151
|
Provost JJ, Cornely KA, Mertz PS, Peterson CN, Riley SG, Tarbox HJ, Narasimhan SR, Pulido AJ, Springer AL. Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation. Essays Biochem 2024; 68:183-198. [PMID: 38864157 DOI: 10.1042/ebc20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Kathleen A Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence RI, U.S.A
| | - Pamela S Mertz
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, MD, U.S.A
| | | | - Sophie G Riley
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Harrison J Tarbox
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Shree R Narasimhan
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Andrew J Pulido
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|
152
|
Sekar JAP, Li YC, Schlessinger A, Pandey G. A web portal for exploring kinase-substrate interactions. NPJ Syst Biol Appl 2024; 10:113. [PMID: 39362876 PMCID: PMC11450209 DOI: 10.1038/s41540-024-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Interactions between protein kinases and their substrates are critical for the modulation of complex signaling pathways. Currently, there is a large amount of information available about kinases and their substrates in disparate public databases. However, these data are difficult to interpret in the context of cellular systems, which can be facilitated by examining interactions among multiple proteins at once, such as the network of interactions that constitute a signaling pathway. We present KiNet, a user-friendly web portal that integrates and shares information about kinase-substrate interactions from multiple databases of post-translational modifications. KiNet enables the visual exploration of these interactions in systems contexts, such as pathways, domain families, and custom protein set inputs, in an interactive fashion. We expect KiNet to be useful as a knowledge discovery tool for kinase-substrate interactions, and the aggregated KiNet dataset to be useful for protein kinase studies and systems-level analyses. The portal is available at https://kinet.kinametrix.com/ .
Collapse
Affiliation(s)
- John A P Sekar
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
153
|
Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure 2024; 32:1834-1846.e3. [PMID: 39106858 DOI: 10.1016/j.str.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Pauline Juyoux
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nicola J Baxter
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Hugh R W Dannatt
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Yi Jin
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan P Waltho
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| |
Collapse
|
154
|
Wang J, Lin Y, Xu Z, Yan C, Zhao Y, Ji K. Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1824-1838. [PMID: 38429489 DOI: 10.1007/s12311-024-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.
Collapse
Affiliation(s)
- Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
155
|
Banerjee P, Chandra A, Mohammad T, Singh N, Hassan MI, Qamar I. Identification of high-affinity pyridoxal kinase inhibitors targeting cancer therapy: an integrated docking and molecular dynamics simulation approach. J Biomol Struct Dyn 2024; 42:8523-8540. [PMID: 37578056 DOI: 10.1080/07391102.2023.2246580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Pyridoxal kinase (PDXK) is a vitamin B6-dependent transferase enzyme encoded by the PDXK gene, crucial for leukemic cell proliferation. Disruption of its activity causes altered metabolism and reduced levels of nucleotides and polyamines. PDXK and pyridoxal 5'-phosphate (PLP) are overexpressed in various carcinomas, making them promising targets for drug design against cancer. Targeting PDXK may hold promise as a therapeutic approach for cancer treatment. This study focused on discovering potential inhibitors that could selectively interrupt the binding of pyridoxal phosphate (PLP) to pyridoxal kinase (PDXK). A commercially available library of 7,28,747 natural and druglike compounds was virtually screened using a molecular docking approach to target the substrate binding pocket of PDXK. Six promising inhibitors were identified, and all-atom molecular dynamics simulations were conducted on the PDXK-ligand complexes for 100 ns to assess their binding conformational stability. The simulation results indicated that the binding of ZINC095099376, ZINC01612996, ZINC049841390, ZINC095098959, ZINC01482077, and ZINC03830976 induced a slight structural change and stabilized the PDXK structure. This analysis provided valuable information about the critical residues involved in the PDXK-PLP complex formation and can be utilized in designing specific and effective PDXK inhibitors. According to this study, these compounds could be developed as anticancer agents targeting PDXK as a potential candidate for further study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pallabi Banerjee
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
156
|
John C, Sahoo J, Sajan IK, Madhavan M, Mathew OK. CNN-BLSTM based deep learning framework for eukaryotic kinome classification: An explainability based approach. Comput Biol Chem 2024; 112:108169. [PMID: 39137619 DOI: 10.1016/j.compbiolchem.2024.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Classification of protein families from their sequences is an enduring task in Proteomics and related studies. Numerous deep-learning models have been moulded to tackle this challenge, but due to the black-box character, they still fall short in reliability. Here, we present a novel explainability pipeline that explains the pivotal decisions of the deep learning model on the classification of the Eukaryotic kinome. Based on a comparative and experimental analysis of the most cutting-edge deep learning algorithms, the best deep learning model CNN-BLSTM was chosen to classify the eight eukaryotic kinase sequences to their corresponding families. As a substitution for the conventional class activation map-based interpretation of CNN-based models in the domain, we have cascaded the GRAD CAM and Integrated Gradient (IG) explainability modus operandi for improved and responsible results. To ensure the trustworthiness of the classifier, we have masked the kinase domain traces, identified from the explainability pipeline and observed a class-specific drop in F1-score from 0.96 to 0.76. In compliance with the Explainable AI paradigm, our results are promising and contribute to enhancing the trustworthiness of deep learning models for biological sequence-associated studies.
Collapse
Affiliation(s)
- Chinju John
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam, 686635, Kerala, India.
| | - Jayakrushna Sahoo
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam, 686635, Kerala, India
| | - Irish K Sajan
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam, 686635, Kerala, India
| | - Manu Madhavan
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam, 686635, Kerala, India
| | - Oommen K Mathew
- Department of Computer Science and Engineering, Indian Institute of Information Technology Kottayam, Kottayam, 686635, Kerala, India
| |
Collapse
|
157
|
Kassem AF, Sediek AA, Omran MM, Foda DS, Al-Ashmawy AAK. Design, synthesis and in vitro anti-proliferative evaluation of new pyridine-2,3-dihydrothiazole/thiazolidin-4-one hybrids as dual CDK2/GSK3β kinase inhibitors. RSC Adv 2024; 14:31607-31623. [PMID: 39376524 PMCID: PMC11456921 DOI: 10.1039/d4ra06146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Herein, the molecular hybridization drug discovery approach was used in the design and synthesis of twelve novel pyridine-2,3-dihydrothiazole hybrids (2a,b-5a,b and 13a,b-14a,b) and fourteen pyridine-thiazolidin-4-one hybrids (6a,b-12a,b) as anti-proliferative analogues targeting CDK2 and GSK3β kinase inhibition. Almost all of the newly synthesized hybrids, including their precursors (1a,b), were evaluated for their anti-proliferative activity against three human cancer cell lines-MCF-7, HepG2 and HEp-2-as well as normal Vero cell lines. Both compounds 1a (pyridine-thiourea precursor) and 8a (pyridine-5-acetyl-thiazolidin-4-one hybrid) exhibited excellent anti-proliferative activity against HEp-2 (IC50 = 7.5 μg mL-1, 5.9 μg mL-1, respectively). Additionally, 13a (pyridine-5-(p-tolyldiazenyl-2,3-dihydrothiazole)) hybrid demonstrated excellent anti-proliferative activity against HepG2 (IC50 = 9.5 μg mL-1), with an acceptable safety profile against Vero (<45% inhibition at 100 μg mL-1) in the cases of 8a and 13a alone. The three promising anti-proliferative hybrids (1a, 8a, 13a) were selected for the assessment of their in vitro inhibitory kinase activity against CDK2/GSK3β using roscovitine (IC50 = 0.88 μg mL-1) and CHIR-99021 (IC50 = 0.07 μg mL-1) as references, respectively. Compound 13a was the most potent dual CDK2/GSK3β inhibitor (IC50 = 0.396 μg mL-1, 0.118 μg mL-1, respectively) followed by 8a (IC50 = 0.675 μg mL-1, 0.134 μg mL-1, respectively), and the weakest was 1a. To elucidate the mechanism of the most potent anti-proliferative 13a hybrid, further cell cycle analysis was performed revealing that it caused G1 cell cycle arrest and induced apoptosis. Moreover, it resulted in an increase in Bax and caspase-3 with a decrease in Bcl-2 levels in HepG2 cells compared with untreated cells. Finally, in silico drug likeness/ADME prediction for the three potent compounds as well as a molecular docking simulation study were conducted in order to explore the binding affinity and interactions in the binding site of each enzyme, which inspired their usage as anti-proliferative leads for further modification.
Collapse
Affiliation(s)
- Asmaa F Kassem
- Chemistry of Natural and Microbial Products Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Ashraf A Sediek
- Chemical Industries Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University Cairo Egypt
| | - Doaa S Foda
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Aisha A K Al-Ashmawy
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| |
Collapse
|
158
|
Smit D, Hoffer K, Bettin B, Kriegs M, Cayrefourcq L, Schumacher U, Pantel K, Alix‐Panabières C, Jücker M. Analysis of the Plasticity of Circulating Tumor Cells Reveals Differentially Regulated Kinases During the Suspension-to-Adherent Transition. Cancer Med 2024; 13:e70339. [PMID: 39425449 PMCID: PMC11489281 DOI: 10.1002/cam4.70339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Research on circulating tumor cells (CTCs) offers the opportunity to better understand the initial steps of blood-borne metastasis as main cause of cancer-related deaths. Here, we have used the colon cancer CTC-MCC-41 and breast cancer CTC-ITB-01 lines, which were both established from human CTCs as permanent cell lines as models to further study CTC biology with special emphasis on anchorage-independent survival and growth. METHODS AND RESULTS Both cell lines showed a marked intrinsic plasticity to switch between suspension and adherent in vitro growth, in 2D adherent culture conditions, and established an equilibrium of both growth patterns with predominant adherent cells in the CTC-MCC-41 line (77%) and suspension cells in the CTC-ITB-01 line (85%). Western blot analysis revealed a higher expression of pERK1/2 in CTC-ITB-01 adherent cells compared to the suspension counterpart that suggested the involvement of kinases in this process. Subsequent functional kinome profiling identified several serine/threonine as well as tyrosine kinases that were differentially regulated in adherent and suspension CTCs. In the adherent cells of the breast cancer line CTC-ITB-01 the activity of MSK1, Src family kinases and the PKG family was increased compared to the suspension counterpart. In adherent cells of the colorectal CTC-MCC-41 line, an increased activity of TYRO3 and JAK2 was detected, whereas p38 MAPK was strongly impaired in the suspension CTC-MCC-41 cells. Some of the regulated kinases, which include the Src family, TYRO3, MSK1, JAK2 and p38 MAPK, have been associated with crucial cellular processes including proliferation, migration and dormancy in the past. CONCLUSIONS The investigated CTC lines exhibit a high plasticity, similar to the concept of 'adherent-to-suspension transition (AST)' that was recently suggested as a new hallmark of tumor biology by Huh et al. Moreover, we identified differentially regulated kinome profiles that may represent potential targets for future studies on therapeutic interventions.
Collapse
Affiliation(s)
- Daniel J. Smit
- Institute of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Tumor BiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Konstantin Hoffer
- Department of Radiotherapy & Radiation OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bettina Bettin
- Institute of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Malte Kriegs
- Department of Radiotherapy & Radiation OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Udo Schumacher
- Institute of Anatomy and Experimental MorphologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Medical School BerlinBerlinGermany
| | - Klaus Pantel
- Institute of Tumor BiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Catherine Alix‐Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Center of MontpellierMontpellierFrance
- CREEC/CANECEV, MIVEGEC (CREES)University of Montpellier, CNRS, IRDMontpellierFrance
- European Liquid Biopsy Society (ELBS)HamburgGermany
| | - Manfred Jücker
- Institute of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
159
|
Zhang L, Zhang Y, Sun H. Protein Modifications During Early Embryo Development. Am J Reprod Immunol 2024; 92:e70007. [PMID: 39460606 DOI: 10.1111/aji.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infertility is a global reproductive health burden. Assisted reproductive technologies (ARTs) have been widely used to help patients become pregnant. Few embryos develop to the blastocyst stage with ARTs, leading to relatively low live birth rates. Protein modifications play crucial roles in nearly every aspect of cell biology, including reproductive processes. The aim of this study was to explore the characteristics of protein modifications during embryonic development. METHODS Proteomic data from humans and mice were acquired from the integrated proteome resources (iProX) of ProteomeXchange (PXD024267) and a tandem mass tag (TMT)-mass spectrometry dataset. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied for functional annotation. Protein-protein interactions (PPIs) of the modification-related genes were revealed by the STRING database. Modified proteins during mouse embryogenesis were visualized through heatmaps of hierarchically clustering using k-means. RESULTS We identified modification-related proteins in human embryo development and characterized them through heatmaps, GO analysis, KEGG analysis, and PPI network analysis. We found that the 4-cell stage to the 8-cell stage might be the demarcation period for modification-related protein expression patterns during embryo development. Using quantitative mass spectrometry, we elucidated the methylation, acetylation, and ubiquitination events that occur during mouse embryogenesis to validate our findings in human embryonic development to some extent. CONCLUSIONS The results of our study suggest that the posttranslational modifications (PTMs) of human preimplantation embryos might exhibit the same trends as those in mice to exert synergistic and fine-tuned regulatory effects during embryonic development.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanbing Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hailong Sun
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
160
|
Salimi K, Alvandi M, Saberi Pirouz M, Rakhshan K, Howatson G. Regulating eEF2 and eEF2K in skeletal muscle by exercise. Arch Physiol Biochem 2024; 130:503-514. [PMID: 36633938 DOI: 10.1080/13813455.2023.2164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Skeletal muscle is a flexible and adaptable tissue that strongly responds to exercise training. The skeletal muscle responds to exercise by increasing muscle protein synthesis (MPS) when energy is available. One of protein synthesis's major rate-limiting and critical regulatory steps is the translation elongation pathway. The process of translation elongation in skeletal muscle is highly regulated. It requires elongation factors that are intensely affected by various physiological stimuli such as exercise and the total available energy of cells. Studies have shown that exercise involves the elongation pathway by numerous signalling pathways. Since the elongation pathway, has been far less studied than the other translation steps, its comprehensive prospect and quantitative understanding remain in the dark. This study highlights the current understanding of the effect of exercise training on the translation elongation pathway focussing on the molecular factors affecting the pathway, including Ca2+, AMPK, PKA, mTORC1/P70S6K, MAPKs, and myostatin. We further discussed the mode and volume of exercise training intervention on the translation elongation pathway.What is the topic of this review? This review summarises the impacts of exercise training on the translation elongation pathway in skeletal muscle focussing on eEF2 and eEF2K.What advances does it highlight? This review highlights mechanisms and factors that profoundly influence the translation elongation pathway and argues that exercise might modulate the response. This review also combines the experimental observations focussing on the regulation of translation elongation during and after exercise. The findings widen our horizon to the notion of mechanisms involved in muscle protein synthesis (MPS) through translation elongation response to exercise training.
Collapse
Affiliation(s)
- Kia Salimi
- Department of Exercise Physiology, Faculty of Sport and Exercise Sciences, University of Tehran, Tehran, Iran
| | - Masoomeh Alvandi
- Department of Biological Science in Sport and Health, University of Shahid Beheshti, Tehran, Iran
| | - Mahdi Saberi Pirouz
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
161
|
Morgan JAM, Singh A, Kurz L, Nadler-Holly M, Ruwolt M, Ganguli S, Sharma S, Penkert M, Krause E, Liu F, Bhandari R, Fiedler D. Extensive protein pyrophosphorylation revealed in human cell lines. Nat Chem Biol 2024; 20:1305-1316. [PMID: 38664588 PMCID: PMC11427299 DOI: 10.1038/s41589-024-01613-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/27/2024] [Indexed: 09/28/2024]
Abstract
Reversible protein phosphorylation is a central signaling mechanism in eukaryotes. Although mass-spectrometry-based phosphoproteomics has become routine, identification of non-canonical phosphorylation has remained a challenge. Here we report a tailored workflow to detect and reliably assign protein pyrophosphorylation in two human cell lines, providing, to our knowledge, the first direct evidence of endogenous protein pyrophosphorylation. We manually validated 148 pyrophosphosites across 71 human proteins, the most heavily pyrophosphorylated of which were the nucleolar proteins NOLC1 and TCOF1. Detection was consistent with previous biochemical evidence relating the installation of the modification to inositol pyrophosphates (PP-InsPs). When the biosynthesis of PP-InsPs was perturbed, proteins expressed in this background exhibited no signs of pyrophosphorylation. Disruption of PP-InsP biosynthesis also significantly reduced rDNA transcription, potentially by lowering pyrophosphorylation on regulatory proteins NOLC1, TCOF1 and UBF1. Overall, protein pyrophosphorylation emerges as an archetype of non-canonical phosphorylation and should be considered in future phosphoproteomic analyses.
Collapse
Affiliation(s)
- Jeremy A M Morgan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Leonie Kurz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Max Ruwolt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Sheenam Sharma
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institute of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
162
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
163
|
Davies KA, Czabotar PE, Murphy JM. Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis. Curr Opin Struct Biol 2024; 88:102891. [PMID: 39059047 DOI: 10.1016/j.sbi.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Necroptosis is a lytic form of programmed cell death implicated in inflammatory pathologies, leading to intense interest in the underlying mechanisms and therapeutic prospects. Here, we review our current structural understanding of how the terminal executioner of the pathway, the dead kinase, mixed lineage kinase domain-like (MLKL), is converted from a dormant to killer form by the upstream regulatory kinase, RIPK3. RIPK3-mediated phosphorylation of MLKL's pseudokinase domain toggles a molecular switch that induces dissociation from a cytoplasmic platform, assembly of MLKL oligomers, and trafficking to the plasma membrane, where activated MLKL accumulates and permeabilises the lipid bilayer to induce cell death. We highlight gaps in mechanistic knowledge of MLKL's activation, how mechanisms diverge between species, and the power of modelling in advancing structural insights.
Collapse
Affiliation(s)
- Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
164
|
Gough NR, Kalodimos CG. Exploring the conformational landscape of protein kinases. Curr Opin Struct Biol 2024; 88:102890. [PMID: 39043011 PMCID: PMC11694674 DOI: 10.1016/j.sbi.2024.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Protein kinases are dynamic enzymes that display complex regulatory mechanisms. Although they possess a structurally conserved catalytic domain, significant conformational dynamics are evident both within a single kinase and across different kinases in the kinome. Here, we highlight methods for exploring this conformational space and its dynamics using kinase domains from ABL1 (Abelson kinase), PKA (protein kinase A), AurA (Aurora A), and PYK2 (proline-rich tyrosine kinase 2) as examples. Such experimental approaches combined with AI-driven methods, such as AlphaFold, will yield discoveries about kinase regulation, the catalytic process, substrate specificity, the effect of disease-associated mutations, as well as new opportunities for structure-based drug design.
Collapse
Affiliation(s)
- Nancy R Gough
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. https://twitter.com/NancyRGough
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
165
|
Sozzi S, Manni I, Ercolani C, Diodoro MG, Bartolazzi A, Spallotta F, Piaggio G, Monteonofrio L, Soddu S, Rinaldo C, Valente D. Inactivation of HIPK2 attenuates KRAS G12D activity and prevents pancreatic tumorigenesis. J Exp Clin Cancer Res 2024; 43:265. [PMID: 39342278 PMCID: PMC11437985 DOI: 10.1186/s13046-024-03189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer. METHODS We employed an extensively characterized model of KRASG12D-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRasG12D/+ (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH-/-) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed. RESULTS In Hipk2-KO mice (KCH-/-), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH-/- mice was characterized by abundant collagen fibers and reduced number of αSMA+ and pSTAT3+ desmoplastic cells. These features were reminiscent of the recently described human "deserted" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the "reactive" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice. CONCLUSION This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Silvia Sozzi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratories, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
166
|
von Creytz I, Rohde C, Biedenkopf N. The cellular protein phosphatase 2A is a crucial host factor for Marburg virus transcription. J Virol 2024; 98:e0104724. [PMID: 39194238 PMCID: PMC11406900 DOI: 10.1128/jvi.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
167
|
Ali AA, You M. DNA-modulated dimerization and oligomerization of cell membrane receptors. Chem Commun (Camb) 2024; 60:10265-10279. [PMID: 39190295 PMCID: PMC11415102 DOI: 10.1039/d4cc03077j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
DNA-based nanostructures and nanodevices have recently been employed for a broad range of applications in modulating the assemblies and interaction patterns of different cell membrane receptors. These versatile nanodevices can be rationally designed with modular structures, easily programmed and tweaked such that they may act as smart chemical biology and cell biology tools to reveal insights into complicated cellular signaling processes. Their outstanding in vitro and cellular features have also begun to be further validated for some in vivo applications and demonstrated their great biomedical potential. In this review, we will highlight some key current advances in the molecular engineering and biological applications of DNA-based functional nanodevices, with a focus on how these tools have been used to respond and modulate membrane receptor dimerizations and/or oligomerizations, as a way to control cellular signaling processes. Some current challenges and future directions to further develop and apply these DNA nanodevices will also be discussed.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
168
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
169
|
Echeverría-Garcés G, Ramos-Medina MJ, González A, Vargas R, Cabrera-Andrade A, Armendáriz-Castillo I, García-Cárdenas JM, Ramírez-Sánchez D, Altamirano-Colina A, Echeverría-Espinoza P, Freire MP, Ocaña-Paredes B, Rivera-Orellana S, Guerrero S, Quiñones LA, López-Cortés A. Worldwide analysis of actionable genomic alterations in lung cancer and targeted pharmacogenomic strategies. Heliyon 2024; 10:e37488. [PMID: 39296198 PMCID: PMC11409134 DOI: 10.1016/j.heliyon.2024.e37488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Based on data from the Global Cancer Statistics 2022, lung cancer stands as the most lethal cancer worldwide, with age-adjusted incidence and mortality rates of 23.6 and 16.9 per 100,000 people, respectively. Despite significant strides in precision oncology driven by large-scale international research consortia, there remains a critical need to deepen our understanding of the genomic landscape across diverse racial and ethnic groups. To address this challenge, we performed comprehensive in silico analyses and data mining to identify pathogenic variants in genes that drive lung cancer. We subsequently calculated the allele frequencies and assessed the deleteriousness of these oncogenic variants among populations such as African, Amish, Ashkenazi Jewish, East and South Asian, Finnish and non-Finnish European, Latino, and Middle Eastern. Our analysis examined 117,707 variants within 86 lung cancer-associated genes across 75,109 human genomes, uncovering 8042 variants that are known or predicted to be pathogenic. We prioritized variants based on their allele frequencies and deleterious scores, and identified those with potential significance for response to anti-cancer therapies through in silico drug simulations, current clinical pharmacogenomic guidelines, and ongoing late-stage clinical trials targeting lung cancer-driving proteins. In conclusion, it is crucial to unite global efforts to create public health policies that emphasize prevention strategies and ensure access to clinical trials, pharmacogenomic testing, and cancer research for these groups in developed nations.
Collapse
Affiliation(s)
- Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - María José Ramos-Medina
- German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Ariana González
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Dasa Genómica Latam, Buenos Aires, Argentina
| | - Rodrigo Vargas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Department of Molecular Biology, Galileo University, Guatemala City, Guatemala
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - David Ramírez-Sánchez
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | | | - María Paula Freire
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Belén Ocaña-Paredes
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | | | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Luis A Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Pharmaceutical Sciences and Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
170
|
Rafalska KT, Orzołek A, Ner-Kluza J, Wysocki P. A Comparison of White and Yellow Seminal Plasma Phosphoproteomes Obtained from Turkey ( Meleagris gallopavo) Semen. Int J Mol Sci 2024; 25:9941. [PMID: 39337428 PMCID: PMC11432639 DOI: 10.3390/ijms25189941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Seminal plasma is rich in proteins originating from various male reproductive organs. The phosphorylation of these proteins can significantly impact sperm motility, capacitation, and acrosome reaction. Phosphoproteomics identifies, catalogues, and characterizes phosphorylated proteins. The phosphoproteomic profiling of seminal plasma offers valuable insights into the molecular mechanisms that influence semen quality and male fertility. Thus, the aim of this study was a phosphoproteomic analysis of white and yellow turkey seminal plasma. The experimental material consisted of 100 ejaculates from BIG-6 turkeys between 39 and 42 weeks of age. The collected white and yellow turkey seminal plasmas were analyzed for total protein content; the activity of selected enzymes, i.e., alkaline phosphatase (ALP), acid phosphatase (ACP), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT); and the content of reduced glutathione (GSH) and malondialdehyde (MDA). Phosphoproteins were isolated from white and yellow seminal fluids, and the resulting protein fractions were separated by SDS-PAGE and Western blotting. Phosphorylated residues were immunodetected, and the isolated phosphoproteins were identified (nano LC-MS/MS). Yellow seminal plasmas were characterized by higher levels of total protein, GSH, and MDA, as well as higher levels of ALP, ACP, and GPx activity. There were no significant differences in the activity of SOD and CAT. A total of 113 phosphoproteins were identified in turkey seminal fluids. The functional analysis demonstrated that these phosphoproteins were mainly involved in oocyte fertilization, organization and metabolism of the actin cytoskeleton, amplification of the intracellular signal transduction pathway, general regulation of transport, vesicular transport, proteome composition of individual cellular compartments, and the organization and localization of selected cellular components and macromolecules. Increased phosphorylation of the fractions containing proteins encoded by SPARC, PPIB, TRFE, QSOX1, PRDX1, PRDX6, and FASN genes in white plasmas and the proteins encoded by CKB, ORM2, APOA1, SSC5D, RAP1B, CDC42, FTH, and TTH genes in yellow plasmas was observed based on differences in the optical density of selected bands. The obtained results indicate that the phosphorylation profiles of turkey seminal plasma proteins vary depending on the type of ejaculate.
Collapse
Affiliation(s)
- Katarzyna T Rafalska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Aleksandra Orzołek
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Joanna Ner-Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University, Mickiewicza 30, 30-059 Kraków, Poland
| | - Paweł Wysocki
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
171
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
172
|
Elbrashy MM, Metwally H, Sakakibara S, Kishimoto T. Threonine Phosphorylation and the Yin and Yang of STAT1: Phosphorylation-Dependent Spectrum of STAT1 Functionality in Inflammatory Contexts. Cells 2024; 13:1531. [PMID: 39329714 PMCID: PMC11429647 DOI: 10.3390/cells13181531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Threonine phosphorylation promotes inflammatory functions of STAT1 while restricting its interferon (IFN) signaling in innate immune responses. However, it remains unclear whether the restriction of STAT1-mediated IFN signaling conferred by threonine phosphorylation is a ubiquitous mechanism or one that is context-dependent. To address this, we utilized pristane-induced lupus, a prototype IFN-driven systemic autoimmune disease model characterized by the production of high-titer autoantibodies against nucleic acid-associated antigens. Through genetic and biochemical assays, we demonstrate that Thr748 phosphorylation is dispensable for STAT1 functionality in pristane-induced lupus. Genetically engineered mice expressing the phospho-deficient threonine 748-to-alanine (T748A) mutant STAT1 exhibited similar survival rates, high titers of anti-dsDNA IgG, and nephritis compared to their wild-type littermates. In sharp contrast, STAT1 deficiency protected mice against pristane-induced lupus, as evidenced by increased survival, low titers of anti-dsDNA IgG, and less severe nephritis in the STAT1 knockout mice compared to their T748A littermates. Our study suggests a phosphorylation-dependent modularity that governs the spectrum of STAT1 functionality in inflammatory contexts: IFN phospho-tyrosine-dependent and inflammatory phospho-threonine-dependent, with Thr748 phosphorylation driving selective inflammatory activities, particularly those not driven by the canonical JAK pathway. From a broader perspective, our findings provide deeper insights into how distinct phosphorylation events shape the combinatorial logic of signaling cassettes, thereby regulating context-dependent responses.
Collapse
Affiliation(s)
- Maha M. Elbrashy
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan; (M.M.E.); (S.S.)
- Biochemistry Department, Biotechnology Research Institute, National Research Center, Giza P.O. Box 12622, Egypt
| | - Hozaifa Metwally
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan; (M.M.E.); (S.S.)
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan; (M.M.E.); (S.S.)
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka 532-0003, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, Immunology Frontier Research Center, The World Premier International Research Center Initiative (WPI), Osaka University, Osaka 565-0871, Japan; (M.M.E.); (S.S.)
| |
Collapse
|
173
|
Yoshida S, Yoshida T, Inukai K, Kato K, Yura Y, Hattori T, Enomoto A, Ohashi K, Okumura T, Ouchi N, Kawase H, Wettschureck N, Offermanns S, Murohara T, Takefuji M. Protein kinase N promotes cardiac fibrosis in heart failure by fibroblast-to-myofibroblast conversion. Nat Commun 2024; 15:7638. [PMID: 39266515 PMCID: PMC11392935 DOI: 10.1038/s41467-024-52068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Chronic fibrotic tissue disrupts various organ functions. Despite significant advances in therapies, mortality and morbidity due to heart failure remain high, resulting in poor quality of life. Beyond the cardiomyocyte-centric view of heart failure, it is now accepted that alterations in the interstitial extracellular matrix (ECM) also play a major role in the development of heart failure. Here, we show that protein kinase N (PKN) is expressed in cardiac fibroblasts. Furthermore, PKN mediates the conversion of fibroblasts into myofibroblasts, which plays a central role in secreting large amounts of ECM proteins via p38 phosphorylation signaling. Fibroblast-specific deletion of PKN led to a reduction of myocardial fibrotic changes and cardiac dysfunction in mice models of ischemia-reperfusion or heart failure with preserved ejection fraction. Our results indicate that PKN is a therapeutic target for cardiac fibrosis in heart failure.
Collapse
Affiliation(s)
- Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Kohei Inukai
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yoshimitsu Yura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tomoki Hattori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Haruya Kawase
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan.
| |
Collapse
|
174
|
Kim D, Jeong J, Choi J. Identification of Optimal Machine Learning Algorithms and Molecular Fingerprints for Explainable Toxicity Prediction Models Using ToxCast/Tox21 Bioassay Data. ACS OMEGA 2024; 9:37934-37941. [PMID: 39281924 PMCID: PMC11391437 DOI: 10.1021/acsomega.4c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Recent studies have primarily focused on introducing novel frameworks to enhance the predictive power of toxicity prediction models by refining molecular representation methods and algorithms. However, these methods are inherently complex and often pose challenges in understanding and explaining, leading to barriers in their regulatory adoption and validation. Therefore, it is necessary to select the optimal model, considering not only model performance but also interpretability. This study aimed to identify the optimal combination of molecular fingerprints (pattern-based versus algorithm-based) and machine learning algorithms (simple versus complex) for developing explainable toxicity prediction models through an comprehensive investigation of the ToxCast/Tox21 bioassay data set. For 1092 ToxCast/Tox21 assays, five molecular fingerprints (MACCS, Morgan, RDKit, Layered, and Patterned) and six algorithms (MLP, GBT, Random Forest, kNN, Logistic Regression, and Naïve Bayes) were used to train the models. Results showed that 35 models revealed acceptable performance (F1 score or accuracy is 0.8 or higher). Among the combinations, either MACCS or Morgan, paired with Random Forest, demonstrated robust performance compared with other molecular fingerprints and algorithms. MACCS and Random Forest are valuable, even when prioritizing interpretability. Consequently, the MACCS-Random Forest combination model based on four assays, targeting G protein-coupled receptor and kinase, were identified and they can be used to discern specific structural features or patterns in chemical compounds, offering explainable insights into toxicity-related chemical structures. This study indicates the importance of not disregarding the utilization of simple models when assessing both predictivity and interpretability within the context of chemical feature-based Tox21 data analysis.
Collapse
Affiliation(s)
- Donghyeon Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
175
|
López-Ríos de Castro R, Rodríguez-Guerra J, Schaller D, Kimber TB, Taylor C, White JB, Backenköhler M, Payne A, Kaminow B, Pulido I, Singh S, Kramer PL, Pérez-Hernández G, Volkamer A, Chodera JD. Lessons learned during the journey of data: from experiment to model for predicting kinase affinity, selectivity, polypharmacology, and resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612176. [PMID: 39314436 PMCID: PMC11419124 DOI: 10.1101/2024.09.10.612176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Recent advances in machine learning (ML) are reshaping drug discovery. Structure-based ML methods use physically-inspired models to predict binding affinities from protein:ligand complexes. These methods promise to enable the integration of data for many related targets, which addresses issues related to data scarcity for single targets and could enable generalizable predictions for a broad range of targets, including mutants. In this work, we report our experiences in building KinoML, a novel framework for ML in target-based small molecule drug discovery with an emphasis on structure-enabled methods. KinoML focuses currently on kinases as the relative structural conservation of this protein superfamily, particularly in the kinase domain, means it is possible to leverage data from the entire superfamily to make structure-informed predictions about binding affinities, selectivities, and drug resistance. Some key lessons learned in building KinoML include: the importance of reproducible data collection and deposition, the harmonization of molecular data and featurization, and the choice of the right data format to ensure reusability and reproducibility of ML models. As a result, KinoML allows users to easily achieve three tasks: accessing and curating molecular data; featurizing this data with representations suitable for ML applications; and running reproducible ML experiments that require access to ligand, protein, and assay information to predict ligand affinity. Despite KinoML focusing on kinases, this framework can be applied to other proteins. The lessons reported here can help guide the development of platforms for structure-enabled ML in other areas of drug discovery.
Collapse
Affiliation(s)
- Raquel López-Ríos de Castro
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jaime Rodríguez-Guerra
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - David Schaller
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Talia B. Kimber
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Corey Taylor
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jessica B. White
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Alexander Payne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Ben Kaminow
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Iván Pulido
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Sukrit Singh
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Guillermo Pérez-Hernández
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Andrea Volkamer
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Germany
- Data Driven Drug Design, Saarland University, Saarbrücken, Germany
| | - John D. Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
176
|
Hsieh CC, Lin YC, Lin WB, Shu CC. In enzymatic reactions, the reverse reaction reduces product noise. Biosystems 2024; 246:105334. [PMID: 39265923 DOI: 10.1016/j.biosystems.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Enzymatic reactions are essential for most cellular reactions and ubiquitous in living organisms. In the present study, we explore the pivotal role of the reverse reaction in enzymatic reactions. It is a powerful noise-buffering motif. By SSA (stochastic simulation algorithm), a remarkable 32% reduction of product CV (coefficient of variation) was observed. To better understand the causes, we split the upstream noise. The product CV reduction is more than 35% for the noise inherited from the enzyme but merely 6%-21% for that from the substrate. It implies that the system applies different strategies to different upstream noises. We identified two leading causes responsible for noise attenuation. A cell is well designed to control its intracellular noise, and to acquire wisdom from nature is always enjoyable.
Collapse
Affiliation(s)
- Ching-Chu Hsieh
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Yung-Chun Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Wei-Bo Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan
| | - Che-Chi Shu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan.
| |
Collapse
|
177
|
Stieglitz E, Lee AG, Angus SP, Davis C, Barkauskas DA, Hall D, Kogan SC, Meyer J, Rhodes SD, Tasian SK, Xuei X, Shannon K, Loh ML, Fox E, Weigel BJ. Efficacy of the Allosteric MEK Inhibitor Trametinib in Relapsed and Refractory Juvenile Myelomonocytic Leukemia: a Report from the Children's Oncology Group. Cancer Discov 2024; 14:1590-1598. [PMID: 38867349 PMCID: PMC11374478 DOI: 10.1158/2159-8290.cd-23-1376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a hematologic malignancy of young children caused by mutations that increase Ras signaling output. Hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment, but patients with relapsed or refractory (advanced) disease have dismal outcomes. This phase II trial evaluated the safety and efficacy of trametinib, an oral MEK1/2 inhibitor, in patients with advanced JMML. Ten infants and children were enrolled, and the objective response rate was 50%. Four patients with refractory disease proceeded to HSCT after receiving trametinib. Three additional patients completed all 12 cycles permitted on study and continue to receive off-protocol trametinib without HSCT. The remaining three patients had progressive disease with two demonstrating molecular evolution by the end of cycle 2. Transcriptomic and proteomic analyses provided novel insights into the mechanisms of response and resistance to trametinib in JMML. ClinicalTrials.gov Identifier: NCT03190915. Significance: Trametinib was safe and effective in young children with relapsed or refractory JMML, a lethal disease with poor survival rates. Seven of 10 patients completed the maximum 12 cycles of therapy or used trametinib as a bridge to HSCT and are alive with a median follow-up of 24 months. See related commentary by Ben-Crentsil and Padron, p. 1574.
Collapse
Affiliation(s)
- Elliot Stieglitz
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Alex G. Lee
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David Hall
- Children Oncology Group Operations and Data Center, Monrovia, CA, USA
| | - Scott C. Kogan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Julia Meyer
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah K. Tasian
- Children’s Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Xiaoling Xuei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin Shannon
- Department of Pediatrics, Benioff Children’s Hospitals, University of California San Francisco, San Francisco, CA, USA
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute and Department Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Elizabeth Fox
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | | |
Collapse
|
178
|
Ali DH, Gaji RY. TKL family kinases in human apicomplexan pathogens. Mol Biochem Parasitol 2024; 259:111628. [PMID: 38719028 PMCID: PMC11182715 DOI: 10.1016/j.molbiopara.2024.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
Collapse
Affiliation(s)
- Dima Hajj Ali
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
179
|
Vallese S, Barresi S, Hiemcke-Jiwa L, Patrizi S, Kester L, Giovannoni I, Cardoni A, Pedace L, Nardini C, Tancredi C, Desideri M, von Deimling A, Mura RM, Piga M, Errico ME, Stracuzzi A, Alaggio R, Miele E, Flucke U. Spindle Cell Lesions with Oncogenic EGFR Kinase Domain Aberrations: Expanding the Spectrum of Protein Kinase-Related Mesenchymal Tumors. Mod Pathol 2024; 37:100539. [PMID: 38880352 DOI: 10.1016/j.modpat.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
EGFR aberrations are reported in a subset of myofibroblastic lesions with kinase domain duplication (EGFR-KDD) and exon 20 mutations being assigned to infantile fibrosarcomas (IFS), mesoblastic nephroma, and fibrous hamartoma of infancy (FHI), respectively. In this retrospective study, we correlated molecular findings with the histomorphology of 14 myofibroblastic lesions harboring such genetic changes identified by NGS. We additionally performed DNA methylation profiling (DNAmp) and immunohistochemistry. Lesions were from 10 males and 4 females with a mean age of 3 years (range, 0.3-14) and occurred subcutaneously in the upper limbs (n = 5), lower limbs (n = 3), back/thorax (n = 5), and the nasal cavity (n = 1). Eleven were cured by surgery, including 1 relapsed case. Two patients were lost to follow-up. One case was very recent, and the patient was biopsied. Histologically, the lesions showed a wide spectrum varying from classic FHI (n = 9) to IFS (n = 1) or lipofibromatosis-like tumors (LFT-like) (n = 2) or dermatofibrosarcoma protuberans-like (DFSP-like) (n = 1) to a predominantly myxoid spindle cell lesion (n = 1). Immunohistochemically, all neoplasms stained with CD34, whereas S100 was positive in 2/14. EGFR expression was observed in 9/10 cases. Molecularly, the IFS and 1 LFT-like harbored EGFR-KDD, whereas an exon 20 mutation was identified in all FHI, 1 LFT-like, the DFSP-like, and in predominant myxoid spindle cell lesion. By DNAmp, all but 2 cases formed a well-defined cluster, demonstrating that these lesions are also epigenetically related. In conclusion, EGFR kinase domain aberrations found in FHI, IFS, LFT-like, DFSP-like, and a spindle cell lesion with a predominant myxoid stroma of children and adolescents showed that these neoplasms with a broad morphologic spectrum belong to the group of protein kinase-related lesions with a distinct epigenetic signature. Molecular analyses, including DNAmp, help to identify and characterize this emerging category and become mandatory when targeted treatment is considered.
Collapse
Affiliation(s)
- Silvia Vallese
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Hiemcke-Jiwa
- Diagnostic Laboratory, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sara Patrizi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lennart Kester
- Diagnostic Laboratory, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Antonello Cardoni
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Pedace
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Nardini
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chantal Tancredi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Desideri
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Rosa M Mura
- Department of Paediatric Oncohaematology, Microcitemico Hospital, Cagliari, Italy
| | - Michela Piga
- Pathology Unit, SS Trinità Hospital, Cagliari, Italy
| | - Maria E Errico
- Department of Pathology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | | | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Evelina Miele
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Uta Flucke
- Diagnostic Laboratory, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
180
|
Aliyari M, Hashemy SI, Hashemi SF, Reihani A, Kesharwani P, Hosseini H, Sahebkar A. Targeting the Akt signaling pathway: Exploiting curcumin's anticancer potential. Pathol Res Pract 2024; 261:155479. [PMID: 39068859 DOI: 10.1016/j.prp.2024.155479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Cancer is recognized as one of the leading causes of death worldwide. In recent years, advancements in early detection and expanding treatment options have contributed to a decrease in mortality rates. However, the emergence of drug-resistant cancers necessitates the exploration of innovative and more effective drugs. The Akt kinases play a central role in various signaling pathways that regulate crucial cellular processes, including cell growth, proliferation, survival, angiogenesis, and glucose metabolism. Due to frequent disruptions of the Akt signaling pathway in numerous human cancers and its broad biological implications, targeting this pathway has become a key focus in combating tumor aggressiveness and a promising avenue for therapeutic intervention. Curcumin, a compound found in turmeric, has been extensively studied for its potential as an anti-cancer agent. It demonstrates inhibitory effects on cancer initiation, progression, and metastasis by influencing various processes involved in tumor growth and development. These effects are achieved through negative regulation of transcription factors, growth factors, cytokines, protein kinases, and other oncogenic molecules. This review aims to explore curcumin's anticancer activity against different types of cancer mediated via the PI3K/Akt signaling pathway, as well as its practical applications in treatment.
Collapse
Affiliation(s)
- Mahdieh Aliyari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Fatemeh Hashemi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Reihani
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
181
|
Wang J, Tran-Huynh AM, Kim BJ, Chan DW, Holt MV, Fandino D, Yu X, Qi X, Wang J, Zhang W, Wu YH, Anurag M, Zhang XHF, Zhang B, Cheng C, Foulds CE, Ellis MJ. Death-associated protein kinase 3 modulates migration and invasion of triple-negative breast cancer cells. PNAS NEXUS 2024; 3:pgae401. [PMID: 39319326 PMCID: PMC11421662 DOI: 10.1093/pnasnexus/pgae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pull-down assay (KIPA), leading to the observation that death-associated protein kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple-negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with down-regulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by a mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that leucine-zipper protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a newly discovered regulator of EMT/desmosome components that promote TNBC cell migration.
Collapse
Affiliation(s)
- Junkai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anh M Tran-Huynh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoli Qi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
182
|
Silvaroli JA, Martinez GV, Vanichapol T, Davidson AJ, Zepeda-Orozco D, Pabla NS, Kim JY. Role of the CDKL1-SOX11 signaling axis in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F426-F434. [PMID: 38991010 PMCID: PMC11460330 DOI: 10.1152/ajprenal.00147.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024] Open
Abstract
The biology of the cyclin-dependent kinase-like (CDKL) kinase family remains enigmatic. Contrary to their nomenclature, CDKLs do not rely on cyclins for activation and are not involved in cell cycle regulation. Instead, they share structural similarities with mitogen-activated protein kinases and glycogen synthase kinase-3, although their specific functions and associated signaling pathways are still unknown. Previous studies have shown that the activation of CDKL5 kinase contributes to the development of acute kidney injury (AKI) by suppressing the protective SOX9-dependent transcriptional program in tubular epithelial cells. In the current study, we measured the functional activity of all five CDKL kinases and discovered that, in addition to CDKL5, CDKL1 is also activated in tubular epithelial cells during AKI. To explore the role of CDKL1, we generated a germline knockout mouse that exhibited no abnormalities under normal conditions. Notably, when these mice were challenged with bilateral ischemia-reperfusion and rhabdomyolysis, they were found to be protected from AKI. Further mechanistic investigations revealed that CDKL1 phosphorylates and destabilizes SOX11, contributing to tubular dysfunction. In summary, this study has unveiled a previously unknown CDKL1-SOX11 axis that drives tubular dysfunction during AKI.NEW & NOTEWORTHY Identifying and targeting pathogenic protein kinases holds potential for drug discovery in treating acute kidney injury. Our study, using novel germline knockout mice, revealed that Cdkl1 kinase deficiency does not affect mouse viability but provides protection against acute kidney injury. This underscores the importance of Cdkl1 kinase in kidney injury and supports the development of targeted small-molecule inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Gabriela V Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
183
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
184
|
Wang QX, Cai J, Chen ZJ, Liu JC, Wang JJ, Zhou H, Li QQ, Wang ZX, Wang YB, Tong ZJ, Yang J, Wei TH, Zhang MY, Zhou Y, Dai WC, Ding N, Leng XJ, Yin XY, Sun SL, Yu YC, Li NG, Shi ZH. Exploring drug repositioning possibilities of kinase inhibitors via molecular simulation. Mol Inform 2024; 43:e202300336. [PMID: 39031899 DOI: 10.1002/minf.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 07/22/2024]
Abstract
Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost-effective in silico prediction of KIs drug repositioning via analyzing cross-docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross-docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT-PI3K-mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 μM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 μM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Zi-Jun Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, Jiangsu, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Xiao-Ying Yin
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, Shanghai, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, 210023, Nanjing, Jiangsu, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, 211198, Nanjing, Jiangsu, China
| |
Collapse
|
185
|
Nemr MTM, Elshewy A, Ibrahim ML, El Kerdawy AM, Halim PA. Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction. Bioorg Chem 2024; 150:107566. [PMID: 38896936 DOI: 10.1016/j.bioorg.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3β inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3β inhibitory activity with IC50 of 0.244 and 0.128 μM, respectively, against CDK2, and IC50 of 0.317 and 0.160 μM, respectively, against GSK-3β. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3β downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and β-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3β in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Mohammed L Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Peter A Halim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
186
|
Abd El-Mawgoud HK, AboulMagd AM, Nemr MTM, Hemdan MM, Hassaballah AI, Farag PS. Design, synthesis and cytotoxic evaluation of new thieno[2,3-d]pyrimidine analogues as VEGFR-2/AKT dual inhibitors, apoptosis and autophagy inducers. Bioorg Chem 2024; 150:107622. [PMID: 38996545 DOI: 10.1016/j.bioorg.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Novel thieno[2,3-d]pyrimidine analogues were designed, synthesized and evaluated for anti-proliferative activity against HepG-2, PC-3 and MCF-7 cancer cell lines. In addition, WI-38 normal cell line was used to explore the safety of all the tested compounds. Compounds 2 (IC50 = 4.29 µM HePG-2, 10.84 µM MCF-7), 6 (IC50 = 14.86 μM HePG-2, 8.04 μM PC-3 and 12.90 μM MCF-7) and 17 (IC50 = 9.98 μM HePG-2, 33.66 μM PC-3 and 14.62 μM MCF-7) were the most promising candidates on the tested cancer cells with high selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where compound 2 inhibited VEGFR-2 and AKT at IC50 = 0.161 and 1.06 μM, respectively, Furthermore, derivative 6 inhibited VEGFR-2 and AKT at IC50 = 0.487 and 0.364 μM, respectively, while compound 17 showed IC50 = 0.164 and 0.452 μM, respectively. Moreover, compounds 2, 6 resulted in G1 phase cell cycle arrest while candidate 17 arrest cell cycle at G2/M phase. Similar to the apoptosis results, compound 17 showed the highest autophagic induction among the evaluated derivatives. Finally, docking studies were conducted to assess the binding patterns of these active derivatives. The results showed that the binding patterns inside the active sites of both the VEGFR-2 and AKT-1 (allosteric pocket) crystal structures were identical to the reference ligands.
Collapse
Affiliation(s)
- Heba K Abd El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, 11767 Cairo, Egypt.
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt.
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street 11562, Cairo, Egypt
| | - Magdy M Hemdan
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Aya I Hassaballah
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| | - Paula S Farag
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo, Egypt
| |
Collapse
|
187
|
Morez M, Lara Ordóñez AJ, Melnyk P, Liberelle M, Lebègue N, Taymans JM. Leucine-rich repeat kinase 2 (LRRK2) inhibitors for Parkinson's disease: a patent review of the literature to date. Expert Opin Ther Pat 2024; 34:773-788. [PMID: 39023243 DOI: 10.1080/13543776.2024.2378076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Nearly two decades after leucine rich repeat kinase 2 (LRRK2) was discovered as a genetic determinant of Parkinson's disease (PD), LRRK2 has emerged a priority therapeutic target in PD and inhibition of its activity is hypothesized to be beneficial. AREAS COVERED LRRK2 targeting agents, in particular kinase inhibitors and agents reducing LRRK2 expression show promise in model systems and have progressed to phase I and phase II clinical testing for PD. Several additional targeting strategies for LRRK2 are emerging, based on promoting specific 'healthy' LRRK2 quaternary structures, heteromeric complexes and conformations. EXPERT OPINION It can be expected that LRRK2 targeting strategies may proceed to phase III clinical testing for PD in the next five years, allowing the field to discover the real clinical value of LRRK2 targeting strategies.
Collapse
Affiliation(s)
- Margaux Morez
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Patricia Melnyk
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Maxime Liberelle
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Nicolas Lebègue
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Jean-Marc Taymans
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
188
|
Sun M, Ji Y, Zhang G, Li Y, Dong F, Wu T. Posttranslational modifications of E2F family members in the physiological state and in cancer: Roles, mechanisms and therapeutic targets. Biomed Pharmacother 2024; 178:117147. [PMID: 39053422 DOI: 10.1016/j.biopha.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The E2F transcription factor family, whose members are encoded by the E2F1-E2F8 genes, plays pivotal roles in the cell cycle, apoptosis, metabolism, stemness, metastasis, aging, angiogenesis, tumor promotion or suppression, and other biological processes. The activity of E2Fs is regulated at multiple levels, with posttranslational modifications being an important regulatory mechanism. There are numerous types of posttranslational modifications, among which phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, and poly(ADP-ribosyl)ation are the most commonly studied in the context of the E2F family. Posttranslational modifications of E2F family proteins regulate their biological activity, stability, localization, and interactions with other biomolecules, affecting cell proliferation, apoptosis, DNA damage, etc., and thereby playing roles in physiological and pathological processes. Notably, these modifications do not always act alone but rather form an interactive regulatory network. Currently, several drugs targeting posttranslational modifications are being studied or clinically applied, in which the proteolysis-targeting chimera and molecular glue can target E2Fs. This review aims to summarize the roles and regulatory mechanisms of different PTMs of E2F family members in the physiological state and in cancer and to briefly discuss their clinical significance and potential therapeutic use.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yitong Ji
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Guojun Zhang
- Department of Physiology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
| | - Yang Li
- Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fengming Dong
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Tianyi Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
189
|
Sun Y, Zhou R, Hu J, Feng S, Hu Q. Reversible control of kinase signaling through chemical-induced dephosphorylation. Commun Biol 2024; 7:1073. [PMID: 39217250 PMCID: PMC11366001 DOI: 10.1038/s42003-024-06771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The coordination between kinases and phosphatases is crucial for regulating the phosphorylation levels of essential signaling molecules. Methods enabling precise control of kinase activities are valuable for understanding the kinase functions and for developing targeted therapies. Here, we use the abscisic acid (ABA)-induced proximity system to reversibly control kinase signaling by recruiting phosphatases. Using this method, we found that the oncogenic tyrosine kinase BCR::ABL1 can be inhibited by recruiting various cytoplasmic phosphatases. We also discovered that the oncogenic serine/threonine kinase BRAF(V600E), which has been reported to bypass phosphorylation regulation, can be positively regulated by protein phosphatase 1 (PP1) and negatively regulated by PP5. Additionally, we observed that the dual-specificity kinase MEK1 can be inhibited by recruiting PP5. This suggests that bifunctional molecules capable of recruiting PP5 to MEK or RAF kinases could be promising anticancer drug candidates. Thus, the ABA-induced dephosphorylation method enables rapid screening of phosphatases to precisely control kinase signaling.
Collapse
Affiliation(s)
- Ying Sun
- Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rihong Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qi Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
190
|
Yang M, Min T, Manda T, Yang L, Hwarari D. Genomic Survey of LRR-RLK Genes in Eriobotrya japonica and Their Expression Patterns Responding to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2387. [PMID: 39273872 PMCID: PMC11397332 DOI: 10.3390/plants13172387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
The impact of global warming is increasing and thus exacerbating environmental stresses that affect plant yield and distribution, including the Eriobotrya japonica Lindl (Loquat tree). Eriobotrya japonica, a member of the Rosaceae family, is valued not only for its nutritious fruit but also for its medicinal purposes, landscape uses, and other pharmacological benefits. Nonetheless, the productivity of Eriobotrya japonica has raised a lot of concern in the wake of adverse environmental conditions. Understanding the characteristics of the LRR-RLK gene family in loquat is crucial, as these genes play vital roles in plant stress responses. In this study, 283 LRR-RLK genes were identified in the genome of E. japonica that were randomly positioned on 17 chromosomes and 24 contigs. The 283 EjLRR-RLK proteins clustered into 21 classes and subclasses in the phylogenetic analysis based on domain and protein arrangements. Further explorations in the promoter regions of the EjLRR-RLK genes showed an abundance of cis-regulatory elements that functioned in growth and development, phytohormone, and biotic and abiotic responses. Most cis-elements were present in the biotic and abiotic responses suggesting that the EjLRR-RLK genes are invested in regulating both biotic and abiotic stresses. Additional investigations into the responses of EjLRR-RLK genes to abiotic stress using the RT-qPCR revealed that EjLRR-RLK genes respond to abiotic stress, especially heat and salt stresses. Particularly, EjapXI-1.6 and EjapI-2.5 exhibited constant upregulation in all stresses analyzed, indicating that these may take an active role in regulating abiotic stresses. Our findings suggest the pivotal functions of EjLRR-RLK genes although additional research is still required. This research aims to provide useful information relating to the characterization of EjLRR-RLK genes and their responses to environmental stresses, establishing a concrete base for the following research.
Collapse
Affiliation(s)
- Mengqi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Min
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Teja Manda
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
191
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
192
|
Song L, Jiang W, Lin H, Yu J, Liu K, Zheng R. Post-translational modifications in sepsis-induced organ dysfunction: mechanisms and implications. Front Immunol 2024; 15:1461051. [PMID: 39234245 PMCID: PMC11371574 DOI: 10.3389/fimmu.2024.1461051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
As a grave and highly lethal clinical challenge, sepsis, along with its consequent multiorgan dysfunction, affects millions of people worldwide. Sepsis is a complex syndrome caused by a dysregulated host response to infection, leading to fatal organ dysfunction. An increasing body of evidence suggests that the pathogenesis of sepsis is both intricate and rapid and involves various cellular responses and signal transductions mediated by post-translational modifications (PTMs). Hence, a comprehensive understanding of the mechanisms and functions of PTMs within regulatory networks is imperative for understanding the pathological processes, diagnosis, progression, and treatment of sepsis. In this review, we provide an exhaustive and comprehensive summary of the relationship between PTMs and sepsis-induced organ dysfunction. Furthermore, we explored the potential applications of PTMs in the treatment of sepsis, offering a forward-looking perspective on the understanding of infectious diseases.
Collapse
Affiliation(s)
- Lin Song
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wei Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hua Lin
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiangquan Yu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Ke Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ruiqiang Zheng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
193
|
Colarusso A, Lauro C, Canè L, Cozzolino F, Tutino ML. Bacterial Production of CDKL5 Catalytic Domain: Insights in Aggregation, Internal Translation and Phosphorylation Patterns. Int J Mol Sci 2024; 25:8891. [PMID: 39201578 PMCID: PMC11354467 DOI: 10.3390/ijms25168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Translational Medical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (A.C.); (C.L.); (F.C.)
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B., Viale Medaglie D’Oro 305, 00136 Roma, Italy
| |
Collapse
|
194
|
Geng W, Thomas H, Chen Z, Yan Z, Zhang P, Zhang M, Huang W, Ren X, Wang Z, Ding K, Zhang J. Mechanisms of acquired resistance to HER2-Positive breast cancer therapies induced by HER3: A comprehensive review. Eur J Pharmacol 2024; 977:176725. [PMID: 38851563 DOI: 10.1016/j.ejphar.2024.176725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Wujun Geng
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Holly Thomas
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhixiu Yan
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pujuan Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Meiying Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
| |
Collapse
|
195
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
196
|
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-Action Kinase Inhibitors Influence p38α MAP Kinase Dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594272. [PMID: 39149408 PMCID: PMC11326130 DOI: 10.1101/2024.05.15.594272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase towards the active state. To turn off the kinase, protein phosphatases dephosphorylate these sites, but how the conformation of the dynamic activation loop contributes to dephosphorylation was not known. To answer this, we modulated the activation loop conformational equilibrium of human p38α ΜΑP kinase with existing kinase inhibitors that bind and stabilize specific inactive activation loop conformations. From this, we discovered three inhibitors that increase the rate of dephosphorylation of the activation loop phospho-threonine by the PPM serine/threonine phosphatase WIP1. Hence, these compounds are "dual-action" inhibitors that simultaneously block the active site and stimulate p38α dephosphorylation. Our X-ray crystal structures of phosphorylated p38α bound to the dual-action inhibitors reveal a shared flipped conformation of the activation loop with a fully accessible phospho-threonine. In contrast, our X-ray crystal structure of phosphorylated apo human p38α reveals a different activation loop conformation with an inaccessible phospho-threonine, thereby explaining the increased rate of dephosphorylation upon inhibitor binding. These findings reveal a conformational preference of phosphatases for their targets and suggest a new approach to achieving improved potency and specificity for therapeutic kinase inhibitors.
Collapse
Affiliation(s)
- Emily J Stadnicki
- Department of Biochemistry, Brandeis University
- Molecular and Cell Biology Program, Brandeis University
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University
- Present address: Northeastern University
| | - Xicong Wang
- Department of Biochemistry, Brandeis University
| | - Youwei Qiao
- Department of Biochemistry, Brandeis University
- Present address: UMass Medical School
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | | |
Collapse
|
197
|
Gizzio J, Thakur A, Haldane A, Post CB, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. Nat Commun 2024; 15:6545. [PMID: 39095350 PMCID: PMC11297160 DOI: 10.1038/s41467-024-50812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory folded conformation, due to intrinsic sequence effects. Here we investigate the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a thermodynamic cycle involving many (n = 108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation DFG-out Activation Loop Folded, is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Physics, Temple University, Philadelphia, PA, USA
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA.
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
198
|
McCarthy-Leo CE, Brush GS, Pique-Regi R, Luca F, Tainsky MA, Finley RL. Comprehensive analysis of the functional impact of single nucleotide variants of human CHEK2. PLoS Genet 2024; 20:e1011375. [PMID: 39146382 PMCID: PMC11349238 DOI: 10.1371/journal.pgen.1011375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/27/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Loss of function mutations in the checkpoint kinase gene CHEK2 are associated with increased risk of breast and other cancers. Most of the 3,188 unique amino acid changes that can result from non-synonymous single nucleotide variants (SNVs) of CHEK2, however, have not been tested for their impact on the function of the CHEK2-enocded protein (CHK2). One successful approach to testing the function of variants has been to test for their ability to complement mutations in the yeast ortholog of CHEK2, RAD53. This approach has been used to provide functional information on over 100 CHEK2 SNVs and the results align with functional assays in human cells and known pathogenicity. Here we tested all but two of the 4,887 possible SNVs in the CHEK2 open reading frame for their ability to complement RAD53 mutants using a high throughput technique of deep mutational scanning (DMS). Among the non-synonymous changes, 770 were damaging to protein function while 2,417 were tolerated. The results correlate well with previous structure and function data and provide a first or additional functional assay for all the variants of uncertain significance identified in clinical databases. Combined, this approach can be used to help predict the pathogenicity of CHEK2 variants of uncertain significance that are found in susceptibility screening and could be applied to other cancer risk genes.
Collapse
Affiliation(s)
- Claire E. McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - George S. Brush
- Department of Oncology, Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Oncology, Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Russell L. Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
199
|
Moraes B, Gomes H, Saramago L, Braz V, Parizi LF, Braz G, da Silva Vaz I, Logullo C, Moraes J. Aurora kinase as a putative target to tick control. Parasitology 2024; 151:983-991. [PMID: 39542861 PMCID: PMC11770520 DOI: 10.1017/s003118202400101x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 11/17/2024]
Abstract
Aurora kinases (AURK) play a central role in controlling cell cycle in a wide range of organisms. They belong to the family of serine-threonine kinase proteins. Their role in the cell cycle includes, among others, the entry into mitosis, maturation of the centrosome and formation of the mitotic spindle. In mammals, 3 isoforms have been described: A, B and C, which are distinguished mainly by their function throughout the cell cycle. Two aurora kinase coding sequences have been identified in the transcriptome of the cattle tick Rhipicephalus microplus (Rm-AURKA and Rm-AURKB) containing the aurora kinase-specific domain. For both isoforms, the highest number of AURK coding transcripts is found in ovaries. Based on deduced amino acid sequences, it was possible to identify non-conserved threonine residues which are essential to AURK functions in vertebrates and which are not present in R. microplus sequences. A pan AURK inhibitor (CCT137690) caused cell viability decline in the BME26 tick embryonic cell line. In silico docking assay showed an interaction between Aurora kinase and CCT137690 with exclusive interaction sites in Rm-AURKA. The characterization of exclusive regions of the enzyme will enable new studies aimed at promoting species-specific enzymatic inhibition in ectoparasites.
Collapse
Affiliation(s)
- Bruno Moraes
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Helga Gomes
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Luiz Saramago
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Valdir Braz
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gloria Braz
- Instituto de Química, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Jorge Moraes
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, NUPEM-Universidade Federal do Rio de Janeiro campus Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
200
|
Verma J, Vashisth H. Molecular basis for differential recognition of an allosteric inhibitor by receptor tyrosine kinases. Proteins 2024; 92:905-922. [PMID: 38506327 PMCID: PMC11222054 DOI: 10.1002/prot.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Understanding kinase-inhibitor selectivity continues to be a major objective in kinase drug discovery. We probe the molecular basis of selectivity of an allosteric inhibitor (MSC1609119A-1) of the insulin-like growth factor-I receptor kinase (IGF1RK), which has been shown to be ineffective for the homologous insulin receptor kinase (IRK). Specifically, we investigated the structural and energetic basis of the allosteric binding of this inhibitor to each kinase by combining molecular modeling, molecular dynamics (MD) simulations, and thermodynamic calculations. We predict the inhibitor conformation in the binding pocket of IRK and highlight that the charged residues in the histidine-arginine-aspartic acid (HRD) and aspartic acid-phenylalanine-glycine (DFG) motifs and the nonpolar residues in the binding pocket govern inhibitor interactions in the allosteric pocket of each kinase. We suggest that the conformational changes in the IGF1RK residues M1054 and M1079, movement of the ⍺C-helix, and the conformational stabilization of the DFG motif favor the selectivity of the inhibitor toward IGF1RK. Our thermodynamic calculations reveal that the observed selectivity can be rationalized through differences observed in the electrostatic interaction energy of the inhibitor in each inhibitor/kinase complex and the hydrogen bonding interactions of the inhibitor with the residue V1063 in IGF1RK that are not attained with the corresponding residue V1060 in IRK. Overall, our study provides a rationale for the molecular basis of recognition of this allosteric inhibitor by IGF1RK and IRK, which is potentially useful in developing novel inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824
- Department of Chemistry, University of New Hampshire, Durham, NH 03824
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824
| |
Collapse
|