodegenerative diseases, focusing on Huntington's disease, on the cellular response and on how to use this knowledge for possible therapeutic strategies.
Collapse
Affiliation(s)
- Talya Shacham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Neeraj Sharma
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gerardo Z Lederkremer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
197
|
Baez WD, Wiese KJ, Bundschuh R. Behavior of random RNA secondary structures near the glass transition. Phys Rev E 2019; 99:022415. [PMID: 30934369 DOI: 10.1103/physreve.99.022415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 12/30/2022]
Abstract
RNA forms elaborate secondary structures through intramolecular base pairing. These structures perform critical biological functions within each cell. Due to the availability of a polynomial algorithm to calculate the partition function over these structures, they are also a suitable system for the statistical physics of disordered systems. In this model, below the denaturation temperature, random RNA secondary structures exist in one of two phases: a strongly disordered, low-temperature glass phase and a weakly disordered, high-temperature molten phase. The probability of two bases to pair decays with their distance with an exponent 3/2 in the molten phase and about 4/3 in the glass phase. Inspired by previous results from a renormalized field theory of the glass transition separating the two phases, we numerically study this transition. We introduce distinct order parameters for each phase that both vanish at the critical point. We finally explore the driving mechanism behind this transition.
Collapse
Affiliation(s)
- William D Baez
- Department of Physics, The Ohio State University, Columbus, Ohio 43210
| | - Kay Jörg Wiese
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | - Ralf Bundschuh
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
198
|
Son HG, Altintas O, Kim EJE, Kwon S, Lee SV. Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell 2019; 18:e12853. [PMID: 30734981 PMCID: PMC6413654 DOI: 10.1111/acel.12853] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is an exceptionally valuable model for aging research because of many advantages, including its genetic tractability, short lifespan, and clear age‐dependent physiological changes. Aged C. elegans display a decline in their anatomical and functional features, including tissue integrity, motility, learning and memory, and immunity. Caenorhabditis elegans also exhibit many age‐associated changes in the expression of microRNAs and stress‐responsive genes and in RNA and protein quality control systems. Many of these age‐associated changes provide information on the health of the animals and serve as valuable biomarkers for aging research. Here, we review the age‐dependent changes in C. elegans and their utility as aging biomarkers indicative of the physiological status of aging.
Collapse
Affiliation(s)
- Heehwa G. Son
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| | - Eun Ji E. Kim
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Sujeong Kwon
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
| | - Seung‐Jae V. Lee
- Department of Life Sciences Pohang University of Science and Technology Pohang South Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology Pohang South Korea
| |
Collapse
|
199
|
Kakuda K, Niwa A, Honda R, Yamaguchi KI, Tomita H, Nojebuzzaman M, Hara A, Goto Y, Osawa M, Kuwata K. A DISC1 point mutation promotes oligomerization and impairs information processing in a mouse model of schizophrenia. J Biochem 2019; 165:369-378. [PMID: 30561706 DOI: 10.1093/jb/mvy116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is strongly associated with schizophrenia, but it remains elusive how the modification of the intermolecular interaction of DISC1 affects the information processing in brain. We show that a DISC1 point mutation alters intermolecular cohesiveness promoting the phase separation, and disrupts sensorimotor gating monitored by the prepulse inhibition in a mouse model of schizophrenia. Although the conformation of DISC1 partial peptide with the schizophrenia-related mutation L607F in human or the corresponding L604F in mouse was essentially indistinguishable from the wild type (WT) as long as monitored by fluorescence, circular dichroism, ultracentrifugation, dynamic light scattering and nuclear magnetic resonance, the atomic force microscopy was able to detect their morphological distinctions. The WT peptides were round and well dispersed, while mutants were inhomogeneous and disrupted to form dimer to trimer that aligned along one direction without apparent aggregate formation. Homozygous L604F mutant mice created by CRISPR exhibited the significant decrease in DISC1 level in the immunohistopathology at the hippocampal region compared to the WTs. The ratio of prepulse inhibition of the homozygous mutant mice was significantly impaired compared to WTs. Altered DISC1 distribution or function caused by aberrant intermolecular interactions may contribute to information processing characteristics in schizophrenia.
Collapse
Affiliation(s)
- Kyosuke Kakuda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu
| | - Kei-Ichi Yamaguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu
| | - Md Nojebuzzaman
- Division of Regeneration Technology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka
| | - Masatake Osawa
- Division of Regeneration Technology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu
| |
Collapse
|
200
|
Overk C, Masliah E. Dale Schenk One Year Anniversary: Fighting to Preserve the Memories. J Alzheimers Dis 2019; 62:1-13. [PMID: 29439357 DOI: 10.3233/jad-171071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been a year since we lost Dale Schenk on September 30, 2016. Dale's visionary work resulted in the remarkable discovery in 1999 that an experimental amyloid-β (Aβ) vaccine reduced the neurodegeneration in a transgenic model of Alzheimer's disease (AD). Following Dale's seminal work, several active and passive immunotherapies have since been developed and tested in the clinic for AD, Parkinson's disease (PD), and other neurodegenerative disorders. Here we provide a brief overview of the current state of development of immunotherapy for AD, PD, and other neurodegenerative disorders in the context of this anniversary. The next steps in the development of immunotherapies will require combinatorial approaches mixing antibodies against various targets (e.g., Aβ, α-syn, Tau, and TDP43) with small molecules that block toxicity, aggregation, inflammation, and promote cell survival.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Division of Neurosciences and Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|